Skip to main content
Frontiers in Cell and Developmental Biology logoLink to Frontiers in Cell and Developmental Biology
. 2021 Feb 1;9:624823. doi: 10.3389/fcell.2021.624823

Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease

Cara R Schiavon 1,2, Gerald S Shadel 2, Uri Manor 1,*
PMCID: PMC7882694  PMID: 33598463

Abstract

Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this “impaired mobility” model of the disease.

Keywords: organelle transport, axonal transport deficiency, neurodegeneration, cytoskeleton, mitochondria, Charcot-Marie-Tooth (CMT) disease

Introduction

Charcot-Marie-Tooth (CMT) disease is the most commonly inherited neurological disorder, affecting ∼1 in 5000 people (Skre, 1974; Barreto et al., 2016). It is a peripheral neuropathy defined by progressive deterioration of the peripheral nerves in the distal parts of the body, specifically the feet, hands, and lower extremities. This typically results in both motor and sensory loss in the affected areas. Unraveling the pathogenic mechanism(s) underlying CMT is somewhat complicated by the fact that CMT is both genetically and clinically heterogeneous. CMT has many subtypes including, demyelinating (affecting mainly Schwann cells), axonal, and intermediate (affecting both axons and Schwann cells). Herein, we are focusing on perturbations of mitochondrial mobility that might underlie the pathogenesis of axonal CMT.

Charcot-Marie-Tooth variants were originally classified based purely on clinical data. However, a recent explosion in genetic data can be mined to generate some compelling hypotheses. To date, over 100 mutations across more than 40 different proteins have been implicated in axonal and intermediate CMT. A large fraction of CMT-associated proteins has been shown or is predicted to affect the mobility of mitochondria or other organelles (Table 1). In this review, we will focus on those that affect mitochondrial mobility and hypothesize that defects in this process might begin to explain why CMT mutations mainly affect peripheral neurons. At the same time, we highlight important limitations to this “impaired mobility” model. Our belief is that the insights gained from studying the effects of CMT mutations in peripheral neurons will inform the role of mitochondrial mobility in other types of neurons and neurodegenerative disorders, including those associated with aging.

TABLE 1.

Genes mutated in axonal and intermediate CMT.

Gene/CMT subtype/OMIM Code Function References
AARS1/CMT2N/613287 Catalyzes the attachment of alanine to tRNA. McLaughlin et al., 2012; Zhao Z. et al., 2012; Bansagi et al., 2015; Dohrn et al., 2017; Weterman et al., 2018
ATP1A1/CMT2DD/618036 Catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. Lassuthova et al., 2018
BAG3/CMT2* Acts as a nucleotide-exchange factor promoting the release of ADP from the HSP70 and HSC70 proteins thereby triggering client/substrate protein release. Has anti-apoptotic activity. Plays a role in cytoskeletal proteostasis and dynamics. Kim et al., 2018; Shy et al., 2018
BSCL2/CMT2/619112* Plays a crucial role in the formation of lipid droplets. Mediates the formation and/or stabilization of endoplasmic reticulum-lipid droplet contacts. Binds anionic phospholipids including phosphatidic acid. Chaudhry et al., 2013
DCTN2/CMT2* Component of a large macromolecular complex required for the cytoplasmic dynein-driven movement of organelles along microtubules. Pays a role in prometaphase chromosome alignment and spindle organization during mitosis. Braathen et al., 2016
DGAT2/CMT2 Required for synthesis and storage of intracellular triglycerides. Hong et al., 2016
DHTKD1/CMT2Q/615025 Catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO2. Baets et al., 2014; Dohrn et al., 2017; Zhao et al., 2019
DNAJB2/CMT2T/604139 Functions as a co-chaperone, activating the ATPase activity of chaperones of the HSP70/heat shock protein 70 family. Contributes to the ubiquitin-dependent proteasomal degradation of misfolded proteins. Gess et al., 2014; Lupo et al., 2016
DNM2/CMT2M/602378; CMTDIB/606482* Plays an important role in vesicular trafficking processes, in particular endocytosis. Involved in producing microtubule bundles. Involved in cytokinesis. Echaniz-Laguna et al., 2007; Bitoun et al., 2008; Haberlová et al., 2011; González-Jamett et al., 2014; Saghira et al., 2018
DYNC1H1/CMT2O/614228* Acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Plays a role in mitotic spindle assembly and metaphase plate congression. Weedon et al., 2011
GARS1/CMT2D/601472 Catalyzes the attachment of glycine to tRNA James et al., 2006; Xie et al., 2006; Hamaguchi et al., 2010; Motley et al., 2011; Morelli et al., 2017
GDAP1/CMT2K/607831; CMTRIA608340/; CMT4A/214400* Regulates the mitochondrial network by promoting mitochondrial fission. Proposed roles in mitochondrial transport, redox processes, calcium homeostasis, and energy production. Baxter et al., 2002; Cuesta et al., 2002; Ammar et al., 2003; Senderek et al., 2003; Di Maria et al., 2004; Zhang et al., 2004; Baránková et al., 2007; Kabzińska et al., 2007; Auer-Grumbach et al., 2008; Rougeot et al., 2008; Xin et al., 2008; Moroni et al., 2009; Sahin-Calapoglu et al., 2009a,b; Cassereau et al., 2011; Fusco et al., 2011; Zimoń et al., 2011, 2015; Vital et al., 2012; Auranen et al., 2013; Manganelli et al., 2015; Martin et al., 2015; Dohrn et al., 2017; Ho et al., 2017; Martí et al., 2017; Yoshimura et al., 2017; He et al., 2018; Masingue et al., 2018; Rzepnikowska and Kochański, 2018; Mai et al., 2019; Qin et al., 2019
HARS1/CMT2W/616625 Catalyzes the attachment of histidine to tRNA. Baets et al., 2014
HINT1/CMT2/137200 Hydrolyzes purine nucleotide phosphoramidates with a single phosphate group. Baets et al., 2014; Laššuthová et al., 2015; Zimoń et al., 2015; Dohrn et al., 2017
HSPB1/CMT2F/606595* Functions as a molecular chaperone maintaining denatured proteins in a folding-competent state. Plays a role in stress resistance and actin organization. Regulates numerous biological processes including phosphorylation and axonal transport of neurofilament proteins. Liu et al., 2005; Tang et al., 2005; Chung et al., 2008; Houlden et al., 2008; Solla et al., 2010; Amornvit et al., 2017; Dohrn et al., 2017; Ho et al., 2017; Weeks et al., 2018
HSPB8/CMT2L/608673* Displays temperature-dependent chaperone activity. Forms complex with BAG3. Nicholson et al., 2009
IGHMBP2/CMT2S/616155 5′ to 3′ helicase that unwinds RNA and DNA duplices. Acts as a transcription regulator. Cottenie et al., 2014; Wagner et al., 2015; Dohrn et al., 2017; Yuan et al., 2017
JPH1/CMT2K/607831 Contributes to the formation of junctional membrane complexes which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. Pla-Martín et al., 2015; Kanwal and Perveen, 2019
KIF1B/CMT2A1/118210* Motor for anterograde transport of mitochondria. Nakagawa and Takashima, 2003; Bissar-Tadmouri et al., 2004
KIF5A/CMT2* Microtubule-dependent motor required for slow axonal transport of neurofilament proteins. Contributes to the vesicular transport of VAPA, VAPB, SURF4, RAB11A, RAB11B and RTN3 proteins in neurons. Dohrn et al., 2017
LMNA/CMT2B1/605588 Plays an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics. De Sandre-Giovannoli et al., 2002; Chaouch et al., 2003; Hamadouche et al., 2008; Zhang et al., 2010; Liang et al., 2016; Dohrn et al., 2017
LRSAM1/CMT2G/614436 E3 ubiquitin-protein ligase. Bacterial recognition protein that defends the cytoplasm from invasive pathogens. Potential role in mitophagy? Guernsey et al., 2010; Nicolaou et al., 2013; Dohrn et al., 2017
MARS1/CMT2U/616280 Catalyzes the attachment of methionine to tRNA. Baets et al., 2014; Sun et al., 2017
MED25/CMT2B2/605589 A coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Leal et al., 2009, 2018; Tazir et al., 2013
MFN2/CMT2A2/609260* Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Involved in the clearance of damaged mitochondria via mitophagy. Potential roles in mitochondria-ER contacts and mitochondrial transport. Kijima et al., 2005; Lawson et al., 2005; Engelfried et al., 2006; Verhoeven et al., 2006; Zuchner et al., 2006; Loiseau et al., 2007; Muglia et al., 2007; Neusch et al., 2007; Del Bo et al., 2008; Calvo et al., 2009; Cartoni and Martinou, 2009; Braathen et al., 2010; Ouvrier and Grew, 2010; Feely et al., 2011; McCorquodale et al., 2011; Park et al., 2012; Vital et al., 2012; Brožková et al., 2013; Chapman et al., 2013; Kotruchow et al., 2013; Lv et al., 2013, 2015; Vielhaber et al., 2013; Bergamin et al., 2014; Choi B. O. et al., 2015; Wang et al., 2015; Bannerman et al., 2016; Di Meglio et al., 2016; Neupauerová et al., 2016; Rudnik-Schöneborn et al., 2016; Tan et al., 2016; Werheid et al., 2016; Xie et al., 2016; Ando et al., 2017; Beręsewicz et al., 2017; Dohrn et al., 2017; El Fissi et al., 2018; Finsterer et al., 2018; Iapadre et al., 2018; Milley et al., 2018; Larrea et al., 2019; Xu et al., 2019
MME/CMT2T/617017 Biologically important in the destruction of opioid peptides. Able to cleave angiotensin. Involved in the degradation of atrial natriuretic factor. Auer-Grumbach et al., 2016; Fujisawa et al., 2017
MORC2/CMT2Z/616688 Essential for epigenetic silencing by the HUSH complex. Albulym et al., 2016
MPV17/CMT2EE/618400* Non-selective channel that modulates membrane potential under normal conditions and oxidative stress, and is involved in mitochondrial homeostasis. Involved in mitochondrial deoxynucleoside triphosphates pool homeostasis and mitochondrial DNA maintenance. Choi Y. R. et al., 2015
MPZ/CMT2J/607736; CMTDID/607791; CMT1B/118200 Mediates adhesion between adjacent myelin wraps and ultimately drives myelin compaction. Hayasaka et al., 1993; Pham-Dinh et al., 1993; Nelis et al., 1994; Latour et al., 1995; Blanquet-Grossard et al., 1996; Roa et al., 1996; Silander et al., 1996; Bissar-Tadmouri et al., 1999; De Jonghe et al., 1999; Lagueny et al., 1999; Quattrini et al., 1999; Senderek et al., 2000; Kochański et al., 2004; Kurihara et al., 2004; Bienfait et al., 2006; Sabet et al., 2006; Laurà et al., 2007; Lee et al., 2008; Mazzeo et al., 2008; Gallardo et al., 2009; Avila et al., 2010; Brozková et al., 2010; Kleffner et al., 2010; Choi et al., 2011; Høyer et al., 2011, 2014; Chavada et al., 2012; Maeda et al., 2012; Marttila et al., 2012; Rosberg et al., 2013; Speevak and Farrell, 2013; Bergamin et al., 2014; Leal et al., 2014; Sanmaneechai et al., 2015; Tokuda et al., 2015; Wang et al., 2015; Rudnik-Schöneborn et al., 2016; Werheid et al., 2016; Dohrn et al., 2017; He et al., 2018; Milley et al., 2018; Xu et al., 2019
MT-ATP6/CMT2* Mitochondrial membrane ATP synthase. Key component of the proton channel. Pitceathly et al., 2012
MYH14/CMT2/614369* Conventional non-muscle myosin. Actin-dependent motor protein. Mediates mitochondrial fission. Almutawa et al., 2019
NAGLU/CMT2V/616491 Involved in the degradation of heparan sulfate. Tétreault et al., 2015
NEFH/CMT2CC/616924* Component of neurofilaments, the most abundant cytoskeletal component of myelinated axons. Bian et al., 2018
NEFL/CMT2E/607684* Component of neurofilaments, the most abundant cytoskeletal component of myelinated axons. Regulates mitochondrial morphology. Lupski, 2000; Luo et al., 2003; Fabrizi et al., 2007; Miltenberger-Miltenyi et al., 2007; Shin et al., 2008; Bhagavati et al., 2009; Berciano et al., 2016; Werheid et al., 2016; Dohrn et al., 2017; Horga et al., 2017; Fu and Yuan, 2018; Xu et al., 2019
PNKP/CMT2B2/605589 Plays a key role in the repair of DNA damage, functioning as part of both the non-homologous end-joining and base excision repair pathways. Leal et al., 2018
RAB7A/CMT2B/600882* Key regulator in endo-lysosomal trafficking. Plays roles in growth-factor-mediated cell signaling, nutrient-transporter mediated nutrient uptake, neurotrophin transport in the axons of neurons and lipid metabolism. Regulates mitochondrial fission, mitophagy, and mitochondria-lysosome tethering. Meggouh et al., 2006; Zhang et al., 2010; Manganelli et al., 2015
SPG11/CMT2X/616668* Plays a role in neurite plasticity by maintaining cytoskeleton stability and regulating synaptic vesicle transport. Montecchiani et al., 2016
TRIM2/CMT2R/615490* E3 ubiquitin-protein ligase that mediates the ubiquitination of NEFL and of phosphorylated BCL2L11. Baets et al., 2014; Pehlivan et al., 2015
TRPV4/CMT2C/606071* Non-selective calcium permeant cation channel involved in osmotic sensitivity and mechanosensitivity. Some data supporting a role in regulating mitochondrial motility. Klein et al., 2003; Deng et al., 2010; Manganelli et al., 2015; Dohrn et al., 2017
VCP/CMT2Y/616687* Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum. Plays a role in the regulation of stress granule clearance. Involved in DNA damage response. Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy and mitophagy. Gonzalez et al., 2014
C1ORF194/CMTDI May affect intracellular Ca2+ homeostasis. Sun et al., 2019
GNB4/CMTDIF/615185 Modulator/transducer in various transmembrane signaling systems. Soong et al., 2013; Baets et al., 2014; Miura et al., 2017
INF2/CMTDIE/614455* Mediates actin polymerization at ER-mitochondria contact sites. Regulates mitochondrial morphology and motility. Boyer et al., 2011a,b; Mademan et al., 2013; Rodriguez et al., 2013; Vallat et al., 2013; Caridi et al., 2014; Park et al., 2014; Jin et al., 2015; Werheid et al., 2016; Dohrn et al., 2017; Echaniz-Laguna and Latour, 2019; Fu et al., 2019
SLC12A6/CMTDI/218000 Mediates electroneutral potassium-chloride cotransport. Lupo et al., 2016
YARS1/CMTDIC/608323 Catalyzes the attachment of tyrosine to its corresponding tRNA Jordanova et al., 2006; Xie et al., 2007
COX6A1/CMTRI/616039* A subunit of the cytochrome c oxidase complex Tamiya et al., 2014
KARS1/CMTRIB/613641 Catalyzes the aminoacylation of tRNA-Lys in the cytoplasm and mitochondria McLaughlin et al., 2010
PLEKHG5/CMTRIC/615376 Activates the nuclear factor kappa B (NFKB1) signaling pathway. Also implicated in distal spinal muscular atrophy. Kim et al., 2013

Genes that play a role in mitochondrial function and/or motility are marked with an asterisk.

CMT Is a Progressive Disorder That Affects Predominantly the Longest Neurons

Charcot-Marie-Tooth usually affects only the feet, hands, and lower extremities. The axons leading to these distal sites can be as long as a meter in some individuals. There have been some reports of central nervous system involvement but these instances are rare (Pareyson and Marchesi, 2009; Lee et al., 2017). Some CMT mutations also cause optic atrophy, and the optical nerve notably consists of relatively long axons (∼50 mm). Patients are usually born unaffected, but typically by age 10 display major losses of function. However, the range of age can be from the toddler years to the 5th decade of life (Skre, 1974; Verhoeven et al., 2003; Zuchner et al., 2004, 2006; Chung et al., 2006; Engelfried et al., 2006; Cho et al., 2007; Calvo et al., 2009; Braathen et al., 2010; Boyer et al., 2011b). The severity of the disease is directly correlated with the age of onset (Chung et al., 2006; Verhoeven et al., 2006), and the longer axons (i.e., the feet) invariably degenerate before the shorter axons (i.e., the hands). In cases where CMT patients also display optic atrophy, this occurs after loss of function in the hands (Verhoeven et al., 2006; Zuchner et al., 2006). Together, these observations indicate a disease that directly correlates the length of the axon with the speed of onset, and the speed of onset with the magnitude of the pathology.

CMT Mutations Largely Affect Mitochondrial Mobility

As mentioned above, a unique peripheral nerve characteristic is their extreme length, which suggests these cells are uniquely sensitive to impaired long-distance transport. Put simply, a decrease in mobility would have a greater impact on longer distance commutes than shorter ones. In support of this theory, 23 out of the 48 genes mutated in axonal or intermediate CMT encode proteins that play roles in mitochondrial function, often impacting mitochondrial mobility (Table 1).

The majority of axonal CMT studies have centered on Mitofusin 2 (MFN2) mutations, which consistently result in reduced axonal mitochondrial mobility. This phenotype has been reproduced in mouse models and in patient cell lines and tissues. Neurons expressing MFN2 CMT mutants and neurons from MFN2 CMT mouse models also show reduced axonal mitochondrial mobility (Baloh et al., 2007; Vallat et al., 2008; Rocha et al., 2018). MFN2 is also implicated in mitochondrial fusion dynamics, and MFN2 CMT mutations cause clustering of improperly fused mitochondria (Baloh et al., 2007; Detmer and Chan, 2007; Vallat et al., 2008; Rocha et al., 2018). Thus, it is possible that this mitochondrial clustering contributes to reduced mitochondrial mobility. Although several MFN2 CMT mutants cause mitochondrial fragmentation suggesting a disruption of its fusogenic activity, there are other MFN2 CMT mutants that do not alter mitochondrial morphology or, seemingly paradoxically, even cause mitochondrial elongation (Detmer and Chan, 2007; Codron et al., 2016; Rocha et al., 2018). MFN2 is also implicated in mitophagy, lipid transfer, lipid droplet-mitochondria contacts, and endoplasmic reticulum (ER)-mitochondria contacts, although whether MFN2 increases or decreases ER-mitochondria contacts is still under debate (de Brito and Scorrano, 2008; Chen and Dorn, 2013; Sugiura et al., 2013; Gong et al., 2015; Leal et al., 2016; Naon et al., 2016, 2017; Boutant et al., 2017; Filadi et al., 2017; Basso et al., 2018; McLelland et al., 2018; Hernández-Alvarez et al., 2019). While MFN2 CMT mutants reduce ER-mitochondria contacts (Bernard-Marissal et al., 2019; Larrea et al., 2019), it is unclear whether these changes affect mitochondrial mobility.

How alterations in mitochondrial motility impact mitochondrial function, particularly in the context of CMT, remains poorly understood. Despite clear defects in mitochondrial mobility, some studies have concluded CMT mutations do not alter readouts of mitochondrial OXPHOS function such as mitochondrial membrane potential, oxygen consumption, and ATP production, or impair cellular calcium levels which mitochondria are involved in controlling (Baloh et al., 2007; Larrea et al., 2019). However, other studies have demonstrated that CMT mutations cause defects in these readouts (Loiseau et al., 2007; Guillet et al., 2010; Barneo-Munoz et al., 2015; Saporta et al., 2015; Rocha et al., 2018; Almutawa et al., 2019; Bernard-Marissal et al., 2019). And, another study demonstrated that bioenergetic efficiency and viability in a fly model can be rescued with only minor alterations in mitochondrial distribution (Trevisan et al., 2018). These discrepancies may be at least partially explained by differences in the model systems and experimental conditions used. There are now a wide variety of tools to study CMT including mouse and fly (Drosophila melanogaster) genetic models and iPSC-derived motor neurons (Saporta et al., 2015; Yamaguchi and Takashima, 2018; Juneja et al., 2019).

There is also clear evidence for a role of organelle-organelle contacts affecting mitochondrial mobility in CMT caused by mutations in the endo-lysosomal protein RAB7A. Wong et al. demonstrated reduced mitochondrial mobility due to prolonged inter-mitochondrial contacts in HeLa cells expressing CMT-mutant MFN2, RAB7A, or TRPV4 (Transient Receptor Potential Cation Channel Subfamily V Member 4) (Wong et al., 2019). RAB7A CMT mutations also increase tethering between mitochondria and endolysosomes, leading to changes in mitochondrial morphology and reduced mitochondrial mobility (Wong et al., 2018, 2019; Cioni et al., 2019). There is also evidence pointing towards an interaction between RAB7A and MFN2 (Zhao T. et al., 2012). Together, these findings suggest that interpretations of RAB7A mutations causing CMT based solely on defects in its endo-lysosomal function may be too simplistic. In the same vein, a recent study found that CMT-causing GDAP1 (Ganglioside Induced Differentiation Associated Protein 1) mutations result in defective mitochondria-lysosome contacts (Cantarero et al., 2020). That mitochondria-organelle contacts can affect mitochondrial mobility and dynamics highlights the limitations of evaluating protein and organelle dysfunction in isolation.

Recently, a screen for RAB7A binding partners found that another CMT protein, INF2 (Inverted Formin 2), is one of several actin-binding candidate interaction partners for RAB7A (Pan et al., 2020). This is particularly relevant to our discussion on CMT, inter-organelle contacts, and mitochondrial mobility for multiple reasons. First, a splice isoform of INF2 is tail-anchored to the ER. Second, dominant active mutations in ER-anchored INF2 that mimic INF2 CMT mutations have been shown to increase actin-dependent mitochondrial fragmentation and decrease mitochondrial mobility (Korobova et al., 2013; Chakrabarti et al., 2018). Together, these data point towards an important role in ER-mitochondria inter-organelle contacts in somehow regulating mitochondrial mobility via the actin cytoskeleton. That INF2 also potentially interacts with RAB7A suggests that mitochondria, endo-lysosomes, and ER all contact one another via CMT-associated proteins.

All INF2 CMT mutations are predicted or have been shown to increase actin assembly (Bayraktar et al., 2020). While some actin-binding motor proteins likely facilitate microtubule-independent mitochondrial transport, numerous studies have shown that long-range microtubule-based mobility of mitochondria is antagonized by actin and actin-binding motor proteins (Chada and Hollenbeck, 2004; Quintero et al., 2009; Pathak et al., 2010; Venkatesh et al., 2019; Cardanho-Ramos et al., 2020). Thus, while the effects of INF2 CMT mutations have yet to be studied in neurons, it is reasonable to expect that INF2 CMT mutations will cause an actin-dependent decrease in mitochondrial mobility in axons. Furthermore, since the ER regularly contacts many other organelles, and even appears to drive actin-assembly at ER-organelle contact sites (Korobova et al., 2013, 2014; Manor et al., 2015; Chakrabarti et al., 2018; Yang and Svitkina, 2019; Schiavon et al., 2020), it is quite possible INF2 CMT mutations cause aberrant actin assembly on other organelles, reducing their mobility as well (Figure 1).

FIGURE 1.

FIGURE 1

Model for how CMT mutations in INF2 reduce mitochondrial mobility. Normal INF2 is autoinhibited as indicated by open conformation compared to the closed conformation and thus has regulated actin-assembly activity. CMT mutations in INF2 reduce autoinhibition, resulting in excessive actin assembly on mitochondria and potentially other organelles, which in turn reduces their mobility.

Together with the newly uncovered role for RAB7A in (indirectly) modulating actin assembly (Pan et al., 2020), these observations point towards a role for multiple CMT mutations causing aberrant organelle-organelle and organelle-actin contacts, all of which cause decreased mitochondrial mobility. Whether some (or all) CMT mutations also cause decreased mobility of other organelles remains an important open question.

The focus of the role of mitochondria in CMT has been primarily on MFN2 and GDAP1, and to a lesser extent on associated motor proteins (KIF1B – Kinesin Family Member 1B, KIF5A – Kinesin Family Member 5A, DYNC1H1 – Dynein Cytoplasmic 1 Heavy Chain 1, DCTN2 – Dynactin Subunit 2) and some cytoskeletal proteins (NEFL – Neurofilament Light). Here, we have highlighted INF2 and RAB7A as CMT-associated proteins likely involved in mitochondrial mobility and dynamics. However, we propose that the proteins mutated in CMT that play roles in mitochondrial function, dynamics and mobility likely extend well beyond just these two (see Table 1 for a full list).

Why Do Mobility Defects Usually Only Affect Peripheral Neurons in CMT Patients?

Hopefully, we have provided a convincing argument that many CMT mutations likely reduce mitochondrial mobility. Given the extreme lengths of peripheral axons, it is tempting to conclude that a reduction in mobility due to CMT mutations simply affects longer axons more severely (the “impaired mobility model” of CMT). One can easily reconcile two key features of CMT using the impaired mobility model: The progressive nature of the disease: This suggests that dysfunction must accumulate over time. One can imagine this more severely affects longer axons, due to reduced turnover of damaged mitochondria resulting from reduced mitochondrial mobility. Interestingly, one could imagine that reduced mobility of other organelles associated with turnover (e.g., lysosomes) could also cause increased accumulation of damaged mitochondria in longer axons. The longest peripheral axons (i.e., the feet) progressively degenerate prior to the next-longest axons (i.e., the hands): This further supports the impaired mobility model, wherein damage accumulates first in the longest axons due to the more demanding, “longer commute” resulting in faster accumulation of damaged mitochondria.

Unfortunately, while this model is compelling, it appears to be overly simplistic. The weakness in relying on mobility alone as an explanation can best be highlighted by comparing the lengths of different axons both within and between species. For example, the longest axon in mice is approximately 2 cm, whereas in humans the longest axon is ∼60 times longer. Just as striking, some unaffected axons in the human CNS may be longer than the mouse’s longest axon. The very same mutation in humans and mice can cause CMT, yet no defects are found in the brains of human CMT patients. Meanwhile, the motor proteins, cytoskeletal tracks, and mitochondria of mice and humans are all roughly the same size, and all possess roughly the same biophysical properties (e.g., velocity, force generation, etc.) when transporting their organelles across long distances (Figure 2).

FIGURE 2.

FIGURE 2

The relative scales of axons in humans versus mice. While microtubules, motor proteins, and mitochondria have nearly identical sizes in mice and men, the length of the axons can be very different. At the same time, axons in the mouse sciatic nerve are not as long as some of the longer axons within the human brain. For example, it is known in the macaque there are direct connections from the frontal eye fields in the anterior bank of the arcuate sulcus to the primary visual cortex, which in the macaque is ∼5 cm, and probably as long as 12.5 cm in humans. Notably, for most CMT patients the pathology is often constrained to only peripheral neurons. Since the same mutations can cause CMT in mice and men, the distances mitochondria must travel can only provide a partial explanation for the physiopathology of these mutations.

Any analysis of mobility must consider not just distance but also time. Most laboratory mice only live for ∼2 years, while human CMT patients may not even experience symptoms until adolescence or adulthood. Thus, there is clearly a “missing variable” that underlies differences in lifespan and disease susceptibility between species (e.g., differences in metabolism or oxidative stress). Thus, CMT may serve as a “model disease” to better understand age-related neurodegeneration. It is well established mitochondria play myriad roles at the pre-synapse, including ATP production, intra- and intercellular signaling (e.g., calcium signaling and signaling via reactive oxygen species), and the biosynthesis of signaling molecules (e.g., lipids, hormones, and neurotransmitter intermediates) (Devine and Kittler, 2018). Perhaps perturbed transport of mitochondria to the pre-synapse of peripheral neurons in CMT provides an opportunity to better understand other neurodegenerative disorders associated with defective presynaptic mitochondria, including Alzheimer’s, ALS, Parkinson’s, Friedreich’s Ataxia, and Hereditary Spastic Paraplegia (Devine and Kittler, 2018).

But even considering the impaired mobility model for CMT within a single organism has some issues. It is difficult to imagine how reductions in mobility as high as 100% (Baloh et al., 2007; Rocha et al., 2018) could have a severe effect only on the longest axons, but not other axons that, while shorter than the peripheral neurons, are still very long compared to the ∼25 nm step size of a motor protein.

When considering these conundrums, it is helpful to consider alternative mechanisms for replenishing mitochondria in neurons, many of which are reviewed elsewhere (Misgeld and Schwarz, 2017; Yu and Pekkurnaz, 2018). Briefly, mitochondrial rejuvenation is speculated to be at least partially mediated via local translation in the axon. Interestingly, multiple CMT mutations affect local translation machinery (Table 1). More recent work showed that mitochondria serve as a stable compartment for mediating biogenesis by serving as an energy source for synaptic translation (Rangaraju et al., 2019). This raises a chicken vs. egg question: Does reduced mitochondrial mobility impair local translation needed for synaptic and therefore neuronal health and maintenance? Or does impaired local translation lead to dysfunctional mitochondria that cannot be replaced without sufficient mobility? That CMT is caused by mutations disrupting both mobility and local translation indicates these two processes have a unique relationship in long axons.

Conclusion and Open Questions

One open question is how the overall distribution of mitochondria is altered in CMT neurons, and how this relates to axonal maintenance. A recent study showed mitochondria tend to distribute along the length of axons with regular spacing, and that inter-mitochondrial feedback mediates their positioning and movement (Matsumoto et al., 2020). Is this feedback-based positioning altered in CMT? Do mutations affecting mobility result in CMT via a “domino effect” caused by defects in relatively local repositioning between axonal mitochondria, which then cascades with increasing defects as a function of increasing axonal length? How much longer does it take mitochondria in CMT patients to traverse the entire length of an axon? Defective mitophagy has been implicated in other neurodegenerative disorders and some studies have linked CMT to alterations in autophagy (Colecchia et al., 2018; Gautam et al., 2019). Is there a reduction in the turnover rate of mitochondria in CMT patients? Mitochondria are increasingly being implicated as important players in adaptive and innate immune responses and inflammatory pathology, including neurodegeneration (West, 2017; Newman and Shadel, 2018). Could “mitoflammation” contribute to the pathophysiology of CMT? How do any and all of these factors affect mitochondria at the pre-synapse of CMT peripheral neurons, likely the most important subpopulation of mitochondria in these cells? These are surprisingly open questions we expect to be addressed in the coming years using animal and cell models of CMT.

Data Availability Statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We would like to thank Timothy Shutt for critical feedback on the original version of the manuscript. We are grateful to Amy Cao (Salk Institute for Biological Studies) for help with the cartoon diagram in Figure 2.

Footnotes

Funding. The Waitt Advanced Biophotonics Center was funded by the Waitt Foundation and Core Grant application National Cancer Institute (NCI) Cancer Center Support Grant (CCSG; CA014195). GS is the Audrey Geisel Chair in Biomedical Science and supported by NIH R01 AR069876. UM is a Chan Zuckerberg Initiative Imaging Scientists and supported by NIH R21 DC018237. CS was supported by NIH F32 GM137580.

References

  1. Albulym O. M., Kennerson M. L., Harms M. B., Drew A. P., Siddell A. H., Auer-Grumbach M., et al. (2016). MORC2 mutations cause axonal Charcot-Marie-Tooth disease with pyramidal signs. Ann. Neurol. 79 419–427. 10.1002/ana.24575 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almutawa W., Smith C., Sabouny R., Smit R. B., Zhao T., Wong R., et al. (2019). The R941L mutation in MYH14 disrupts mitochondrial fission and associates with peripheral neuropathy. EBioMedicine 45 379–392. 10.1016/j.ebiom.2019.06.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ammar N., Nelis E., Merlini L., Barisić N., Amouri R., Ceuterick C., et al. (2003). Identification of novel GDAP1 mutations causing autosomal recessive Charcot-Marie-Tooth disease. Neuromuscul. Disord. 13 720–728. 10.1016/s0960-8966(03)00093-2 [DOI] [PubMed] [Google Scholar]
  4. Amornvit J., Yalvac M. E., Chen L., Sahenk Z. (2017). A novel p.T139M mutation in HSPB1 highlighting the phenotypic spectrum in a family. Brain Behav. 7:e00774. 10.1002/brb3.774 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ando M., Hashiguchi A., Okamoto Y., Yoshimura A., Hiramatsu Y., Yuan J., et al. (2017). Clinical and genetic diversities of Charcot-Marie-Tooth disease with MFN2 mutations in a large case study. J. Peripher. Nerv. Syst. 22 191–199. 10.1111/jns.12228 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Auer-Grumbach M., Fischer C., Papiæ L., John E., Plecko B., Bittner R. E., et al. (2008). Two novel mutations in the GDAP1 and PRX genes in early onset Charcot-Marie-Tooth syndrome. Neuropediatrics 39 33–38. 10.1055/s-2008-1077085 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Auer-Grumbach M., Toegel S., Schabhüttl M., Weinmann D., Chiari C., Bennett D. L. H., et al. (2016). Rare variants in MME, Encoding metalloprotease neprilysin, are linked to late-onset autosomal-dominant axonal polyneuropathies. Am. J. Hum. Genet. 99 607–623. 10.1016/j.ajhg.2016.07.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Auranen M., Ylikallio E., Toppila J., Somer M., Kiuru-Enari S., Tyynismaa H. (2013). Dominant GDAP1 founder mutation is a common cause of axonal Charcot-Marie-Tooth disease in Finland. Neurogenetics 14 123–132. 10.1007/s10048-013-0358-9 [DOI] [PubMed] [Google Scholar]
  9. Avila R. L., D’Antonio M., Bachi A., Inouye H., Feltri M. L., Wrabetz L., et al. (2010). P0 (protein zero) mutation S34C underlies instability of internodal myelin in S63C mice. J. Biol. Chem. 285 42001–42012. 10.1074/jbc.M110.166967 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Baets J., De Jonghe P., Timmerman V. (2014). Recent advances in Charcot-Marie-Tooth disease. Curr. Opin. Neurol. 27 532–540. 10.1097/wco.0000000000000131 [DOI] [PubMed] [Google Scholar]
  11. Baloh R. H., Schmidt R. E., Pestronk A., Milbrandt J. (2007). Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J. Neurosci. 27 422–430. 10.1523/JNEUROSCI.4798-06.2007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bannerman P., Burns T., Xu J., Miers L., Pleasure D. (2016). Mice hemizygous for a pathogenic mitofusin-2 allele exhibit hind limb/foot gait deficits and phenotypic perturbations in nerve and muscle. PLoS One 11:e0167573. 10.1371/journal.pone.0167573 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bansagi B., Antoniadi T., Burton-Jones S., Murphy S. M., McHugh J., Alexander M., et al. (2015). Genotype/phenotype correlations in AARS-related neuropathy in a cohort of patients from the United Kingdom and Ireland. J. Neurol. 262 1899–1908. 10.1007/s00415-015-7778-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Baránková L., Vyhnálková E., Züchner S., Mazanec R., Sakmaryová I., Vondrácek P., et al. (2007). GDAP1 mutations in Czech families with early-onset CMT. Neuromuscul. Disord. 17 482–489. 10.1016/j.nmd.2007.02.010 [DOI] [PubMed] [Google Scholar]
  15. Barneo-Munoz M., Juarez P., Civera-Tregon A., Yndriago L., Pla-Martin D., Zenker J., et al. (2015). Lack of GDAP1 induces neuronal calcium and mitochondrial defects in a knockout mouse model of charcot-marie-tooth neuropathy. PLoS Genet. 11:e1005115. 10.1371/journal.pgen.1005115 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Barreto L. C., Oliveira F. S., Nunes P. S., de França Costa I. M., Garcez C. A., Goes G. M., et al. (2016). Epidemiologic study of charcot-marie-tooth disease: a systematic review. Neuroepidemiology 46 157–165. 10.1159/000443706 [DOI] [PubMed] [Google Scholar]
  17. Basso V., Marchesan E., Peggion C., Chakraborty J., von Stockum S., Giacomello M., et al. (2018). Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol. Res. 138 43–56. 10.1016/j.phrs.2018.09.006 [DOI] [PubMed] [Google Scholar]
  18. Baxter R. V., Ben Othmane K., Rochelle J. M., Stajich J. E., Hulette C., Dew-Knight S., et al. (2002). Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat. Genet. 30 21–22. 10.1038/ng796 [DOI] [PubMed] [Google Scholar]
  19. Bayraktar S., Nehrig J., Menis E., Karli K., Janning A., Struk T., et al. (2020). A Deregulated stress response underlies distinct INF2-Associated disease profiles. J. Am. Soc. Nephrol. 31 1296–1313. 10.1681/asn.2019111174 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Berciano J., Peeters K., García A., López-Alburquerque T., Gallardo E., Hernández-Fabián A., et al. (2016). NEFL N98S mutation: another cause of dominant intermediate Charcot-Marie-Tooth disease with heterogeneous early-onset phenotype. J. Neurol. 263 361–369. 10.1007/s00415-015-7985-z [DOI] [PubMed] [Google Scholar]
  21. Beręsewicz M., Boratyńska-Jasińska A., Charzewski Ł, Kawalec M., Kabzińska D., Kochański A., et al. (2017). The Effect of a Novel c.820C>T (Arg274Trp) mutation in the mitofusin 2 gene on fibroblast metabolism and clinical manifestation in a patient. PLoS One 12:e0169999. 10.1371/journal.pone.0169999 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bergamin G., Boaretto F., Briani C., Pegoraro E., Cacciavillani M., Martinuzzi A., et al. (2014). Mutation analysis of MFN2, GJB1, MPZ and PMP22 in Italian patients with axonal Charcot-Marie-Tooth disease. Neuromolecular. Med. 16 540–550. 10.1007/s12017-014-8307-9 [DOI] [PubMed] [Google Scholar]
  23. Bernard-Marissal N., van Hameren G., Juneja M., Pellegrino C., Louhivuori L., Bartesaghi L., et al. (2019). Altered interplay between endoplasmic reticulum and mitochondria in Charcot-Marie-Tooth type 2A neuropathy. Proc. Natl. Acad. Sc.i U.S.A. 116 2328–2337. 10.1073/pnas.1810932116 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Bhagavati S., Maccabee P. J., Xu W. (2009). The neurofilament light chain gene (NEFL) mutation Pro22Ser can be associated with mixed axonal and demyelinating neuropathy. J. Clin. Neurosci. 16 830–831. 10.1016/j.jocn.2008.08.030 [DOI] [PubMed] [Google Scholar]
  25. Bian X., Lin P., Li J., Long F., Duan R., Yuan Q., et al. (2018). Whole-genome linkage analysis with whole-exome sequencing identifies a novel frameshift variant in NEFH in a Chinese family with Charcot-Marie-Tooth 2: a novel variant in NEFH for Charcot-Marie-Tooth 2. Neurodegener. Dis. 18 74–83. 10.1159/000487754 [DOI] [PubMed] [Google Scholar]
  26. Bienfait H. M., Faber C. G., Baas F., Gabreëls-Festen A. A., Koelman J. H., Hoogendijk J. E., et al. (2006). Late onset axonal Charcot-Marie-Tooth phenotype caused by a novel myelin protein zero mutation. J. Neurol. Neurosurg. Psychiatry 77 534–537. 10.1136/jnnp.2005.073437 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Bissar-Tadmouri N., Gulsen-Parman Y., Latour P., Deymeer F., Serdaroglu P., Vandenberghe A., et al. (1999). Two novel mutations in the MPZ gene coding region in Charcot-Marie-Tooth type 1 patients of Turkish origin: S54P, [I30del; GVYI29ins]. Hum. Mutat. 14:449 [DOI] [PubMed] [Google Scholar]
  28. Bissar-Tadmouri N., Nelis E., Züchner S., Parman Y., Deymeer F., Serdaroglu P., et al. (2004). Absence of KIF1B mutation in a large Turkish CMT2A family suggests involvement of a second gene. Neurology 62 1522–1525. 10.1212/01.wnl.0000123253.57555.3a [DOI] [PubMed] [Google Scholar]
  29. Bitoun M., Stojkovic T., Prudhon B., Maurage C. A., Latour P., Vermersch P., et al. (2008). A novel mutation in the dynamin 2 gene in a Charcot-Marie-Tooth type 2 patient: clinical and pathological findings. Neuromuscul. Disord. 18 334–338. 10.1016/j.nmd.2008.01.005 [DOI] [PubMed] [Google Scholar]
  30. Blanquet-Grossard F., Pham-Dinh D., Dautigny A., Latour P., Bonnebouche C., Diraison P., et al. (1996). Charcot-Marie-Tooth type 1B neuropathy: a mutation at the single glycosylation site in the major peripheral myelin glycoprotein Po. Hum. Mutat. 8 185–186. [DOI] [PubMed] [Google Scholar]
  31. Boutant M., Kulkarni S. S., Joffraud M., Ratajczak J., Valera-Alberni M., Combe R., et al. (2017). Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J. 36 1543–1558. 10.15252/embj.201694914 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Boyer O., Benoit G., Gribouval O., Nevo F., Tete M. J., Dantal J., et al. (2011a). Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22 239–245. 10.1681/ASN.2010050518 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Boyer O., Nevo F., Plaisier E., Funalot B., Gribouval O., Benoit G., et al. (2011b). INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N. Engl. J. Med. 365 2377–2388. 10.1056/NEJMoa1109122 [DOI] [PubMed] [Google Scholar]
  34. Braathen G. J., Høyer H., Busk ØL., Tveten K., Skjelbred C. F., Russell M. B. (2016). Variants in the genes DCTN2, DNAH10, LRIG3, and MYO1A are associated with intermediate Charcot-Marie-Tooth disease in a Norwegian family. Acta Neurol. Scand. 134 67–75. 10.1111/ane.12515 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Braathen G. J., Sand J. C., Lobato A., Hoyer H., Russell M. B. (2010). MFN2 point mutations occur in 3.4% of Charcot-Marie-Tooth families. An investigation of 232 Norwegian CMT families. BMC Med. Genet. 11:48. 10.1186/1471-2350-11-48 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Brozková D., Mazanec R., Haberlová J., Sakmaryová I., Seeman P. (2010). Clinical and in silico evidence for and against pathogenicity of 11 new mutations in the MPZ gene. Clin. Genet. 78 81–87. 10.1111/j.1399-0004.2010.01423.x [DOI] [PubMed] [Google Scholar]
  37. Brožková D., Posádka J., Laššuthová P., Mazanec R., Haberlová J., Sišková D., et al. (2013). Spectrum and frequencies of mutations in the MFN2 gene and its phenotypical expression in Czech hereditary motor and sensory neuropathy type II patients. Mol. Med. Rep. 8 1779–1784. 10.3892/mmr.2013.1730 [DOI] [PubMed] [Google Scholar]
  38. Calvo J., Funalot B., Ouvrier R. A., Lazaro L., Toutain A., De Mas P., et al. (2009). Genotype-phenotype correlations in Charcot-Marie-Tooth disease type 2 caused by mitofusin 2 mutations. Arch. Neurol. 66 1511–1516. 10.1001/archneurol.2009.284 [DOI] [PubMed] [Google Scholar]
  39. Cantarero L., Juárez-Escoto E., Civera-Tregón A., Rodríguez-Sanz M., Roldán M., Benítez R., et al. (2020). Mitochondria–Lysosome membrane contacts are defective in GDAP1-Related Charcot–Marie–Tooth disease. Hum. Mol. Genet. ddaa243. 10.1093/hmg/ddaa243 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Cardanho-Ramos C., Faria-Pereira A., Morais V. A. (2020). Orchestrating mitochondria in neurons: cytoskeleton as the conductor. Cytoskeleton 77 65–75. 10.1002/cm.21585 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Caridi G., Lugani F., Dagnino M., Gigante M., Iolascon A., Falco M., et al. (2014). Novel INF2 mutations in an Italian cohort of patients with focal segmental glomerulosclerosis, renal failure and Charcot-Marie-Tooth neuropathy. Nephrol. Dial. Transplant.z 29(Suppl. 4), iv80–iv86. 10.1093/ndt/gfu071 [DOI] [PubMed] [Google Scholar]
  42. Cartoni R., Martinou J. C. (2009). Role of mitofusin 2 mutations in the physiopathology of Charcot-Marie-Tooth disease type 2A. Exp. Neurol. 218 268–273. 10.1016/j.expneurol.2009.05.003 [DOI] [PubMed] [Google Scholar]
  43. Cassereau J., Chevrollier A., Bonneau D., Verny C., Procaccio V., Reynier P., et al. (2011). A locus-specific database for mutations in GDAP1 allows analysis of genotype-phenotype correlations in Charcot-Marie-Tooth diseases type 4A and 2K. Orphanet. J. Rare Dis. 6:87. 10.1186/1750-1172-6-87 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Chada S. R., Hollenbeck P. J. (2004). Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr. Biol. 14 1272–1276. 10.1016/j.cub.2004.07.027 [DOI] [PubMed] [Google Scholar]
  45. Chakrabarti R., Ji W. K., Stan R. V., de Juan Sanz J., Ryan T. A., Higgs H. N. (2018). INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division. J. Cell Biol. 217 251–268. 10.1083/jcb.201709111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Chaouch M., Allal Y., De Sandre-Giovannoli A., Vallat J. M., Amer-el-Khedoud A., Kassouri N., et al. (2003). The phenotypic manifestations of autosomal recessive axonal Charcot-Marie-Tooth due to a mutation in Lamin A/C gene. Neuromuscul. Disord. 13 60–67. 10.1016/s0960-8966(02)00196-7 [DOI] [PubMed] [Google Scholar]
  47. Chapman A. L., Bennett E. J., Ramesh T. M., De Vos K. J., Grierson A. J. (2013). Axonal transport defects in a mitofusin 2 loss of function model of Charcot-Marie-Tooth Disease in Zebrafish. PLoS One 8:e67276. 10.1371/journal.pone.0067276 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Chaudhry R., Kidambi A., Brewer M. H., Antonellis A., Mathews K., Nicholson G., et al. (2013). Re-analysis of an original CMTX3 family using exome sequencing identifies a known BSCL2 mutation. Muscle Nerve 47 922–924. 10.1002/mus.23743 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Chavada G., Rao D. G., Martindale J., Hadjivassiliou M. (2012). A novel MPZ gene mutation in exon 2 causing late-onset demyelinating Charcot-Marie-Tooth disease. J. Clin. Neuromuscul. Dis. 13 206–208. 10.1097/CND.0b013e3182461a83 [DOI] [PubMed] [Google Scholar]
  50. Chen Y., Dorn G. W., II (2013). PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340 471–475. 10.1126/science.1231031 [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Cho H. J., Sung D. H., Kim B. J., Ki C. S. (2007). Mitochondrial GTPase mitofusin 2 mutations in Korean patients with Charcot-Marie-Tooth neuropathy type 2. Clin. Genet. 71 267–272. 10.1111/j.1399-0004.2007.00763.x [DOI] [PubMed] [Google Scholar]
  52. Choi B. O., Kim S. B., Kanwal S., Hyun Y. S., Park S. W., Koo H., et al. (2011). MPZ mutation in an early-onset Charcot-Marie-Tooth disease type 1B family by genome-wide linkage analysis. Int. J. Mol. Med. 28 389–396. 10.3892/ijmm.2011.678 [DOI] [PubMed] [Google Scholar]
  53. Choi B. O., Nakhro K., Park H. J., Hyun Y. S., Lee J. H., Kanwal S., et al. (2015). A cohort study of MFN2 mutations and phenotypic spectrums in Charcot-Marie-Tooth disease 2A patients. Clin. Genet. 87 594–598. 10.1111/cge.12432 [DOI] [PubMed] [Google Scholar]
  54. Choi Y. R., Hong Y. B., Jung S. C., Lee J. H., Kim Y. J., Park H. J., et al. (2015). A novel homozygous MPV17 mutation in two families with axonal sensorimotor polyneuropathy. BMC Neurol. 15:179. 10.1186/s12883-015-0430-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Chung K. W., Kim S. B., Cho S. Y., Hwang S. J., Park S. W., Kang S. H., et al. (2008). Distal hereditary motor neuropathy in Korean patients with a small heat shock protein 27 mutation. Exp. Mol. Med. 40 304–312. 10.3858/emm.2008.40.3.304 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Chung K. W., Kim S. B., Park K. D., Choi K. G., Lee J. H., Eun H. W., et al. (2006). Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain 129(Pt 8), 2103–2118. 10.1093/brain/awl174 [DOI] [PubMed] [Google Scholar]
  57. Cioni J. M., Lin J. Q., Holtermann A. V., Koppers M., Jakobs M. A. H., Azizi A., et al. (2019). Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176 56.e15–72.e15. 10.1016/j.cell.2018.11.030 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Codron P., Chevrollier A., Kane M. S., Echaniz-Laguna A., Latour P., Reynier P., et al. (2016). Increased mitochondrial fusion in a autosomal recessive CMT2A family with mitochondrial GTPase mitofusin 2 mutations. J. Peripher. Nerv. Syst. 21 365–369. 10.1111/jns.12192 [DOI] [PubMed] [Google Scholar]
  59. Colecchia D., Stasi M., Leonardi M., Manganelli F., Nolano M., Veneziani B. M., et al. (2018). Alterations of autophagy in the peripheral neuropathy Charcot-Marie-Tooth type 2B. Autophagy 14 930–941. 10.1080/15548627.2017.1388475 [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Cottenie E., Kochanski A., Jordanova A., Bansagi B., Zimon M., Horga A., et al. (2014). Truncating and missense mutations in IGHMBP2 cause Charcot-Marie Tooth disease type 2. Am. J. Hum. Genet. 95 590–601. 10.1016/j.ajhg.2014.10.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Cuesta A., Pedrola L., Sevilla T., García-Planells J., Chumillas M. J., Mayordomo F., et al. (2002). The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat. Genet. 30 22–25. 10.1038/ng798 [DOI] [PubMed] [Google Scholar]
  62. de Brito O. M., Scorrano L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456 605–610. 10.1038/nature07534 [DOI] [PubMed] [Google Scholar]
  63. De Jonghe P., Timmerman V., Ceuterick C., Nelis E., De Vriendt E., Löfgren A., et al. (1999). The Thr124Met mutation in the peripheral myelin protein zero (MPZ) gene is associated with a clinically distinct Charcot-Marie-Tooth phenotype. Brain 122(Pt 2), 281–290. 10.1093/brain/122.2.281 [DOI] [PubMed] [Google Scholar]
  64. De Sandre-Giovannoli A., Chaouch M., Kozlov S., Vallat J. M., Tazir M., Kassouri N., et al. (2002). Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70 726–736. 10.1086/339274 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Del Bo R., Moggio M., Rango M., Bonato S., D’Angelo M. G., Ghezzi S., et al. (2008). Mutated mitofusin 2 presents with intrafamilial variability and brain mitochondrial dysfunction. Neurology 71 1959–1966. 10.1212/01.wnl.0000327095.32005.a4 [DOI] [PubMed] [Google Scholar]
  66. Deng H. X., Klein C. J., Yan J., Shi Y., Wu Y., Fecto F., et al. (2010). Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat. Genet. 42 165–169. 10.1038/ng.509 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Detmer S. A., Chan D. C. (2007). Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J. Cell Biol. 176 405–414. 10.1083/jcb.200611080 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Devine M. J., Kittler J. T. (2018). Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 19 63–80. 10.1038/nrn.2017.170 [DOI] [PubMed] [Google Scholar]
  69. Di Maria E., Gulli R., Balestra P., Cassandrini D., Pigullo S., Doria-Lamba L., et al. (2004). A novel mutation of GDAP1 associated with Charcot-Marie-Tooth disease in three Italian families: evidence for a founder effect. J. Neurol. Neurosurg. Psychiatry 75 1495–1498. 10.1136/jnnp.2003.028100 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Di Meglio C., Bonello-Palot N., Boulay C., Milh M., Ovaert C., Levy N., et al. (2016). Clinical and allelic heterogeneity in a pediatric cohort of 11 patients carrying MFN2 mutation. Brain Dev. 38 498–506. 10.1016/j.braindev.2015.11.006 [DOI] [PubMed] [Google Scholar]
  71. Dohrn M. F., Glöckle N., Mulahasanovic L., Heller C., Mohr J., Bauer C., et al. (2017). Frequent genes in rare diseases: panel-based next generation sequencing to disclose causal mutations in hereditary neuropathies. J. Neurochem. 143 507–522. 10.1111/jnc.14217 [DOI] [PubMed] [Google Scholar]
  72. Echaniz-Laguna A., Latour P. (2019). A cryptic splicing mutation in the INF2 gene causing Charcot-Marie-Tooth disease with minimal glomerular dysfunction. J. Peripher. Nerv. Syst. 24 120–124. 10.1111/jns.12308 [DOI] [PubMed] [Google Scholar]
  73. Echaniz-Laguna A., Nicot A. S., Carré S., Franques J., Tranchant C., Dondaine N., et al. (2007). Subtle central and peripheral nervous system abnormalities in a family with centronuclear myopathy and a novel dynamin 2 gene mutation. Neuromuscul. Disord. 17 955–959. 10.1016/j.nmd.2007.06.467 [DOI] [PubMed] [Google Scholar]
  74. El Fissi N., Rojo M., Aouane A., Karatas E., Poliacikova G., David C., et al. (2018). Mitofusin gain and loss of function drive pathogenesis in Drosophila models of CMT2A neuropathy. EMBO Rep. 19:e45241. 10.15252/embr.201745241 [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Engelfried K., Vorgerd M., Hagedorn M., Haas G., Gilles J., Epplen J. T., et al. (2006). Charcot-Marie-Tooth neuropathy type 2A: novel mutations in the mitofusin 2 gene (MFN2). BMC Med. Genet. 7:53. 10.1186/1471-2350-7-53 [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Fabrizi G. M., Cavallaro T., Angiari C., Cabrini I., Taioli F., Malerba G., et al. (2007). Charcot-Marie-Tooth disease type 2E, a disorder of the cytoskeleton. Brain 130(Pt 2), 394–403. 10.1093/brain/awl284 [DOI] [PubMed] [Google Scholar]
  77. Feely S. M., Laura M., Siskind C. E., Sottile S., Davis M., Gibbons V. S., et al. (2011). MFN2 mutations cause severe phenotypes in most patients with CMT2A. Neurology 76 1690–1696. 10.1212/WNL.0b013e31821a441e [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Filadi R., Greotti E., Turacchio G., Luini A., Pozzan T., Pizzo P. (2017). On the role of Mitofusin 2 in endoplasmic reticulum-mitochondria tethering. Proc. Natl. Acad. Sci. U.S.A. 114 E2266–E2267. 10.1073/pnas.1616040114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Finsterer J., Fiorini A. C., Scorza C. A., Scorza F. A. (2018). CMT2 due to homozygous MFN2 variants is a multiorgan mitochondrial disorder. Eur. J. Paediatr. Neurol. 22 889–891. 10.1016/j.ejpn.2018.04.012 [DOI] [PubMed] [Google Scholar]
  80. Fu J., Ma M., Pang M., Yang L., Li G., Song J., et al. (2019). [Analysis of a pedigree with autosomal dominant intermediate Charcot-Marie-Tooth disease type E and nephropathy]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 36 918–921. 10.3760/cma.j.issn.1003-9406.2019.09.016 [DOI] [PubMed] [Google Scholar]
  81. Fu J., Yuan Y. (2018). A novel homozygous nonsense mutation in NEFL causes autosomal recessive Charcot-Marie-Tooth disease. Neuromuscul. Disord. 28 44–47. 10.1016/j.nmd.2017.09.018 [DOI] [PubMed] [Google Scholar]
  82. Fujisawa M., Sano Y., Omoto M., Ogasawara J. I., Koga M., Takashima H., et al. (2017). [Charcot-Marie-Tooth disease type 2 caused by homozygous MME gene mutation superimposed by chronic inflammatory demyelinating polyneuropathy]. Rinsho Shinkeigaku 57 515–520. 10.5692/clinicalneurol.cn-001036 [DOI] [PubMed] [Google Scholar]
  83. Fusco C., Ucchino V., Barbon G., Bonini E., Mostacciuolo M. L., Frattini D., et al. (2011). The homozygous ganglioside-induced differentiation-associated protein 1 mutation c.373C > T causes a very early-onset neuropathy: case report and literature review. J. Child. Neurol. 26 49–57. 10.1177/0883073810373142 [DOI] [PubMed] [Google Scholar]
  84. Gallardo E., García A., Ramón C., Maraví E., Infante J., Gastón I., et al. (2009). Charcot–Marie–Tooth disease type 2J with MPZ Thr124Met mutation: clinico-electrophysiological and MRI study of a family. J. Neurol. 256 2061–2071. 10.1007/s00415-009-5251-y [DOI] [PubMed] [Google Scholar]
  85. Gautam M., Xie E. F., Kocak N., Ozdinler P. H. (2019). Mitoautophagy: a unique self-destructive path mitochondria of upper motor neurons With TDP-43 pathology take. very early in ALS. Front. Cell Neurosci. 13:489. 10.3389/fncel.2019.00489 [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Gess B., Auer-Grumbach M., Schirmacher A., Strom T., Zitzelsberger M., Rudnik-Schöneborn S., et al. (2014). HSJ1-related hereditary neuropathies: novel mutations and extended clinical spectrum. Neurology 83 1726–1732. 10.1212/wnl.0000000000000966 [DOI] [PubMed] [Google Scholar]
  87. Gong G., Song M., Csordas G., Kelly D. P., Matkovich S. J., Dorn G. W., II (2015). Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350:aad2459. 10.1126/science.aad2459 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Gonzalez M. A., Feely S. M., Speziani F., Strickland A. V., Danzi M., Bacon C., et al. (2014). A novel mutation in VCP causes Charcot-Marie-Tooth Type 2 disease. Brain 137(Pt 11), 2897–2902. 10.1093/brain/awu224 [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. González-Jamett A. M., Haro-Acuña V., Momboisse F., Caviedes P., Bevilacqua J. A., Cárdenas A. M. (2014). Dynamin-2 in nervous system disorders. J. Neurochem. 128 210–223. 10.1111/jnc.12455 [DOI] [PubMed] [Google Scholar]
  90. Guernsey D. L., Jiang H., Bedard K., Evans S. C., Ferguson M., Matsuoka M., et al. (2010). Mutation in the gene encoding ubiquitin ligase LRSAM1 in patients with Charcot-Marie-Tooth disease. PLoS Genet. 6:e1001081. 10.1371/journal.pgen.1001081 [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Guillet V., Gueguen N., Verny C., Ferre M., Homedan C., Loiseau D., et al. (2010). Adenine nucleotide translocase is involved in a mitochondrial coupling defect in MFN2-related Charcot-Marie-Tooth type 2A disease. Neurogenetics 11 127–133. 10.1007/s10048-009-0207-z [DOI] [PubMed] [Google Scholar]
  92. Haberlová J., Mazanec R., Ridzoň P., Baránková L., Nürnberg G., Nürnberg P., et al. (2011). Phenotypic variability in a large Czech family with a dynamin 2-associated Charcot-Marie-Tooth neuropathy. J. Neurogenet. 25 182–188. 10.3109/01677063.2011.627484 [DOI] [PubMed] [Google Scholar]
  93. Hamadouche T., Poitelon Y., Genin E., Chaouch M., Tazir M., Kassouri N., et al. (2008). Founder effect and estimation of the age of the c.892C>T (p.Arg298Cys) mutation in LMNA associated to Charcot-Marie-Tooth subtype CMT2B1 in families from North Western Africa. Ann. Hum. Genet. 72(Pt 5), 590–597. 10.1111/j.1469-1809.2008.00456.x [DOI] [PubMed] [Google Scholar]
  94. Hamaguchi A., Ishida C., Iwasa K., Abe A., Yamada M. (2010). Charcot-Marie-Tooth disease type 2D with a novel glycyl-tRNA synthetase gene (GARS) mutation. J. Neurol. 257 1202–1204. 10.1007/s00415-010-5491-x [DOI] [PubMed] [Google Scholar]
  95. Hayasaka K., Himoro M., Sato W., Takada G., Uyemura K., Shimizu N., et al. (1993). Charcot-Marie-Tooth neuropathy type 1B is associated with mutations of the myelin P0 gene. Nat. Genet. 5 31–34. 10.1038/ng0993-31 [DOI] [PubMed] [Google Scholar]
  96. He J., Guo L., Xu G., Xu L., Lin S., Chen W., et al. (2018). Clinical and genetic investigation in Chinese patients with demyelinating Charcot-Marie-Tooth disease. J. Peripher. Nerv. Syst. 23 216–226. 10.1111/jns.12277 [DOI] [PubMed] [Google Scholar]
  97. Hernández-Alvarez M. I., Sebastián D., Vives S., Ivanova S., Bartoccioni P., Kakimoto P., et al. (2019). Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease. Cell 177 881.e17–895.e17. 10.1016/j.cell.2019.04.010 [DOI] [PubMed] [Google Scholar]
  98. Ho C. C., Tai S. M., Lee E. C., Mak T. S., Liu T. K., Tang V. W., et al. (2017). Rapid identification of pathogenic variants in two cases of Charcot-Marie-Tooth disease by gene-panel sequencing. Int. J. Mol. Sci. 18:770. 10.3390/ijms18040770 [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Hong Y. B., Kang J., Kim J. H., Lee J., Kwak G., Hyun Y. S., et al. (2016). DGAT2 mutation in a family with autosomal-dominant early-onset axonal Charcot-Marie-Tooth Disease. Hum. Mutat. 37 473–480. 10.1002/humu.22959 [DOI] [PubMed] [Google Scholar]
  100. Horga A., Laurà M., Jaunmuktane Z., Jerath N. U., Gonzalez M. A., Polke J. M., et al. (2017). Genetic and clinical characteristics of NEFL-related Charcot-Marie-Tooth disease. J. Neurol. Neurosurg. Psychiatry 88 575–585. 10.1136/jnnp-2016-315077 [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Houlden H., Laura M., Wavrant-De Vrièze F., Blake J., Wood N., Reilly M. M. (2008). Mutations in the HSP27 (HSPB1) gene cause dominant, recessive, and sporadic distal HMN/CMT type 2. Neurology 71 1660–1668. 10.1212/01.wnl.0000319696.14225.67 [DOI] [PubMed] [Google Scholar]
  102. Høyer H., Braathen G. J., Busk ØL., Holla ØL., Svendsen M., Hilmarsen H. T., et al. (2014). Genetic diagnosis of Charcot-Marie-Tooth disease in a population by next-generation sequencing. Biomed. Res. Int. 2014:210401. 10.1155/2014/210401 [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Høyer H., Braathen G. J., Eek A. K., Skjelbred C. F., Russell M. B. (2011). Charcot-Marie-Tooth caused by a copy number variation in myelin protein zero. Eur. J. Med. Genet. 54 e580–e583. 10.1016/j.ejmg.2011.06.006 [DOI] [PubMed] [Google Scholar]
  104. Iapadre G., Morana G., Vari M. S., Pinto F., Lanteri P., Tessa A., et al. (2018). A novel homozygous MFN2 mutation associated with severe and atypical CMT2 phenotype. Eur. J. Paediatr. Neurol. 22 563–567. 10.1016/j.ejpn.2017.12.020 [DOI] [PubMed] [Google Scholar]
  105. James P. A., Cader M. Z., Muntoni F., Childs A. M., Crow Y. J., Talbot K. (2006). Severe childhood SMA and axonal CMT due to anticodon binding domain mutations in the GARS gene. Neurology 67 1710–1712. 10.1212/01.wnl.0000242619.52335.bc [DOI] [PubMed] [Google Scholar]
  106. Jin S., Wang W., Wang R., Lv H., Zhang W., Wang Z., et al. (2015). INF2 mutations associated with dominant inherited intermediate Charcot-Marie-Tooth neuropathy with focal segmental glomerulosclerosis in two Chinese patients. Clin. Neuropathol. 34 275–281. 10.5414/NP300835 [DOI] [PubMed] [Google Scholar]
  107. Jordanova A., Irobi J., Thomas F. P., Van Dijck P., Meerschaert K., Dewil M., et al. (2006). Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat. Genet. 38 197–202. 10.1038/ng1727 [DOI] [PubMed] [Google Scholar]
  108. Juneja M., Burns J., Saporta M. A., Timmerman V. (2019). Challenges in modelling the Charcot-Marie-Tooth neuropathies for therapy development. J. Neurol. Neurosurg. Psychiatry 90 58–67. 10.1136/jnnp-2018-318834 [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Kabzińska D., Saifi G. M., Drac H., Rowińska-Marcińska K., Hausmanowa-Petrusewicz I., Kochański A., et al. (2007). Charcot-Marie-Tooth disease type 4C4 caused by a novel Pro153Leu substitution in the GDAP1 gene. Acta Myol. 26 108–111. [PMC free article] [PubMed] [Google Scholar]
  110. Kanwal S., Perveen S. (2019). Association of SNP in JPH1 gene with severity of disease in Charcot Marie Tooth 2K patients. J. Pak. Med. Assoc. 69 241–243. [PubMed] [Google Scholar]
  111. Kijima K., Numakura C., Izumino H., Umetsu K., Nezu A., Shiiki T., et al. (2005). Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum. Genet. 116 23–27. 10.1007/s00439-004-1199-2 [DOI] [PubMed] [Google Scholar]
  112. Kim H. J., Hong Y. B., Park J. M., Choi Y. R., Kim Y. J., Yoon B. R., et al. (2013). Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease. Orphanet. J. Rare. Dis. 8:104. 10.1186/1750-1172-8-104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Kim S. J., Nam S. H., Kanwal S., Nam D. E., Yoo D. H., Chae J. H., et al. (2018). BAG3 mutation in a patient with atypical phenotypes of myofibrillar myopathy and Charcot-Marie-Tooth disease. Genes Genomics 40 1269–1277. 10.1007/s13258-018-0721-1 [DOI] [PubMed] [Google Scholar]
  114. Kleffner I., Schirmacher A., Gess B., Boentert M., Young P. (2010). Four novel mutations of the myelin protein zero gene presenting as a mild and late-onset polyneuropathy. J. Neurol. 257 1864–1868. 10.1007/s00415-010-5624-2 [DOI] [PubMed] [Google Scholar]
  115. Klein C. J., Cunningham J. M., Atkinson E. J., Schaid D. J., Hebbring S. J., Anderson S. A., et al. (2003). The gene for HMSN2C maps to 12q23-24: a region of neuromuscular disorders. Neurology 60 1151–1156. 10.1212/01.wnl.0000055900.30217.ea [DOI] [PubMed] [Google Scholar]
  116. Kochański A., Kabzińska D., Drac H., Ryniewicz B., Rowińska-Marcińska K., Hausmanowa-Petrusewicz I. (2004). Early onset Charcot-Marie-Tooth type 1B disease caused by a novel Leu190fs mutation in the myelin protein zero gene. Eur. J. Paediatr. Neurol. 8 221–224. 10.1016/j.ejpn.2004.04.001 [DOI] [PubMed] [Google Scholar]
  117. Korobova F., Gauvin T. J., Higgs H. N. (2014). A role for myosin II in mammalian mitochondrial fission. Curr. Biol. 24 409–414. 10.1016/j.cub.2013.12.032 [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Korobova F., Ramabhadran V., Higgs H. N. (2013). An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339 464–467. 10.1126/science.1228360 [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Kotruchow K., Kabzińska D., Hausmanowa-Petrusewicz I., Kochański A. (2013). A late-onset and mild form of Charcot-Marie-Tooth disease type 2 caused by a novel splice-site mutation within the Mitofusin-2 gene. Acta Myol. 32 166–169. [PMC free article] [PubMed] [Google Scholar]
  120. Kurihara S., Adachi Y., Imai C., Araki H., Hattori N., Numakura C., et al. (2004). Charcot-Marie-Tooth families in Japan with MPZ Thr124Met mutation. J. Neurol. Neurosurg. Psychiatry 75 1492–1494. 10.1136/jnnp.2003.020107 [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Lagueny A., Latour P., Vital A., Rajabally Y., Le Masson G., Ferrer X., et al. (1999). Peripheral myelin modification in CMT1B correlates with MPZ gene mutations. Neuromuscul. Disord. 9 361–367. 10.1016/s0960-8966(99)00031-0 [DOI] [PubMed] [Google Scholar]
  122. Larrea D., Pera M., Gonnelli A., Quintana-Cabrera R., Akman H. O., Guardia-Laguarta C., et al. (2019). MFN2 mutations in Charcot-Marie-Tooth disease alter mitochondria-associated ER membrane function but do not impair bioenergetics. Hum. Mol. Genet. 28 1782–1800. 10.1093/hmg/ddz008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Laššuthová P., Brožková D., Krůtová M., Neupauerová J., Haberlová J., Mazanec R., et al. (2015). Mutations in HINT1 are one of the most frequent causes of hereditary neuropathy among Czech patients and neuromyotonia is rather an underdiagnosed symptom. Neurogenetics 16 43–54. 10.1007/s10048-014-0427-8 [DOI] [PubMed] [Google Scholar]
  124. Lassuthova P., Rebelo A. P., Ravenscroft G., Lamont P. J., Davis M. R., Manganelli F., et al. (2018). Mutations in ATP1A1 cause dominant Charcot-Marie-Tooth Type 2. Am. J. Hum. Genet. 102 505–514. 10.1016/j.ajhg.2018.01.023 [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Latour P., Blanquet F., Nelis E., Bonnebouche C., Chapon F., Diraison P., et al. (1995). Mutations in the myelin protein zero gene associated with Charcot-Marie-Tooth disease type 1B. Hum. Mutat. 6 50–54. 10.1002/humu.1380060110 [DOI] [PubMed] [Google Scholar]
  126. Laurà M., Milani M., Morbin M., Moggio M., Ripolone M., Jann S., et al. (2007). Rapid progression of late onset axonal Charcot-Marie-Tooth disease associated with a novel MPZ mutation in the extracellular domain. J. Neurol. Neurosurg. Psychiatry 78 1263–1266. 10.1136/jnnp.2006.112276 [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Lawson V. H., Graham B. V., Flanigan K. M. (2005). Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene. Neurology 65 197–204. 10.1212/01.wnl.0000168898.76071.70 [DOI] [PubMed] [Google Scholar]
  128. Leal A., Berghoff C., Berghoff M., Rojas-Araya M., Carolina O., Heuss D., et al. (2014). A costa rican family affected with Charcot-Marie-Tooth disease due to the myelin protein zero (MPZ) p.Thr124Met mutation shares the Belgian haplotype. Rev. Biol. Trop. 62 1285–1293. 10.15517/rbt.v62i4.13473 [DOI] [PubMed] [Google Scholar]
  129. Leal A., Bogantes-Ledezma S., Ekici A. B., Uebe S., Thiel C. T., Sticht H., et al. (2018). The polynucleotide kinase 3’-phosphatase gene (PNKP) is involved in Charcot-Marie-Tooth disease (CMT2B2) previously related to MED25. Neurogenetics 19 215–225. 10.1007/s10048-018-0555-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Leal A., Huehne K., Bauer F., Sticht H., Berger P., Suter U., et al. (2009). Identification of the variant Ala335Val of MED25 as responsible for CMT2B2: molecular data, functional studies of the SH3 recognition motif and correlation between wild-type MED25 and PMP22 RNA levels in CMT1A animal models. Neurogenetics 10 275–287. 10.1007/s10048-009-0183-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Leal N. S., Schreiner B., Pinho C. M., Filadi R., Wiehager B., Karlstrom H., et al. (2016). Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid beta-peptide production. J. Cell Mol. Med. 20 1686–1695. 10.1111/jcmm.12863 [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Lee M., Park C. H., Chung H. K., Kim H. J., Choi Y., Yoo J. H., et al. (2017). Cerebral white matter abnormalities in patients with charcot-marie-tooth disease. Ann. Neurol. 81 147–151. 10.1002/ana.24824 [DOI] [PubMed] [Google Scholar]
  133. Lee Y. C., Yu C. T., Lin K. P., Chang M. H., Hsu S. L., Liu Y. F., et al. (2008). MPZ mutation G123S characterization: evidence for a complex pathogenesis in CMT disease. Neurology 70 273–277. 10.1212/01.wnl.0000296828.66915.bf [DOI] [PubMed] [Google Scholar]
  134. Liang J. J., Grogan M., Ackerman M. J., Goodsell K. (2016). LMNA-mediated arrhythmogenic right ventricular cardiomyopathy and Charcot-Marie-Tooth Type 2B1: a patient-discovered unifying diagnosis. J. Cardiovasc. Electrophysiol. 27 868–871. 10.1111/jce.12984 [DOI] [PubMed] [Google Scholar]
  135. Liu X. M., Tang B. S., Zhao G. H., Xia K., Zhang F. F., Pan Q., et al. (2005). [Mutation analysis of small heat shock protein 27 gene in Chinese patients with Charcot-Marie-Tooth disease]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 22 510–513. [PubMed] [Google Scholar]
  136. Loiseau D., Chevrollier A., Verny C., Guillet V., Gueguen N., Pou de Crescenzo M. A., et al. (2007). Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease. Ann. Neurol. 61 315–323. 10.1002/ana.21086 [DOI] [PubMed] [Google Scholar]
  137. Luo W., Tang B., Zhao G., Li Q., Xiao J., Yang Q., et al. (2003). [Mutation analysis of neurofilament-light gene in Chinese Charcot-Marie-Tooth disease]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 20 169–170. [PubMed] [Google Scholar]
  138. Lupo V., García-García F., Sancho P., Tello C., García-Romero M., Villarreal L., et al. (2016). Assessment of targeted next-generation sequencing as a tool for the diagnosis of Charcot-Marie-Tooth disease and hereditary motor neuropathy. J. Mol. Diagn. 18 225–234. 10.1016/j.jmoldx.2015.10.005 [DOI] [PubMed] [Google Scholar]
  139. Lupski J. R. (2000). Axonal Charcot-Marie-Tooth disease and the neurofilament light gene (NF-L). Am. J. Hum. Genet. 67 8–10. 10.1086/302986 [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Lv H., Wang L., Li W., Qiao X., Li Y., Wang Z., et al. (2013). Mitofusin 2 gene mutation causing early-onset CMT2A with different progressive courses. Clin. Neuropathol. 32 16–23. 10.5414/np300464 [DOI] [PubMed] [Google Scholar]
  141. Lv H., Wang L., Zhang W., Wang Z., Zuo Y., Liu J., et al. (2015). A cohort study of Han Chinese MFN2-related Charcot-Marie-Tooth 2A. J. Neurol. Sci. 358 153–157. 10.1016/j.jns.2015.08.1528 [DOI] [PubMed] [Google Scholar]
  142. Mademan I., Deconinck T., Dinopoulos A., Voit T., Schara U., Devriendt K., et al. (2013). De novo INF2 mutations expand the genetic spectrum of hereditary neuropathy with glomerulopathy. Neurology 81 1953–1958. 10.1212/01.wnl.0000436615.58705.c9 [DOI] [PubMed] [Google Scholar]
  143. Maeda M. H., Mitsui J., Soong B. W., Takahashi Y., Ishiura H., Hayashi S., et al. (2012). Increased gene dosage of myelin protein zero causes Charcot-Marie-Tooth disease. Ann. Neurol. 71 84–92. 10.1002/ana.22658 [DOI] [PubMed] [Google Scholar]
  144. Mai P. T., Le D. T., Nguyen T. T., Le Gia H. L., Nguyen Le T. H., Le M., et al. (2019). Novel GDAP1 mutation in a vietnamese family with Charcot-Marie-Tooth Disease. Biomed. Res. Int. 2019:7132494. 10.1155/2019/7132494 [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Manganelli F., Nolano M., Pisciotta C., Provitera V., Fabrizi G. M., Cavallaro T., et al. (2015). Charcot-Marie-Tooth disease: new insights from skin biopsy. Neurology 85 1202–1208. 10.1212/wnl.0000000000001993 [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Manor U., Bartholomew S., Golani G., Christenson E., Kozlov M., Higgs H., et al. (2015). A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4:e08828. 10.7554/eLife.08828 [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Martí S., León M., Orellana C., Prieto J., Ponsoda X., López-García C., et al. (2017). Generation of a disease-specific iPS cell line derived from a patient with Charcot-Marie-Tooth type 2K lacking functional GDAP1 gene. Stem Cell Res. 18 1–4. 10.1016/j.scr.2016.11.017 [DOI] [PubMed] [Google Scholar]
  148. Martin A. M., Maradei S. J., Velasco H. M. (2015). Charcot Marie Tooth disease (CMT4A) due to GDAP1 mutation: report of a Colombian family. Colomb. Med. 46 194–198. [PMC free article] [PubMed] [Google Scholar]
  149. Marttila M., Rautenstrauss B., Huehne K., Laitinen V., Majamaa K., Kärppä M. (2012). A novel mutation of myelin protein zero associated with late-onset predominantly axonal Charcot-Marie-Tooth disease. J. Neurol. 259 1585–1589. 10.1007/s00415-011-6382-5 [DOI] [PubMed] [Google Scholar]
  150. Masingue M., Perrot J., Carlier R. Y., Piguet-Lacroix G., Latour P., Stojkovic T. (2018). WES homozygosity mapping in a recessive form of Charcot-Marie-Tooth neuropathy reveals intronic GDAP1 variant leading to a premature stop codon. Neurogenetics 19 67–76. 10.1007/s10048-018-0539-7 [DOI] [PubMed] [Google Scholar]
  151. Matsumoto N., Hori I., Murase T., Tsuji T., Miyake S., Inatani M., et al. (2020). Intermitochondrial signaling regulates the uniform distribution of stationary mitochondria in axons. bioRxiv [Preprint] 10.1101/2020.07.31.230250 [Preprint], [DOI] [PubMed] [Google Scholar]
  152. Mazzeo A., Muglia M., Rodolico C., Toscano A., Patitucci A., Quattrone A., et al. (2008). Charcot-Marie-Tooth disease type 1B: marked phenotypic variation of the Ser78Leu mutation in five Italian families. Acta Neurol. Scand. 118 328–332. 10.1111/j.1600-0404.2008.01021.x [DOI] [PubMed] [Google Scholar]
  153. McCorquodale D. S., III, Montenegro G., Peguero A., Carlson N., Speziani F., Price J., et al. (2011). Mutation screening of mitofusin 2 in Charcot-Marie-Tooth disease type 2. J. Neurol. 258 1234–1239. 10.1007/s00415-011-5910-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. McLaughlin H. M., Sakaguchi R., Giblin W., Wilson T. E., Biesecker L., Lupski J. R., et al. (2012). A recurrent loss-of-function alanyl-tRNA synthetase (AARS) mutation in patients with Charcot-Marie-Tooth disease type 2N (CMT2N). Hum. Mutat. 33 244–253. 10.1002/humu.21635 [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. McLaughlin H. M., Sakaguchi R., Liu C., Igarashi T., Pehlivan D., Chu K., et al. (2010). Compound heterozygosity for loss-of-function lysyl-tRNA synthetase mutations in a patient with peripheral neuropathy. Am. J. Hum. Genet. 87 560–566. 10.1016/j.ajhg.2010.09.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. McLelland G. L., Goiran T., Yi W., Dorval G., Chen C. X., Lauinger N. D., et al. (2018). Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. eLife 7:e32866. 10.7554/eLife.32866 [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Meggouh F., Bienfait H. M., Weterman M. A., de Visser M., Baas F. (2006). Charcot-Marie-Tooth disease due to a de novo mutation of the RAB7 gene. Neurology 67 1476–1478. 10.1212/01.wnl.0000240068.21499.f5 [DOI] [PubMed] [Google Scholar]
  158. Milley G. M., Varga E. T., Grosz Z., Nemes C., Arányi Z., Boczán J., et al. (2018). Genotypic and phenotypic spectrum of the most common causative genes of Charcot-Marie-Tooth disease in Hungarian patients. Neuromuscul. Disord. 28 38–43. 10.1016/j.nmd.2017.08.007 [DOI] [PubMed] [Google Scholar]
  159. Miltenberger-Miltenyi G., Janecke A. R., Wanschitz J. V., Timmerman V., Windpassinger C., Auer-Grumbach M., et al. (2007). Clinical and electrophysiological features in Charcot-Marie-Tooth disease with mutations in the NEFL gene. Arch. Neurol. 64 966–970. 10.1001/archneur.64.7.966 [DOI] [PubMed] [Google Scholar]
  160. Misgeld T., Schwarz T. L. (2017). Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron 96 651–666. 10.1016/j.neuron.2017.09.055 [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Miura S., Morikawa T., Fujioka R., Noda K., Kosaka K., Taniwaki T., et al. (2017). A novel missense variant (Gln220Arg) of GNB4 encoding guanine nucleotide-binding protein, subunit beta-4 in a Japanese family with autosomal dominant motor and sensory neuropathy. Eur. J. Med. Genet. 60 474–478. 10.1016/j.ejmg.2017.06.006 [DOI] [PubMed] [Google Scholar]
  162. Montecchiani C., Pedace L., Lo Giudice T., Casella A., Mearini M., Gaudiello F., et al. (2016). ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease. Brain 139(Pt 1), 73–85. 10.1093/brain/awv320 [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Morelli K. H., Seburn K. L., Schroeder D. G., Spaulding E. L., Dionne L. A., Cox G. A., et al. (2017). Severity of demyelinating and axonal neuropathy mouse models is modified by genes affecting structure and function of peripheral nodes. Cell Rep. 18 3178–3191. 10.1016/j.celrep.2017.03.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Moroni I., Morbin M., Milani M., Ciano C., Bugiani M., Pagliano E., et al. (2009). Novel mutations in the GDAP1 gene in patients affected with early-onset axonal Charcot-Marie-Tooth type 4A. Neuromuscul. Disord. 19 476–480. 10.1016/j.nmd.2009.04.014 [DOI] [PubMed] [Google Scholar]
  165. Motley W. W., Seburn K. L., Nawaz M. H., Miers K. E., Cheng J., Antonellis A., et al. (2011). Charcot-Marie-Tooth-linked mutant GARS is toxic to peripheral neurons independent of wild-type GARS levels. PLoS Genet. 7:e1002399. 10.1371/journal.pgen.1002399 [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Muglia M., Vazza G., Patitucci A., Milani M., Pareyson D., Taroni F., et al. (2007). A novel founder mutation in the MFN2 gene associated with variable Charcot-Marie-Tooth type 2 phenotype in two families from Southern Italy. J. Neurol. Neurosurg. Psychiatry 78 1286–1287. 10.1136/jnnp.2007.115774 [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Nakagawa M., Takashima H. (2003). [Molecular mechanisms of hereditary neuropathy: genotype-phenotype correlation]. Rinsho Byori 51 536–543. [PubMed] [Google Scholar]
  168. Naon D., Zaninello M., Giacomello M., Varanita T., Grespi F., Lakshminaranayan S., et al. (2016). Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc. Natl. Acad. Sci. U.S.A. 113 11249–11254. 10.1073/pnas.1606786113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Naon D., Zaninello M., Giacomello M., Varanita T., Grespi F., Lakshminaranayan S., et al. (2017). Reply to Filadi et al.: does Mitofusin 2 tether or separate endoplasmic reticulum and mitochondria? Proc. Natl. Acad. Sci. U.S.A. 114 E2268–E2269. 10.1073/pnas.1618610114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Nelis E., Timmerman V., De Jonghe P., Vandenberghe A., Pham-Dinh D., Dautigny A., et al. (1994). Rapid screening of myelin genes in CMT1 patients by SSCP analysis: identification of new mutations and polymorphisms in the P0 gene. Hum. Genet. 94 653–657. 10.1007/bf00206959 [DOI] [PubMed] [Google Scholar]
  171. Neupauerová J., Grečmalová D., Seeman P., Laššuthová P. (2016). Massively Parallel Sequencing Detected a Mutation in the MFN2 Gene Missed by Sanger Sequencing Due to a Primer Mismatch on an SNP Site. Ann. Hum. Genet. 80 182–186. 10.1111/ahg.12151 [DOI] [PubMed] [Google Scholar]
  172. Neusch C., Senderek J., Eggermann T., Elolff E., Bahr M., Schneider-Gold C. (2007). Mitofusin 2 gene mutation (R94Q) causing severe early-onset axonal polyneuropathy (CMT2A). Eur. J. Neurol. 14 575–577. 10.1111/j.1468-1331.2006.01688.x [DOI] [PubMed] [Google Scholar]
  173. Newman L. E., Shadel G. S. (2018). Pink1/Parkin link inflammation, mitochondrial stress, and neurodegeneration. J. Cell Biol. 217 3327–3329. 10.1083/jcb.201808118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Nicholson G., Kennerson M., Brewer M., Garbern J., Shy M. (2009). Genotypes & sensory phenotypes in 2 new X-linked neuropathies (CMTX3 and dSMAX) and dominant CMT/HMN overlap syndromes. Adv. Exp. Med. Biol. 652 201–206. 10.1007/978-90-481-2813-6_13 [DOI] [PubMed] [Google Scholar]
  175. Nicolaou P., Cianchetti C., Minaidou A., Marrosu G., Zamba-Papanicolaou E., Middleton L., et al. (2013). A novel LRSAM1 mutation is associated with autosomal dominant axonal Charcot-Marie-Tooth disease. Eur. J. Hum. Genet. 21 190–194. 10.1038/ejhg.2012.146 [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Ouvrier R., Grew S. (2010). Mechanisms of disease and clinical features of mutations of the gene for mitofusin 2: an important cause of hereditary peripheral neuropathy with striking clinical variability in children and adults. Dev. Med. Child. Neurol. 52 328–330. 10.1111/j.1469-8749.2010.03613.x [DOI] [PubMed] [Google Scholar]
  177. Pan Z. N., Pan M. H., Sun M. H., Li X. H., Zhang Y., Sun S. C. (2020). RAB7 GTPase regulates actin dynamics for DRP1-mediated mitochondria function and spindle migration in mouse oocyte meiosis. FASEB J. 34 9615–9627. 10.1096/fj.201903013R [DOI] [PubMed] [Google Scholar]
  178. Pareyson D., Marchesi C. (2009). Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol. 8 654–667. 10.1016/s1474-4422(09)70110-3 [DOI] [PubMed] [Google Scholar]
  179. Park H. J., Kim H. J., Hong Y. B., Nam S. H., Chung K. W., Choi B. O. (2014). A novel INF2 mutation in a Korean family with autosomal dominant intermediate Charcot-Marie-Tooth disease and focal segmental glomerulosclerosis. J. Peripher. Nerv. Syst. 19 175–179. 10.1111/jns5.12062 [DOI] [PubMed] [Google Scholar]
  180. Park S. Y., Kim S. Y., Hong Y. H., Cho S. I., Seong M. W., Park S. S. (2012). A novel double mutation in cis in MFN2 causes Charcot-Marie-Tooth neuropathy type 2A. Neurogenetics 13 275–280. 10.1007/s10048-012-0327-8 [DOI] [PubMed] [Google Scholar]
  181. Pathak D., Sepp K. J., Hollenbeck P. J. (2010). Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. J. Neurosci. 30 8984–8992. 10.1523/jneurosci.1621-10.2010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Pehlivan D., Coban Akdemir Z., Karaca E., Bayram Y., Jhangiani S., Yildiz E. P., et al. (2015). Exome sequencing reveals homozygous TRIM2 mutation in a patient with early onset CMT and bilateral vocal cord paralysis. Hum. Genet. 134 671–673. 10.1007/s00439-015-1548-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Pham-Dinh D., Fourbil Y., Blanquet F., Mattéi M. G., Roeckel N., Latour P., et al. (1993). The major peripheral myelin protein zero gene: structure and localization in the cluster of Fc gamma receptor genes on human chromosome 1q21.3-q23. Hum. Mol. Genet. 2 2051–2054. 10.1093/hmg/2.12.2051 [DOI] [PubMed] [Google Scholar]
  184. Pitceathly R. D., Murphy S. M., Cottenie E., Chalasani A., Sweeney M. G., Woodward C., et al. (2012). Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease. Neurology 79 1145–1154. 10.1212/WNL.0b013e3182698d8d [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Pla-Martín D., Calpena E., Lupo V., Márquez C., Rivas E., Sivera R., et al. (2015). Junctophilin-1 is a modifier gene of GDAP1-related Charcot-Marie-Tooth disease. Hum. Mol. Genet. 24 213–229. 10.1093/hmg/ddu440 [DOI] [PubMed] [Google Scholar]
  186. Qin L., Yang C., Lü T., Li L., Zong D., Wu Y. (2019). [Analysis of GDAP1 gene mutation in a pedigree with autosomal dominant Charcot-Marie-Tooth disease]. Nan Fang Yi Ke Da Xue Xue Bao 39 63–68. 10.12122/j.issn.1673-4254.2019.01.10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Quattrini A., Feltri M. L., Previtali S., Fasolini M., Messing A., Wrabetz L. (1999). Peripheral nerve dysmyelination due to P0 glycoprotein overexpression is dose-dependent. Ann. N. Y. Acad. Sci. 883 294–301. [PubMed] [Google Scholar]
  188. Quintero O. A., DiVito M. M., Adikes R. C., Kortan M. B., Case L. B., Lier A. J., et al. (2009). Human Myo19 is a novel myosin that associates with mitochondria. Curr. Biol. 19 2008–2013. 10.1016/j.cub.2009.10.026 [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Rangaraju V., Lauterbach M., Schuman E. M. (2019). Spatially stable mitochondrial compartments fuel local translation during plasticity. Cell 176 73.e15–84.e15. 10.1016/j.cell.2018.12.013 [DOI] [PubMed] [Google Scholar]
  190. Roa B. B., Warner L. E., Garcia C. A., Russo D., Lovelace R., Chance P. F., et al. (1996). Myelin protein zero (MPZ) gene mutations in nonduplication type 1 Charcot-Marie-Tooth disease. Hum. Mutat. 7 36–45. [DOI] [PubMed] [Google Scholar]
  191. Rocha A. G., Franco A., Krezel A. M., Rumsey J. M., Alberti J. M., Knight W. C., et al. (2018). MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science 360 336–341. 10.1126/science.aao1785 [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Rodriguez P. Q., Lohkamp B., Celsi G., Mache C. J., Auer-Grumbach M., Wernerson A., et al. (2013). Novel INF2 mutation p. L77P in a family with glomerulopathy and Charcot-Marie-Tooth neuropathy. Pediatr. Nephrol. 28 339–343. 10.1007/s00467-012-2299-1 [DOI] [PubMed] [Google Scholar]
  193. Rosberg M. R., Alvarez S., Krarup C., Moldovan M. (2013). Functional recovery of regenerating motor axons is delayed in mice heterozygously deficient for the myelin protein P(0) gene. Neurochem. Res. 38 1266–1277. 10.1007/s11064-013-1030-3 [DOI] [PubMed] [Google Scholar]
  194. Rougeot C., Chabrier S., Camdessanche J. P., Prieur F., d’Anjou M. C., Latour P. (2008). Clinical, electrophysiological and genetic studies of two families with mutations in the GDAP1 gene. Neuropediatrics 39 184–187. 10.1055/s-0028-1085467 [DOI] [PubMed] [Google Scholar]
  195. Rudnik-Schöneborn S., Tölle D., Senderek J., Eggermann K., Elbracht M., Kornak U., et al. (2016). Diagnostic algorithms in Charcot-Marie-Tooth neuropathies: experiences from a German genetic laboratory on the basis of 1206 index patients. Clin. Genet. 89 34–43. 10.1111/cge.12594 [DOI] [PubMed] [Google Scholar]
  196. Rzepnikowska W., Kochański A. (2018). A role for the GDAP1 gene in the molecular pathogenesis of Charcot-Marie-Tooth disease. Acta Neurobiol. Exp. 78 1–13. 10.21307/ane-2018-002 [DOI] [PubMed] [Google Scholar]
  197. Sabet A., Li J., Ghandour K., Pu Q., Wu X., Kamholz J., et al. (2006). Skin biopsies demonstrate MPZ splicing abnormalities in Charcot-Marie-Tooth neuropathy 1B. Neurology 67 1141–1146. 10.1212/01.wnl.0000238499.37764.b1 [DOI] [PubMed] [Google Scholar]
  198. Saghira C., Bis D. M., Stanek D., Strickland A., Herrmann D. N., Reilly M. M., et al. (2018). Variant pathogenicity evaluation in the community-driven Inherited Neuropathy Variant Browser. Hum. Mutat. 39 635–642. 10.1002/humu.23412 [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Sahin-Calapoglu N., Soyoz M., Calapoglu M., Ozcelik N. (2009a). Genetic study of demyelinating form of autosomal-recessive Charcot-Marie-tooth diseases in a Turkish family. Int. J. Neurosci. 119 1179–1189. 10.1080/00207450902869906 [DOI] [PubMed] [Google Scholar]
  200. Sahin-Calapoglu N., Tan M., Soyoz M., Calapoglu M., Ozcelik N. (2009b). Novel GDAP1 mutation in a Turkish family with CMT2K (CMT2K with novel GDAP1 mutation). Neuromol. Med. 11 106–113. 10.1007/s12017-009-8062-5 [DOI] [PubMed] [Google Scholar]
  201. Sanmaneechai O., Feely S., Scherer S. S., Herrmann D. N., Burns J., Muntoni F., et al. (2015). Genotype-phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene. Brain 138(Pt 11), 3180–3192. 10.1093/brain/awv241 [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Saporta M. A., Dang V., Volfson D., Zou B., Xie X. S., Adebola A., et al. (2015). Axonal Charcot-Marie-Tooth disease patient-derived motor neurons demonstrate disease-specific phenotypes including abnormal electrophysiological properties. Exp. Neurol. 263 190–199. 10.1016/j.expneurol.2014.10.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Schiavon C. R., Zhang T., Zhao B., Moore A. S., Wales P., Andrade L. R., et al. (2020). Actin chromobody imaging reveals sub-organellar actin dynamics. Nat. Methods 17 917–921. 10.1038/s41592-020-0926-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Senderek J., Bergmann C., Ramaekers V. T., Nelis E., Bernert G., Makowski A., et al. (2003). Mutations in the ganglioside-induced differentiation-associated protein-1 (GDAP1) gene in intermediate type autosomal recessive Charcot-Marie-Tooth neuropathy. Brain 126(Pt 3), 642–649. 10.1093/brain/awg068 [DOI] [PubMed] [Google Scholar]
  205. Senderek J., Hermanns B., Lehmann U., Bergmann C., Marx G., Kabus C., et al. (2000). Charcot-Marie-Tooth neuropathy type 2 and P0 point mutations: two novel amino acid substitutions (Asp61Gly; Tyr119Cys) and a possible “hotspot”” on Thr124Met. Brain Pathol. 10 235–248. 10.1111/j.1750-3639.2000.tb00257.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Shin J. S., Chung K. W., Cho S. Y., Yun J., Hwang S. J., Kang S. H., et al. (2008). NEFL Pro22Arg mutation in Charcot-Marie-Tooth disease type 1. J. Hum. Genet. 53 936–940. 10.1007/s10038-008-0333-8 [DOI] [PubMed] [Google Scholar]
  207. Shy M., Rebelo A. P., Feely S. M., Abreu L. A., Tao F., Swenson A., et al. (2018). Mutations in BAG3 cause adult-onset Charcot-Marie-Tooth disease. J. Neurol. Neurosurg. Psychiatry 89 313–315. 10.1136/jnnp-2017-315929 [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Silander K., Meretoja P., Nelis E., Timmerman V., Van Broeckhoven C., Aula P., et al. (1996). A de novo duplication in 17p11.2 and a novel mutation in the Po gene in two Déjérine-Sottas syndrome patients. Hum. Mutat. 8 304–310. [DOI] [PubMed] [Google Scholar]
  209. Skre H. (1974). Genetic and clinical aspects of Charcot-Marie-Tooth’s disease. Clin. Genet. 6 98–118. 10.1111/j.1399-0004.1974.tb00638.x [DOI] [PubMed] [Google Scholar]
  210. Solla P., Vannelli A., Bolino A., Marrosu G., Coviello S., Murru M. R., et al. (2010). Heat shock protein 27 R127W mutation: evidence of a continuum between axonal Charcot-Marie-Tooth and distal hereditary motor neuropathy. J. Neurol. Neurosurg. Psychiatry 81 958–962. 10.1136/jnnp.2009.181636 [DOI] [PubMed] [Google Scholar]
  211. Soong B. W., Huang Y. H., Tsai P. C., Huang C. C., Pan H. C., Lu Y. C., et al. (2013). Exome sequencing identifies GNB4 mutations as a cause of dominant intermediate Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 92 422–430. 10.1016/j.ajhg.2013.01.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Speevak M. D., Farrell S. A. (2013). Charcot-Marie-Tooth 1B caused by expansion of a familial myelin protein zero (MPZ) gene duplication. Eur. J. Med. Genet. 56 566–569. 10.1016/j.ejmg.2013.06.004 [DOI] [PubMed] [Google Scholar]
  213. Sugiura A., Nagashima S., Tokuyama T., Amo T., Matsuki Y., Ishido S., et al. (2013). MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol. Cell 51 20–34. 10.1016/j.molcel.2013.04.023 [DOI] [PubMed] [Google Scholar]
  214. Sun S. C., Ma D., Li M. Y., Zhang R. X., Huang C., Huang H. J., et al. (2019). Mutations in C1orf194, encoding a calcium regulator, cause dominant Charcot-Marie-Tooth disease. Brain 142 2215–2229. 10.1093/brain/awz151 [DOI] [PubMed] [Google Scholar]
  215. Sun Y., Hu G., Luo J., Fang D., Yu Y., Wang X., et al. (2017). Mutations in methionyl-tRNA synthetase gene in a Chinese family with interstitial lung and liver disease, postnatal growth failure and anemia. J. Hum. Genet. 62 647–651. 10.1038/jhg.2017.10 [DOI] [PubMed] [Google Scholar]
  216. Tamiya G., Makino S., Hayashi M., Abe A., Numakura C., Ueki M., et al. (2014). A mutation of COX6A1 causes a recessive axonal or mixed form of Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 95 294–300. 10.1016/j.ajhg.2014.07.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Tan C. A., Rabideau M., Blevins A., Westbrook M. J., Ekstein T., Nykamp K., et al. (2016). Autosomal recessive MFN2-related Charcot-Marie-Tooth disease with diaphragmatic weakness: case report and literature review. Am. J. Med. Genet. A 170 1580–1584. 10.1002/ajmg.a.37611 [DOI] [PubMed] [Google Scholar]
  218. Tang B., Liu X., Zhao G., Luo W., Xia K., Pan Q., et al. (2005). Mutation analysis of the small heat shock protein 27 gene in chinese patients with Charcot-Marie-Tooth disease. Arch. Neurol. 62 1201–1207. 10.1001/archneur.62.8.1201 [DOI] [PubMed] [Google Scholar]
  219. Tazir M., Bellatache M., Nouioua S., Vallat J. M. (2013). Autosomal recessive Charcot-Marie-Tooth disease: from genes to phenotypes. J. Peripher. Nerv. Syst. 18 113–129. 10.1111/jns5.12026 [DOI] [PubMed] [Google Scholar]
  220. Tétreault M., Gonzalez M., Dicaire M. J., Allard P., Gehring K., Leblanc D., et al. (2015). Adult-onset painful axonal polyneuropathy caused by a dominant NAGLU mutation. Brain 138(Pt 6), 1477–1483. 10.1093/brain/awv074 [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Tokuda N., Noto Y., Kitani-Morii F., Hamano A., Kasai T., Shiga K., et al. (2015). Parasympathetic dominant autonomic dysfunction in Charcot-Marie-Tooth Disease Type 2J with the MPZ Thr124Met Mutation. Intern. Med. 54 1919–1922. 10.2169/internalmedicine.54.4259 [DOI] [PubMed] [Google Scholar]
  222. Trevisan T., Pendin D., Montagna A., Bova S., Ghelli A. M., Daga A. (2018). Manipulation of mitochondria dynamics reveals separate roles for form and function in mitochondria distribution. Cell Rep. 23 1742–1753. 10.1016/j.celrep.2018.04.017 [DOI] [PubMed] [Google Scholar]
  223. Vallat J. M., Mathis S., Funalot B. (2013). The various Charcot-Marie-Tooth diseases. Curr. Opin. Neurol. 26 473–480. 10.1097/WCO.0b013e328364c04b [DOI] [PubMed] [Google Scholar]
  224. Vallat J. M., Ouvrier R. A., Pollard J. D., Magdelaine C., Zhu D., Nicholson G. A., et al. (2008). Histopathological findings in hereditary motor and sensory neuropathy of axonal type with onset in early childhood associated with mitofusin 2 mutations. J. Neuropathol. Exp. Neurol. 67 1097–1102. 10.1097/NEN.0b013e31818b6cbc [DOI] [PubMed] [Google Scholar]
  225. Venkatesh K., Mathew A., Koushika S. P. (2019). Role of actin in organelle trafficking in neurons. Cytoskeleton 77 97–109. 10.1002/cm.21580 [DOI] [PubMed] [Google Scholar]
  226. Verhoeven K., Claeys K. G., Zuchner S., Schroder J. M., Weis J., Ceuterick C., et al. (2006). MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain 129(Pt 8), 2093–2102. 10.1093/brain/awl126 [DOI] [PubMed] [Google Scholar]
  227. Verhoeven K., De Jonghe P., Coen K., Verpoorten N., Auer-Grumbach M., Kwon J. M., et al. (2003). Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am. J. Hum. Genet. 72 722–727. 10.1086/367847 [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Vielhaber S., Debska-Vielhaber G., Peeva V., Schoeler S., Kudin A. P., Minin I., et al. (2013). Mitofusin 2 mutations affect mitochondrial function by mitochondrial DNA depletion. Acta Neuropathol. 125 245–256. 10.1007/s00401-012-1036-y [DOI] [PubMed] [Google Scholar]
  229. Vital A., Latour P., Sole G., Ferrer X., Rouanet M., Tison F., et al. (2012). A French family with Charcot-Marie-Tooth disease related to simultaneous heterozygous MFN2 and GDAP1 mutations. Neuromuscul. Disord. 22 735–741. 10.1016/j.nmd.2012.04.001 [DOI] [PubMed] [Google Scholar]
  230. Wagner J. D., Huang L., Tetreault M., Majewski J., Boycott K. M., Bulman D. E., et al. (2015). Autosomal recessive axonal polyneuropathy in a sibling pair due to a novel homozygous mutation in IGHMBP2. Neuromuscul. Disord. 25 794–799. 10.1016/j.nmd.2015.07.017 [DOI] [PubMed] [Google Scholar]
  231. Wang R., He J., Li J. J., Ni W., Wu Z. Y., Chen W. J., et al. (2015). Clinical and genetic spectra in a series of Chinese patients with Charcot-Marie-Tooth disease. Clin. Chim. Acta 451(Pt B), 263–270. 10.1016/j.cca.2015.10.007 [DOI] [PubMed] [Google Scholar]
  232. Weedon M. N., Hastings R., Caswell R., Xie W., Paszkiewicz K., Antoniadi T., et al. (2011). Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 89 308–312. 10.1016/j.ajhg.2011.07.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Weeks S. D., Muranova L. K., Heirbaut M., Beelen S., Strelkov S. V., Gusev N. B. (2018). Characterization of human small heat shock protein HSPB1 α-crystallin domain localized mutants associated with hereditary motor neuron diseases. Sci. Rep. 8:688. 10.1038/s41598-017-18874-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Werheid F., Azzedine H., Zwerenz E., Bozkurt A., Moeller M. J., Lin L., et al. (2016). Underestimated associated features in CMT neuropathies: clinical indicators for the causative gene? Brain Behav. 6:e00451. 10.1002/brb3.451 [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. West A. P. (2017). Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology 391 54–63. 10.1016/j.tox.2017.07.016 [DOI] [PubMed] [Google Scholar]
  236. Weterman M. A. J., Kuo M., Kenter S. B., Gordillo S., Karjosukarso D. W., Takase R., et al. (2018). Hypermorphic and hypomorphic AARS alleles in patients with CMT2N expand clinical and molecular heterogeneities. Hum. Mol. Genet. 27 4036–4050. 10.1093/hmg/ddy290 [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Wong Y. C., Peng W., Krainc D. (2019). Lysosomal regulation of inter-mitochondrial contact fate and motility in Charcot-Marie-Tooth Type 2. Dev. Cell 50 339.e4–354.e4. 10.1016/j.devcel.2019.05.033 [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Wong Y. C., Ysselstein D., Krainc D. (2018). Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554 382–386. 10.1038/nature25486 [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Xie W., Nangle L. A., Zhang W., Schimmel P., Yang X. L. (2007). Long-range structural effects of a Charcot-Marie-Tooth disease-causing mutation in human glycyl-tRNA synthetase. Proc. Natl. Acad. Sci. U.S.A. 104 9976–9981. 10.1073/pnas.0703908104 [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Xie W., Schimmel P., Yang X. L. (2006). Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot-Marie-Tooth disease. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62(Pt 12), 1243–1246. 10.1107/s1744309106046434 [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Xie Y., Li X., Liu L., Hu Z., Huang S., Zhan Y., et al. (2016). MFN2-related genetic and clinical features in a cohort of Chinese CMT2 patients. J. Peripher. Nerv. Syst. 21 38–44. 10.1111/jns.12159 [DOI] [PubMed] [Google Scholar]
  242. Xin B., Puffenberger E., Nye L., Wiznitzer M., Wang H. (2008). A novel mutation in the GDAP1 gene is associated with autosomal recessive Charcot-Marie-Tooth disease in an Amish family. Clin. Genet. 74 274–278. 10.1111/j.1399-0004.2008.01018.x [DOI] [PubMed] [Google Scholar]
  243. Xu J. L., Zhang Y., Zhao C. Y., Jiang P. F., Yuan Z. F., Yu Y. L., et al. (2019). [A genotyping study of 13 cases of early-onset Charcot-Marie-Tooth disease]. Zhongguo Dang Dai Er Ke Za Zhi 21 670–675. 10.7499/j.issn.1008-8830.2019.07.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Yamaguchi M., Takashima H. (2018). Drosophila charcot-marie-tooth disease models. Adv. Exp. Med. Biol. 1076 97–117. 10.1007/978-981-13-0529-0_7 [DOI] [PubMed] [Google Scholar]
  245. Yang C., Svitkina T. M. (2019). Ultrastructure and dynamics of the actin-myosin II cytoskeleton during mitochondrial fission. Nat. Cell Biol. 21 603–613. 10.1038/s41556-019-0313-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Yoshimura A., Yuan J. H., Hashiguchi A., Hiramatsu Y., Ando M., Higuchi Y., et al. (2017). Clinical and mutational spectrum of Japanese patients with Charcot-Marie-Tooth disease caused by GDAP1 variants. Clin. Genet. 92 274–280. 10.1111/cge.13002 [DOI] [PubMed] [Google Scholar]
  247. Yu S. B., Pekkurnaz G. (2018). Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J. Mol. Biol. 430 3922–3941. 10.1016/j.jmb.2018.07.027 [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Yuan J. H., Hashiguchi A., Yoshimura A., Yaguchi H., Tsuzaki K., Ikeda A., et al. (2017). Clinical diversity caused by novel IGHMBP2 variants. J. Hum. Genet. 62 599–604. 10.1038/jhg.2017.15 [DOI] [PubMed] [Google Scholar]
  249. Zhang R. X., Guo P., Ren Z. J., Zhao G. H., Liu S. M., Liu T., et al. (2010). [Mutation analysis of LITAF, RAB7, LMNA and MTMR2 genes in Chinese Charcot-Marie-Tooth disease.]. Yi Chuan 32 817–823. 10.3724/sp.j.1005.2010.00817 [DOI] [PubMed] [Google Scholar]
  250. Zhang R. X., Tang B. S., Zi X. H., Luo W., Xia K., Pan Q., et al. (2004). [Mutation analysis of ganglioside-induced differentiation associated protein-1 gene in Chinese Charcot-Marie-Tooth disease]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 21 207–210. [PubMed] [Google Scholar]
  251. Zhao T., Huang X., Han L., Wang X., Cheng H., Zhao Y., et al. (2012). Central role of mitofusin 2 in autophagosome-lysosome fusion in cardiomyocytes. J. Biol. Chem. 287 23615–23625. 10.1074/jbc.M112.379164 [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Zhao Z., Hashiguchi A., Hu J., Sakiyama Y., Okamoto Y., Tokunaga S., et al. (2012). Alanyl-tRNA synthetase mutation in a family with dominant distal hereditary motor neuropathy. Neurology 78 1644–1649. 10.1212/WNL.0b013e3182574f8f [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Zhao Z. H., Chen Z. T., Zhou R. L., Wang Y. Z. (2019). A Chinese pedigree with a novel mutation in GJB1 gene and a rare variation in DHTKD1 gene for diverse Charcot-Marie-Tooth diseases. Mol. Med. Rep. 19 4484–4490. 10.3892/mmr.2019.10058 [DOI] [PubMed] [Google Scholar]
  254. Zimoń M., Baets J., Fabrizi G. M., Jaakkola E., Kabzińska D., Pilch J., et al. (2011). Dominant GDAP1 mutations cause predominantly mild CMT phenotypes. Neurology 77 540–548. 10.1212/WNL.0b013e318228fc70 [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Zimoń M., Battaloğlu E., Parman Y., Erdem S., Baets J., De Vriendt E., et al. (2015). Unraveling the genetic landscape of autosomal recessive Charcot-Marie-Tooth neuropathies using a homozygosity mapping approach. Neurogenetics 16 33–42. 10.1007/s10048-014-0422-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Zuchner S., De Jonghe P., Jordanova A., Claeys K. G., Guergueltcheva V., Cherninkova S., et al. (2006). Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann. Neurol. 59 276–281. 10.1002/ana.20797 [DOI] [PubMed] [Google Scholar]
  257. Zuchner S., Mersiyanova I. V., Muglia M., Bissar-Tadmouri N., Rochelle J., Dadali E. L., et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36 449–451. 10.1038/ng1341 [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.


Articles from Frontiers in Cell and Developmental Biology are provided here courtesy of Frontiers Media SA

RESOURCES