Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
letter
. 2021 Feb 18;20(4):102791. doi: 10.1016/j.autrev.2021.102791

Molecular mimicry between SARS-CoV-2 and human proteins

Yekbun Adiguzel 1,
PMCID: PMC7890341  PMID: 33610750

To the Editor,

COVID-19 resemble immune dysregulation conditions, with hyper-activated immune system and cytokine storm [1,2]. In relation, molecular mimicry is drawing attention among possible mechanisms of autoimmune phenomena in COVID-19 [[3], [4], [5], [6], [7], [8], [9], [10]]. Kanduc and Shoenfeld [[11], [12], [13], [14], [15], [16]] searched related potential adverse events and peptide sharing between proteins of human and such pathogens, including SARS-CoV-2 [[12], [13], [14]]. In line with those studies, here it is aimed to draw attention to 7–9 residue matches in several known human proteins with a 15mer palindromic SARS-CoV-2 peptide (Table 1 ). Respective aligned sequences are predicted to contain peptides that both bind strongly to the same MHC supertype representative, based on predictions by NetMHCcons 1.1 and/or NetCTLpan 1.1 tools [17,18].

Table 1.

Human proteins that align with SARS-CoV-2 peptide CFLGYFCTCYFGLFC [19] with more than 7 residue matches. They are predicted to contain epitopes with at least 5 residue matches to the respective epitope regions in the query. Alignments are displayed as they are presented in the original file, but matching residues are written bold. Those residues in the predicted epitope parts are still bold if present. Yet they are further underlined if present in both query and subject epitopes. Gaps in the alignments are not shown in the epitopes. Numbers in front of the epitope pairs indicate the HLA allele and the predictor, as specified at the title row. However, only the epitopes predicted by NetMHCcons are displayed when significant predictions that are indicated at both 1 and 2, or 3 and 4, are present.

Alignments, top: query
1
HLA-A*24:02, NetMHCcons
3
HLA-A*02:01, NetMHCcons
Protein name
(Matches in bold) 2 HLA-A*24:02, NetCTLpan 4 HLA-A*01:01, NetCTLpan Sequence ID (only the 1st)
CFLGYFCTCYFGLFC 1 CFLGYFCTCYFGLF hCG1995581, partial
CFSSYF----FLLFC 2 CFSSYFFLLF EAW57092.1
CFLGYFCTCYFGLF 1 CFLGYFCTCYFGLF Immunoglobulin heavy chain junction region
CFVG---SC-FGLF 2 CFVGSCFGLF MON77051.1
CFLGYFCTCYFGLF 1 CFLGYFCTCYFGLF Neuronal acetylcholine receptor subunit alpha-2
CFLG---T--IGLF 2 CFLGTIGLF NP_001334636.1
CFLGYFCTCYFGLF 1 CFLGYFCTCYFGLF 3 FLGYFCTCYFGL arginyl-tRNA synthetase-like, isoform CRA_b, partial
CFL--FI--YFILF 2 CFLFIYFILF FLFIYFILF EAW48585.1
FLGYFCT---CYFGLFC 4 FLGYFCTCY immunoglobulin heavy chain variable region, partial
FIGY-CSSTSCYTGGFC FIGYCSSTSCY CEF94348.1
CFLGYFCTC---YFGLF 1 CFLGYFCTCYFGLF unnamed protein product; E2IG4; tsukushin isoform b precursor
CFPG--CQCEVETFGLF CFPGCQCEVETFGLF BAG52371.1; AAF09483.1; NP_001245139.1
FLGYFCTCYFGLFC 3 FLGYFCTCYFGL G protein-coupled receptor 89C, partial; Golgi pH regulator B; unnamed protein product; Golgi pH regulator A
FLGYF----FSIYC 4 FLGYFFSI CAI17085.1; NP_001337112.1; BAG63613.1; NP_001091082.2
FLG-YFCTCYFGLF 3 FLGYFCTCYFGL unnamed protein product; PAP2D protein, partial; Phospholipid phosphatase- related protein type 5
FLGIY--T--FGLF FLGIYTFGL BAG58540.1; AAH40174.1; XP_011539140.1
FLGYFCTCYFGLF 1 GYFCTCYFGLF Solute carrier family 15 member 5
FLEYFSTC---LF 2 EYFSTCLF NP_001164269.1
CFLGYFCTCYFGL 3 FLGYFCTCYFGL Immunoglobulin heavy chain junction region
CALG---TCYYGL ALGTCYYGL MOL37243.1
FLGYFCTCY-FGLF 3 FLGYFCTCYFGL Phospholipid phosphatase-related protein type 2
FLG----VYSFGLF FLGVYSFGL XP_024307423.1
CFLGYFCTCYFGL 1 CFLGYFCTCYFGLF 3 FLGYFCTCYFGL Immunoglobulin heavy chain junction region
CYLGYW---YFDL 2 CYLGYWYFDL YLGYWYFDL MCC33910.1
CFLGYFCTCYFGL 3 FLGYFCTCYFGL Immunoglobulin heavy chain junction region
CFLHY----YYGL FLHYYYGL MOQ87140.1
FLGYFCTCYFGLF 1 GYFCTCYFGLF Adenosine receptor A2b
FLGY--MVYFNFF 2 GYMVYFNFF EAX04485.1
FLGYFCTCYFGLF 3 FLGYFCTCYFGL [Protein ADP-ribosylarginine] hydrolase-like protein 1
FLGSLCT---ALF FLGSLCTAL NP_954631.1
FLGYFCTCYFGLF 2 GYFCTCYFGLF 3 FLGYFCTCYFGL Transmembrane protein 250
FLLYF-SC--SLF LYFSCSLF FLLYFSCSL NP_001243455.1
FLGYFCTCYFGL 1 GYFCTCYFGLF chromosome 9 open reading frame 46; Plasminogen receptor (KT)
FLKYFGT-FFGL 2 KYFGTFFGL EAW58764.1; XP_005251569.1
FL-GYFCTCYFGL 1 GYFCTCYFGLF 3 FLGYFCTCYFGL Immunoglobulin heavy chain junction region
FLTGYYATPYFDL 2 GYYATPYFDL 4 FLTGYYATPYFDL MOM08080.1
LGYFCT---CYFGLF 1 GYFCTCYFGLF Immunoglobulin heavy chain junction region
LGY-CSSTSCYFGFF 2 GYCSSTSCYFGFF MCG41834.1
GYFCTC---YFGLFC 1 GYFCTCYFGLF Slit homolog 2 protein
GYTCICPEGYSGLFC GYTCICPEGYSGLF XP_011512212.2
FLGYFCTCYFGL 3 FLGYFCTCYFGL Immunoglobulin heavy chain junction region
FLGY----YYGL FLGYYYGL MOP50498.1
CFLGYFCTCYF 2 CFLGYFCTCYF 4 FLGYFCTCY unnamed protein product; Solute carrier family 35 member B1
CFLGVF-VCYF CFLGVFVCYF FLGVFVCY BAG58831.1; XP_011522481.1
LGYFCTCYFGL 2 GYFCTCYFGL Chain A, Metabotropic glutamate receptor 5, Lysozyme and Endolysin
LGYLCT--FXL GYLCTFXL 4OO9_A and 6FFH_A
LGYFCTCYFGL 4 FLGYFCTCY Immunoglobulin gamma 2 heavy chain variable region, partial
LGTF-TYYYGL LGTFTYYY ADM43945.1
GYFCTCYFGLF 1 GYFCTCYFGLF hypothetical protein; Protein crumbs homolog 1
GYSCLC-FGNF 2 GYSCLCFGNF CAE45845.1; XP_011507671.1
GYFCTCYFGL 2 GYFCTCYFGL Immunoglobulin heavy chain junction region
GYFY--YFGL GYFYYFGL MOL71978.1
GYFCTCYFGL 2 GYFCTCYFGL Immunoglobulin heavy chain junction region
GYFTTGYFDL GYFTTGYFDL MOM22920.1
GYFCTCYF 1 GYFCTCYFGLF hCG2028737
GYFCTNYF 2 GYFCTNYF EAW73174.1

Associated diseases of some of those proteins listed in Table 1 are obtained from the human gene database GeneCards [20]. Accordingly, associated diseases of neuronal acetylcholine receptor subunit alpha-2 associated diseases involve Epilepsy and Nocturnal Frontal Lobe, 4, and Autosomal Dominant Nocturnal Frontal Lobe Epilepsy; that of Arginyl-tRNA synthetase-like involve Pontocerebellar Hypoplasia 6, Type 6 and Type 1; that of Tsukushin involve Barre-Lieou Syndrome and Spondylolisthesis; that of Golgi pH regulator B involve Chromosome 1Q21.1 Deletion Syndrome, 1.35-Mb and Hemochromatosis, Type 2A; that of Phospholipid phosphatase-related protein type 5 involve deafness, Autosomal Dominant 1, and Bardet-Biedl Syndrome 10; that of Solute carrier family 15 member 5 involve Dicarboxylic Aminoaciduria and Hydranencephaly; that of Adenosine receptor A2b involve Priapism and Cholera; that of Slit homolog 2 protein involve Cakut and Crohn's Colitis; that of Solute carrier family 35 member B1 involve Dicarboxylic Aminoaciduria and Hydranencephaly; that of Metabotropic glutamate receptor 5 involve Fragile X Syndrome and Fragile X-Associated Tremor/Ataxia Syndrome; that of Protein crumbs homolog 1 involve Leber Congenital Amaurosis 8 and Retinitis Pigmentosa 12. Relationships of those proteins with autoimmunity can be mentioned further. E.g., plasminogen activation system has important functions, and its deregulation is connected to pathological conditions like cancer, bacterial infection, fibrosis, neurogenerative diseases, muscular dystrophy, and rheumatoid arthritis [21]. Besides, elevated plasmin(ogen) was suggested to be a risk factor for COVID-19 susceptibility [22]. Plasminogen receptor KT is a membrane protein, expression of which increases on the surface upon inflammatory stimuli, like in case of several other plasminogen receptors [21]. Its contribution to the inflammatory diseases, together with the cell-surface associated plasmin activity, is yet to be elucidated, particularly in conditions where macrophages play a preeminent role in the pathogenesis, for being highly expressed at the proinflammatory macrophages [21]. Examples of such diseases are microglial cells and neuroinflammatory disease, Kupfer cells and hepatotoxic injury, Mi-type adipose tissue macrophage and obesity [21]. Another one, adenosine receptor A2b was suggested to play a role in inflammation [23], and immunoglobulin heavy chain variable 5–51, was reported to be among the modulated-genes in the patients with systemic sclerosis, which is characterized by immune system alterations, for being an autoimmune connective tissue disease [24]. Immunoglobulin heavy chain variable 5–51 is also among the 115 genes that are co-occurring with the disease autoimmune hemolytic anemia, in the abstracts of biomedical publications from the DISEASES Text-mining Gene-Disease Association Evidence Scores dataset [25]. Last, antibodies against metabotropic glutamate receptor 5 is among the antibodies that are possibly associated with autoimmune encephalitis [26,27]. Inhibitors of metabotropic glutamate 5 receptor were offered as a therapeutic strategy to fight against COVID-19 [28], and it was suggested that the therapeutic effect would be acting through interfering with the viral hijacking of the host protein synthesis [28]. It is worth to mention in the end that, other than one immunoglobulin heavy chain junction region (sequence ID MCG41834.1), the highest statistical significance in the alignments are observed for the peptides of slit homolog 2 protein and the solute carrier family proteins, among the proteins that are mentioned above.

References

  • 1.Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J., et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020 Mar;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev. 2020 June;19(6):102538. doi: 10.1016/j.autrev.2020.102538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Cappello F. Is COVID-19 a proteiform disease inducing also molecular mimicry phenomena? Cell Stress Chaperones. 2020 May;25(3):381–382. doi: 10.1007/s12192-020-01112-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Sedaghat Z., Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci. 2020 June;76:233–235. doi: 10.1016/j.jocn.2020.04.062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Cappello F. COVID-19 and molecular mimicry: the Columbus’ egg? J Clin Neurosci. 2020 July;77:246. doi: 10.1016/j.jocn.2020.05.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Lucchese G., Flöel A. Molecular mimicry between SARS-CoV-2 and respiratory pacemaker neurons. Autoimmun Rev. 2020 May;19:102556. doi: 10.1016/j.autrev.2020.102556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Lucchese G., Flöel A. SARS-CoV-2 and Guillain-Barré syndrome: molecular mimicry with human heat shock proteins as potential pathogenic mechanism. Cell Stress Chaperones. 2020 July;25:731–735. doi: 10.1007/s12192-020-01145-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Angileri F., Legare S., Gammazza A.M., de Macario E.C., Macario A.J.L., Cappello F. Molecular mimicry may explain multi-organ damage in COVID-19. Autoimmun Rev. 2020 June;19:102591. doi: 10.1016/j.autrev.2020.102591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Lyons-Weiler J. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. J Transl Autoimmun. 2020;3:100051. doi: 10.1016/j.jtauto.2020.100051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kanduc D. From anti-SARS-CoV-2 immune responses to COVID-19 via molecular mimicry. Antibodies. 2020;9:33. doi: 10.3390/antib9030033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Kanduc D., Shoenfeld Y. From HBV to HPV: designing vaccines for extensive and intensive vaccination campaigns worldwide. Autoimmun Rev. 2016 Aug;15:1054–1061. doi: 10.1016/j.autrev.2016.07.030. [DOI] [PubMed] [Google Scholar]
  • 12.Kanduc D., Shoenfeld Y. Inter-pathogen peptide sharing and the original antigenic sin: solving a paradox. Open Immunol J. 2018 Aug;8:16–27. doi: 10.2174/1874226201808010016. [DOI] [Google Scholar]
  • 13.Kanduc D., Shoenfeld Y. Human papillomavirus epitope mimicry and autoimmunity: the molecular truth of peptide sharing. Pathobiology. 2019 Oct;86(5–6):285–295. doi: 10.1159/000502889. [DOI] [PubMed] [Google Scholar]
  • 14.Kanduc D., Shoenfeld Y. On the molecular determinants of the SARS-CoV-2 attack. Clin Immunol. 2020 Apr;215:108426. doi: 10.1016/j.clim.2020.108426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kanduc D., Shoenfeld Y. Medical, genomic, and evolutionary aspects of the peptide sharing between pathogens, primates, and humans. Glob Med Genet. 2020 Aug;7:64–67. doi: 10.1055/s-0040-1716334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kanduc D., Shoenfeld Y. Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes: implications for the vaccine. Immunol Res. 2020 Sep;68:310–313. doi: 10.1007/s12026-020-09152-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Karosiene E., Lundegaard C., Lund O., Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 2012 Mar;64(3):177–186. doi: 10.1007/s00251-011-0579-8. [DOI] [PubMed] [Google Scholar]
  • 18.Stranzl T., Larsen M.V., Lundegaard C., Nielsen M. NetCTLpan. Pan-specific MHC class I pathway epitope predictions. Immunogenetics. 2010 Jun;62(6):357–368. doi: 10.1007/s00251-010-0441-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Adiguzel Y. Peptides of H. sapiens and P. falciparum that are predicted to bind strongly to HLA-A*24:02 and homologous to a SARS-CoV-2 peptide. Arxiv. 2021 doi: 10.1016/j.actatropica.2021.106013. arxiv: 2101.07356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Stelzer G., Rosen R., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., et al. The GeneCards suite: from gene data mining to disease genome sequence analysis. Curr Protoc Bioinformatics. 2016;54:1.30.1–1.30.33. doi: 10.1002/cpbi.5. [DOI] [PubMed] [Google Scholar]
  • 21.Flick M.J., Bugge T.H. Plasminogen-receptor KT: Plasminogen activation and beyond. J Thromb Haemost. 2017;15:150–154. doi: 10.1111/jth.13541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Ji H.-L., Zhao R., Matalon S., Matthay M.A. Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility. Physiol Rev. 2020;100:1065–1075. doi: 10.1152/physrev.00013.2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Ham J., Rees A. Vol. 8. 2009. The Adenosine A2b Receptor: Its Role in Inflammation. Endocrine Metabolic & Immune Disorders - Drug Targets (Formerly Current Drug Targets - Immune Endocrine & Metabolic Disorders) pp. 244–254. [DOI] [PubMed] [Google Scholar]
  • 24.Dolcino M., Pelosi A., Fiore P.F., Patuzzo G., Tinazzi E., Lunardi C., et al. Gene profiling in patients with systemic sclerosis reveals the presence of oncogenic gene signatures. Front Immunol. 2018;9:449. doi: 10.3389/fimmu.2018.00449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Rouillard A.D., Gundersen G.W., Fernandez N.F., Wang Z., Monteiro C.D., McDermott M.G., et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database. 2016:baw100. doi: 10.1093/database/baw100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Spatola M., Sabater L., Planaguma J., Iizuka T., Pruss H., Martinez-Hernandez E., et al. Clinical findings, IgG subclass, and antibody effects in encephalitis associated with metabotropic glutamate receptor 5 (mGluR5) antibodies. Neurology. 2018;90 P5.390. [Google Scholar]
  • 27.Christ M., Müller T., Bien C., Hagen T., Naumann M., Bayas A. Autoimmune encephalitis associated with antibodies against the metabotropic glutamate receptor type 1: case report and review of the literature. Ther Adv Neurol Disord. 2019;12:1–11. doi: 10.1177/1756286419847418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Westmark C.J., Kiso M., Halfmann P., Westmark P.R., Kawaoka Y. Repurposing fragile X drugs to inhibit SARS-CoV-2 viral reproduction. Front Cell Dev Biol. 2020;8:856. doi: 10.3389/fcell.2020.00856. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Autoimmunity Reviews are provided here courtesy of Elsevier

RESOURCES