Skip to main content
BMC Chemistry logoLink to BMC Chemistry
. 2021 Feb 18;15(1):12. doi: 10.1186/s13065-020-00730-1

Synthesis and therapeutic potential of imidazole containing compounds

Ankit Siwach 1, Prabhakar Kumar Verma 1,
PMCID: PMC7893931  PMID: 33602331

Abstract

Imidazole is a five-membered heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds. It is also known as 1, 3-diazole. It contains two nitrogen atoms, in which one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen. The imidazole name was reported by Arthur Rudolf Hantzsch (1857–1935) in 1887. 1, 3-diazole is an amphoteric in nature i.e. it shows both acidic and basic properties. It is a white or colorless solid that is highly soluble in water and other polar solvents. Due to the presence of a positive charge on either of two nitrogen atom, it shows two equivalent tautomeric forms. Imidazole was first named glyoxaline because the first synthesis has been made by glyoxal and ammonia. It is the basic core of some natural products such as histidine, purine, histamine and DNA based structures, etc. Among the different heterocyclic compounds, imidazole is better known due to its broad range of chemical and biological properties. Imidazole has become an important synthon in the development of new drugs. The derivatives of 1, 3-diazole show different biological activities such as antibacterial, antimycobacterial, anti-inflammatory, antitumor, antidiabetic, anti-allergic, antipyretic, antiviral, antioxidant, anti-amoebic, antihelmintic, antifungal and ulcerogenic activities, etc. as reported in the literature. There are different examples of commercially available drugs in the market which contains 1, 3-diazole ring such as clemizole (antihistaminic agent), etonitazene (analgesic), enviroxime (antiviral), astemizole (antihistaminic agent), omeprazole, pantoprazole (antiulcer), thiabendazole (antihelmintic), nocodazole (antinematodal), metronidazole, nitroso-imidazole (bactericidal), megazol (trypanocidal), azathioprine (anti rheumatoid arthritis), dacarbazine (Hodgkin's disease), tinidazole, ornidazole (antiprotozoal and antibacterial), etc. This present review summarized some pharmacological activities and various kinds of synthetic routes for imidazole and their derived products. graphic file with name 13065_2020_730_Figa_HTML.jpg

Keywords: 1, 3-diazole, Antibacterial, Antitumor, Antioxidant, Antitubercular

Background

Nowadays, Public health problems were increasing due to AMR in drug therapy. So, there is necessary for the development of a new drug that overcomes the AMR problems [1].

In past, those drugs which contain heterocyclic nuclei give high chemotherapeutic values and act as a remedy for the development of novel drugs [2]. There are lots of heterocyclic compounds that are in clinical use to treat infectious diseases. So, there is a great importance of heterocyclic ring containing drugs [3].

In heterocyclic chemistry, imidazole containing moiety occupied a unique position [4]. It is a five-membered nitrogenous heterocyclic moiety that possesses three carbon, two nitrogen, four hydrogen atoms, and two double bonds having general molecular formula is C3H4N2 (Fig. 1). The nitrogen atoms present at the first and third positions (non–adjacent position) of the ring [5], position four and five are equivalent [6]. It is also known as 1,3-diazole. It contains two nitrogen atoms, one nitrogen bear a hydrogen atom, and the other is called pyrrole type nitrogen [7]. 1,3-diazole ring is a bioester of the pyrazole ring [8]. It is the basic core of some natural products such as histidine, purine, histamine and DNA based structures, etc. [4]. The imidazole name was first reported by Arthur Rudolf Hantzsch (1857–1935) in 1887 [6].

Fig. 1.

Fig. 1

Imidazole

1,3-diazole shows an amphoteric phenomenon i.e. it can behave like acid as well as a base. Two types of lone pair are present in the imidazole ring, delocalized and non-delocalized (non-Huckle) lone pair, i.e. both nitrogen of 1,3-diazole shows different dissociation constant. The dissociation constant (pKa) of delocalized lone pair and non-delocalized lone pair is 7 and 14.9 respectively. 1,3-diazole ring is susceptible to both electrophilic and nucleophilic attacks due to its amphoteric phenomenon [7]. For an acid imidazole, the dissociation constant is 14.5, which makes it less acidic than phenol, imides, and carboxylic acid except for alcohols (which is less acidic than imidazole). For a basic imidazole, the dissociation constant (pKa) is approximately 7 (which makes imidazole 60 times more basic than pyridine). The acidic proton is present on the first nitrogen atom of the imidazole ring [6].

Due to the presence of a positive charge on either of the two nitrogen atoms, 1,3-diazole ring shows two equivalent tautomeric forms (Fig. 2) [9]. The presence of a sextet of π-electrons on the ring makes it an aromatic compound. The nitrogen atom on the third position in the imidazole ring is more reactive to the electrophilic compound due to the availability of unshared pairs of electron on the second nitrogen atom since the second nitrogen is a part of aromatic sextet [6].

Fig. 2.

Fig. 2

Tautomeric forms of imidazole

It is a white or colorless solid. The imidazole ring shows excellent solubility in water and other polar solvents [10]. The dipole moment, melting point, and boiling point of the imidazole ring is 4.8 D in dioxane [6], 88.9 °C, and 267.8 °C [7] respectively. It possesses intramolecular hydrogen bonding [9].

Imidazole was first named glyoxaline because the first synthesis has been made by glyoxal and ammonia [9]. There is a different kind of synthetic route from which we can synthesize 1,3-diazloes, and its derivatives. Common methods are Debus-Radiszewski synthesis, Wallach synthesis, from dehydrogenation of imidazolines, from alpha halo-ketones, Marckwald synthesis, and amino nitrile [11].

Due to the polar nature of the imidazole ring, the pharmacokinetic parameters of the imidazole containing compounds should be improved to a great extent. Thus, this moiety helps to overcome the solubility problems of poorly soluble drug entities [12].

The 1,3-diazole and it's containing compounds shows a lot of therapeutic activities such as analgesics, antifungal, antihypertensive, antiobesity, antitumor [3], antiviral, anthelmintic, antitubercular [4], antiulcer, antihistaminic [13], anti-inflammatory, antidepressant [14]. antidiabetic [15], anticonvulsant [16], antiallergic [7], antirheumatic [17], antiasthmatic, alpha-blockers [18], antiprotozoal [19], antiaging, anticoagulant, antimalarial [20], and antiamoebic activity [21] etc.

There are different examples of commercially available drugs which consist 1,3,4-oxadiazole ring (Table 1) such as clemizole (antihistaminic agent), etonitazene (analgesic), enviroxime (antiviral), irtemazole, astemizole (antihistamine), omeprazole, pantoprazole (antiulcer), thiabendazole (antihelmintic), nocodazole (antinematodal) [22], metronidazole and nitrosoimidazole (bactericidal), megazol (trypanocidal) [12], azathioprine (anti-rheumatoid arthritis), tinidazole, ornidazole (antiprotozoal and antibacterial), satranidazole (amoebiasis), cimetidine (gastric ulcer), carbimazole (against thyroid disorder), tolazoline (vasodilator action), naphazoline (vasoconstrictor), tetrahydrozoline (vasoconstrictor) [16], etomidate, lansoprazole, flumazenil, methimazole, pilocarpine [19], ketoconazole [23], dacarbazine (anticancer) [24], pimobendan (calcium sensitizer and phosphodiesterase inhibitor) [25], fenbendazole [26].

Table 1.

Commercially available drugs are containing Imidazole nucleus

graphic file with name 13065_2020_730_Tab1a_HTML.jpg

graphic file with name 13065_2020_730_Tab1b_HTML.jpg

graphic file with name 13065_2020_730_Tab1c_HTML.jpg

The mechanism for the formation of 2,4,5-trisubstituted imidazole

The Debus-Radziszewski reaction mechanism for the formation of the 2,4,5-trisubstituted imidazole is given by (Scheme 1) [27].

Scheme 1.

Scheme 1

Plausible mechanism for the synthesis of imidazoles catalyzed by (4–SB)T(4–SPh)PHSO4

Main text

Antibacterial activity

Jain et al. [28] synthesized 2-(4-substituted phenyl)-1-substituted-4, 5-diphenyl-1H-imidazole (Scheme 2) and evaluated their antimicrobial activity against S. aureus, E. coli, and B. subtilis by cylinder wells diffusion method using Norfloxacin as a reference drug. Among the different derivatives, compounds 1a and 1b showed good antimicrobial potential. The conclusion of antibacterial activity was presented in (Table 2, Jain et al. [28]).

Scheme 2.

Scheme 2

Synthesis of 2-(4-substitutedphenyl)-1-substituted-4,5-diphenyl-1H-imidazole

Table 2.

Antibacterial activity of synthesized derivatives (1a-e)-zone of inhibition (mm,%) Jain et al. [28]

Compounds Zone of inhibition
S. aureus B. subtilis E. coli
50(µg/mL) 150(µg/mL) 50(µg/mL) 150(µg/mL) 50(µg/mL) 150(µg/mL)
1a 5 (23.09) 9 (42.85) 4 (19.04) 8 (38.09) 7 (33.33) 9 (42.85)
1b 3 (14.28) 7 (33.33) 4 (19.04) 7 (33.33) 6 (28.57) 9 (42.85)
1c 5 (23.09) 6 (28.57) 6 (28.57) 7 (33.33) 5 (23.09) 8 (38.09)
1d 5 (23.09) 6 (28.57) 6 (28.57) 6 (28.57) 5 (23.09) 8 (38.09)
1e 4 (19.04) 7 (33.33) 4 (19.04) 7 (33.33) 5 (23.09) 8 (38.09)
Norfloxacin* 21 21 21

Norfloxacin* Norfloxacin at concentration 50(µg/mL)

Narasimhan et al. [1] synthesized pyridin-3-yl (2-(2,3,4,5-tetra substituted phenyl)-1H-imidazol-1-yl) methanone (Scheme 3). The tube dilution method was used for the determination of antimicrobial potential against S. aureus, B. subtilis, and E. coli using ciprofloxacin as a reference drug. The antifungal activity of these derivatives was also evaluated against A. niger and C. albicans using Fluconazole as a reference standard. The conclusion of antimicrobial potential was presented in (Table 3, Narasimhan et al. [1]).

Scheme 3.

Scheme 3

Synthesis of pyridin-3-yl(2-(2,3,4,5-tetrasubstitutedphenyl)-1H-imidazol-1-yl)methanone

Table 3.

Antimicrobial activity of titled compounds (2a-k) Narasimhan et al. [1]

Compounds MIC (µM/mL)
S. aureus B. subtilis E. coli C. albicans A. niger
2a 0.012 0.003 0.003 0.025 0.050
2b ND ND ND 0.022 0.005
2c ND ND ND 0.005 0.005
2d 0.044 0.044 0.044 0.022 0.044
2e 0.022 0.044 0.006 0.022 0.044
2f 0.044 0.044 0.011 0.342 0.044
2g ND ND ND 0.004 0.019
2h 0.010 0.010 0.040 0.020 0.040
2i 0.040 0.002 0.040 0.020 0.040
2j 0.013 0.005 0.002 0.025 0.025
2k 0.002 0.002 0.002 0.020 0.040
Ciprofloxacin 0.004 0.004 0.004
Fluconazole 0.005 0.005

MIC Minimum inhibitory concentration, ND not detected

Brahmbhatt et al. [2] synthesized 3-(2,4-disubstituted phenyl)-1-(4-substituted phenyl)-4-(4,5-diphenyl-1H-imidazol-2-yl)-1H-pyrazole (Scheme 4). The antibacterial activity of these derivatives was evaluated against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa using amikacin sulfate, ampicillin, and chloramphenicol as a reference drug. Compound 4 h shows the most potent activity as compared to the rest of the synthesized compounds. The conclusion of antibacterial activity was presented in (Table 4, Brahmbhatt et al. [2]).

Scheme 4.

Scheme 4

Synthesis of 3-(2,4-disubstitutedphenyl)-1-(4-substitutedphenyl)-4-(4,5-diphenyl-1H-imidazol-2-yl)-1H-pyrazole

Table 4.

Antibacterial activity of tri-substituted imidazole derivatives (4a-n) Brahmbhatt et al. [2]

Compounds Antibacterial activity (MIC in (µg/mL)
Gram negative bacteria Gram positive bacteria
E. coli P. aeruginosa B. subtilis S. aureus
4a 125.0 125.0 125.0 125.0
4b 125.0 125.0 125.0 125.0
4c 125.0 125.0 125.0 125.0
4d 125.0 125.0 125.0 125.0
4e 125.0 125.0 125.0 125.0
4f 125.0 125.0 125.0 125.0
4g 125.0 125.0 125.0 125.0
4h 125.0 125.0 31.0 63.0
4i 125.0 125.0 125.0 125.0
4j 125.0 125.0 125.0 125.0
4k 125.0 125.0 125.0 125.0
4l 125.0 125.0 125.0 125.0
4m 125.0 125.0 125.0 125.0
4n 125.0 63.0 125.0 125.0
Amikacin sulphate 2.44 9.77 9.77 9.77
Ampicillin 100 100 250
Chloramphenicol 50 50 50

Values written in italic signify the best antibacterial activity

Parab et al. [29] synthesized (Z)-4-((6-Bromo-2-chloroquinolin-3-yl) methylene)-2-phenyl-1-(2, 3, 4-trisubstituted phenyl)-1H-imidazol-5(4H)-one by using Scheme 5. The antibacterial activity of synthesized derivatives was evaluated against E. coli, P. aeruginosa, B. subtilis, and B. megaterium by agar cup borer method using streptomycin as a reference drug. The antimycotic potential was evaluated for these derivatives against Candida albicans and Aspergillus niger using imidil as a reference drug and the conclusion of activity was presented in (Table 5, Parab et al. [29]).

Scheme 5.

Scheme 5

Synthesis of (Z)-4-((6-bromo-2-chloroquinonlin-3-yl)methylene)-2-phenyl-1-(2,3,4-trimsubstitutedphenyl)1H-imidazol-5(4H)-one

Table 5.

Antimicrobial activity of synthesized compounds (5a-h) Parab et al. [29]

Compounds Zone of inhibition (mm)
E. coli P. aeruginosa B. subtilis B. megaterium A. niger C. albicans
5a 15 19 21 19 20 19
5b 11 9 19 20 10 11
5c 20 22 22 22 13 13
5d 11 15 19 13 15 12
5e 10 8 15 19 12 9
5f 6 18 25 20 14 16
5g 14 9 24 15 10 11
5h 8 13 21 13 16 17
Streptomycin 28 32 31 29 33 33
Imidil 34 34

Antimicrobial activity of compounds at 10 mg% in DMSO

Sharma et al. [17] synthesized 2,3-disubstituted-3, 4-dihydroimidazo [4,5-b] indole (Scheme 6) and evaluated for antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Klebsiella pneumoniae by Kirby-Bauer disc technique using ciprofloxacin as reference drug. The conclusion of antimicrobial potential was presented in (Table 6, Sharma et al. [17]).

Scheme 6.

Scheme 6

Synthesis of 2,3-disubstituted-3,4-dihydroimidazo[4,5-b]indole

Table 6.

Antimicrobial activity of the synthesized aryl imidazole compounds (7a-t) Sharma et al. [17]

Compounds Diameter of zone of inhibition (mm) Bacterial strains
Gram positive bacteria Gram negative bacteria
S. aureus B. subtilis E. coli K. pneumoniae
7a 5.9 (50) 6.9 (50) 7.2 (50) 8.1 (50)
7b 5.1 (25) 5.5 (25) 8.1 (50) 8.9 (50)
7c 8.6 (25) 8.4 (25) 9.2 (12.5) 9.5 (12.5)
7d 13.1 (50) 12.5 (25) 11.9 (25) 12.5 (6.2)
7e 9.1 (25) 8.8 (50) 7.6 (100) 7.8 (100)
7f 5.7 (100) 5.9 (100) 6.6 (50) 6.9 (50)
7g 12.5 (50) 12.1 (25) 11.9 (25) 11.6 (25)
7h 11.9 (50) 11.3 (25) 10.9 (100) 10.7 (50)
7i 12.1 (25) 13.8 (50) 14.3 (25) 12.5 (50)
7j 13.1 (25) 12.3 (25) 15.4 (12.5) 11.8 (25)
7k 11.2 (50) 12.4 (25) 13.5 (12.5) 9.1 (50)
7l 6.2 (100) 7.2 (100) 9.2 (50) 7.5 (50)
7m 7.2 (100) 8.7 (50) 10.2 (50) 10.3 (25)
7n 10.3 (25) 12.4 (12.5) 14.5 (6.2) 13.3 (12.5)
7o 12.3 (50) 13.6 (25) 14.6 (25) 14.6 (25)
7p 9.1 (100) 8.3 (100) 9.1 (50) 10.2 (25)
7q 6.1 (100) 7.4 (100) 8.3 (50) 6.9 (50)
7r 7.3 (100) 7.4 (100) 9.5 (50) 9.7 (50)
7s 13.2 (25) 14.5 (12.5) 14.6 (12.5) 11.5 (25)
7t 12.4 (25) 12.7 (25) 13.1 (50) 11.1 (50)
Ciprofloxacin 18 (12.5) 19 (6) 19 (12.5) 17 (6)

Values in brackets are MIC values (µg/mL)

Ahsan et al. [30] synthesized N-(4-substituted phenyl)-2-(2-(2-(2-hydroxyphenyl)-4, 5-diphenyl-1H-imidazol-1-yl) acetyl) hydrazine carbothioamide (Scheme 7). The antibacterial activity of synthesized derivatives was evaluated against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus using Ofloxacin as a reference drug. The antimycotic potential was evaluated for these derivatives against C. albicans using Voriconazole as a positive control. Compounds 8a, 8b, and 8d showed good antifungal activity against C. albicans. The conclusion of antimicrobial activity was presented in (Table 7, Ahsan et al. [30]).

Scheme 7.

Scheme 7

Synthesis of N-(4-substitutedphenyl)-2-(2-(2-(2-hydroxyphenyl)-4,5-diphenyl-1H-imidazol-1-yl)acetyl)hydrazinecarbothioamide

Table 7.

Antibacterial and antifungal activity of titled compounds (8a-8e) Ahsan et al. [30]

Compounds Antibacterial activity Antifungal activity
E. coli B. subtilis S. aureus C. albicans
Zone of inhibition (mm) % inhibition Zone of inhibition (mm) % inhibition Zone of inhibition (mm) % inhibition Zone of inhibition (mm) % inhibition
8a 22 61.11 14 43 14 48 20 75
8b 22 61.11 15 47 21 72 20 69
8c 23 67 15 47 20 69 17 58.6
8d 22.5 62.5 20 62 19 65.5 20 69
8e 19 52 12 50 22 75 20 68.5
Ofloxacin 36 100 32 100 29 100
Voriconazole 29 100

Bhade et al. [18] synthesized 2,4-dichloro-6-(2-substituted-2,5-dihydro-1H-imidazol-4-yl)phenol, 6-(3, 5-dichloro-2-hydroxyphenyl)-2-substituted-2H-imidazo[1,2-a]imidazol-3(5H)-one, 1-acetyl-4-(3, 5-dichloro-2-hydroxyphenyl)-1H-imidazol-2(5H)-one, (Z)-4-(3,5-dichloro-2-hydroxyphenyl)-1-(3-(2, 3-dichlorophenyl) acryloyl)-1H-imidazol-2(5H)-one and 4-(3,5-dichloro-2-hydroxy phenyl)-1-(5-(2,3-dichlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-1H-imidazol-2(5H)-one by using (Scheme 8). The antibacterial activity of these derivatives was evaluated against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhi and Pseudomonas aeruginosa using chloramphenicol as reference control. The conclusion of activity was presented in (Table 8, Bhade et al. [18]).

Scheme 8.

Scheme 8

Synthesis of imidazole derivatives

Table 8.

Antibacterial activity of titled compounds (9a-13a) Bhade et al. [18]

Compounds Gram negative Gram positive
P. aeruginosa (MTCC-424) S. typhi (ATCC-25812) S. aureus (ATCC-33591) S. epidermidis (MTCC-3086)
AB SP ABSP CL AB SP ABSP CL AB SP ABSP CL AB SP ABSP CL
9a 23 16 26 00 26 19 32 00 16 18 18 00 27 16 28 00
9b 23 16 26 00 27 18 33 00 17 19 17 00 27 15 29 00
10a 23 17 26 00 27 17 33 00 17 20 18 00 27 15 29 00
10b 23 16 25 00 27 18 32 00 17 20 18 00 27 16 28 00
11a 23 12 24 00 27 16 29 00 17 17 18 00 27 15 28 00
12a 22 11 23 00 27 16 30 00 17 16 19 00 27 13 27 00
13a 22 10 23 00 27 15 28 00 16 15 16 00 27 12 28 00

Diameter of inhibition zone (mm) AB-Antibiotic Disc (Chloramphenicol-10), SP Sample, ABSP Antibiotic + Sample, CL-Control (DMSO), Values were represented as the mean

Desai et al. [31] synthesized (Z)-(4-((2-chloroquinolin-3-yl)methylene)-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl)substituted carbamic (Scheme 9) and evaluated for antimicrobial potential against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus pyogenes by serial broth dilution method using ampicillin as a reference standard and the results were summarized in (Table 9a, Desai et al. [30]). The antimycotic potential of these derivatives was evaluated against A. niger, C. albicans, and A. clavatus using griseofulvin as a reference standard. The results of the activity were summarized in (Table 9b, Desai et al. [31]).

Scheme 9.

Scheme 9

Synthesis of (Z)-(4-((2-chloroquinonlin-3-yl)methylene)-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl)substitutedcarbamic

Table 9.

(a) Antibacterial activity of the synthesized derivatives (14a-l); (b) Antifungal activity of titled compounds (14a-l) Desai et al. [31]

(a)
Compounds R MIC (µg/mL) ± SD
E. coli MTCC-443 P. aeruginosa MTCC-1688 S. aureus MTCC-96 S. pyogenesMTCC-442
14a −C6H5 100 ± 2.03** 500 ± 2.64* 1000 ± 3.78 500 ± 2.64
14b C6H5-CH2- 500 ± 3.46* 500 ± 3.46 250 ± 3.21** 250 ± 3.04***
14c −3-Cl-C6H4 50 ± 2.64*** 100 ± 1.21** 200 ± 2.08* 1000 ± 4.51
14d −4-Cl-C6H4 25 ± 1* 100 ± 1.51* 200 ± 2.08** 50 ± 2.64**
14e −2,5-(Cl)2-C6H3 100 ± 1 250 ± 2.51** 1000 ± 4.04 1000 ± 2.51*
14f −4-F-C6H4 200 ± 1.62* 100 ± 1.60 100 ± 2.78** 1000 ± 3.78**
14 g −3-NO2-C6H4 100 ± 1** 100 ± 1.72 500 ± 3.05 250 ± 2.51***
14 h −4-NO2-C6H4 25 ± 1.62*** 50 ± 1.05* 250 ± 2.16* 100 ± 1.78**
14i −2-OH-C6H4 100 ± 2.15* 100 ± 1*** 100 ± 2.04* 500 ± 4.50
14j −3-OH-C6H4 100 ± 2.05* 50 ± 1.16** 500 ± 4.50 200 ± 2.05*
14 k −2-OH,4-Cl-C6H3 200 ± 2.21* 100 ± 2.15** 250 ± 2.64** 500 ± 3.08
14 l C5H4N 500 ± 3.05** 500 ± 3.78 250 ± 3.21* 100 ± 1.51*
Ampicillin 100 ± 2.05 100 ± 1.0 250 ± 1.52 100 ± 2.06
(b)
Compounds R MIC (µg/mL) ± SD
C. albicans MTCC-227 A. niger MTCC-282 A. clavatus MTCC-1323
14a −C6H5 500 ± 2.64* 500 ± 3.05* 1000 ± 3.21
14b C6H5-CH2- 1000 ± 1.04** 1000 ± 2.51** 500 ± 4.05*
14c −3-Cl-C6H4 100 ± 1.51* 1000 ± 4.50 100 ± 1.64*
14d −4-Cl-C6H4 200 ± 2.64* 100 ± 1.21** 500 ± 4.16
14e −2,5-(Cl)2-C6H3 100 ± 2.51** 500 ± 2.08*** 500 ± 3.78**
14f −4-F-C6H4 100 ± 1.78* 1000 ± 3.05 100 ± 2.78***
14 g −3-NO2-C6H4 200 ± 3.51 500 ± 4.05* 100 ± 1.51*
14 h −4-NO2-C6H4 100 ± 3.78** 100 ± 1*** 200 ± 3.05**
14i −2-OH-C6H4 500 ± 4.50* 250 ± 3.78** 500 ± 4.58
14j −3-OH-C6H4 1000 ± 2.05*** 100 ± 2.05*** 500 ± 3.21**
14 k −2-OH,4-Cl-C6H3 500 ± 2.08 250 ± 2.05 500 ± 3.46
14 l C5H4N 200 ± 3.51** 500 ± 2.64* 100 ± 1.12*
Griseofulvin 500 ± 2.58 100 ± 1 100 ± 1.15

 ± SD = Standard deviation

*Significant P < 0.05

**Moderately significant P < 0.01

***Extremely significant P < 0.001

Shobhashana et al. [32] synthesized 6-substituted-3-(4,5-diphenyl-1H-imidazol-2-yl)-2-(4-substituted phenoxy) quinoline by using (Scheme 10) and evaluated for antimicrobial activity against Bacillus subtilis, Escherichia coli, Clostridium tetani, Streptococcus pneumoniae, and Salmonella typhi by using the broth dilution method. Ampicillin, chloramphenicol, and ciprofloxacin were used as a positive control. The antimycotic activity of these derivatives was evaluated against Candida albicans and Trichophyton rubrum using Nystatin and Griseofulvin as reference drugs. The conclusion of antimicrobial activity was presented in (Table 10a, b, Shobhashana et al. [32]).

Scheme 10.

Scheme 10

Synthesis of 6-substituted-3-(4,5-diphenyl-1H-imidazol-2-yl)-2-(4-substitutedphenoxy)quinoline

Table 10.

(a) Antibacterial activity of the synthesized compounds (15a-f); (b) Antifungal activity of the synthesized compounds (15a-f) Shobhashana et al. [32]

(a)
Compounds Minimum inhibitory concentration in µg/mL
Antibacterial activity
Gram positive bacteria Gram negative bacteria
15a 100 250 500 100 250 250
15b 250 500 250 250 200 500
15c 62.5 100 500 62.5 200 250
15d 250 100 125 100 125 100
15e 500 500 500 250 100 500
15f 100 250 100 100 100 250
Ampicillin 250 250 100 100 100 100
Chloramphenicol 50 50 50 50 50 50
Ciprofloxacin 50 100 50 25 25 25
(b)
Compounds MIC
Antifungal activity
C.albicans MTCC227 T. rubrum MTCC296
15a  > 1000 1000
15b 500  > 1000
15c 1000 1000
15d 1000 1000
15e 1000  > 1000
15f 500 1000
Nystatin 100 500
Griseofulvin 500 500

Selvan et al. [33] developed N-(2-(1H-benzo[d]imidazol-2-yl)phenyl)substituted formimidoyl by using (Scheme 11). The disc diffusion technique was used for the determination of antimicrobial activity against S. aureus using ciprofloxacin as a positive control. The antimycotic activity of these derivatives was evaluated against A. niger using Nystatin as a reference drug and the conclusion of antimicrobial potential was presented in (Table 11, Selvan et al. [33]).

Scheme 11.

Scheme 11

Synthesis of N-(2-(1H-benzo[d]imidazol-2-yl)phenyl)substitutedformimidoyl

Table 11.

Antimicrobial activity of titled compounds (16a-b) Selvan et al. [33]

Compounds Zone of inhibition in mm
Antibacterial activity Antifungal activity
S. aureus (NCIM-2079) A. niger (NCIM-105)
16a 22 18
16b 16 20
Solvent
Ciprofloxacin 35
Nystatin 35

Standard—Ciprofloxacin 5 mg/disc for bacteria. Nystatin 100 units/disc for fungi; Solvent-DMSO

Zala et al. [8] synthesized 2-(substituted amino)-1-(2,4,5-triphenyl-1H-imidazol-1-yl) ethanone (Scheme 12) and evaluated for antimicrobial potential against Staphylococcus aureus and Escherichia coli using ciprofloxacin as a reference drug. The antimycotic potential of these derivatives was evaluated against C. albicans using Clotrimazole as a reference drug. The conclusion of antibacterial activity was presented in (Table 12, Zala et al. [8]).

Scheme 12.

Scheme 12

Synthesis of 2-(chloroamino)-1-(2,4,5-tridiphenyl-1H-imidazol-1-yl)ethanone

Table 12.

Antimicrobial activity of titled compounds (17a-f) Zala et al. [8]

Compounds Concentration
(µg/mL)
Zone of inhibition (mm)
Gram positive Gram negative Fungi
S. aureus E. coli C. albicans
17a 750 9 10 9
500 8 9 7
250 5 6 5
17b 750 16 15 15
500 12 11 11
250 10 8 9
17c 750 26 25 21
500 24 23 19
250 20 19 18
17d 750 15 16 17
500 13 14 15
250 11 10 12
17e 750 17 13 19
500 14 11 13
250 12 9 10
17f 750 9 10 15
500 7 8 13
250 5 6 10
Ciprofloxacin 750 27 28
500 26 27
250 24 25
Clotrimazole 750 22
500 20
250 19

Yadav et al. [34] synthesized 2-((1H-benzo[d]imidazol-2-yl)thio)-N-(4-oxo-2-(2,3,4,5,6-Penta substituted phenyl)thiazolidin-3-yl)acetamide and 2-((1H-benzo[d]imidazol-2-yl)thio)-N-(2-substituted-4-oxothiazolidin-3-yl) acetamide by using (Scheme 13). The antibacterial activity of these derivatives was evaluated against different bacterial strains (Staphylococcus aureus, Escherichia coli, and Bacillus subtilis) using Norfloxacin as a reference drug. The antimycotic activity of these derivatives was evaluated against different fungal (Candida albicans and Aspergillus niger) strains using Fluconazole as a reference drug. The conclusion of the activity was presented in (Table 13, Yadav et al. [34]).

Scheme 13.

Scheme 13

Synthesis of benzimidazole-substituted-1,3-thiazolidin-4-ones

Table 13.

MIC of benzimidazole-substituted-1,3-thiazolidin4-ones (18a-r) in µM/ml Yadav et al. [34]

Compounds MIC (µM/ml)
S. aureus B. subtilis E. coli C. albicans A. niger
18a 0.030 0.030 0.030 0.060 0.030
18b 0.060 0.030 0.030 0.030 0.030
18c 0.030 0.030 0.030 0.030 0.030
18d 0.028 0.014 0.028 0.028 0.028
18e 0.031 0.031 0.031 0.031 0.031
18f 0.030 0.030 0.030 0.030 0.030
18g 0.030 0.015 0.015 0.030 0.030
18h 0.031 0.031 0.031 0.031 0.031
18i 0.027 0.027 0.013 0.027 0.027
18j 0.029 0.029 0.015 0.007 0.029
18k 0.058 0.029 0.007 0.029 0.029
18l 0.028 0.028 0.028 0.028 0.028
18m 0.061 0.030 0.030 0.030 0.030
18n 0.031 0.031 0.008 0.031 0.031
18o 0.029 0.029 0.029 0.029 0.029
18p 0.027 0.027 0.027 0.027 0.027
18q 0.030 0.030 0.030 0.030 0.030
18r 0.028 0.028 0.028 0.028 0.028
Norfloxacin 0.47 0.47 0.47
Fluconazole 0.50 0.50

Anticancer activity

Yurttas et al. [35] developed 2-((1-((4-substituted phenyl) amino)-4,5-dimethyl-1H-imidazol-2-yl)thio)-N-(6-substitutedbenzo[d]thiazol-2-yl)acetamide by using (Scheme 14) and evaluated for antitumor potential by MTT assay against two different cancer cell lines such as C6 (rat glioma) and HepG2 (human liver) using cisplatin as a reference drug. Among the synthesized derivatives compound 20g shows good cytotoxic potential. The conclusion of antitumor potential was presented in (Table 14, Yurttas et al. [35]).

Scheme 14.

Scheme 14

Synthesis of 2-((1-((4-substitutedphenyl)amino)-4,5-dimethyl-1H-imidazol-2-yl)thio)-N-(6-substitutedbenzo[d]thiazol-2-yl)acetamide

Table 14.

IC50 values of the synthesized compounds (20a-j) against C6 and HepG2 cancer cell line Yurttas et al. [35]

Compounds IC50 value
C6 HepG2
20a 27.0 ± 1.41 50.0 ± 5.0
20b 20 ± 2.0 26.33 ± 1.53
20c 32.67 ± 6.43 275.0 ± 35.36
20d 22.0 ± 3.61 29.33 ± 1.15
20e 16.33 ± 2.31 31.67 ± 7.23
20f 19.50 ± 2.12 28.67 ± 1.15
20g 15.67 ± 2.52 58.33 ± 2.89
20h  > 500  > 500
20i 24.33 ± 4.04  > 500
20j 19.33 ± 2.31  > 500
Cisplatin 23.0 ± 1.73 46.67 ± 7.64

Hsieh et al. [25] synthesized (E)-1-(1-allyl-1H-benzo[d]imidazol-2-yl)-3-(4-substituted phenyl) prop-2-en-1-one by using (Scheme 15) and evaluated for anticancer activity against different cell lines such as A549, MCF-7, HepG2, and OVCAR-3 by MTT assay using cisplatin as a reference drug. The conclusion of anticancer activity was presented in (Table 15, Hsieh et al. [25]).

Scheme 15.

Scheme 15

Synthesis of imidazole derivatives

Table 15.

Anticancer activity of titled compounds (21a-26d) against different cancer cell lines Hsieh et al. [25]

Compounds Cancer cells (IC50 µM)
A549 MCF-7 HEP-G2 OVCAR-3
21a 119.3 ± 29.9 13.49 ± 0.16 24.2 ± 0.32 16.91 ± 0.37
21b 19.17 ± 0.43 18.09 ± 0.28 59.13 ± 0.92 24.7 ± 1.69
21c 17.41 ± 0.16 16.04 ± 0.24 140.85 ± 0.88 34.44 ± 1.55
21d 35.89 ± 0.84 32.55 ± 3.26 36.54 ± 1.35 36.48 ± 1.36
22a 12.47 ± 0.18 12.12 ± 0.10 15.44 ± 0.25 16.09 ± 0.39
22b 41.05 ± 1.61 53.54 ± 1.12 117.28 ± 2.42 59.01 ± 8.91
22c  > 314 254.9 ± 13.6  > 314 299.52 ± 9.27
22d 15.79 ± 0.49 13.42 ± 0.24 17.6 ± 0.25 16.13 ± 0.32
23a 10.3 ± 0.13 9.65 ± 0.06 10.16 ± 0.08 10.5 ± 0.10
23b 54.12 ± 1.20 53.19 ± 0.77 64.91 ± 0.24 28.71 ± 1.44
23c 56.21 ± 0.96 56.09 ± 0.14 36.61 ± 1.89 11.4 ± 0.24
23d 19.53 ± 0.71 14.73 ± 0.09 15.49 ± 0.16 14.04 ± 0.29
24a 10.73 ± 0.58 9.73 ± 0.16 10.33 ± 0.06 10.34 ± 0. 19
24b 11.64 ± 0.25 11.14 ± 0.07 32.16 ± 1.83 12.55 ± 0.12
24c 22.36 ± 0.54 21.12 ± 0.53 58.74 ± 0.75 13.29 ± 0.47
24d 50.45 ± 0.82 54.41 ± 0.72 56.45 ± 0.86 33.13 ± 0.14
25a 14.59 ± 0.40 10.38 ± 0.08 36.13 ± 0.75 22.44 ± 0.47
25b 10.76 ± 0.29 10.15 ± 0.06 42.05 ± 0.91 16.32 ± 0.45
25c 10.27 ± 0.15 11.12 ± 0.20 50.24 ± 0.88 14.88 ± 0.67
25d 24.06 ± 0.08 22.93 ± 0.49 21.38 ± 0.68 0.14.22 ± 0.33
26a 9.73 ± 0.07 8.91 ± 0.07 10.93 ± 0.10 10 .76 ± 0.12
26b 11.79 ± 0.27 11.34 ± 0.17 47.88 ± 0.76 13.76 ± 0.27
26c 16.92 ± 0.61 11.93 ± 0.14 32.92 ± 0.38 13.4 ± 0.33
26d 81.48 ± 1.40 35.69 ± 0.47 95.7 ± 2.44 42.24 ± 2.43
DOX 0.46 ± 0.01 0.42 ± 0.01 0.72 ± 0.01 3.95 ± 0.09
Cisplatin 7.31 ± 0.44 11.7 ± 0.12 3.97 ± 0.04 16.04 ± 0.74

Roopashree et al. [36] synthesized 2-(5-butyl-3-chloro-1-substituted-1H-pyrrol-2-yl)-1H-benzo[d]imidazole (Scheme 16) and evaluated for antitumor activity against HeLa cancer cell line by using MTT assay. Each compound was tested to calculate the inhibitory concentration and the results of the activity were presented in (Table 16, Roopashree et al. [36]).

Scheme 16.

Scheme 16

Synthesis of 2-(5-butyl-3-chloro-1-substituted-1H-pyrrol-2-yl)-1H-benzo[d]imidazole

Table 16.

IC50 values of the synthesized compounds (27a-j) Roopashree et al. [36]

Compounds R-X-5 R(6) IC50(µM) ± SD
27a CH3I CH3  > 50
27b EtBr Et  > 50
27c CH3(CH2)2CH2Br CH3(CH2)2CH2  > 50
27d CH3(CH2)5CH2Br CH3(CH2)5CH2 25.3 ± 4.18
27e 3-MeC6H4CH2Br 3-MeC6H4CH2 30.2 ± 2.27
27f 3-MeOC6H4CH2Br 3-MeOC6H4CH2  > 50
27g 4-ClC6H4CH2Br 4-ClC6H4CH2  > 50
27h 3,4-Cl2C6H3CH2Br 3,4-Cl2C6H3CH2 31.9 ± 4.77
27i 4-FC6H4CH2Br 4-FC6H4CH2 30.0 ± 5.12
27j C6H5CH2Br C6H5CH2  > 50
Sorafenib 4.1 ± 0.9

SD Standard deviation, IC50 Inhibitory concentration 50%

Romagnoli et al. [37] developed 2-substituted-1-(3,4,5-trimethoxyphenyl)-1H-imidazole (Scheme 17) and evaluated for anticancer activity against different cancer cell lines such as HeLa, HT-29, A549, MCF-7, Jurkat, and HL-60 using C-A4 as a reference standard. Compounds 28k, 28n, and 28o showed maximum cytotoxicity as compared to others. The conclusion of antitumor potential was presented in (Table 17, Romagnoli et al. [37]).

Scheme 17.

Scheme 17

Synthesis of 2-substituted-1-(3,4,5-trimethoxyphenyl)-1H-imidazole

Table 17.

Antitumor activity of the synthesized compounds (28a-q) Romangoli et al. [37]

Compounds IC50 (µM)
HeLa HT-29 A549 MCF-7 Jurkat RS4-11 HL-60
28a 1260 ± 172 1915 ± 354 4733 ± 328 2800 ± 721 760 ± 136  > 10,000 2100 ± 252
28b 1985 ± 126 1400 ± 200 7000 ± 1153 2090 ± 374 7569 ± 758 5678 ± 259 4800 ± 451
28c 337 ± 48 330 ± 36 5600 ± 352 1363 ± 349.8 407 ± 24 800 ± 58 333 ± 41
28d 51 ± 6.5 112 ± 15 121 ± 56 74 ± 17 90 ± 23 217 ± 46 29 ± 9.5
28e 263 ± 39 647 ± 83 2600 ± 422 666 ± 231 365 ± 25 715 ± 148 453 ± 14
28f 330 ± 25 377 ± 83 4717 ± 509 509 ± 25 136 ± 38 475 ± 106 413 ± 27
28 g 623 ± 98  > 10,000  > 10,000  > 10,000 4933 ± 536 2567 ± 784  > 10,000
28 h 9157 ± 1593  > 10,000  > 10,000  > 10,000  > 10,000  > 10,000 3466 ± 467
28i  > 10,000  > 10,000  > 10,000  > 10,000  > 10,000  > 10,000 3933 ± 517
28j  > 10,000  > 10,000  > 10,000  > 10,000 6633 ± 338  > 10,000  > 10,000
28 k 3.7 ± 0.12 1.8 ± 0.8 1.9 ± 1.0 1.5 ± 0.2 1.2 ± 0.5 34.7 ± 0.0 4.8 ± 1.9
28 l  > 10,000  > 10,000  > 10,000  > 10,000  > 10,000  > 10,000  > 10,000
28 m  > 10,000  > 10,000  > 10,000  > 10,000  > 10,000  > 10,000  > 10,000
28n 1.5 ± 0.32 7.5 ± 1.2 14 ± 2.3 3.4 ± 0.38 12 ± 6.6 8.6 ± 1.1 3.5 ± 0.73
28o 3.8 ± 0.7 0.4 ± 0.06 0.57 ± 0.17 0.7 ± 0.06 0.9 ± 0.2 1.2 ± 0.7 1.8 ± 0.6
28p 48 ± 2.5 174 ± 16 228 ± 81 69 ± 7.0 127 ± 27 85 ± 20 12 ± 2.5
28q 2.9 ± 0.8 15 ± 1.3 63 ± 18.1 1.7 ± 0.6 42 ± 3.9 91 ± 8.9 63.0 ± 17.6
CA-4 4 ± 1 180 ± 30 3100 ± 100 5 ± 0.6 0.8 ± 0.2 370 ± 100 1 ± 0.2

Rajendran et al. [38] synthesized 1-substituted-2-(5-substituted-1-phenyl-1-H-pyrazol-3-yl)-1H-benzo[d]imidazole and 4-(1-chloro-1H-benzo[d]imidazol-2-yl)-6-fluoropyrimidin-2-amine by using (Scheme 18) and evaluated for antitumor potential against different cell lines such as MCF-7 and CaCo-2 using Fluorouracil as reference drug. Each compound was tested to calculate inhibitory concentration and the conclusion of activity was presented in (Table 18a, b, Rajendran et al. [38]).

Scheme 18.

Scheme 18

Synthesis of 1-substituted-2-(5-substituted-1-phenyl-1H-pyrazol-3-yl)-1H-benzo[d]imidazole and 4-(1-chloro-1H-benzo[d]imidazole-2-yl)-6-fluoropyrimidin-2-amine

Table 18.

(a) IC50 of the titled compounds (29a-j) against of MCF-7 and CaCo-2 cell line—benzo [d] imidazole pyrimidine derivatives; (b) IC50 of the titled compounds (30a-j) against of MCF-7 and CaCo-2 cell line—benzo [d] imidazole pyrazole derivatives Rajendran et al. [38]

Compounds Substituent R Substituent R1 Molecular formula IC50 ± SD (µM)
MCF-7 CaCo-2
(a)
29a H graphic file with name 13065_2020_730_Stra_HTML.gif C17H13N5 8.22 ± 1.48 5.67 ± 1.25
29b H graphic file with name 13065_2020_730_Strb_HTML.gif C16H12N6 10.43 ± 1.45 9.56 ± 1.33
29c H graphic file with name 13065_2020_730_Strc_HTML.gif C19H17N5O2  > 30 28.40 ± 2.48
29d H graphic file with name 13065_2020_730_Strd_HTML.gif C18H14ClN5O 13.05 ± 2.07 12.33 ± 1.80
29e H graphic file with name 13065_2020_730_Stre_HTML.gif C25H17N5  > 30 ± 2.87  > 30 ± 2.98
29f CH3 graphic file with name 13065_2020_730_Strf_HTML.gif C18H15N5  > 30 ± 2.66  > 30 ± 2.43
29 g CH3 graphic file with name 13065_2020_730_Strg_HTML.gif C17H14N6 18.56 ± 2.82 16.23 ± 1.24
29 h CH3 graphic file with name 13065_2020_730_Strh_HTML.gif C19H16ClN5O  > 30 ± 2.19 25.50 ± 2.74
29i CH3 graphic file with name 13065_2020_730_Stri_HTML.gif C20H19N5O2 25.11 ± 2.44 21.89 ± 2.35
29j CH3 graphic file with name 13065_2020_730_Strj_HTML.gif C26H19N5  > 30 ± 2.80  > 30 ± 2.06
Fluorouracil 7.26 ± 2.30 5.23 ± 2.36
(b)
30a H graphic file with name 13065_2020_730_Strk_HTML.gif C22H16N4 22.65 ± 2.32 28.45 ± 2.59
30b H graphic file with name 13065_2020_730_Strl_HTML.gif C21H15N5 12.79 ± 2.20 9.788 ± 1.48
30c H graphic file with name 13065_2020_730_Strm_HTML.gif C23H17ClN4O  > 30 ± 2.86  > 30 ± 2.48
30d H graphic file with name 13065_2020_730_Strn_HTML.gif C24H20N4O2 15.34 ± 2.67 13.27 ± 1.56
30e H graphic file with name 13065_2020_730_Stro_HTML.gif C30H20N4  > 30 ± 2.52  > 30 ± 2.33
30f CH3 graphic file with name 13065_2020_730_Strp_HTML.gif C23H18N4  > 30 ± 2.41  > 30 ± 2.69
30g CH3 graphic file with name 13065_2020_730_Strq_HTML.gif C22H17N5 19.04 ± 2.56 17.32 ± 2.27
30h CH3 graphic file with name 13065_2020_730_Strr_HTML.gif C24H19ClN4O  > 30 ± 2.38 29.76 ± 2.64
30i CH3 graphic file with name 13065_2020_730_Strs_HTML.gif C25H22N4O2 21.73 ± 2.46 18.35 ± 2.54
30j CH3 graphic file with name 13065_2020_730_Strt_HTML.gif C31H22N4  > 30 ± 2.58  > 30 ± 2.62
Fluorouracil 7.26 ± 2.30 5.23 ± 2.36

Meenakshisundaram et al. [39] synthesized 3-(4-substitutedbenzyl)-6,7-disubstituted-2-(4-(6,7-disubstituted-3-(4-substitutedbenzyl) imidazo[1,2-a] pyridin-2-yl)phenyl)imidazo[1,2-a]pyridine, 3-(4-substituted benzyl)-2-(3-(6,7-disubstituted-3-(4-substitutedbenzyl)imidazo[1,2-a]pyridin-2-yl)phenyl)-6,7-disubstitutedimidazo[1,2-a]pyridine and 6,7-disubstituted-3-(4-substitutedbenzyl)-2-phenylimidazo[1,2-a] pyridine (Scheme 19a–c) and evaluated for antitumor potential against different cell lines such as HeLa, MDA-MB-231 and ACHN by SRB method using adriamycin as a reference drug. The conclusion of antitumor potential was presented in (Table 19, Meenakshisundaram et al. [39]).

Scheme 19.

Scheme 19

Scheme 19

a Synthesis of substituted Schiff base; b Synthesis of substituted imidazole derivatives; c. Synthesis of substituted phenyl imidazole pyridine derivatives

Table 19.

Anticancer activity of the synthesized derivatives (31–59) against three different cancer cell lines Meenakshisundaram et al. [39]

Compounds HeLa MDA-MB-231 ACHN
IC50 (μM) TGI (μM) GI50 (μM) IC50 (μM) TGI (μM) GI50 (μM) IC50 (μM) TGI (μM) GI50 (μM)
31  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10
32  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10
33  > 10 9.47  > 10  > 10  > 10  > 10  > 10  > 10  > 10
34  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10
35  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10
36  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10
37  > 10 9.79 8.23  > 10  > 10  > 10  > 10  > 10  > 10
38  > 10 9.67  > 10  > 10  > 10 8.90  > 10  > 10  > 10
39  > 10  > 10 9.12  > 10 8.45  > 10  > 10  > 10 7.50
40  > 10  > 10 8.23  > 10  > 10  > 10  > 10  > 10  > 10
41  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10
42  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10
43  > 10 9.76 4.23  > 10  > 10 5.14  > 10  > 10 8.24
44  > 10 9.76 1.86  > 10  > 10 1.16  > 10  > 10 3.78
45  > 10  > 10  > 10  > 10  > 10 6.88  > 10  > 10 9.88
46  > 10 9.76 6.85  > 10  > 10 4.26  > 10  > 10 7.15
47  > 10  > 10 1.92  > 10  > 10 1.20  > 10  > 10 2.24
48  > 10  > 10 3.10  > 10  > 10 1.90  > 10  > 10 3.86
49  > 10  > 10 0.55  > 10  > 10 0.43  > 10  > 10 0.55
50  > 10  > 10 1.20  > 10  > 10 0.88  > 10  > 10 1.16
51  > 10  > 10 2.25  > 10  > 10 2.05  > 10  > 10 1.90
52  > 10 3.73 5.24  > 10  > 10 4.50  > 10  > 10 7.72
53  > 10 9.76 0.96  > 10  > 10 1.30  > 10  > 10 1.32
54  > 10  > 10 0.36  > 10  > 10 0.30  > 10  > 10 0.38
55  > 10  > 10 0.84  > 10  > 10 0.65  > 10  > 10 0.98
56  > 10  > 10 0.97  > 10  > 10 0.58  > 10  > 10 0.85
57  > 10 9.74 4.00  > 10  > 10 1.60  > 10  > 10 1.82
58  > 10 9.76 0.73  > 10  > 10 1.59  > 10  > 10 0.62
59  > 10  > 10  > 10  > 10  > 10  > 10  > 10  > 10 8.24
Adriamycin  > 10  > 10 0.52  > 10  > 10 0.51  > 10  > 10 0.58

GI50 Concentration of drug causing 50%inhibition of cell growth

IC50 Concentration of drug causing 50% cell kill

TGI Concentration of drug causing total inhibition of cell growth

Italic values indicate the activity best compounds

Inhibitory activity was expressed in micromolar

Sharma et al. [40] synthesized 1,2-disubstituted-4, 5-diphenyl-1H-imidazole (Scheme 20), and evaluated for antitumor potential by using the tryphan blue dye exclusion technique against different cancer cell lines such as DLA and EAC at different concentration. The conclusion of antitumor potential was presented in (Table 20, Sharma et al. [40]).

Scheme 20.

Scheme 20

Synthesis of 1,2-disubstituted-4,5-diphenyl-1H-imidazole

Table 20.

Antitumor activity of the synthesized derivatives (60a-j) Sharma et al. [40]

Compounds Substituent R Substituent R’ DLA cells CTC50 μg/mL EAC cells CTC50 μg/mL
60a graphic file with name 13065_2020_730_Stru_HTML.gif graphic file with name 13065_2020_730_Strae_HTML.gif 190.26 60.50
60b graphic file with name 13065_2020_730_Strv_HTML.gif graphic file with name 13065_2020_730_Straf_HTML.gif 114.00 240.00
60c graphic file with name 13065_2020_730_Strw_HTML.gif graphic file with name 13065_2020_730_Strag_HTML.gif 98.56 31.25
60d graphic file with name 13065_2020_730_Strx_HTML.gif graphic file with name 13065_2020_730_Strah_HTML.gif 309.67 200.22
60e graphic file with name 13065_2020_730_Stry_HTML.gif graphic file with name 13065_2020_730_Strai_HTML.gif  > 500 489.34
60f graphic file with name 13065_2020_730_Strz_HTML.gif graphic file with name 13065_2020_730_Straj_HTML.gif 207.60 115.31
60 graphic file with name 13065_2020_730_Straa_HTML.gif graphic file with name 13065_2020_730_Strak_HTML.gif 238.50 31.25
60 h graphic file with name 13065_2020_730_Strab_HTML.gif graphic file with name 13065_2020_730_Stral_HTML.gif  > 500  > 500
60i graphic file with name 13065_2020_730_Strac_HTML.gif graphic file with name 13065_2020_730_Stram_HTML.gif 405.68 305.91
60j graphic file with name 13065_2020_730_Strad_HTML.gif graphic file with name 13065_2020_730_Stran_HTML.gif 150.26 94.63

CTCs The cytotoxic concentration (which inhibited 50% of total cells)

Antioxidant activity

Naureen et al. [41] synthesized 3-(4,5-diphenyl-1-(substituted phenyl)-1H-imidazol-2-yl)-substituted-2-(substituted phenyl)-1H-indole (Scheme 21) and evaluated for antioxidant potential by DPPH method using Quercetin as reference drug. Compound 61d shows the highest antioxidant activity as compared to others. The conclusion of antioxidant potential was presented in (Table 21, Naureen et al. [41]).

Scheme 21.

Scheme 21

Synthesis of 3-(4,5-diphenyl-1-(substitute phenyl)-1H-imidazol-2-yl)-sunstituted-2-(substitutedphenyl)- 1H-indole

Table 21.

Antioxidant activity of the synthesized derivatives (61a-j) Naureen et al. [41]

Compounds R1 R2 R3 Antioxidant activity
Inhibition (%) at 0.5 mM IC50 (µM)
61a H Cl CH3 62.58 ± 0.7 175.26 ± 1.24
61b H Cl Br 71.74 ± 0.2 146.27 ± 1.09
61c Br H F 71.87 ± 0.5 181.26 ± 1.1
61d H Br CH3 90.39 ± 0.5 148.26 ± 1.2
61e H Br Cl 20.97 ± 0.5
61f H CH3 H 67.61 ± 0.3 162.27 ± 1.2
61g H CH3 CH3 44.21 ± 0.7
61h H CH3 Br 7.11 ± 0. 2
61i H CH3 F 18.91 ± 0. 6
61j H CH3 OCH3 23.03 ± 0.5
Thiourea
Quercetin 93.21 ± 0.9 16.96 ± 0.1

Rajasekaran et al. [42] synthesized (E)-(1H-benzo[d]imidazol-1-yl)(4-((substituted benzylidene)amino)phenyl)methanone (Scheme 22a), 2-(1H-benzo[d]imidazol-1-yl)-N-(5-phenyl-1,3,4-oxadiazol-2-yl)acetamide (Scheme 22b) and 1-(1H-benzo[d]imidazol-1-yl)-2-((substituted-1,3,4-oxadiazol-2-yl)thio)ethanone (Scheme 22c) and evaluated for antioxidant potential by using DPPH assay. All the synthesized derivatives showed good scavenging potential as compared to ascorbic acid (positive control) and the conclusion of activity was presented in (Table 22, Rajasekaran et al. [42]).

Scheme 22.

Scheme 22

a Synthesis of (E)-(1H-benzol[d]imidazole-1-yl)(4-(substitutedbenzylidene)amino)phenyl)methanone. b Synthesis of 2-(1H-benzol[d]imidazole-1-yl)-N-(5-phenyl-1,3,4-oxadiazol-2-yl)acetamide. c Synthesis of substituted imidazole linked 1,3,4-oxadiazole derivatives

Table 22.

Antioxidant activity of the synthesized compounds (62a-f) Rajasekaran et al. [42]

Compounds % Inhibition
10 μg/ml 20 μg/ml 30 μg/ml 40 μg/ml
62a 7.20 12.30 37.65 39.42
62b 34.77 34.66 37.65 39.42
62c 7.08 15.61 21.04 22.26
62d 17.71 29.34 30.34 40.86
62e 34.77 37.76 47.17 52.16
62f 18.98 24.67 28.90 34.34
Ascorbic acid 56.03 58.80 65.33 68.55

Subramaniam et al. [43] synthesized (Z)-3-(2-(5-(3-methyl benzylidene)-4-oxo-2-phenyl-4, 5-dihydro-1H-imidazol-1-yl) ethyl)-2-phenyl quinazolin-4(3H)-one derivatives (Scheme 23) and evaluated for antioxidant potential by using DPPH assay. These compounds showed good scavenging potential as compared to ascorbic acid (positive control). The conclusion of scavenging potential was presented in (Table 23, Subramaniam et al. [43]).

Scheme 23.

Scheme 23

Synthesis of (Z)-3-(2-(5-(3-methyl benzylidene)-4-oxo-2-phenyl-4, 5-dihydro-1H-imidazol-1-yl) ethyl)-2-phenyl quinazolin-4(3H)-one and 3-(3-mercapto-5-(susbstituted phenyl)-4H-1,2,4-triazol-4-yl)-2-phenylquinazolin-4(3H)-one

Table 23.

Antioxidant activity of the synthesized derivatives (63a-h) Subramaniam et al. [43]

Compounds Concentration (μg/ml)
10 20 30 40 50 60 70 80 90 100
63a 2.54 8.47 14.61 20.97 27.86 33.36 42.37 45.12 51.58 56.25
63b 2.11 10.06 19.17 29.34 33.15 40.57 48.62 52.43 62.5 69.70
63c 1.80 10.48 17.05 25.42 33.30 40.57 48.19 55.82 65.36 71.61
63d 1.37 7.41 15.14 20.65 27.33 33.89 39.72 47.35 51.37 59.42
63e 1.80 6.88 14.83 21.29 27.22 33.47 40.25 47.98 51.48 57.83
63f 7.94 21.5 34.32 46.29 59.11 71.61 84.53 97.35 97.98 98.83
63 g 12.71 27.54 40.99 55.40 73.83 84.21 93.53 94.91 95.65 96.71
63 h 10.91 22.77 37.07 51.16 65.14 68.32 89.72 92.37 92.69 95.85
Standard Concentration (μg/ml)
01 02 03 04 05 06 07 08 09 10
Ascorbic acid 8.76 15.34 26.08 37.65 41.23 59.29 67.43 76.53 80.21 87.76

Katikireddy et al. [21] developed (E)-N'-(7-methyl-2-propyl-1H-benzo[d]imidazole-5-carbonyl) substituted formohydrazonoyl (Scheme 24) and evaluated for antioxidant activity using ascorbic acid as a reference drug. Compound 64n shows the most potent antioxidant activity as compared to others and the results of activity were presented in (Table 24, Katikireddy et al. [21]).

Scheme 24.

Scheme 24

Synthesis of (E)-N'-(7-methyl-2-propyl-1H-benzo[d]imidazole-5-carbonyl)substituted formohydrazonuyl

Table 24.

Antioxidant activity of synthesized derivatives (64a-r) Katikireddy et al. [21]

Compounds IC50 (μg/ml)
64a 49.28 ± 3.03
64b 32.17 ± 2.87
64c 29.10 ± 1.60
64d 18.31 ± 1.38
64e 26.81 ± 2.10
64f 29.96 ± 2.81
64g 24.79 ± 3.03
64h 30.83 ± 2.93
64i 23.19 ± 1.72
64j 30.08 ± 2.60
64k 20.05 ± 1.27
64l 25.97 ± 2.18
64m 13.60 ± 1.37
64n 9.40 ± 1.04
64o 12.39 ± 1.26
64p 16.27 ± 1.39
64q 24.70 ± 2.29
64r 38.28 ± 3.07
Ascorbic acid 7.50 ± 0.89

Subhashini et al. [44] synthesized 4-((4-(4,5-diphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1-(2,3,4-trisubstituted phenyl)-1H-1,2,3-triazole derivatives (Scheme 25a, b) and evaluated for antioxidant activity by using four different methods such as Hydrogen peroxide scavenging, Nitric oxide scavenging, DPPH, and FRAP assay. The conclusion of antioxidant potential was presented in (Table 25a–d, Subhashini et al. [44]).

Scheme 25.

Scheme 25

a Synthesis of 4-((4-(4,5-diphenyl-1H-imidazol-2-yl)phenoxy)methyl)-1-(2, 3, 4-trisubstituted phenyl)-1H-1, 2, 3-triazole; b Synthesis of 4-((4-(4,5-diphenyl-1-((1-(2, 3, 4-trisubstituted phenyl)-1H-1, 2, 3-triazole-4-yl)methyl)-1H-imiidazol-2-yl)phenoxy)methyl)-1-(2,3,4-trisubstitutedphenyl)-1H-1,2,3-triazole

Table 25.

(a) DPPH radical scavenging activity of (65a-h) and (66a-h); (b) Hydrogen peroxide radical scavenging activity of (65a-h) and (66a-h); (c) Nitric oxide radical scavenging activity of (65a-h) and (66a-h); (d) FRAP oxide radical scavenging activity of (65a-h) and (66a-h) Subhashini et al. [44]

Compounds Concentration
10 μg/ml 50 μg/ml 100 μg/ml 250 μg/ml
(a)
65a 57 71 81 94
65b 49 55 59 63
65c 42 53 65 69
65d 53 59 64 93
65e 35 42 55 63
65f 44 61 79 90
65 g 41 49 53 61
65 h 67 75 83 91
66a 55 63 71 87
66b 60 69 76 89
66c 69 78 81 95
66d 48 67 79 85
66e 71 79 85 96
66f 33 44 55 61
66 g 41 47 59 62
66 h 66 74 81 90
Standard 85 89 93 97
(b)
65a 49 67 75 87
65b 59 73 81 92
65c 40 49 55 57
65d 47 65 72 89
65e 31 43 49 56
65f 52 73 81 92
65 g 35 43 51 63
65 h 57 68 75 88
66a 51 63 78 91
66b 54 71 82 90
66c 71 88 91 96
66d 57 73 85 94
66e 37 45 52 59
66f 65 78 86 94
66 g 38 45 53 55
66 h 57 65 78 86
Standard 83 91 95 98
(c)
65a 49 55 63 78
65b 54 69 75 89
65c 31 37 44 51
65d 56 68 79 85
65e 29 36 41 47
65f 48 56 67 74
65 g 23 32 39 43
65 h 61 77 86 95
66a 65 75 82 89
66b 57 69 79 87
66c 68 79 88 91
66d 57 68 75 88
66e 25 37 42 46
66f 48 55 67 78
66 g 21 27 33 39
66 h 67 65 77 86
Standard 81 86 91 96
(d)
65a 47 64 78 87
65b 51 67 79 93
65c 31 39 43 47
65d 63 77 83 92
65e 22 27 32 38
65f 57 68 77 85
65 g 27 33 40 45
65 h 49 58 69 87
66a 56 63 75 89
66b 49 58 67 85
66c 65 71 84 97
66d 64 79 86 91
66e 30 37 45 50
66f 45 53 62 85
66 g 31 39 42 48
66 h 60 69 78 87
Standard 88 92 95 99

Antihypertensive activity

Navarrete-Vazquez et al. [45] synthesized 5-(trifluoromethyl)-2-(2,3,4-trisubstituted phenyl)-1H-benzo[d] imidazole and 5-nitro-2-(2,3,4-trisubstituted phenyl)-1H-benzo [d] Imidazole (Scheme 26) and evaluated for antihypertensive potential in SHR by using the tail-cuff method and the results of antihypertensive activity were summarized in (Table 26, Navarrete-Vazquez et al. [45]).

Scheme 26.

Scheme 26

Synthesis of 5-(trifluoromethyl)-2-(2, 3, 4-trisubstituted phenyl)-1H-benzo[d] imidazole and 5-nitro-2-(2, 3, 4-trisubstituted phenyl)-1H-benzo[d]imidazole

Table 26.

Antihypertensive activity of the synthesized derivatives (67a-o) in SHR Navarrete-Vázquez et al. [45]

Compounds R1 R2 R3 R4 Ex vivo vasorelaxant effect
With endothelium (+ E) Without endothelium (−E)
EC50 (μM) Emax (%) EC50 (μM) Emax (%)
67a −CF3 −H −H −H 369.37 ± 10.2 91.2 ± 1.18 467.75 ± 73.6 75.6 ± 6.31
67b −CF3 −OMe −H −H 210.33 ± 11.3 75.14 ± 33.5 574.85 ± 30.3 45.7 ± 15.4
67c −CF3 −OEt −H −H 548.5 ± 27.8 90.97 ± 2.30 548.51 ± 77.1 19.8 ± 8.13
67d −CF3 −NO2 −H −H 3.18 ± 0.30 93.16 ± 3.52 15.03 ± 7.59 85.31 ± 2.63
67e −CF3 −H −H −OH 219.20 ± 14.1 51.15 ± 20.6 219.20 ± 71.6 37.04 ± 10.6
67f −CF3 −H −H −OPr 524.49 ± 25.4 51.0 ± 7.33 524.49 ± 19.3 19.0 ± 6.01
67g −CF3 −H −H −N (Me)2 550.27 ± 30.1 63.2 ± 4.81 550.27 ± 84.5 30.9 ± 7.53
67h −CF3 −H −OMe −OH 34.84 ± 5.43 99.55 ± 1.23 140.14 ± 63.2 97.67 ± 3.26
67i −CF3 −H −OCH2O 38.53 ± 2.35 101.17 ± 5.83 77.42 ± 9.41 99.6 ± 13.5
67j NO2 −H −H −H 4.93 ± 0.30 73.82 ± 5.37 35.1 ± 5.21 60.53 ± 5.58
67k NO2 −OEt −H −H 3.71 ± 0.10 84.82 ± 3.73 15.0 ± 1.12 46.35 ± 7.85
67l NO2 −OiPr −H −H 4.89 ± 0.29 80.71 ± 9.41 14.12 ± 1.05 31.69 ± 1.32
67m NO2 −H −OMe −OH 1.81 ± 0.08 91.74 ± 2.35 19.49 ± 1.79 55.22 ± 8.85
67n NO2 −H −OMe −OMe 2.5 ± 0.10 75.0 ± 9.35 301.9 ± 10.2 36.33 ± 6.20
67o NO2 −OMe −OMe −OMe 3.23 ± 0.20 90.0 ± 4.56 43.65 ± 2.37 58.91 ± 7.81
Pimobendan 4.67 ± 0.83 93.22 ± 5.23 N.T N.T
Carbachol 0.51 ± 1.9 106.3 ± 9.71 N.A N.A
Nitrendipine N.T N.T 0.03 ± 0.003 98.90 ± 5.0

N.T Not tested, N.A Not active

Hadizadeh et al. [46] synthesized 2-(2-(1H-imidazol-1-yl)ethyl)-4-(1-benzyl-2-(substituted thio)-1H-imidazol-5-yl)-5-(substituted carbonyl)-6-methyl-1, 4-dihydropyridine-3-substituted carboxylic acid (Scheme 27) and evaluated for antihypertensive potential in rats and the results of anti-hypertensive activity were summarized in (Table 27, Hadizadeh et al. [46]).

Scheme 27.

Scheme 27

Synthesis of 2-(2-(1H-imidazol-1-yl)ethyl)-4-(1-benzyl-2-(substituted thio)-1H-imidazol-5-yl)-5-(substituted carbonyl)-6-methyl-1, 4-dihydropyridine-3-substituted carboxylic acid

Table 27.

Antihypertensive activity of titled compounds (68a-f) in normotensive and hypertensive rats Hadizadeh et al. [46]

Compounds MABP fall (SEM) in rats in doses C, in mg/kg b.w., i.v
Normotensive Hypertensive
0.3 3 30 0.3 3 30
68a 26.00(2.00) 42.00(3.00) 47.20(3.03) 38.40(5.37) 46.40(2.19) 50.00(2.00)
68b Nd Nd Nd Nd Nd Nd
68c 22.00(2.00) 42.00(2.00) 57.2(2.16) 29.60(4.56) 54.40(7.79) 58.00(2.73)
68d 18.00(2.00) 42.00(2.00) 47.00(1.67) 22.40(3.58) 48.00(1.78) 49.20(1.78)
68e Nd Nd Nd Nd Nd Nd
68f Nd Nd Nd Nd Nd Nd
69a 17.20(2.68) 41.60(20.60) 53.20(2.28) 28.00(6.20) 52.80(11.79) 55.20(2.28)
69b 26.40(5.80) 37.20(1.55) 38.60(3.83) 29.00(2.9) 45.75(8.87) 50.80(6.60)
69c 23.20(7.69) 44.80(3.34) 56.80(3.34) 35.20(3.35) 56.00(4.00) 56.80(3.34)
69d 27.60(1.82) 37.40(1.15) 36.60(3.63) 29.00(5.10) 42.00(7.30) 44.5(7.60)
69e 15.40(0.27) 28.60(1.09) 33.00(1.41) 28.00(4.70) 36.80(1.60) 51.00(8.70)
69f 17.40(1.03) 26.60(3.19) 36.80(5.30) 24.80(4.56) 42.00(5.40) 48.00(7.40)
Nifedipine 27.20(2.68) 59.60(3.84) Nd 42.40(5.36) 61.20(14.46) Nd
DMSO 12.00(5.65) 12.00(3.65) 12.00(5.65) 14.80(6.72) 14.80(6.72) 14.80(6.72)

MABP Mean arterial blood pressure fall, SEM Standard error the mean are indicated in the parenthesis. All results were analyzed for statistically significant differences from control DMSO (0.3 mL/kg b.w., i.v) by analysis of variance and all showed significant difference. (p < 0.05), Nd not determined

Goyal et al. [22] synthesized 2-substituted-1-(pyridin-2-ylmethyl)-1H-benzo[d]imidazole derivatives (Scheme 28) and evaluated for antihypertensive potential and the results of activity were summarized in (Table 28, Goyal et al. [22]).

Scheme 28.

Scheme 28

Synthesis substituted imidazole derivatives

Table 28.

Antihypertensive activity of the synthesized compounds (70a-j) Goyal et al. [22]

Haemodynamic parameters
Compounds SAP (mmHg) DAP (mmHg) MAP (mmHg) HR (bpm)
70a B 189 ± 7 129 ± 5 159 ± 6 311 ± 19
A 161 ± 9* 105 ± 6* 121 ± 5* 298 ± 11
70b B 189 ± 7 124 ± 8 154 ± 5 310 ± 18
A 188 ± 6 122 ± 4 151 ± 7 320 ± 19
70c B 206 ± 15 124 ± 8 151 ± 6 357 ± 15
A 198 ± 18 119 ± 6 146 ± 5 337 ± 21
70d B 217 ± 8 128 ± 6 160 ± 8 339 ± 17
A 213 ± 7 132 ± 8 157 ± 9 330 ± 14
70e B 221 ± 6 130 ± 5 157 ± 9 363 ± 16
A 213 ± 3 129 ± 4 155 ± 8 347 ± 17
70f B 178 ± 2 146 ± 7 151 ± 6 413 ± 28
A 176 ± 3 144 ± 11 148 ± 9 402 ± 32
70g B 194 ± 5 165 ± 8 180 ± 7 416 ± 18
A 187 ± 7 155 ± 6 168 ± 6 409 ± 11
70h B 158 ± 6 151 ± 9 155 ± 6 453 ± 29
A 144 ± 5* 141 ± 8* 142 ± 9* 459 ± 21
70i B 198 ± 7 154 ± 7 176 ± 7 410 ± 19
A 197 ± 6 148 ± 6 183 ± 8 406 ± 14
70j B 140 ± 6 118 ± 7 127 ± 5 511 ± 45
A 138 ± 5 115 ± 4 125 ± 4 465 ± 28
Control B 169 ± 6 145 ± 3 154 ± 6 415 ± 23
A 168 ± 9 140 ± 4 149 ± 7 407 ± 29
Prazocin (3 mg/kg) B 199 ± 7 156 ± 6 168 ± 6 418 ± 17
A 176 ± 8* 138 ± 4* 141 ± 3* 411 ± 15

Haemodynamic effects shown on systolic blood pressure (SAP), Diastolic blood pressure (DAP), Mean arteriolar pressure (MAP) and Heart rate (HR) on SHRs treated with vehicle control and test compounds. Values were represented as mean ± SEM; n = 5; *p < 0.05

Antitubercular activity

Amini et al. [47] synthesized N3-(substituted phenyl)-N5-(substituted phenyl)-4-(4,5-dichloro-1H-imidazol-2-yl)-2-methyl-1, 4-dihydropyridine-3,5-dicarboxamide (Scheme 29) and evaluated for anti-tubercular activity against Mycobacterium tuberculosis strain using rifampicin as reference drug. The conclusion of the anti-tubercular activity was presented in (Table 29, Amini et al. [47]).

Scheme 29.

Scheme 29

Synthesis of N3-(substituted phenyl)-N5-(substituted phenyl)-4-(4, 5-dichloro-1H-imidaVol-2-yl)-2-methyl-1, 4-dihydropyridine-3, 5-dicarboxamide

Table 29.

Antitubercular activity of the synthesized compounds (71a-j) against Mycobacterium tuberculosis (H37Rv strain) Amini et al. [47]

Compounds R Inhibition %
71a H 9
71b 3-F 0
71c 4-F 13
71d 3-Cl 50
71e 4-Cl 12
71f 3,4-Cl2 34
71g 3-Br 1
71h 4-Br 0
71i 3-NO2 43
71j 4-NO2 43
Rifampicin  > 98

Pandey et al. [48] synthesized (E)-3-(4-(7-substituted-3-(substituted amino)imidazo[1,2-a] pyridin-2-yl)phenyl)-1-(substituted phenyl)prop-2-en-1-one (Scheme 30) and evaluated for anti-tubercular potential against Mycobacterium tuberculosis strain by MB 7H10 agar medium using Ethambutol and Pyrazinamide as a reference drug. The conclusion of the activity was presented in (Table 30, Pandey et al. [48]).

Scheme 30.

Scheme 30

Synthesis of (E)-3-(4-(7-substituted-3-(substituted amino)imidazo[1,2-a] pyridin-2-yl)phenyl)-1-(substituted phenyl)prop-2-en-1-one

Table 30.

Antitubercular activity of synthesized compounds (72a-q) against M. tuberculosis H37Rv Pandey et al. [48]

graphic file with name 13065_2020_730_Tab30a_HTML.jpg

graphic file with name 13065_2020_730_Tab30b_HTML.jpg

Makwane et al. [49] synthesized 10-(2-(substituted phenyl)imidazo[2,1-b][1,3,4]thiadiazol-6-yl)-10H-phenothiazine by using (Scheme 31) and evaluated for antitubercular activity by (L.J) agar method against Mycobacterium tuberculosis H37Rv strain using Isoniazid as reference drug and MIC values of these derivatives were calculated. The conclusion of anti-tubercular activity was presented in (Table 31, Makwane et al. [49]).

Scheme 31.

Scheme 31

Synthesis of 10-(2-(substituted phenyl)imidazo[2,1-b][1, 3, 4]thiadiazol-6-yl)-10H-phenothiazine

Table 31.

Antitubercular activity of the synthesized compounds (73a-j) Makwane et al. [49]

Compounds Ar1 Antitubercular activity inhibition (%) (ppm) M. tuberculosis H37Rv strain Antitubercular activity MIC* (μg/mL) M. tuberculosis H37Rv strain
25 50
73a C6H5 22 45 12
73b 2-ClC6H4 32 79 7.5
73c 3-ClC6H4 36 80 6.5
73d 4-ClC6H4 32 78 7
73e 2-BrC6H4 29 73 10
73f 3-BrC6H4 30 76 8.5
73g 4-BrC6H4 30 75 9
73h 2-NO2C6H4 28 82 5.5
73i 3- NO2C6H4 27 84 4
73j 4-NO2C6H4 32 83 5

Nandha et al. [23] synthesized 2-((1H-imidazol-1-yl)methyl)-6-substituted-5-fluoro-1H-benzo[d]imidazole (Scheme 32) and evaluated for anti-tubercular activity against Mycobacterium tuberculosis strain by MABA assay using Isoniazid as a reference drug. The conclusion of anti-tubercular activity was presented in (Table 32, Nandha et al. [23]).

Scheme 32.

Scheme 32

Synthesis of 2-((1H-imidazol-1-yl)methyl)-6-substituted-5-fluoro-1H-benzo[d]imidazole

Table 32.

Antitubercular activity of synthesized derivatives (74a-e) against M. tuberculosis H37Rv strain Nandha et al. [23]

Compounds MIC (μg/mL) MABA
74a 100
74b 50
74c 25
74d 50
74e 12.5
Isoniazid 0.78

MIC Minimum inhibitory concentration, MABA Microplate Alamar Blue Assay (visual)

Nandha et al. [50] synthesized 6-(benzo[d][1,3]dioxol-5-yloxy)-2-substituted-5-fluoro-1H-benzo[d] imidazole (Scheme 33) and evaluated for anti-tubercular activity against Mycobacterium tuberculosis (ATCC27294) by MABA assay using streptomycin, ciprofloxacin, and pyrazinamide as a reference drug. The conclusion of the activity was presented in (Table 33, Nandha et al. [50]).

Scheme 33.

Scheme 33

Synthesis of 6-(benzo[d][1, 3]dioxol-5-yloxy)-2-substituted-5-fluoro-1H-benzo[d] imidazole and 2-(((6-bromobenzo[d][1,3]dioxol-5-yl)methyl)thio)-6-substituted-5-fluoro-1 h-benzo[d]imidazole

Table 33.

Antitubercular activity of synthesized derivatives (77a-f) and (78a-i) Nandha et al. [50]

graphic file with name 13065_2020_730_Tab33_HTML.jpg

Gising et al. [51] synthesized 2,5-disubstituted-4-(6-methoxynaphthalen-2-yl)-1H-imidazole by using (Scheme 34). The anti-tubercular potential of these derivatives was evaluated against Mycobacterium tuberculosis strain and MIC values of these derivatives were calculated. The conclusion of anti-tubercular activity was presented in (Table 34, Gising et al. [51]).

Scheme 34.

Scheme 34

Synthesis of 2,5-disubstituted-4-(6-methoxynaphthalen-2-yl)-1H-imidazole

Table 34.

Antitubercular activity of synthesized derivatives (79a-m) Gising et al. [51]

graphic file with name 13065_2020_730_Tab34_HTML.jpg

Syed et al. [52] synthesized 6-(4-substituted phenyl)-2-(3,5-dimethyl-1H-pyrazol-1-yl)imidazo [2,1-b][1,3,4] thiadiazole (Scheme 35) and evaluated for anti-tubercular potential against Mycobacterium tuberculosis strain. Compounds 80a, 80b, 81a, 82a, and 83a showed the most potent anti-tubercular activity as compared to others. The conclusion of anti-tubercular activity was presented in (Table 35, Syed et al. [52]).

Scheme 35.

Scheme 35

Synthesis of substituted phenyl imidazole derivatives

Table 35.

Antitubercular activity of synthesized compounds (80a-83e) Syed et al. [52]

Compounds MIC (μg/mL) MABA
80a 10
80b 10
81a 10
81b 25
82a 10
82b 25
83a 10
83b 25
83c 25
83e 25
Streptomycin 7.5

Patel et al. [53] synthesized 6-(substituted phenyl)-2-(1-methyl-1H-imidazol-2-yl) imidazo [2,1-b] [1,3,4] thiadiazole (Scheme 36) and evaluated for anti-tubercular activity against Mycobacterium tuberculosis and MIC values of these derivatives were calculated. The conclusion of anti-tubercular activity was presented in (Table 36, Patel et al. [53]).

Scheme 36.

Scheme 36

Synthesis of 6-(substituted phenyl)-2-(1-methyl-1H-imidazol-2-yl) imidazo [2,1-b] [1,3,4] thiadiazole

Table 36.

Antitubercular activity of synthesized compounds (84a-j) Patel et al. [53]

Compounds R Inhibition % Activity MIC (μg/mL) IC50 SI
84a 3-Nitro 91  +  4.34 10.56 2.43
84b 4-Bromo 94  +  5.78 11.4 1.97
84c 4-Chloro 95  +  5.48 12.3 2.24
84d 4-Fluoro 90  +  4.86 8.5 1.74
84e H 16  > 6.25
84f 4-Nitro 98  +  3.14 9.8 3.12
84 g 4-Methyl 18  > 6.25
84 h 3-Methyl 30  > 6.25
84i 2,4-Dichloro 92  +  5.66 10.3 1.81
84j 2,4-Dihydroxy  > 6.25
Rifampicin 0.125–0.25  > 10

Yadav et al. [54] synthesized 2-((1-benzoyl-1H-benzo[d]imidazol-2-yl) thio)-N-(substituted phenyl) acetamide (Scheme 37) and evaluated for anti-tubercular activity against Mycobacterium tuberculosis strain and MIC values of these derivatives were calculated. Streptomycin was used as a reference drug and the results of anti-tubercular activity were presented in (Table 37, Yadav et al. [54]).

Scheme 37.

Scheme 37

Synthesis of 2-((1-benzoyl-1H-benzo[d]imidazol-2-yl) thio)-N-(substituted phenyl) acetamide

Table 37.

Antitubercular activity of synthesized compounds (85a-t) Yadav et al. [54]

Compounds Diameter of zone of inhibition (mm) against H37Rv (NCFT/TB/537) MIC (μg/mL) MLC (μg/mL)
85a  > 20 12.5 25
85b  > 20 12.5 25
85c  > 20 12.5 25
85d  > 20 12.5 25
85e 08 17.8 28.12
85f  > 20 12.5 25
85 g 10 15 28
85 h  > 20 12.5 25
85i 08 17.8 28.12
85j 20 12.5 25
85 k 10 15 28
85 l  > 20 12.5 25
85 m  > 20 12.5 25
85n NA NA NA
85o  > 20 12.5 25
85p 10 15 28
85q  > 20 12.5 25
85r  > 20 12.5 25
85 s NA NA NA
85t 10 15 28
Streptomycin  > 20 12.5 25

Conclusion

In this present review article, we have summarized different pharmacological activities of 1,3-diazole containing compounds. From this study, we have found that 1,3-diazole containing compounds can be synthesized by various kinds of synthetic routes, and these derivatives having a wide range of biological activities such as antitumor, antitubercular, antimicrobial, antihypertensive and antioxidant, etc. This review article established the fact that 1,3-diazole act as useful templates for further modification or derivatization to design more potent biologically active compounds.

Acknowledgements

Thanks to Head Prof. Sanju Nanda, Department of Pharmaceutical Sciences, M.D.U, Rohtak for providing library and internet facilities, etc.

Abbreviations

AMR

Antimicrobial resistance

DNA

Deoxyribonucleic acid

DMF

Dimethylformamide

TEBA

Triethyl benzyl ammonium chloride

MTT

3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

C-A4

Combretastatin-A4

SRB

Sulforhodamine B assay

DLA

Dalton’s Lymphoma Ascites cell line

EAC

Ehrlich’s ascites carcinoma cell lines

DPPH

2,2-Diphenyl-1-picrylhydrazyl

FRAP

Ferric reducing ability of plasma

SHR

Spontaneously hypertensive rats

MB

Middle brook

MABA

Microplate Alamar blue assay

L.J

Lowenstein-Jensen

IC50

Half maximal inhibitory concentration

HeLa

Henrietta Lacks

TEA

Triethanolamine

DMSO

Dimethyl sulphoxide

MIC

Minimum inhibitory concentration

TBAB

Tetrabutylammonium bromide

NCFT

National Centre of Fungal Taxonomy

MLC

Minimum Lethal concentration

p-TSA

P-Toluenesulfonic acid

MW

Microwave

CAN

Cerric ammonium nitrate

(4-SB) T (4-SPh)PHSO4

(4-Sulfobutyl)tris(4-sulfophenyl) phosphonium hydrogen sulfate

Authors’ contributions

PKV-endeavored and accomplished the scheme; AS-completed review work and wrote the manuscript. Both authors read and approved the final manuscript.

Funding

No funding was obtained for this study.

Availability of data and materials

All data are provided in the manuscript or cited in the references.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors have no conflicts of interest.

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Ankit Siwach, Email: siwachaniket96@gmail.com.

Prabhakar Kumar Verma, Email: vermapk422@rediffmail.com.

References

  • 1.Narasimhan B, Sharma D, Kumar P, Yogeeswari P, Sriram D. Synthesis, antimicrobial and antimycobacterial evaluation of [2-(substituted phenyl)-imidazol-1-yl]-pyridin-3-yl-methanones. J Enzyme Inhib Med Chem. 2011;26(5):720–727. doi: 10.3109/14756366.2010.548331. [DOI] [PubMed] [Google Scholar]
  • 2.Brahmbhatt H, Molnar M, Pavić V. Pyrazole nucleus fused tri-substituted imidazole derivatives as antioxidant and antibacterial agents. Karbala Int J Mod Sci. 2018;4(2):200–206. doi: 10.1016/j.kijoms.2018.01.006. [DOI] [Google Scholar]
  • 3.Reyes-Arellano A, Gómez-García O, Torres-Jaramillo J. Synthesis of azolines and imidazoles and their use in drug design. Med Chem (Los Angeles) 2016;6:561–570. [Google Scholar]
  • 4.Verma A, Joshi S, Singh D. Imidazole: having versatile biological activities. New J Chem. 2013 doi: 10.1155/2013/329412. [DOI] [Google Scholar]
  • 5.Bhatnagar A, Sharma PK, Kumar N. A review on “Imidazoles”: Their chemistry and pharmacological potentials. Int J Pharm Tech Res. 2011;3(1):268–282. [Google Scholar]
  • 6.Gueiffier A, Mavel S, Lhassani M, Elhakmaoui A, Snoeck R, Andrei G, Chavignon O, Teulade JC, Witvrouw M, Balzarini J, De Clercq E. Synthesis of imidazo [1, 2-a] pyridines as antiviral agents. J Med Chem. 1998;41(25):5108–5112. doi: 10.1021/jm981051y. [DOI] [PubMed] [Google Scholar]
  • 7.Kumar M, Kumar D, Raj V. Studies on Imidazole and its derivatives with particular emphasis on their chemical/biological applications as bioactive molecules/intermediated to bioactive molecule. Curr Synth Syst Biol. 2017;5(01):1–10. [Google Scholar]
  • 8.Zala SP, Badmanaban R, Sen DJ, Patel CN. Synthesis and biological evaluation of 2,4,5-triphenyl-1H-imidazole-1-yl derivatives. J Appl Pharm Sci. 2012;2(7):22. [Google Scholar]
  • 9.Atanasova-Stamova SY, Georgieva SF, Georgieva MB. Reaction strategies for synthesis of imidazole derivatives: a review. Scr Sci Pharm. 2018;5(2):7–13. [Google Scholar]
  • 10.Gupta P, Gupta JK. Synthesis of bioactive imidazoles: a review. Int J Modern Chem. 2015;7(2):60–80. [Google Scholar]
  • 11.Shrivastava TP, Patil UK, Garg S, Singh MA. Diverse pharmacological significance of imidazole derivatives-a review. Res J Pharm Tech. 2013;6(1):5. [Google Scholar]
  • 12.Manocha P, Wakode DS, Kaur A, Anand K, Kumar H. A review: Imidazole synthesis and its biological activities. Int J Pharm Sci Res. 2016;1(7):12–16. [Google Scholar]
  • 13.Srestha N, Banerjee J, Srivastava S. A review on chemistry and biological significance of benzimidazole nucleus. IOSR J Pharm. 2014;4(12):28–41. [Google Scholar]
  • 14.Romero DH, Heredia VET, García-Barradas O, López MEM, Pavón ES. Synthesis of imidazole derivatives and their biological activities. J Chem Biochem. 2014;2(2):45–83. doi: 10.15640/jcb.v2n2a3. [DOI] [Google Scholar]
  • 15.Anand K, Wakode S. Development of drugs based on benzimidazole heterocycle: recent advancement and insights. J Chem Biol. 2017;5(2):350–362. [Google Scholar]
  • 16.Verma BK, Kapoor S, Kumar U, Pandey S, Arya P. Synthesis of new imidazole derivatives as effective antimicrobial agents. Indian J Pharm Biol Res. 2017;5(01):1–9. doi: 10.30750/ijpbr.5.1.1. [DOI] [Google Scholar]
  • 17.Sharma GK, Pathak D. Microwave-assisted, solvent-free and parallel synthesis of some novel substituted imidazoles of biological interest. Chem Pharm Bull. 2010;58(3):375–380. doi: 10.1248/cpb.58.375. [DOI] [PubMed] [Google Scholar]
  • 18.Bhade MW, Rajput PR. Design and synthesis of some imidazole derivatives containing 4-(3, 5-dichloro-2-hydroxyphenyl) imidazole moiety as antibacterial agents. Int J Appl Pure Sci Agric. 2016;2(11):80–84. [Google Scholar]
  • 19.Salman AS, Abdel-Aziem A, Alkubbat MJ. Design, synthesis of some new thio-substituted imidazole and their biological activity. Am J Org Chem. 2015;5:57–72. [Google Scholar]
  • 20.Behmaram B, Foroughifar N, Foroughifar N, Hallajian S. Synthesis of some derivatives of 4-phenyl-1, 3-dihydro-2H-imidazole-2-thion using ionic liquid as catalyst and evaluation of their antimicrobial activity. Int J Chem. 2017;9(2):45–51. doi: 10.5539/ijc.v9n2p45. [DOI] [Google Scholar]
  • 21.Katikireddy R, Kakkerla R, Krishna MM, Durgaiah G, Reddy YN, Satyanarayana M. Synthesis and biological evaluation of (E)-N’-benzylidene-7-methyl-2-propyl-1H-benzo [d] imidazole-5-carbohydrazides as antioxidant, anti-inflammatory and analgesic agents. Heterocycl Commun. 2019;25(1):27–38. doi: 10.1515/hc-2019-0009. [DOI] [Google Scholar]
  • 22.Goyal A, Singh J, Pathak DP. Synthesis and pharmacological evaluation of some novel imidazole derivatives for their potential anti-hypertensive activity. J Pharm Tech Res Manag. 2013;1:69–79. doi: 10.15415/jptrm.2013.11005. [DOI] [Google Scholar]
  • 23.Nandha B, Nargund LG, Nargund SL, Bhat K. Design and synthesis of some novel fluorobenzimidazoles substituted with structural motifs present in physiologically active natural products for antitubercular activity. Iran J Pharm Res. 2017;16(3):929. [PMC free article] [PubMed] [Google Scholar]
  • 24.El-Aal EA, Fattah HA, Osman N, Seliem I. Synthesis of novel imidazole and fused imidazole derivatives as cytotoxic and antimicrobial agents: molecular docking and biological evaluation. Int J Pharm Sci. 2015;7(10):36–45. [Google Scholar]
  • 25.Hsieh CY, Ko PW, Chang YJ, Kapoor M, Liang YC, Chu HL, Lin HH, Horng JC, Hsu MH. Design and synthesis of benzimidazole-chalcone derivatives as potential anticancer agents. Molecules. 2019;24(18):3259. doi: 10.3390/molecules24183259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Subrahmanyam RS, Ramesh P, Krishna BS, D. Swaroop S, Khan MA, Darla MM, Adeepa K, Bhaskar BV, Rajendra W and Anna VR, Synthesis and biological evaluation of some new class of chromenoimidazole derivatives as probable anti-cancer agents. Rasayan J Chem. 2017;10(4):1194–1212. [Google Scholar]
  • 27.Banothu J, Gali R, Velpula R, Bavantula R. Bronsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthesis of 2, 4, 5-trisubstituted-1H-imidazoles under solvent-free conditions. Arab J Chem. 2013 doi: 10.1016/j.arabjc.2013.10.022. [DOI] [Google Scholar]
  • 28.Jain AK, Ravichandran V, Sisodiya M, Agrawal RK. Synthesis and antibacterial evaluation of 2–substituted–4, 5–diphenyl–N–alkyl imidazole derivatives. Asian Pac J Trop Med. 2010;3(6):471–474. doi: 10.1016/S1995-7645(10)60113-7. [DOI] [Google Scholar]
  • 29.Parab RH, Dixit BC, Desai DJ. Synthesis, characterization and antimicrobial activity of imidazole derivatives. Asian J Chem. 2011;23(6):2725. [Google Scholar]
  • 30.Ahsan I, Sharma KK. Pharmacological evaluation of newly synthesized imidazole derivatives containing 2-(2-hydroxyphenyl)-4, 5-diphenyl imidazole moiety. J Pharm Innov. 2015;4(3 Part B):68. [Google Scholar]
  • 31.Desai NC, Maheta AS, Rajpara KM, Joshi VV, Vaghani HV, Satodiya HM. Green synthesis of novel quinoline based imidazole derivatives and evaluation of their antimicrobial activity. J Saudi Chem Soc. 2014;18(6):963–971. doi: 10.1016/j.jscs.2011.11.021. [DOI] [Google Scholar]
  • 32.Shobhashana PG, Prasad P, Kalola AG, Patel MP. Synthesis of imidazole derivatives bearing quinoline nucleus catalyzed by can and their antimicrobial, antitubercular and molecular docking studies. Res J Life Sci Bioinform Pharm Chem Sci. 2018;4(3):175. [Google Scholar]
  • 33.Selvan S, Agalya R, Maruthamuthu SR, Ruby C, Stell P. Characterization and antimicrobial activity of newly synthesized benzimidazolyl compounds with docking studies. World J Pharm Res. 2015;5(2):600–607. [Google Scholar]
  • 34.Yadav S, Narasimhan B, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, Selvaraj M. Synthesis, characterization, biological evaluation and molecular docking studies of 2-(1H-benzo [d] imidazol-2-ylthio)-N-(substituted 4-oxothiazolidin-3-yl) acetamides. Chem Cent J. 2017;11(1):137. doi: 10.1186/s13065-017-0361-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Yurttas L, Ertas M, Ciftci GA, Temel HE, Demirayak S. Novel benzothiazole based imidazole derivatives as new cytotoxic agents against glioma (C6) and liver (HepG2) cancer cell lines. ACTA Pharm Sci. 2017 doi: 10.23893/1307-2080.APS.0553. [DOI] [Google Scholar]
  • 36.Roopashree R, Mohan CD, Swaroop TR, Jagadish S, Rangappa KS. Synthesis, characterization, and in vivo biological evaluation of novel benzimidazoles as potential anticancer agents. Asian J Pharm Clin Res. 2014;7(5):309–313. [Google Scholar]
  • 37.Romagnoli R, Baraldi PG, Prencipe F, Oliva P, Baraldi S, Tabrizi MA, Lopez-Cara LC, Ferla S, Brancale A, Hamel E, Ronca R. Design and synthesis of potent in vitro and in vivo anticancer agents based on 1-(3′, 4′, 5′-trimethoxyphenyl)-2-aryl-1H-imidazole. Sci Rep. 2016;6:26602. doi: 10.1038/srep26602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Rajendran SS, Geetha G, Venkatanarayanan R, Santhi N. Synthesis, characterization and in-vitro anticancer evaluation of novel benzo [D] imidazole derivatives. Int J Pharm Sci Res. 2017;8(7):3014–3024. [Google Scholar]
  • 39.Meenakshisundaram S, Manickam M, Pillaiyar T. Exploration of imidazole and imidazopyridine dimers as anticancer agents: Design, synthesis, and structure–activity relationship study. Arch Pharm. 2019 doi: 10.1002/ardp.201900011. [DOI] [PubMed] [Google Scholar]
  • 40.Sharma GK, Sharma NK, Pathak D. Microwave irradiated synthesis of some substituted imidazole derivatives as potential antibacterial and anticancer agents. Indian J Chem. 2013;52B:266–272. [Google Scholar]
  • 41.Naureen S, Ijaz F, Munawar MA, Asif N, Chaudhry F, Ashraf M, Khan MA. Synthesis of tetrasubstitutedimidazoles containing indole and their antiurease and antioxidant activities. J Chil Chem Soc. 2017;62(3):3583–3587. doi: 10.4067/s0717-97072017000303583. [DOI] [Google Scholar]
  • 42.Rajasekaran S, Rao G, Chatterjee A. Synthesis, anti-inflammatory and anti-oxidant activity of some substituted benzimidazole derivatives. Int J Drug Dev Res. 2012;4:303–309. [Google Scholar]
  • 43.Subramaniam R, Rao G, Pai S, Virya GK, Sodhi GS. Synthesis and in vitro study of biological activity of 2, 3-substituted quinazolin-4 (3H)-ones. J Chem Pharm Res. 2010;2(2):462–468. [Google Scholar]
  • 44.Subhashini NJP, Kumar EP, Gurrapu N, Yerragunta V. Design and synthesis of imidazolo-1, 2, 3-triazoles hybrid compounds by microwave-assisted method: evaluation as an antioxidant and antimicrobial agents and molecular docking studies. J Mol Struct. 2019;1180:618–628. doi: 10.1016/j.molstruc.2018.11.029. [DOI] [Google Scholar]
  • 45.Navarrete-Vazquez G, Hidalgo-Figueroa S, Torres-Piedra M, Vergara-Galicia J, Rivera-Leyva JC, Estrada-Soto S, León-Rivera I, Aguilar-Guardarrama B, Rios-Gómez Y, Villalobos-Molina R, Ibarra-Barajas, Synthesis, vasorelaxant activity and antihypertensive effect of benzo [d] imidazole derivatives. Bioorg Med Chem. 2010;18(11):3985–3991. doi: 10.1016/j.bmc.2010.04.027. [DOI] [PubMed] [Google Scholar]
  • 46.Hadizadeh F, Hassanabad ZF, Bamshad M, Poorsoghat H, Hassanabad MF. Synthesis and antihypertensive activity of new 1, 4-dihydropyridines. Indian J Chem. 2005;44B:2343–2347. [Google Scholar]
  • 47.Amini MO, Navidpour L, Shafiee A. Synthesis and antitubercular activity of new N, N-diaryl-4-(4, 5-dichloroimidazole-2-yl)-1, 4-dihydro-2, 6-dimethyl-3, 5-pyridine dicarboxamides. Daru J Pharm Sci. 2008;16(1):9–12. [Google Scholar]
  • 48.Pandey AK, Sharma R, Purohit P, Dwived R, Chaturvedi V, Chauhan P. Synthesis of pyrido [1,2-a] imidazo-chalcone via 3-component Groebke-Blackburn-Bienayme reaction and their bioevaluation as potent antituberculosis agents. J Chem Biol. 2016;6(5):3350–3355. [Google Scholar]
  • 49.Makwane S, Dua R. Synthesis and antitubercularacitivity of New imidazo [2,1-B][1, 3, 4]-thiadiazole-phenothiazine derivatives. Arc Org Inorg Chem Sci. 2018;3(4):391–397. [Google Scholar]
  • 50.Nandha B, Nargund LVG, Nargund SL, Kuntal H. Design and synthesis of imidazolylmethyl substituted fluorobenzimidazoles for antitubercular and antifungal activity. J Chem Pharm Res. 2014;6(1):530–539. [Google Scholar]
  • 51.Gising J, Nilsson MT, Odell LR, Yahiaoui S, Lindh M, Iyer H, Sinha AM, Srinivasa BR, Larhed M, Mowbray SL, Karlén A. Trisubstitutedimidazoles as Mycobacterium tuberculosis glutamine synthetase inhibitors. J Med Chem. 2012;55(6):2894–2898. doi: 10.1021/jm201212h. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Syed MA, Ramappa AK, Alegaon S. Synthesis and evaluation of antitubercular and antifungal activity of some novel 6-(4-substituted aryl)-2-(3, 5-dimethyl-1H-pyrazol-1-yl)imidazo[2,1-b][1,3,4]-thiadiazole derivatives. Asian J Pharm Clin Res. 2013;6(3):47–51. [Google Scholar]
  • 53.Patel HM, Noolvi MN, Sethi NS, Gadad AK, Cameotra SS. Synthesis and antitubercular evaluation of imidazo[2,1-b][1,3,4]-thiadiazole derivatives. Arab J Chem. 2017;10:S996–S1002. doi: 10.1016/j.arabjc.2013.01.001. [DOI] [Google Scholar]
  • 54.Yadav S, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, Mathur A, Narasimhan B. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of 2-(1-benzoyl-1H-benzo[d]imidazol-2-ylthio)-N-substituted acetamides. Chem Cent J. 2018;12(1):66. doi: 10.1186/s13065-018-0432-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All data are provided in the manuscript or cited in the references.


Articles from BMC Chemistry are provided here courtesy of BMC

RESOURCES