Skip to main content
Reproductive Biology and Endocrinology : RB&E logoLink to Reproductive Biology and Endocrinology : RB&E
. 2021 Feb 23;19:31. doi: 10.1186/s12958-021-00706-3

Identification of key pathways and genes in polycystic ovary syndrome via integrated bioinformatics analysis and prediction of small therapeutic molecules

Praveenkumar Devarbhavi 1, Lata Telang 2, Basavaraj Vastrad 3, Anandkumar Tengli 4, Chanabasayya Vastrad 5,, Iranna Kotturshetti 6
PMCID: PMC7901211  PMID: 33622336

Abstract

To enhance understanding of polycystic ovary syndrome (PCOS) at the molecular level; this investigation intends to examine the genes and pathways associated with PCOS by using an integrated bioinformatics analysis. Based on the expression profiling by high throughput sequencing data GSE84958 derived from the Gene Expression Omnibus (GEO) database, the differentially expressed genes (DEGs) between PCOS samples and normal controls were identified. We performed a functional enrichment analysis. A protein-protein interaction (PPI) network, miRNA- target genes and TF - target gene networks, were constructed and visualized, with which the hub gene nodes were identified. Validation of hub genes was performed by using receiver operating characteristic (ROC) and RT-PCR. Small drug molecules were predicted by using molecular docking. A total of 739 DEGs were identified, of which 360 genes were up regulated and 379 genes were down regulated. GO enrichment analysis revealed that up regulated genes were mainly involved in peptide metabolic process, organelle envelope and RNA binding and the down regulated genes were significantly enriched in plasma membrane bounded cell projection organization, neuron projection and DNA-binding transcription factor activity, RNA polymerase II-specific. REACTOME pathway enrichment analysis revealed that the up regulated genes were mainly enriched in translation and respiratory electron transport and the down regulated genes were mainly enriched in generic transcription pathway and transmembrane transport of small molecules. The top 10 hub genes (SAA1, ADCY6, POLR2K, RPS15, RPS15A, CTNND1, ESR1, NEDD4L, KNTC1 and NGFR) were identified from PPI network, miRNA - target gene network and TF - target gene network. The modules analysis showed that genes in modules were mainly associated with the transport of respiratory electrons and signaling NGF, respectively. We find a series of crucial genes along with the pathways that were most closely related with PCOS initiation and advancement. Our investigations provide a more detailed molecular mechanism for the progression of PCOS, detail information on the potential biomarkers and therapeutic targets.

Keywords: polycystic ovary syndrome, expression profiling by high throughput sequencing, biomarkers, pathway enrichment analysis, differentially expressed gene

Introduction

Polycystic ovary syndrome (PCOS) is one of the most prevalent endocrine disorder around the world, with an estimated about one in 15 women worldwide [1]. PCOS exposes patients to a major psychosocial burden and is characterized by hyperandrogenism and chronic anovulation [2]. Diabetes, heart disease, obesity, non-alcoholic fatty liver disease and hypertension are the risk factors associated with PCOS [37]. Therefore, it is of prime importance to identify the etiological factors, molecular mechanisms, and pathways to discover novel diagnostic markers, prognostic markers and therapeutic targets for PCOS.

Numerous research strategies have recently investigated the molecular mechanisms of PCOS. High-throughput RNA sequencing technology has received extensive attention among these research strategies and has generated significant advances in the field of endocrine disorder with marked clinical applications ranging from molecular diagnosis to molecular classification, patient stratification to prognosis prediction, and discovery of new drug targets to response prediction [8]. In addition, gene expression profiling investigation on PCOS have been performed using high-throughput RNA sequencing, and several key genes and diagnostic biomarkers have been diagnosed for this syndrome, including the profiling of many of differentially expressed genes (DEGs) associated in different pathways, biological processes, or molecular functions [9]. Integrated bioinformatics analyses of expression profiling by high throughput sequencing data derived from different investigation of PCOS could help identify the novel diagnostic markers, prognostic markers and further demonstrate their related functions and potential therapeutic targets in PCOS.

Therefore, in the current investigation, the dataset (GSE84958) was then retrieved from the publicly available Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo/) [10] to identify DEGs and the associated biological processes PCOS using comprehensive bioinformatics analyses. The DEGs were subjected to functional enrichment and pathway analyses; moreover, a protein-protein interaction (PPI) network, miRNAs - target gene regulatory network and TFs - target gene regulatory network were constructed to screen for key genes, miRNA and TFs. The aim of this investigation was to identify key genes and pathways in PCOS using bioinformatics analysis, and then to explore the molecular mechanisms of PCOS and categorize new potential diagnostic therapeutic biomarkers of PCOS. We anticipated that these investigations will provide further understanding of PCOS pathogenesis and advancement at the molecular level.

Materials and Methods

RNA sequencing data

Expression profiling by high throughput sequencing dataset GSE84958 was downloaded from NCBI-GEO, a public database of next-generation sequencing, to filter the DEGs between PCOS and normal control. The expression profiling by high throughput sequencing GSE84958 was based on GPL16791 platforms (Illumina HiSeq 2500 (Homo sapiens)) and consisted of 30 PCOS samples and 23 normal control.

Identification of DEGs

The limma [11] in R bioconductor package was used to analyze the DEGs between PCOS samples and normal control samples in the expression profiling by high throughput sequencing data of GSE84958. The adjusted P-value and [logFC] were calculated. The Benjamini & Hochberg false discovery rate method was used as a correction factor for the adjusted P-value in limma [12]. The statistically significant DEGs were identified according to P<0.05, and [logFC] > 2.5 for up regulated genes and [logFC] < -1.5 for down regulated genes. All results of DEGs were downloaded in text format, hierarchical clustering analysis being conducted.

GO and pathway enrichment of DEGs in PCOS

To reflect gene functions, GO (http://geneontology.org/) [13] has been used in three terms: biological processes (BP), cellular component (CC) and molecular function (MF). ToppGene (ToppFun) (https://toppgene.cchmc.org/enrichment.jsp) [14] is an online database offering a comprehensive collection of resources for functional annotation to recognize the biological significance behind a broad list of genes. The functional enrichment analyses of DEGs, including GO analysis and REACTOME (https://reactome.org/) [15] pathway enrichment analysis, were performed using ToppGene in the present study, using the cut-off criterion P-value<0.05 and gene enrichment count>2.

PPI networks construction and module analysis

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING: http://string-db.org/) is online biological database and website designed to evaluate PPI information [16] Proteins associated with DEGs were selected based on information in the STRING database (PPI score >0.7), and then PPI networks were constructed using Cytoscape software (http://cytoscape.org/) [17]. In this investigation, node degree [18], betweenness centrality [19], stress centrality [20] and closeness centrality [21], these constitutes a fundamental parameters in network theory, were adopted to calculate the nodes in a network. The topological properties of hub genes were calculated using Cytoscape plugin Network Analyzer. The PEWCC1 (http://apps.cytoscape.org/apps/PEWCC1) [22], a plugin for Cytoscape, was used to screen the modules of the PPI network. The criteria were set as follows: degree cutoff=2, node score cutoff=0.2, k-core=2 and maximum depth=100. Moreover, the GO and pathway enrichment analysis were performed for DEGs in these modules.

Construction of miRNA - target regulatory network

Furthermore, the target genes of the significant target genes were predicted by using miRNet database (https://www.mirnet.ca/) [23], when the miRNAs shared a common target gene. Finally, the miRNA - target genes regulatory network depicted interactions between miRNAs and their potential targets in PCOS were visualized by using Cytoscape.

Construction of TF - target regulatory network

Furthermore, the target genes of the significant target genes were predicted by using TF database (https://www.mirnet.ca/) [23], when the TFs shared common target genes. Finally, the TF- target genes regulatory network depicted interactions between TFs and their potential targets in PCOS were visualized by using Cytoscape.

Receiver operating characteristic (ROC) curve analysis

The ROC curve was used to evaluate classifiers in bioinformatics applications. To further assess the predictive accuracy of the hub genes, ROC analysis was performed to discriminate PCOS from normal control. ROC curves for hub genes were generated using pROC in R [24] based on the obtained hub genes and their expression profiling by high throughput sequencing data. The area under the ROC curve (AUC) was determined and used to compare the diagnostic value of hub genes.

Validation of the expression levels of candidate genes by RT-PCR

Total RNA was extracted from PCOS (UWB1.289 (ATCC® CRL-2945™)) and normal ovarian cell line (MES-OV (ATCC® CRL-3272™)) using TRI Reagent® (Sigma, USA). The Reverse transcription cDNA kit (Thermo Fisher Scientific, Waltham, MA, USA) and 7 Flex real-time PCR system (Thermo Fisher Scientific, Waltham, MA, USA) were used for reverse transcription and real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. Polymerase chain reaction primer sequences are listed in Table 1. β-actin was used as an internal control for quantification. The relative expression levels of target transcripts were calculated using the 2-∆∆Ct method [25]. The thermocycling conditions used for RT-PCR were as follows: initial denaturation at 95°C for 15 min, followed by 40 cycles at 95°C for 10 sec, 60°C for 20 sec and 72°C for 20 sec.

Table 1.

Primers used for quantitative PCR

Primer sequence (5'→3')
Gene Forward Reverse
SAA1 TCGTTCCTTGGCGAGGCTTTTG AGGTCCCCTTTTGGCAGCATCA
ADCY6 CTCCTGGTCCCTAAAGTGGAT GGAGGCAGCTCATATAGCGG
POLR2K GGAGAGTGTCACACAGAAAATGA TCGAGCATCAAAAACGACCAAT
RPS15 CCCGAGATGATCGGCCACTA CCATGCTTTACGGGCTTGTAG
RPS15A CTCCAAAGTCATCGTCCGGTT TGAGTTGCACGTCAAATCTGG
CTNND1 GTGACAACACGGACAGTACAG TTCTTGCGGAAATCACGACCC
ESR1 CCCACTCAACAGCGTGTCTC CGTCGATTATCTGAATTTGGCCT
NEDD4L GACATGGAGCATGGATGGGAA GTTCGGCCTAAATTGTCCACT
KNTC1 ACCTGAGTGTCGGTTCAAGAA CACTGATTGGTCGGCTACAATAA
NGFR CCTACGGCTACTACCAGGATG CACACGGTGTTCTGCTTGT

Molecular docking studies

Surflex-docking studies of the standard drug molecule used in polycystic ovary syndrome were used on over expressed genes and were collected from PDB data bank using perpetual SYBYL-X 2.0 software. Using ChemDraw Software, all the drug molecules were illustrated, imported and saved in sdf. templet using open babel free software. The protein structures of POLR2K (), RPS15, RPS15 alpha and SAA1 of their co-crystallised protein of PDB code 1LE9, 3OW2, 1G1X and 4IP8 respectively were extracted from Protein Data Bank [2628]. Gasteiger Huckel (GH) charges were applied along with the TRIPOS force field to all the drug molecules and is standard for the structure optimization process. In addition, energy minimization was achieved using MMFF94s and MMFF94 algorithm methods. The protein preparation was carried out after incorporation of protein. The co-crystallized ligand was extracted from the crystal structure and all water molecules; more hydrogen was added and the side chain was set. For energy minimisation, the TRIPOS force field was used. The interaction efficiency of the compounds with the receptor was represented in kcal / mol units by the Surflex-Dock score. The interaction between the protein and the ligand, the best pose was incorporated into the molecular area. The visualization of ligand interaction with receptor is done by using discovery studio visualizer.

Results

Identification of DEGs

Expression profiling by high throughput sequencing dataset was obtained from the National Center for Biotechnology Information GEO database containing PCOS samples and normal control samples: GSE84958. Then, the R package named “limma” was processed for analysis with adjusted P < 0.05, and [logFC] > 2.5 for up regulated genes and [logFC] < -1.5 for down regulated genes. All DEGs were displayed in volcano maps (Fig. 1). A total of 739 DEGs including 360 up regulated and 379 down regulated genes (Table 2) were identified in PCOS samples compared to normal control samples. The results are shown in the heatmap (Fig. 2).

Fig. 1.

Fig. 1

Volcano plot of differentially expressed genes. Genes with a significant change of more than two-fold were selected. Green dot represented up regulated significant genes and red dot represented down regulated significant genes

Table 2.

The statistical metrics for key differentially expressed genes (DEGs)

Gene Symbol logFC p Value adj. P.Val t value Regulation Gene Name
SAA2 4.381364 3.5E-07 0.00095 5.718643 Up serum amyloid A2
PLOD2 4.201209 5.64E-07 0.001025 5.593469 Up procollagen-lysine,2-oxoglutarate 5-dioxygenase 2
ABI3BP 4.13442 2.07E-07 0.000779 5.856015 Up ABI family member 3 binding protein
RPPH1 4.09338 7.43E-06 0.002243 4.901502 Up ribonuclease P RNA component H1
C7orf50 4.074966 4.01E-07 0.00095 5.683289 Up chromosome 7 open reading frame 50
RMRP 3.989952 7.74E-06 0.002243 4.890252 Up RNA component of mitochondrial RNA processing endoribonuclease
BNIP3 3.899781 2.99E-07 0.00095 5.760151 Up BCL2 interacting protein 3
POLE4 3.874065 6.35E-07 0.001025 5.562056 Up DNA polymerase epsilon 4, accessory subunit
RHBDD2 3.854997 4.02E-06 0.001884 5.068914 Up rhomboid domain containing 2
F13A1 3.806046 1.82E-06 0.001545 5.283097 Up coagulation factor XIII A chain
SIVA1 3.784719 7.02E-07 0.001025 5.535746 Up SIVA1 apoptosis inducing factor
TMEM54 3.721 1.5E-09 1.98E-05 7.116347 Up transmembrane protein 54
SBDS 3.630263 1.28E-05 0.002885 4.75139 Up SBDS ribosome maturation factor
CERS2 3.600241 1.32E-06 0.001336 5.368773 Up ceramide synthase 2
PLA2G2A 3.575964 6.92E-07 0.001025 5.539611 Up phospholipase A2 group IIA
SAA1 3.551756 0.000565 0.017754 3.640098 Up serum amyloid A1
PHB2 3.526406 1.39E-05 0.003049 4.728928 Up prohibitin 2
LSM14A 3.514098 2.94E-06 0.001776 5.153832 Up LSM14A mRNA processing body assembly factor
MRPL20 3.513535 4.93E-05 0.005042 4.370518 Up mitochondrial ribosomal protein L20
NEDD8 3.493441 7.9E-06 0.002265 4.884608 Up NEDD8 ubiquitin like modifier
LRRC59 3.487927 5.07E-08 0.000334 6.219575 Up leucine rich repeat containing 59
NAA38 3.483141 0.000119 0.008042 4.113375 Up N (alpha)-acetyltransferase 38, NatC auxiliary subunit
R3HDM4 3.472879 0.000181 0.009987 3.989599 Up R3H domain containing 4
PI4KB 3.463829 2.36E-05 0.003497 4.579687 Up phosphatidylinositol 4-kinase beta
RPS27L 3.462436 6.2E-05 0.005556 4.304481 Up ribosomal protein S27 like
UBL5 3.458582 4.83E-05 0.005015 4.376605 Up ubiquitin like 5
S100A1 3.431536 0.000323 0.013388 3.813673 Up S100 calcium binding protein A1
TEAD3 3.414631 1.1E-08 9.64E-05 6.611182 Up TEA domain transcription factor 3
PRELID1 3.395554 1.51E-05 0.003137 4.706077 Up PRELI domain containing 1
SNCG 3.381526 0.001426 0.0285 3.342577 Up synuclein gamma
NDUFAF3 3.380114 3.84E-05 0.00453 4.442043 Up NADH:ubiquinoneoxidoreductase complex assembly factor 3
LOC101926960 3.379084 8.99E-05 0.006783 4.196554 Up uncharacterized LOC101926960
MRAP 3.376232 0.000186 0.010117 3.981504 Up melanocortin 2 receptor accessory protein
EIF1AX 3.363678 3.15E-05 0.004025 4.498903 Up eukaryotic translation initiation factor 1A X-linked
FIS1 3.36153 0.000316 0.01319 3.819875 Up fission, mitochondrial 1
LSM4 3.342924 2.22E-06 0.001669 5.229869 Up LSM4 homolog, U6 small nuclear RNA and mRNA degradation associated
MRPL24 3.341155 8.03E-05 0.006322 4.229412 Up mitochondrial ribosomal protein L24
ZNF32 3.328313 2.03E-06 0.001623 5.253128 Up zinc finger protein 32
SAP18 3.320223 3.41E-05 0.004196 4.47629 Up Sin3A associated protein 18
ZFAND6 3.310728 6.93E-05 0.005946 4.272145 Up zinc finger AN1-type containing 6
PLCG2 3.309309 2.45E-05 0.003542 4.570246 Up phospholipase C gamma 2
COA4 3.297112 1.12E-06 0.001179 5.412446 Up cytochrome c oxidase assembly factor 4 homolog
GTF3A 3.27873 0.000407 0.015016 3.742231 Up general transcription factor IIIA
SMIM19 3.278578 1.23E-05 0.002829 4.763305 Up small integral membrane protein 19
DYNLL2 3.274028 1.21E-05 0.002818 4.76751 Up dynein light chain LC8-type 2
WSB2 3.272902 0.000138 0.008726 4.070129 Up WD repeat and SOCS box containing 2
MMAB 3.272634 2.33E-05 0.003497 4.583501 Up metabolism of cobalamin associated B
COX5B 3.250497 8.68E-05 0.006676 4.206576 Up cytochrome c oxidase subunit 5B
ZNF706 3.247455 1.57E-05 0.003137 4.695098 Up zinc finger protein 706
SUMO3 3.244703 1.07E-05 0.002689 4.799887 Up small ubiquitin like modifier 3
ZHX1 3.244233 2.98E-05 0.003952 4.514129 Up zinc fingers and homeoboxes 1
DCAF6 3.218358 7.16E-05 0.005962 4.263031 Up DDB1 and CUL4 associated factor 6
NDUFA2 3.202606 0.00011 0.007611 4.136503 Up NADH:ubiquinoneoxidoreductase subunit A2
COMT 3.194553 7.49E-06 0.002243 4.899155 Up catechol-O-methyltransferase
USP24 3.193685 7.7E-06 0.002243 4.891689 Up ubiquitin specific peptidase 24
CLEC3B 3.192924 0.000932 0.023147 3.480824 Up C-type lectin domain family 3 member B
S100A16 3.181908 2.08E-05 0.00341 4.615343 Up S100 calcium binding protein A16
PIH1D1 3.168542 3.25E-06 0.001776 5.126645 Up PIH1 domain containing 1
PEX2 3.15767 6.91E-05 0.005946 4.273176 Up peroxisomal biogenesis factor 2
BCCIP 3.156384 5.08E-06 0.002061 5.005401 Up BRCA2 and CDKN1A interacting protein
UCHL1 3.144433 0.000603 0.018411 3.61943 Up ubiquitin C-terminal hydrolase L1
CCND2 3.137527 0.000795 0.021152 3.531905 Up cyclin D2
MTDH 3.134009 8.58E-05 0.006622 4.210031 Up metadherin
ATP6V1D 3.1239 0.0001 0.007145 4.164159 Up ATPase H+ transporting V1 subunit D
BOD1 3.11664 6.28E-06 0.002168 4.947675 Up biorientation of chromosomes in cell division 1
MRPL12 3.114756 7.59E-05 0.006143 4.245866 Up mitochondrial ribosomal protein L12
FOXN3 3.113552 0.000114 0.007817 4.126313 Up forkhead box N3
POLR3GL 3.098647 0.000131 0.008485 4.084894 Up RNA polymerase III subunit G like
ALKBH7 3.098442 0.000306 0.012934 3.830063 Up alkB homolog 7
CDV3 3.096327 0.000108 0.007553 4.141317 Up CDV3 homolog
ZSCAN16-AS1 3.095847 7.34E-07 0.001025 5.523754 Up ZSCAN16 antisense RNA 1
S100A13 3.091633 5.32E-05 0.005263 4.348914 Up S100 calcium binding protein A13
GFPT1 3.085405 5.33E-05 0.005263 4.348282 Up glutamine--fructose-6-phosphate transaminase 1
CCSER2 3.079066 3.98E-05 0.004552 4.431771 Up coiled-coil serine rich protein 2
PET100 3.05957 0.000152 0.009259 4.041067 Up PET100 cytochrome c oxidase chaperone
POLR2J 3.05183 0.000358 0.014077 3.781554 Up RNA polymerase II subunit J
SF3B6 3.047526 0.000179 0.009929 3.992753 Up splicing factor 3b subunit 6
TSPAN17 3.044512 7.59E-06 0.002243 4.895829 Up tetraspanin 17
ECSIT 3.043372 1.61E-05 0.003137 4.688241 Up ECSIT signaling integrator
TMED4 3.041199 2.05E-05 0.00341 4.620554 Up transmembrane p24 trafficking protein 4
ROMO1 3.039801 0.000339 0.013645 3.798806 Up reactive oxygen species modulator 1
SCARNA2 3.037947 0.000602 0.018408 3.619837 Up small Cajal body-specific RNA 2
RDX 3.036218 1.11E-05 0.002709 4.790401 Up radixin
ATP6AP2 3.032219 0.000537 0.01724 3.656205 Up ATPase H+ transporting accessory protein 2
MRPS6 3.031793 0.001246 0.026775 3.386766 Up mitochondrial ribosomal protein S6
MAD2L1BP 3.030044 1.83E-05 0.003308 4.651088 Up MAD2L1 binding protein
NNAT 3.01612 0.001284 0.027046 3.376953 Up neuronatin
SNX8 3.011952 2.11E-05 0.00341 4.611584 Up sorting nexin 8
ITGAV 3.006812 0.000168 0.009643 4.011701 Up integrin subunit alpha V
TBCA 3.005083 8.86E-05 0.006772 4.200708 Up tubulin folding cofactor A
SNAPIN 3.00314 6.24E-05 0.005556 4.30272 Up SNAP associated protein
TIMM8B 2.999367 0.000105 0.007409 4.149862 Up translocase of inner mitochondrial membrane 8 homolog B
TADA3 2.994876 4.72E-05 0.005 4.38301 Up transcriptional adaptor 3
HLA-DPB1 2.992346 0.000391 0.014705 3.754948 Up major histocompatibility complex, class II, DP beta 1
MGP 2.989607 0.000677 0.019612 3.583067 Up matrix Gla protein
LAMTOR4 2.985466 0.000916 0.022949 3.486633 Up late endosomal/lysosomal adaptor, MAPK and MTOR activator 4
BTF3L4 2.981702 8.91E-05 0.006776 4.199218 Up basic transcription factor 3 like 4
TMX2 2.979038 0.000153 0.009259 4.040171 Up thioredoxin related transmembrane protein 2
CFL2 2.977258 3.16E-05 0.004025 4.497382 Up cofilin 2
FAM149A 2.975549 6.83E-05 0.005946 4.276377 Up family with sequence similarity 149 member A
DTYMK 2.966972 0.000289 0.012546 3.847791 Up deoxythymidylate kinase
MT1X 2.96256 0.000442 0.015758 3.716594 Up metallothionein 1X
TSG101 2.95913 0.00027 0.012156 3.868591 Up tumor susceptibility 101
CPED1 2.957683 0.000497 0.016679 3.680123 Up cadherin like and PC-esterase domain containing 1
EXOC5 2.949442 0.000271 0.012156 3.867668 Up exocyst complex component 5
BCYRN1 2.947993 1.57E-05 0.003137 4.695075 Up brain cytoplasmic RNA 1
ANXA4 2.947244 2.18E-05 0.00341 4.602361 Up annexin A4
DPP7 2.946214 8.92E-05 0.006776 4.198665 Up dipeptidyl peptidase 7
SYVN1 2.942727 6.24E-05 0.005556 4.302587 Up synoviolin 1
NDUFA13 2.941729 0.000735 0.020483 3.556961 Up NADH:ubiquinoneoxidoreductase subunit A13
C9orf16 2.940481 0.000406 0.014994 3.743119 Up chromosome 9 open reading frame 16
AMDHD2 2.940188 2.53E-05 0.00358 4.5612 Up amidohydrolase domain containing 2
KLHL12 2.939522 2.85E-05 0.003867 4.527463 Up kelch like family member 12
EIF2D 2.938722 0.000261 0.011982 3.878331 Up eukaryotic translation initiation factor 2D
NDUFB2 2.935453 7.75E-05 0.006191 4.239855 Up NADH:ubiquinoneoxidoreductase subunit B2
GLRX3 2.93158 0.001019 0.024195 3.452028 Up glutaredoxin 3
THRSP 2.927803 0.00402 0.04933 2.990471 Up thyroid hormone responsive
SLC25A11 2.925157 0.000548 0.017445 3.649379 Up solute carrier family 25 member 11
NDFIP1 2.924945 8E-05 0.006317 4.230473 Up Nedd4 family interacting protein 1
UBAC1 2.919604 0.000143 0.008978 4.058832 Up UBA domain containing 1
SETD3 2.915915 0.000233 0.011326 3.913355 Up SET domain containing 3, actin histidinemethyltransferase
UQCRH 2.914264 0.000206 0.010586 3.950821 Up ubiquinol-cytochrome c reductase hinge protein
LMBRD1 2.91352 0.000153 0.009259 4.039227 Up LMBR1 domain containing 1
C1S 2.913138 9.66E-05 0.007077 4.175345 Up complement C1s
YIPF6 2.909794 0.000398 0.014783 3.74923 Up Yip1 domain family member 6
COX4I1 2.908785 0.000397 0.014772 3.749898 Up cytochrome c oxidase subunit 4I1
NBN 2.90833 3.91E-06 0.001884 5.076794 Up nibrin
TAF7 2.908109 0.000345 0.013777 3.793503 Up TATA-box binding protein associated factor 7
ANAPC13 2.904023 0.002551 0.038877 3.147704 Up anaphase promoting complex subunit 13
LYVE1 2.902347 0.001203 0.026382 3.398322 Up lymphatic vessel endothelial hyaluronan receptor 1
PSMD14 2.901936 0.000247 0.011699 3.89503 Up proteasome 26S subunit, non-ATPase 14
FAM32A 2.900891 0.000535 0.01724 3.657406 Up family with sequence similarity 32 member A
UROS 2.900315 0.00024 0.011528 3.904656 Up uroporphyrinogen III synthase
OST4 2.898201 0.002022 0.034115 3.226353 Up oligosaccharyltransferase complex subunit 4, non-catalytic
RBBP7 2.897646 0.000946 0.023286 3.476066 Up RB binding protein 7, chromatin remodeling factor
PRG4 2.897614 4.83E-05 0.005015 4.376505 Up proteoglycan 4
COX7A2 2.896609 0.000818 0.021597 3.522952 Up cytochrome c oxidase subunit 7A2
HMGCL 2.895335 0.000179 0.009929 3.993321 Up 3-hydroxy-3-methylglutaryl-CoA lyase
FAM3A 2.894614 8.47E-05 0.006573 4.213715 Up family with sequence similarity 3 member A
BAK1 2.892595 2.69E-05 0.00371 4.543614 Up BCL2 antagonist/killer 1
ELOVL6 2.8913 7.93E-05 0.006283 4.232941 Up ELOVL fatty acid elongase 6
CHCHD2 2.888344 0.000193 0.010317 3.970255 Up coiled-coil-helix-coiled-coil-helix domain containing 2
PRMT1 2.886326 0.000236 0.01142 3.909722 Up protein arginine methyltransferase 1
HCFC1R1 2.88509 0.000187 0.010126 3.979988 Up host cell factor C1 regulator 1
RPS8 2.88263 0.000763 0.02086 3.545152 Up ribosomal protein S8
JMJD8 2.880095 0.000466 0.016117 3.700249 Up jumonji domain containing 8
VPS28 2.868412 0.00038 0.014539 3.763185 Up VPS28 subunit of ESCRT-I
EIF5 2.867934 0.00037 0.014306 3.772157 Up eukaryotic translation initiation factor 5
ADCY6 2.866913 0.000145 0.009003 4.055897 Up adenylatecyclase 6
NDUFC2 2.865496 0.001531 0.029477 3.319099 Up NADH:ubiquinoneoxidoreductase subunit C2
PIGS 2.862467 0.002273 0.036573 3.186856 Up phosphatidylinositol glycan anchor biosynthesis class S
C1QA 2.861687 0.000816 0.021594 3.523683 Up complement C1q A chain
FDX1 2.861442 0.000394 0.014749 3.752127 Up ferredoxin 1
RBX1 2.85968 0.000974 0.023505 3.466607 Up ring-box 1
TRIB1 2.8594 3.17E-05 0.004025 4.496868 Up tribblespseudokinase 1
COX6B1 2.858458 0.000469 0.01616 3.698433 Up cytochrome c oxidase subunit 6B1
MDFI 2.857869 0.000277 0.012363 3.860877 Up MyoD family inhibitor
RASD1 2.855883 0.00079 0.021079 3.533796 Up ras related dexamethasone induced 1
SLC40A1 2.854864 0.003422 0.045502 3.046747 Up solute carrier family 40 member 1
POLR2K 2.854222 0.001838 0.032468 3.258347 Up RNA polymerase II subunit K
CYB5B 2.852742 9.79E-05 0.00709 4.171566 Up cytochrome b5 type B
C1orf115 2.850887 0.001855 0.03266 3.255182 Up chromosome 1 open reading frame 115
EIF3L 2.846772 0.000651 0.019135 3.595545 Up eukaryotic translation initiation factor 3 subunit L
TMEM219 2.834679 0.001098 0.025262 3.427919 Up transmembrane protein 219
UQCR11 2.833847 0.000542 0.017312 3.652923 Up ubiquinol-cytochrome c reductase, complex III subunit XI
AGFG1 2.83177 8.83E-05 0.006771 4.201612 Up ArfGAP with FG repeats 1
MRPS15 2.831483 0.000629 0.018848 3.606346 Up mitochondrial ribosomal protein S15
UBE2E1 2.82743 0.00062 0.018805 3.610605 Up ubiquitin conjugating enzyme E2 E1
NQO1 2.827398 3.12E-05 0.004025 4.50132 Up NAD(P) H quinone dehydrogenase 1
MORF4L1 2.825223 0.000145 0.009003 4.055546 Up mortality factor 4 like 1
TM7SF3 2.823384 0.0001 0.007145 4.165181 Up transmembrane 7 superfamily member 3
RPL35A 2.822157 0.000266 0.012089 3.87247 Up ribosomal protein L35a
TMEM160 2.812975 0.000317 0.01319 3.819678 Up transmembrane protein 160
LSM3 2.809963 0.000282 0.012404 3.854606 Up LSM3 homolog, U6 small nuclear RNA and mRNA degradation associated
PHB 2.808084 0.000258 0.011974 3.881731 Up prohibitin
MRPS21 2.805911 0.000295 0.012696 3.841189 Up mitochondrial ribosomal protein S21
TMEM256 2.804853 0.003453 0.045785 3.04363 Up transmembrane protein 256
MRPS12 2.804789 0.000223 0.011092 3.925752 Up mitochondrial ribosomal protein S12
PLTP 2.803513 0.000258 0.011965 3.882486 Up phospholipid transfer protein
TNPO2 2.794461 0.000852 0.022167 3.509567 Up transportin 2
SKIL 2.793991 1.01E-05 0.002625 4.815964 Up SKI like proto-oncogene
SEC11A 2.784473 0.001174 0.026198 3.406284 Up SEC11 homolog A, signal peptidase complex subunit
RPS10 2.783754 0.000749 0.020638 3.550811 Up ribosomal protein S10
APOD 2.777795 0.00264 0.039615 3.136112 Up apolipoprotein D
RAB4A 2.777311 0.000182 0.01001 3.987809 Up RAB4A, member RAS oncogene family
RBMX 2.774453 6.17E-05 0.005556 4.306198 Up RNA binding motif protein X-linked
ARFIP2 2.772975 0.000459 0.016062 3.705244 Up ADP ribosylation factor interacting protein 2
CPE 2.770836 0.001392 0.028193 3.350337 Up carboxypeptidase E
TCTN3 2.770597 8.94E-05 0.006776 4.198026 Up tectonic family member 3
YWHAH 2.77017 0.000866 0.02234 3.504563 Up tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta
PLXNA1 2.769986 1.66E-05 0.003137 4.67951 Up plexin A1
AK1 2.767903 0.000273 0.012251 3.864784 Up adenylate kinase 1
ORMDL1 2.767548 7.27E-05 0.005968 4.258602 Up ORMDL sphingolipid biosynthesis regulator 1
SLTM 2.767084 0.000706 0.020072 3.569499 Up SAFB like transcription modulator
PSMC5 2.760402 0.00097 0.023505 3.468114 Up proteasome 26S subunit, ATPase 5
UHMK1 2.759638 0.000128 0.008394 4.09178 Up U2AF homology motif kinase 1
AIFM1 2.757223 7.05E-05 0.005956 4.267206 Up apoptosis inducing factor mitochondria associated 1
TATDN1 2.756526 0.000672 0.019534 3.585379 Up TatDDNase domain containing 1
COX6C 2.753983 0.000372 0.014337 3.769771 Up cytochrome c oxidase subunit 6C
GIPC1 2.753721 0.000335 0.013596 3.802772 Up GIPC PDZ domain containing family member 1
RPS21 2.753031 0.000158 0.009439 4.030076 Up ribosomal protein S21
CCDC85B 2.752819 0.001517 0.029361 3.322182 Up coiled-coil domain containing 85B
UAP1 2.74977 0.001158 0.026017 3.410666 Up UDP-N-acetylglucosaminepyrophosphorylase 1
POFUT1 2.742386 0.000309 0.012965 3.827384 Up protein O-fucosyltransferase 1
C3AR1 2.736533 2.1E-05 0.00341 4.613724 Up complement C3a receptor 1
SRP72 2.734833 5.43E-05 0.005283 4.342922 Up signal recognition particle 72
ABHD17A 2.734708 0.001052 0.024558 3.441677 Up abhydrolase domain containing 17A
TOMM7 2.730177 0.001231 0.026634 3.390625 Up translocase of outer mitochondrial membrane 7
ANP32B 2.728749 0.00161 0.030287 3.302334 Up acidic nuclear phosphoprotein 32 family member B
TMEM230 2.728085 0.001136 0.025784 3.416807 Up transmembrane protein 230
NABP2 2.7271 0.000369 0.014306 3.772639 Up nucleic acid binding protein 2
CDC27 2.726993 0.001334 0.027538 3.364495 Up cell division cycle 27
FAM20B 2.723814 0.000841 0.021962 3.513811 Up FAM20B glycosaminoglycan xylosylkinase
ETF1 2.7213 0.000538 0.01724 3.655315 Up eukaryotic translation termination factor 1
GRHPR 2.720938 0.000857 0.022226 3.507777 Up glyoxylate and hydroxypyruvatereductase
DERL2 2.720492 0.000154 0.009266 4.038321 Up derlin 2
RPL36A 2.720487 0.000898 0.02272 3.492922 Up ribosomal protein L36a
C19orf53 2.718168 0.000499 0.016701 3.678807 Up chromosome 19 open reading frame 53
GTF2A2 2.716967 0.000389 0.014658 3.756692 Up general transcription factor IIA subunit 2
GADD45B 2.716143 0.000261 0.011982 3.878655 Up growth arrest and DNA damage inducible beta
CDIPT 2.714923 0.00013 0.00844 4.088275 Up CDP-diacylglycerol--inositol 3-phosphatidyltransferase
COX6A1 2.712855 0.000535 0.01724 3.657442 Up cytochrome c oxidase subunit 6A1
SRSF6 2.711655 0.000694 0.019868 3.575141 Up serine and arginine rich splicing factor 6
SCARB1 2.709938 0.00054 0.017244 3.654526 Up scavenger receptor class B member 1
ASAP3 2.709641 3.15E-05 0.004025 4.498522 Up ArfGAP with SH3 domain, ankyrin repeat and PH domain 3
RNASE1 2.702048 0.00234 0.037096 3.177048 Up ribonuclease A family member 1, pancreatic
NAPRT 2.701 0.000937 0.023198 3.479213 Up nicotinatephosphoribosyltransferase
UQCRQ 2.698312 0.000786 0.021056 3.535632 Up ubiquinol-cytochrome c reductase complex III subunit VII
COX7C 2.697196 0.000888 0.022598 3.496307 Up cytochrome c oxidase subunit 7C
PSMB1 2.694976 0.000391 0.014705 3.754384 Up proteasome 20S subunit beta 1
ECH1 2.694774 0.002021 0.034115 3.226513 Up enoyl-CoA hydratase 1
RPS15A 2.694313 0.000873 0.022405 3.502067 Up ribosomal protein S15a
ERH 2.693982 9.3E-05 0.006902 4.186545 Up ERH mRNA splicing and mitosis factor
PSMD3 2.69342 0.000362 0.014114 3.77823 Up proteasome 26S subunit, non-ATPase 3
MRPS24 2.689672 2.97E-06 0.001776 5.150884 Up mitochondrial ribosomal protein S24
HSD17B10 2.689486 0.000184 0.010093 3.984586 Up hydroxysteroid 17-beta dehydrogenase 10
ICMT 2.68742 0.001623 0.030348 3.299776 Up isoprenylcysteine carboxyl methyltransferase
COX8A 2.68611 0.00082 0.021597 3.521817 Up cytochrome c oxidase subunit 8A
RPS23 2.683611 0.001311 0.027304 3.370125 Up ribosomal protein S23
TMEM165 2.683585 0.000309 0.012965 3.827632 Up transmembrane protein 165
TMEM97 2.683426 1.54E-06 0.001401 5.327084 Up transmembrane protein 97
COX7A2L 2.680847 0.0015 0.029177 3.325736 Up cytochrome c oxidase subunit 7A2 like
FAM89B 2.67751 0.003528 0.046326 3.036153 Up family with sequence similarity 89 member B
SMAD5 2.676775 0.0005 0.016701 3.678519 Up SMAD family member 5
CCNC 2.675154 0.002737 0.040448 3.123787 Up cyclin C
CDC42EP2 2.672348 0.000165 0.009593 4.016925 Up CDC42 effector protein 2
UQCRC1 2.67139 3.96E-05 0.004552 4.433447 Up ubiquinol-cytochrome c reductase core protein 1
COPS7A 2.671383 0.001825 0.032315 3.260743 Up COP9 signalosome subunit 7A
CCDC80 2.670347 0.003064 0.042867 3.085018 Up coiled-coil domain containing 80
PSMB4 2.669349 0.000572 0.017831 3.636053 Up proteasome 20S subunit beta 4
EIF6 2.664726 0.000227 0.011159 3.920651 Up eukaryotic translation initiation factor 6
PFDN5 2.657659 0.001117 0.025474 3.422216 Up prefoldin subunit 5
AFF1 2.657404 0.00036 0.014077 3.78051 Up AF4/FMR2 family member 1
UQCRFS1 2.656808 0.000434 0.01563 3.722419 Up ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1
TYROBP 2.652926 0.0038 0.047966 3.010176 Up TYRO protein tyrosine kinase binding protein
ANAPC5 2.650988 0.000463 0.016091 3.702541 Up anaphase promoting complex subunit 5
TRMT112 2.643049 0.001145 0.025902 3.414206 Up tRNAmethyltransferase subunit 11-2
ARF5 2.641389 0.002168 0.035481 3.202951 Up ADP ribosylation factor 5
POLR1D 2.64106 0.000197 0.010419 3.963486 Up RNA polymerase I and III subunit D
SNX9 2.639558 0.000559 0.017629 3.643451 Up sorting nexin 9
NDUFS5 2.634939 0.000625 0.018808 3.608112 Up NADH:ubiquinoneoxidoreductase subunit S5
KDSR 2.634609 0.00089 0.022598 3.495893 Up 3-ketodihydrosphingosine reductase
KRTCAP2 2.634197 0.001854 0.032651 3.255495 Up keratinocyte associated protein 2
RPAIN 2.632929 0.00075 0.020638 3.55055 Up RPA interacting protein
OXCT1 2.63204 0.003122 0.043255 3.078538 Up 3-oxoacid CoA-transferase 1
CAPNS1 2.631695 0.000733 0.020454 3.557742 Up calpain small subunit 1
SERPINH1 2.631035 0.000261 0.011982 3.878996 Up serpin family H member 1
TNIP2 2.630856 0.000242 0.011614 3.901038 Up TNFAIP3 interacting protein 2
RASSF3 2.62826 0.004015 0.049293 2.990897 Up Ras association domain family member 3
RPL27 2.626854 0.001008 0.024036 3.455675 Up ribosomal protein L27
ARHGAP12 2.624075 0.0007 0.019959 3.572316 Up Rho GTPase activating protein 12
PRPF31 2.623671 0.000129 0.008399 4.090841 Up pre-mRNA processing factor 31
KLB 2.623223 0.001365 0.027884 3.356946 Up klotho beta
TMX4 2.618625 0.00108 0.024945 3.433183 Up thioredoxin related transmembrane protein 4
NQO2 2.617727 0.002855 0.041527 3.109292 Up N-ribosyldihydronicotinamide:quinonereductase 2
NME2 2.617495 0.002462 0.038092 3.159908 Up NME/NM23 nucleoside diphosphate kinase 2
SLC25A26 2.616798 1.27E-05 0.002881 4.754142 Up solute carrier family 25 member 26
TOMM5 2.615408 0.003222 0.043977 3.067588 Up translocase of outer mitochondrial membrane 5
ETFB 2.614762 0.001976 0.033674 3.234172 Up electron transfer flavoprotein subunit beta
MOAP1 2.614239 0.000133 0.008495 4.081606 Up modulator of apoptosis 1
NACC1 2.613132 1.23E-05 0.002829 4.761618 Up nucleus accumbens associated 1
NAGLU 2.612492 0.000258 0.011965 3.882494 Up N-acetyl-alpha-glucosaminidase
XRCC5 2.611431 0.000462 0.016091 3.703217 Up X-ray repair cross complementing 5
RPL35 2.610712 0.000229 0.011194 3.918588 Up ribosomal protein L35
KRCC1 2.608947 9.22E-05 0.006864 4.189205 Up lysine rich coiled-coil 1
PSMB7 2.608925 0.001141 0.025828 3.415417 Up proteasome 20S subunit beta 7
RPS29 2.608914 0.001176 0.026198 3.405623 Up ribosomal protein S29
SNRPD2 2.604428 0.000499 0.016701 3.679267 Up small nuclear ribonucleoprotein D2 polypeptide
RSL24D1 2.604123 0.001206 0.026399 3.397372 Up ribosomal L24 domain containing 1
RBM3 2.602465 0.000751 0.020661 3.549857 Up RNA binding motif protein 3
RPL14 2.598328 0.002801 0.041085 3.115761 Up ribosomal protein L14
DBI 2.593769 0.001225 0.026608 3.392185 Up diazepam binding inhibitor, acyl-CoA binding protein
RPL13A 2.592976 0.000949 0.023287 3.474966 Up ribosomal protein L13a
NAB1 2.591638 0.000791 0.021082 3.533288 Up NGFI-A binding protein 1
STX10 2.590276 0.003718 0.047358 3.01781 Up syntaxin 10
SLC35E1 2.589777 0.000244 0.011642 3.898916 Up solute carrier family 35 member E1
GCHFR 2.586356 0.00154 0.029477 3.317136 Up GTP cyclohydrolase I feedback regulator
WIPI1 2.586044 0.001049 0.024512 3.442577 Up WD repeat domain, phosphoinositide interacting 1
TMEM50A 2.586036 0.001551 0.029566 3.314827 Up transmembrane protein 50A
NELFB 2.585911 0.000623 0.018805 3.609156 Up negative elongation factor complex member B
MRPL9 2.582693 0.000637 0.019003 3.60222 Up mitochondrial ribosomal protein L9
DIP2C 2.577846 1.51E-06 0.001401 5.333124 Up disco interacting protein 2 homolog C
PFDN1 2.577843 0.001923 0.033201 3.243123 Up prefoldin subunit 1
PCYT2 2.574996 0.000343 0.013741 3.795229 Up phosphate cytidylyltransferase 2, ethanolamine
RPL29 2.574629 0.000911 0.022881 3.488378 Up ribosomal protein L29
RPL30 2.574242 0.000917 0.022969 3.486043 Up ribosomal protein L30
EMC4 2.572361 0.00205 0.034257 3.221746 Up ER membrane protein complex subunit 4
RPL24 2.571676 0.002479 0.038185 3.157525 Up ribosomal protein L24
RPS15 2.570516 0.001711 0.031119 3.282153 Up ribosomal protein S15
SMARCD2 2.569052 0.000525 0.017152 3.66321 Up SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 2
C9orf78 2.568679 9.48E-05 0.007003 4.180864 Up chromosome 9 open reading frame 78
BLOC1S1 2.568295 0.001664 0.03072 3.291398 Up biogenesis of lysosomal organelles complex 1 subunit 1
ATP9A 2.567757 0.000243 0.011614 3.900357 Up ATPase phospholipid transporting 9A (putative)
MS4A4A 2.566919 5.96E-05 0.005493 4.316129 Up membrane spanning 4-domains A4A
AFAP1L1 2.565706 0.002187 0.035677 3.199902 Up actin filament associated protein 1 like 1
CDKN2B 2.565157 0.000599 0.018321 3.621709 Up cyclin dependent kinase inhibitor 2B
IFI27 2.563118 0.00371 0.047358 3.01863 Up interferon alpha inducible protein 27
MED4 2.555663 0.001188 0.026311 3.402174 Up mediator complex subunit 4
DPH5 2.553328 3.71E-05 0.004462 4.452413 Up diphthamide biosynthesis 5
WIZ 2.550083 0.000617 0.018752 3.612543 Up WIZ zinc finger
PEX19 2.549485 0.003066 0.042867 3.084727 Up peroxisomal biogenesis factor 19
RABGEF1 2.547097 0.001793 0.032062 3.266518 Up RAB guanine nucleotide exchange factor 1
SLC9A3R1 2.544376 0.000906 0.022852 3.490141 Up SLC9A3 regulator 1
ANO6 2.541247 0.00097 0.023505 3.468073 Up anoctamin 6
RPLP0 2.539879 0.000147 0.009101 4.051259 Up ribosomal protein lateral stalk subunit P0
EZH1 2.538446 0.000787 0.021056 3.535293 Up enhancer of zeste 1 polycomb repressive complex 2 subunit
PSKH1 2.53776 0.001027 0.024288 3.449585 Up protein serine kinase H1
RPL34 2.53733 0.000646 0.0191 3.597964 Up ribosomal protein L34
NDUFS4 2.53691 0.000267 0.012096 3.871781 Up NADH:ubiquinoneoxidoreductase subunit S4
BANF1 2.535865 0.000572 0.017831 3.636063 Up barrier to autointegration factor 1
MRPL54 2.533785 0.000952 0.023287 3.473973 Up mitochondrial ribosomal protein L54
CKS1B 2.533771 0.000911 0.022881 3.488195 Up CDC28 protein kinase regulatory subunit 1B
TMEM184B 2.532583 1.67E-05 0.003137 4.676649 Up transmembrane protein 184B
PSMD10 2.530765 0.00053 0.01724 3.660242 Up proteasome 26S subunit, non-ATPase 10
RPS5 2.529965 0.000597 0.018297 3.622831 Up ribosomal protein S5
CUL4A 2.529656 0.001663 0.03072 3.291653 Up cullin 4A
MFAP5 2.527961 0.000821 0.021597 3.521542 Up microfibril associated protein 5
SNTA1 2.526907 0.000372 0.014337 3.770146 Up syntrophin alpha 1
RPS20 2.52651 0.002839 0.041407 3.111181 Up ribosomal protein S20
RSL1D1 2.524784 0.000405 0.014978 3.743879 Up ribosomal L1 domain containing 1
RPS24 2.523665 0.002187 0.035677 3.200019 Up ribosomal protein S24
ICAM2 2.52328 0.00175 0.031637 3.274701 Up intercellular adhesion molecule 2
B4GALT2 2.522208 0.001703 0.031013 3.283844 Up beta-1,4-galactosyltransferase 2
NUDT16 2.521704 0.001545 0.029527 3.315981 Up nudix hydrolase 16
PFN2 2.519815 0.001062 0.024764 3.438594 Up profilin 2
RAB10 2.519714 0.003057 0.04281 3.085745 Up RAB10, member RAS oncogene family
SF3B5 2.519177 0.003604 0.046771 3.028686 Up splicing factor 3b subunit 5
TCEAL8 2.516685 0.003486 0.04603 3.040293 Up transcription elongation factor A like 8
CD99L2 2.51621 0.001957 0.03358 3.23728 Up CD99 molecule like 2
SUCLG1 2.514671 0.001177 0.026198 3.405243 Up succinate-CoA ligase alpha subunit
LAMA2 2.514019 0.000535 0.01724 3.657403 Up laminin subunit alpha 2
EIF3E 2.511931 0.000766 0.020887 3.543592 Up eukaryotic translation initiation factor 3 subunit E
BCL7B 2.511858 0.000361 0.014084 3.779795 Up BAF chromatin remodeling complex subunit BCL7B
SEPHS2 2.511732 0.000202 0.010561 3.955986 Up selenophosphatesynthetase 2
LOXL2 2.511606 0.000883 0.022598 3.498175 Up lysyl oxidase like 2
PMM1 2.511461 0.00143 0.02855 3.341501 Up phosphomannomutase 1
DNPH1 2.50873 0.002905 0.041811 3.103319 Up 2'-deoxynucleoside 5'-phosphate N-hydrolase 1
RARRES2 2.504265 0.003791 0.047902 3.011021 Up retinoic acid receptor responder 2
COA3 2.50271 0.001102 0.025262 3.426827 Up cytochrome c oxidase assembly factor 3
MRPS34 2.502001 0.000919 0.022981 3.485574 Up mitochondrial ribosomal protein S34
SLC30A7 -3.56691 4.14E-07 0.00095 -5.67461 Down solute carrier family 30 member 7
VTI1A -3.31043 1.05E-07 0.000478 -6.03155 Down vesicle transport through interaction with t-SNAREs 1A
ERG -3.30133 2.32E-05 0.003497 -4.58491 Down ETS transcription factor ERG
ZFYVE1 -3.18784 1.03E-06 0.001179 -5.43378 Down zinc finger FYVE-type containing 1
AAK1 -3.1737 2.73E-06 0.001776 -5.17359 Down AP2 associated kinase 1
URB2 -3.16731 8.19E-07 0.00108 -5.49481 Down URB2 ribosome biogenesis homolog
IGIP -3.12032 5.55E-05 0.005363 -4.33643 Down IgA inducing protein
ITIH4 -2.9168 3.51E-06 0.001852 -5.10571 Down inter-alpha-trypsin inhibitor heavy chain 4
LOC646214 -2.85088 0.000346 0.013805 -3.79234 Down p21 protein (Cdc42/Rac)-activated kinase 2 pseudogene
ZNF486 -2.84793 1.14E-05 0.002738 -4.78297 Down zinc finger protein 486
TET3 -2.81596 1.11E-06 0.001179 -5.41343 Down tetmethylcytosinedioxygenase 3
HECW2 -2.8127 3.17E-05 0.004025 -4.49639 Down HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2
LPXN -2.80145 3.07E-06 0.001776 -5.14246 Down leupaxin
GOSR1 -2.79883 1.73E-05 0.003174 -4.66687 Down golgi SNAP receptor complex member 1
PDPR -2.78381 4.99E-05 0.005058 -4.36736 Down pyruvate dehydrogenase phosphatase regulatory subunit
TNKS -2.74917 9.17E-05 0.006848 -4.19071 Down tankyrase
ECD -2.73445 0.000348 0.013823 -3.79107 Down ecdysoneless cell cycle regulator
ABCC5 -2.72387 1.16E-05 0.002752 -4.77862 Down ATP binding cassette subfamily C member 5
STXBP5 -2.71632 0.000176 0.009858 -3.99744 Down syntaxin binding protein 5
WDR19 -2.69898 0.000615 0.018721 -3.61344 Down WD repeat domain 19
SARM1 -2.69717 1.19E-09 1.98E-05 -7.17529 Down sterile alpha and TIR motif containing 1
TRAF5 -2.66677 0.000107 0.007492 -4.14579 Down TNF receptor associated factor 5
SYNE2 -2.663 5.87E-05 0.005493 -4.32047 Down spectrin repeat containing nuclear envelope protein 2
CFP -2.6567 0.000675 0.019585 -3.58386 Down complement factor properdin
ANKRD20A9P -2.64322 0.001714 0.031148 -3.28161 Down ankyrin repeat domain 20 family member A9, pseudogene
FAT4 -2.63099 0.000494 0.016631 -3.68187 Down FAT atypical cadherin 4
HIVEP1 -2.62581 8.18E-05 0.006387 -4.22422 Down HIVEP zinc finger 1
SNAP47 -2.61436 0.000216 0.010911 -3.93599 Down synaptosome associated protein 47
DMRT2 -2.61357 0.000161 0.009544 -4.02349 Down doublesex and mab-3 related transcription factor 2
GEMIN5 -2.60553 3.51E-05 0.004269 -4.46757 Down gem nuclear organelle associated protein 5
LOC643406 -2.59315 0.000435 0.015643 -3.72139 Down uncharacterized LOC643406
OBSCN -2.58615 0.000237 0.011453 -3.90744 Down obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF
ATP13A1 -2.57902 6.26E-05 0.005556 -4.3019 Down ATPase 13A1
LOC105372795 -2.56184 2.46E-06 0.001776 -5.2015 Down uncharacterized LOC105372795
PXMP4 -2.55289 0.000508 0.016883 -3.67316 Down peroxisomal membrane protein 4
FAS -2.51889 0.000221 0.011049 -3.92874 Down Fas cell surface death receptor
MGAM -2.5179 0.001226 0.026608 -3.39213 Down maltase-glucoamylase
ERCC6L2 -2.49433 0.000462 0.016091 -3.70269 Down ERCC excision repair 6 like 2
MFAP3 -2.48427 9.78E-05 0.00709 -4.17183 Down microfibril associated protein 3
TPD52 -2.48206 0.001319 0.027418 -3.36809 Down tumor protein D52
PPP1R3B -2.47428 0.001536 0.029477 -3.31797 Down protein phosphatase 1 regulatory subunit 3B
PTGDR -2.46695 4.33E-07 0.00095 -5.66312 Down prostaglandin D2 receptor
AHSP -2.45099 4.99E-06 0.002061 -5.01026 Down alpha hemoglobin stabilizing protein
ODF2 -2.44884 0.000531 0.01724 -3.65942 Down outer dense fiber of sperm tails 2
MAU2 -2.44852 0.002675 0.039958 -3.1315 Down MAU2 sister chromatid cohesion factor
PTOV1-AS2 -2.44504 8.73E-06 0.002428 -4.85721 Down PTOV1 antisense RNA 2
SLCO4A1 -2.42489 9.04E-05 0.006791 -4.19486 Down solute carrier organic anion transporter family member 4A1
RAP1GAP2 -2.41727 0.000428 0.015491 -3.72656 Down RAP1 GTPase activating protein 2
GUSBP11 -2.41706 1.72E-05 0.003165 -4.66966 Down GUSB pseudogene 11
CHST14 -2.40289 6.43E-06 0.002175 -4.94093 Down carbohydrate sulfotransferase 14
SMYD4 -2.3923 0.000889 0.022598 -3.49612 Down SET and MYND domain containing 4
CACNA2D4 -2.38689 1.62E-05 0.003137 -4.6856 Down calcium voltage-gated channel auxiliary subunit alpha2delta 4
ERO1A -2.3862 0.001273 0.026966 -3.37975 Down endoplasmic reticulum oxidoreductase 1 alpha
ATRNL1 -2.37103 1.84E-05 0.003308 -4.64955 Down attractin like 1
ATL1 -2.37076 0.000548 0.017445 -3.64947 Down atlastinGTPase 1
EPHB4 -2.36058 0.000451 0.015882 -3.71047 Down EPH receptor B4
AOC4P -2.35367 3.9E-06 0.001884 -5.07705 Down amine oxidase copper containing 4, pseudogene
SLC25A13 -2.34818 0.000134 0.008515 -4.07881 Down solute carrier family 25 member 13
FAM13B -2.34187 0.003334 0.044854 -3.05577 Down family with sequence similarity 13 member B
TRAK1 -2.33457 0.000883 0.022598 -3.49834 Down trafficking kinesin protein 1
ABI3 -2.3343 0.000274 0.012278 -3.8636 Down ABI family member 3
SEMA6B -2.33392 4.57E-05 0.004952 -4.39248 Down semaphorin 6B
METTL21A -2.33362 0.002789 0.040954 -3.11724 Down methyltransferase like 21A
ZNF778 -2.33087 3.93E-06 0.001884 -5.07521 Down zinc finger protein 778
PDE4B -2.32078 0.000786 0.021056 -3.5357 Down phosphodiesterase 4B
NDC1 -2.31958 0.000208 0.010631 -3.94732 Down NDC1 transmembranenucleoporin
SLC9A7 -2.31311 0.001151 0.025956 -3.41266 Down solute carrier family 9 member A7
NLGN2 -2.31264 7.89E-05 0.006274 -4.23441 Down neuroligin 2
IKZF4 -2.30922 0.000113 0.007788 -4.12818 Down IKAROS family zinc finger 4
MAST3 -2.3067 0.001042 0.024428 -3.44474 Down microtubule associated serine/threonine kinase 3
SAP25 -2.30632 0.000324 0.013394 -3.81298 Down Sin3A associated protein 25
ZNF213-AS1 -2.30592 3.03E-06 0.001776 -5.14592 Down ZNF213 antisense RNA 1 (head to head)
ADAMTS13 -2.30408 2.03E-06 0.001623 -5.25359 Down ADAM metallopeptidase with thrombospondin type 1 motif 13
CDH19 -2.30007 9.85E-06 0.002623 -4.82394 Down cadherin 19
DOCK9 -2.28015 0.002517 0.038469 -3.15239 Down dedicator of cytokinesis 9
PARP10 -2.27632 0.003654 0.047012 -3.0239 Down poly (ADP-ribose) polymerase family member 10
LOC648987 -2.27592 2.87E-06 0.001776 -5.16 Down uncharacterized LOC648987
GIMAP8 -2.27461 0.001512 0.029333 -3.32309 Down GTPase, IMAP family member 8
COL8A1 -2.27216 0.00307 0.042867 -3.08427 Down collagen type VIII alpha 1 chain
MYO7A -2.26997 5.89E-06 0.002131 -4.96524 Down myosin VIIA
SLC25A35 -2.26394 4.18E-05 0.004645 -4.41821 Down solute carrier family 25 member 35
ESR1 -2.25478 0.000772 0.020954 -3.54124 Down estrogen receptor 1
FAM71F2 -2.25074 5.55E-06 0.002118 -4.98153 Down family with sequence similarity 71 member F2
ZNF493 -2.24829 0.000671 0.019525 -3.58587 Down zinc finger protein 493
CEP135 -2.24319 1.89E-05 0.003342 -4.64292 Down centrosomal protein 135
CEP126 -2.24051 0.001032 0.024341 -3.44789 Down centrosomal protein 126
ASTN2 -2.23592 0.001156 0.026012 -3.41115 Down astrotactin 2
IPP -2.22612 0.000101 0.007163 -4.16214 Down intracisternal A particle-promoted polypeptide
TANGO6 -2.2248 0.000418 0.015262 -3.73417 Down transport and golgi organization 6 homolog
ZXDC -2.22107 0.001926 0.033211 -3.24265 Down ZXD family zinc finger C
TMCO4 -2.21386 0.000912 0.022891 -3.48775 Down transmembrane and coiled-coil domains 4
WSCD1 -2.20938 1.36E-05 0.003004 -4.73545 Down WSC domain containing 1
PLXNB3 -2.20331 0.000194 0.010359 -3.96765 Down plexin B3
SPAST -2.19723 0.003713 0.047358 -3.01835 Down spastin
LRSAM1 -2.19647 0.00028 0.012403 -3.85725 Down leucine rich repeat and sterile alpha motif containing 1
BANP -2.19578 0.002678 0.039958 -3.13116 Down BTG3 associated nuclear protein
SCAF4 -2.1951 0.001471 0.028954 -3.33217 Down SR-related CTD associated factor 4
SDCCAG8 -2.19392 0.001272 0.026966 -3.38007 Down serologically defined colon cancer antigen 8
KCNQ1OT1 -2.19178 0.002417 0.037819 -3.16609 Down KCNQ1 opposite strand/antisense transcript 1
CD82 -2.18167 0.001254 0.026814 -3.38461 Down CD82 molecule
KIAA0754 -2.17697 0.000994 0.023761 -3.46018 Down KIAA0754
PTPRN2 -2.17646 0.00099 0.023704 -3.46132 Down protein tyrosine phosphatase receptor type N2
MYLK-AS1 -2.16901 0.000153 0.009259 -4.03959 Down MYLK antisense RNA 1
PLXDC1 -2.16377 0.001307 0.027262 -3.37099 Down plexin domain containing 1
TDRD5 -2.15738 4.87E-05 0.005015 -4.37413 Down tudor domain containing 5
LCAT -2.15173 0.000278 0.012383 -3.85932 Down lecithin-cholesterol acyltransferase
PRDM11 -2.15109 6.78E-07 0.001025 -5.54474 Down PR/SET domain 11
RASIP1 -2.14799 0.000745 0.02059 -3.55262 Down Ras interacting protein 1
SPN -2.14456 0.002682 0.039958 -3.13065 Down sialophorin
SHISA9 -2.14372 0.00386 0.048313 -3.0047 Down shisa family member 9
ANKRD6 -2.14267 0.003628 0.046875 -3.0264 Down ankyrin repeat domain 6
MAK -2.13779 2.41E-05 0.003515 -4.57405 Down male germ cell associated kinase
EPHA4 -2.13565 0.000848 0.022087 -3.51135 Down EPH receptor A4
UBR5-AS1 -2.12673 2.81E-05 0.003842 -4.53078 Down UBR5 antisense RNA 1
CTC1 -2.12661 0.003144 0.043426 -3.07609 Down CST telomere replication complex component 1
NPHP4 -2.12045 7.65E-05 0.006152 -4.24347 Down nephrocystin 4
RFX3 -2.11961 0.000286 0.012464 -3.85121 Down regulatory factor X3
PLD1 -2.10857 0.000478 0.016343 -3.69227 Down phospholipase D1
ZNF474 -2.10767 3.19E-06 0.001776 -5.13193 Down zinc finger protein 474
LCK -2.10338 0.000224 0.011092 -3.92537 Down LCK proto-oncogene, Src family tyrosine kinase
ZCCHC4 -2.10229 0.002042 0.034193 -3.22302 Down zinc finger CCHC-type containing 4
PRPS2 -2.09872 0.001319 0.027418 -3.3681 Down phosphoribosyl pyrophosphate synthetase 2
TAF4B -2.09126 0.000171 0.009664 -4.00627 Down TATA-box binding protein associated factor 4b
CDC42BPA -2.08947 0.001389 0.028155 -3.3511 Down CDC42 binding protein kinase alpha
LINC01230 -2.0891 0.00033 0.013567 -3.80731 Down long intergenic non-protein coding RNA 1230
CPAMD8 -2.08813 0.000302 0.012829 -3.83385 Down C3 and PZP like alpha-2-macroglobulin domain containing 8
PARP9 -2.08698 0.001921 0.033188 -3.24363 Down poly (ADP-ribose) polymerase family member 9
ZFYVE27 -2.08654 0.000479 0.016343 -3.69181 Down zinc finger FYVE-type containing 27
IWS1 -2.08516 0.002881 0.041667 -3.10619 Down interacts with SUPT6H, CTD assembly factor 1
MMRN1 -2.08143 0.000451 0.015882 -3.7104 Down multimerin 1
ST20-AS1 -2.07521 6.76E-06 0.00223 -4.92723 Down ST20 antisense RNA 1
CALCR -2.07464 5.03E-05 0.005083 -4.36486 Down calcitonin receptor
KAT7 -2.06821 0.003226 0.043983 -3.06718 Down lysine acetyltransferase 7
ARHGAP22 -2.05873 4.78E-06 0.002061 -5.02181 Down Rho GTPase activating protein 22
TMEM199 -2.05777 0.002257 0.036467 -3.18933 Down transmembrane protein 199
NTN1 -2.05766 0.000168 0.009643 -4.01109 Down netrin 1
LAMA5 -2.05607 0.002141 0.035221 -3.20706 Down laminin subunit alpha 5
SPNS3 -2.05195 2.18E-05 0.00341 -4.60239 Down sphingolipid transporter 3 (putative)
NEDD4L -2.04969 0.001542 0.029477 -3.31678 Down NEDD4 like E3 ubiquitin protein ligase
BSN -2.04855 2.9E-05 0.003871 -4.52186 Down bassoon presynaptic cytomatrix protein
TMED8 -2.04722 7.63E-06 0.002243 -4.89431 Down transmembrane p24 trafficking protein family member 8
STRBP -2.04479 0.003521 0.046281 -3.03684 Down spermatid perinuclear RNA binding protein
ATP13A4 -2.04282 5.91E-05 0.005493 -4.3185 Down ATPase 13A4
KLC2 -2.03984 0.001017 0.024181 -3.45276 Down kinesin light chain 2
RLF -2.03665 0.001889 0.032833 -3.2492 Down rearranged L-myc fusion
TTF1 -2.03264 0.002608 0.03937 -3.14019 Down transcription termination factor 1
TMEM79 -2.0311 5.41E-05 0.005279 -4.34419 Down transmembrane protein 79
ZCCHC2 -2.02905 0.002297 0.036735 -3.18334 Down zinc finger CCHC-type containing 2
ANKRD13B -2.02722 0.001008 0.024036 -3.45558 Down ankyrin repeat domain 13B
IFT122 -2.02015 0.002868 0.041571 -3.10772 Down intraflagellar transport 122
MAP 3K14 -2.01534 0.003484 0.046026 -3.0405 Down mitogen-activated protein kinase kinasekinase 14
SPATA6L -2.01191 3.29E-05 0.004116 -4.48594 Down spermatogenesis associated 6 like
SCOC-AS1 -2.01128 0.00093 0.023147 -3.48171 Down SCOC antisense RNA 1
LMO7 -2.00579 0.000573 0.017831 -3.63573 Down LIM domain 7
MEX3B -1.99674 2.01E-05 0.00341 -4.6259 Down mex-3 RNA binding family member B
IQCK -1.99382 0.00025 0.011782 -3.89149 Down IQ motif containing K
GPATCH1 -1.9934 0.000126 0.008296 -4.09746 Down G-patch domain containing 1
HPS4 -1.98942 0.002434 0.037832 -3.16378 Down HPS4 biogenesis of lysosomal organelles complex 3 subunit 2
FGFR3 -1.98496 1.56E-05 0.003137 -4.6955 Down fibroblast growth factor receptor 3
GABRA4 -1.98306 0.000116 0.007921 -4.1216 Down gamma-aminobutyric acid type A receptor alpha4 subunit
TMEM116 -1.97917 0.000648 0.0191 -3.5967 Down transmembrane protein 116
CTU1 -1.97326 4.92E-06 0.002061 -5.01408 Down cytosolic thiouridylase subunit 1
PPIEL -1.9687 0.002144 0.035221 -3.20669 Down peptidylprolylisomerase E like pseudogene
FUT11 -1.965 0.000688 0.019806 -3.57787 Down fucosyltransferase 11
TOP3A -1.96066 0.00295 0.04205 -3.098 Down DNA topoisomerase III alpha
C22orf34 -1.95954 0.000251 0.011782 -3.89083 Down chromosome 22 open reading frame 34
ASIC3 -1.95737 4.65E-05 0.005 -4.38764 Down acid sensing ion channel subunit 3
SNPH -1.95235 0.002152 0.035284 -3.20546 Down syntaphilin
ZNF547 -1.95217 0.000487 0.016474 -3.68677 Down zinc finger protein 547
FEZ1 -1.94468 0.000873 0.022405 -3.50206 Down fasciculation and elongation protein zeta 1
ENTPD5 -1.94339 0.000264 0.012058 -3.87463 Down ectonucleoside triphosphate diphosphohydrolase 5 (inactive)
LOC729683 -1.94235 2.6E-05 0.00365 -4.55269 Down uncharacterized LOC729683
S1PR5 -1.94099 8.19E-05 0.006387 -4.22381 Down sphingosine-1-phosphate receptor 5
ZNF300P1 -1.93492 0.000171 0.009664 -4.00596 Down zinc finger protein 300 pseudogene 1
UNC13C -1.93485 0.000438 0.015649 -3.7196 Down unc-13 homolog C
LOC101928370 -1.93447 2.11E-06 0.001634 -5.24334 Down uncharacterized LOC101928370
ZNF555 -1.92846 0.000376 0.014411 -3.76684 Down zinc finger protein 555
GADD45G -1.92497 0.001994 0.03385 -3.23101 Down growth arrest and DNA damage inducible gamma
KCNC1 -1.92247 2.19E-05 0.00341 -4.60096 Down potassium voltage-gated channel subfamily C member 1
CARD14 -1.91822 6.28E-06 0.002168 -4.9474 Down caspase recruitment domain family member 14
STK36 -1.91359 0.003625 0.046875 -3.0267 Down serine/threonine kinase 36
TRIB3 -1.91164 0.00031 0.012992 -3.82577 Down tribblespseudokinase 3
ZNF124 -1.9092 0.000271 0.012156 -3.86767 Down zinc finger protein 124
MPZL3 -1.90884 0.000298 0.012703 -3.83854 Down myelin protein zero like 3
TOR4A -1.90324 0.00029 0.012546 -3.84663 Down torsin family 4 member A
MIR3916 -1.90072 4.48E-06 0.002039 -5.03938 Down microRNA 3916
ZNF334 -1.89919 6.18E-06 0.002168 -4.9521 Down zinc finger protein 334
TTLL3 -1.89535 0.000105 0.007409 -4.1499 Down tubulin tyrosine ligase like 3
ZKSCAN3 -1.89411 0.001595 0.030071 -3.30542 Down zinc finger with KRAB and SCAN domains 3
PAPLN -1.88842 0.001527 0.029477 -3.31986 Down papilin, proteoglycan like sulfated glycoprotein
KNTC1 -1.88703 0.000207 0.01061 -3.94852 Down kinetochore associated 1
SLC1A7 -1.88316 0.000163 0.009559 -4.01961 Down solute carrier family 1 member 7
BCL9 -1.87682 0.00158 0.029935 -3.30857 Down BCL9 transcription coactivator
ZNF496 -1.87502 0.00041 0.015068 -3.74029 Down zinc finger protein 496
LNX2 -1.87272 0.003479 0.045998 -3.04098 Down ligand of numb-protein X 2
DNAJC18 -1.8714 0.000203 0.010561 -3.95515 Down DnaJ heat shock protein family (Hsp40) member C18
ZNF114 -1.86888 6.34E-05 0.0056 -4.29807 Down zinc finger protein 114
VWA3B -1.86543 3.01E-05 0.003964 -4.51187 Down von Willebrand factor A domain containing 3B
ARNTL2 -1.86522 0.002029 0.034127 -3.22522 Down aryl hydrocarbon receptor nuclear translocator like 2
NGFR -1.85434 0.000295 0.012696 -3.84106 Down nerve growth factor receptor
CLEC1A -1.85306 0.001166 0.026095 -3.40829 Down C-type lectin domain family 1 member A
ZNF687 -1.85305 0.003658 0.047012 -3.02347 Down zinc finger protein 687
ZNF69 -1.85271 2.47E-05 0.003545 -4.56704 Down zinc finger protein 69
MTF1 -1.85038 0.000974 0.023505 -3.46684 Down metal regulatory transcription factor 1
ZNF154 -1.84509 0.00012 0.008053 -4.11197 Down zinc finger protein 154
SLAMF6 -1.84139 0.00019 0.010241 -3.9745 Down SLAM family member 6
TMEM255B -1.8379 5.28E-05 0.005263 -4.35097 Down transmembrane protein 255B
HLA-H -1.83482 0.002773 0.040755 -3.11929 Down major histocompatibility complex, class I, H (pseudogene)
KBTBD7 -1.82918 0.000254 0.011836 -3.88686 Down kelch repeat and BTB domain containing 7
CDC20B -1.82896 6.91E-05 0.005946 -4.2731 Down cell division cycle 20B
SLC44A5 -1.82893 1.48E-05 0.003137 -4.71193 Down solute carrier family 44 member 5
MEN1 -1.8227 0.001593 0.030071 -3.30582 Down menin 1
SCNN1D -1.82156 0.003912 0.048656 -3.00003 Down sodium channel epithelial 1 delta subunit
PFAS -1.81549 0.002896 0.041776 -3.10436 Down phosphoribosylformylglycinamidine synthase
EVA1C -1.81455 0.001419 0.028438 -3.34407 Down eva-1 homolog C
TIAM2 -1.80764 6.94E-05 0.005946 -4.27171 Down TIAM Rac1 associated GEF 2
HLA-F-AS1 -1.80482 0.002916 0.041853 -3.10204 Down HLA-F antisense RNA 1
TRAPPC9 -1.80093 0.00091 0.022881 -3.48851 Down trafficking protein particle complex 9
APCDD1L -1.80071 1.64E-05 0.003137 -4.68254 Down APC down-regulated 1 like
CYTIP -1.79864 0.001215 0.026482 -3.39492 Down cytohesin 1 interacting protein
NUTM1 -1.79716 2.14E-05 0.00341 -4.60821 Down NUT midline carcinoma family member 1
ARHGAP39 -1.79263 0.000319 0.013245 -3.81744 Down Rho GTPase activating protein 39
SPTB -1.79073 0.001482 0.028982 -3.32988 Down spectrin beta, erythrocytic
ZNF469 -1.78919 7.59E-05 0.006143 -4.24571 Down zinc finger protein 469
AZIN1-AS1 -1.78541 1.92E-05 0.003347 -4.63776 Down AZIN1 antisense RNA 1
BCL2L11 -1.78395 0.001862 0.032689 -3.25392 Down BCL2 like 11
CLDN1 -1.78076 0.000331 0.013573 -3.80619 Down claudin 1
ZNF836 -1.77956 6.7E-06 0.00223 -4.92984 Down zinc finger protein 836
APBA1 -1.77749 0.002859 0.041537 -3.10878 Down amyloid beta precursor protein binding family A member 1
C8orf37 -1.77616 0.000155 0.009321 -4.03521 Down chromosome 8 open reading frame 37
LOC391322 -1.77531 9.16E-06 0.00249 -4.84394 Down D-dopachrometautomerase-like
SPATA2L -1.77449 0.002137 0.035219 -3.2077 Down spermatogenesis associated 2 like
GLIS1 -1.7719 2.07E-05 0.00341 -4.61666 Down GLIS family zinc finger 1
LOC389765 -1.76734 7.38E-07 0.001025 -5.5224 Down kinesin family member 27 pseudogene
DENND2C -1.76558 1.69E-05 0.003137 -4.67437 Down DENN domain containing 2C
MFAP3L -1.76481 0.003083 0.042962 -3.08279 Down microfibril associated protein 3 like
TREML1 -1.76402 5.96E-05 0.005493 -4.31615 Down triggering receptor expressed on myeloid cells like 1
DNHD1 -1.76398 0.001285 0.027046 -3.37662 Down dynein heavy chain domain 1
SETD6 -1.75933 5.78E-05 0.005462 -4.32489 Down SET domain containing 6, protein lysine methyltransferase
TTC34 -1.75712 4.74E-05 0.005 -4.38193 Down tetratricopeptide repeat domain 34
SARDH -1.74727 0.000444 0.015767 -3.71564 Down sarcosine dehydrogenase
ZNF385C -1.74659 5.06E-06 0.002061 -5.00645 Down zinc finger protein 385C
NEXN-AS1 -1.74174 0.001791 0.03205 -3.26688 Down NEXN antisense RNA 1
CDHR3 -1.741 5.08E-05 0.00511 -4.36224 Down cadherin related family member 3
SPRYD4 -1.7362 0.00381 0.048018 -3.00934 Down SPRY domain containing 4
ZSCAN25 -1.73514 0.000224 0.011092 -3.92529 Down zinc finger and SCAN domain containing 25
FAM157C -1.73405 3.95E-05 0.004552 -4.43393 Down family with sequence similarity 157 member C
ARSG -1.73192 0.000264 0.012045 -3.8757 Down arylsulfatase G
GLI2 -1.72398 8.75E-06 0.002428 -4.85662 Down GLI family zinc finger 2
NSUN7 -1.72112 0.000383 0.014539 -3.76087 Down NOP2/Sun RNA methyltransferase family member 7
BMP3 -1.71974 0.00051 0.016932 -3.67185 Down bone morphogenetic protein 3
PPT2 -1.71813 1.01E-05 0.002625 -4.81647 Down palmitoyl-protein thioesterase 2
CCNJL -1.7168 0.00297 0.042241 -3.0957 Down cyclin J like
C3orf70 -1.71506 1.17E-05 0.002752 -4.77652 Down chromosome 3 open reading frame 70
FBF1 -1.71426 0.002996 0.042479 -3.09265 Down Fas binding factor 1
SEC14L2 -1.70866 7.5E-05 0.006105 -4.24929 Down SEC14 like lipid binding 2
YPEL4 -1.70708 0.000495 0.016631 -3.68141 Down yippee like 4
PCDH11Y -1.70054 0.00111 0.025344 -3.42438 Down protocadherin 11 Y-linked
AFAP1L2 -1.68648 4.19E-05 0.004645 -4.41718 Down actin filament associated protein 1 like 2
ZNF674-AS1 -1.6796 0.001198 0.026347 -3.39966 Down ZNF674 antisense RNA 1 (head to head)
KCNQ4 -1.67351 1.12E-05 0.002709 -4.78912 Down potassium voltage-gated channel subfamily Q member 4
SULT1B1 -1.67126 9.73E-05 0.00709 -4.17312 Down sulfotransferase family 1B member 1
MORN1 -1.66843 0.000538 0.01724 -3.6552 Down MORN repeat containing 1
PCDH17 -1.66757 7.41E-05 0.006068 -4.25287 Down protocadherin 17
FOXP2 -1.66727 0.000941 0.023272 -3.47788 Down forkhead box P2
XYLB -1.66722 0.001703 0.031013 -3.28371 Down xylulokinase
CTNNA3 -1.66694 0.000163 0.009544 -4.02144 Down catenin alpha 3
NLRP6 -1.66633 0.000524 0.017152 -3.66377 Down NLR family pyrin domain containing 6
SLC16A13 -1.66401 0.000624 0.018805 -3.60875 Down solute carrier family 16 member 13
GLI3 -1.6638 0.003245 0.044179 -3.06511 Down GLI family zinc finger 3
SYNJ2 -1.66358 0.000209 0.010651 -3.94618 Down synaptojanin 2
C2orf15 -1.6617 0.000283 0.012404 -3.85419 Down chromosome 2 open reading frame 15
SCIMP -1.65716 0.002226 0.036099 -3.19403 Down SLP adaptor and CSK interacting membrane protein
KIR2DL4 -1.6566 0.000227 0.01115 -3.92146 Down killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 4
FHL3 -1.65441 0.00305 0.042759 -3.08659 Down four and a half LIM domains 3
OVGP1 -1.65215 1.12E-06 0.001179 -5.41243 Down oviductal glycoprotein 1
N4BP3 -1.65201 0.000581 0.017987 -3.63113 Down NEDD4 binding protein 3
ELOVL7 -1.64755 3.88E-05 0.00453 -4.43907 Down ELOVL fatty acid elongase 7
ESRG -1.64744 0.001428 0.028535 -3.34192 Down embryonic stem cell related
ACTA2-AS1 -1.64552 0.000128 0.008394 -4.09176 Down ACTA2 antisense RNA 1
CNKSR3 -1.64218 7.19E-05 0.005962 -4.26146 Down CNKSR family member 3
ZNF347 -1.63729 0.002754 0.040644 -3.12164 Down zinc finger protein 347
SGMS1-AS1 -1.6362 3.3E-06 0.001776 -5.12249 Down SGMS1 antisense RNA 1
ZKSCAN2 -1.63535 4.67E-05 0.005 -4.38616 Down zinc finger with KRAB and SCAN domains 2
AMIGO1 -1.63486 0.000936 0.023198 -3.47947 Down adhesion molecule with Ig like domain 1
ZC3H10 -1.63262 0.001463 0.028876 -3.33409 Down zinc finger CCCH-type containing 10
MUC17 -1.62593 0.000109 0.007553 -4.14108 Down mucin 17, cell surface associated
ZNF559-ZNF177 -1.62399 6.21E-05 0.005556 -4.30427 Down ZNF559-ZNF177 readthrough
NUTM2D -1.62355 0.000228 0.011159 -3.92008 Down NUT family member 2D
ABCB4 -1.62247 3.99E-06 0.001884 -5.07099 Down ATP binding cassette subfamily B member 4
LOC100652768 -1.61749 0.000307 0.012935 -3.82956 Down uncharacterized LOC100652768
C8orf58 -1.61509 5.62E-06 0.002118 -4.97786 Down chromosome 8 open reading frame 58
WRAP73 -1.61325 4.07E-06 0.001884 -5.06554 Down WD repeat containing, antisense to TP73
SLC24A4 -1.61174 2.06E-05 0.00341 -4.61911 Down solute carrier family 24 member 4
LENG8-AS1 -1.61071 2.39E-05 0.003497 -4.57709 Down LENG8 antisense RNA 1
C2orf66 -1.60563 1.03E-05 0.002643 -4.81096 Down chromosome 2 open reading frame 66
SMIM10L2A -1.60523 9.09E-05 0.006806 -4.19335 Down small integral membrane protein 10 like 2A
CYP1B1-AS1 -1.60433 0.000107 0.007513 -4.14419 Down CYP1B1 antisense RNA 1
CTNND1 -1.60088 0.000109 0.007568 -4.13895 Down catenin delta 1
ADCY10P1 -1.60028 4.19E-05 0.004645 -4.4176 Down ADCY10 pseudogene 1
LOC100130298 -1.59936 3.39E-05 0.004196 -4.47779 Down hCG1816373-like
FLJ42627 -1.59816 0.001285 0.027046 -3.37677 Down uncharacterized LOC645644
CRISPLD1 -1.59815 0.000698 0.019931 -3.57312 Down cysteine rich secretory protein LCCL domain containing 1
MESTIT1 -1.59755 1.51E-06 0.001401 -5.33225 Down MEST intronic transcript 1, antisense RNA
ASPG -1.59743 0.001369 0.027894 -3.35594 Down asparaginase
PRICKLE2-AS1 -1.59631 0.000336 0.013596 -3.80182 Down PRICKLE2 antisense RNA 1
LINC00865 -1.59557 2.66E-05 0.00371 -4.54615 Down long intergenic non-protein coding RNA 865
LINC01001 -1.59556 1.77E-06 0.001545 -5.29009 Down long intergenic non-protein coding RNA 1001
GRK4 -1.59417 1.69E-05 0.003137 -4.67411 Down G protein-coupled receptor kinase 4
ZNF300 -1.59305 5.6E-05 0.005391 -4.33388 Down zinc finger protein 300
CADM3-AS1 -1.59265 7.19E-05 0.005962 -4.26163 Down CADM3 antisense RNA 1
SIT1 -1.59069 0.000397 0.014772 -3.75003 Down signaling threshold regulating transmembrane adaptor 1
LINC01138 -1.59045 0.001479 0.028971 -3.33042 Down long intergenic non-protein coding RNA 1138
DNAH5 -1.5878 0.000268 0.012109 -3.87093 Down dynein axonemal heavy chain 5
FAM155B -1.58584 2.87E-05 0.003871 -4.52525 Down family with sequence similarity 155 member B
SLC5A4 -1.58234 3.27E-06 0.001776 -5.12479 Down solute carrier family 5 member 4
ZNF573 -1.58059 6.33E-06 0.002168 -4.94541 Down zinc finger protein 573
RCAN3 -1.5793 2.89E-05 0.003871 -4.52291 Down RCAN family member 3
DNAH3 -1.57822 0.000296 0.012696 -3.83989 Down dynein axonemal heavy chain 3
UBXN10 -1.57771 1.9E-05 0.003343 -4.64092 Down UBX domain protein 10
CLEC4A -1.57555 0.003924 0.048741 -2.99895 Down C-type lectin domain family 4 member A
RFFL -1.57423 0.000171 0.009664 -4.00626 Down ring finger and FYVE like domain containing E3 ubiquitin protein ligase
TMEM130 -1.57294 0.000437 0.015643 -3.72015 Down transmembrane protein 130
KCNMB4 -1.57256 0.003907 0.048656 -3.0005 Down potassium calcium-activated channel subfamily M regulatory beta subunit 4
LINC00924 -1.57057 0.000165 0.009593 -4.01761 Down long intergenic non-protein coding RNA 924
EREG -1.57034 0.000125 0.008283 -4.09939 Down epiregulin
URAD -1.56639 0.000704 0.020012 -3.5708 Down ureidoimidazoline (2-oxo-4-hydroxy-4-carboxy-5-) decarboxylase
SLC22A15 -1.56367 0.000564 0.017736 -3.64079 Down solute carrier family 22 member 15
ADRA2B -1.56339 0.000592 0.018192 -3.62512 Down adrenoceptor alpha 2B
CDH26 -1.56317 0.00033 0.013567 -3.80719 Down cadherin 26
ZNF596 -1.5628 0.000227 0.01115 -3.92153 Down zinc finger protein 596
NYAP1 -1.55572 3.9E-05 0.004533 -4.43763 Down neuronal tyrosine phosphorylated phosphoinositide-3-kinase adaptor 1
SFRP5 -1.55537 0.000468 0.016151 -3.699 Down secreted frizzled related protein 5
LOC101929574 -1.55461 0.001368 0.027894 -3.35602 Down uncharacterized LOC101929574
RNF207 -1.54999 7.31E-06 0.002243 -4.90599 Down ring finger protein 207
NRL -1.54936 2.58E-05 0.003634 -4.55549 Down neural retina leucine zipper
ANGPTL6 -1.54763 0.00025 0.011782 -3.89133 Down angiopoietin like 6
ALOX15 -1.54749 0.000145 0.009003 -4.0563 Down arachidonate 15-lipoxygenase
CHEK2 -1.54682 0.001992 0.03385 -3.23132 Down checkpoint kinase 2
ZNF543 -1.54508 0.00303 0.042657 -3.08876 Down zinc finger protein 543
ZNF717 -1.54439 0.000156 0.009363 -4.03319 Down zinc finger protein 717
FASLG -1.54428 0.001265 0.026877 -3.38181 Down Fas ligand
LILRA3 -1.5435 1.84E-05 0.003308 -4.65038 Down leukocyte immunoglobulin like receptor A3
NEK10 -1.54346 0.00012 0.008053 -4.11146 Down NIMA related kinase 10
MIR1914 -1.543 0.000489 0.016519 -3.68532 Down microRNA 1914
BATF3 -1.54097 0.000518 0.017057 -3.667 Down basic leucine zipper ATF-like transcription factor 3
AVIL -1.54065 0.000332 0.013573 -3.80487 Down advillin
KLK10 -1.54034 7.07E-05 0.005956 -4.26664 Down kallikrein related peptidase 10
ZNF689 -1.53954 0.003253 0.04422 -3.06429 Down zinc finger protein 689
MKLN1-AS -1.53911 0.00209 0.0347 -3.2153 Down MKLN1 antisense RNA
LOC100128398 -1.53652 0.002092 0.034722 -3.21487 Down uncharacterized LOC100128398
LRP1-AS -1.53646 4.89E-05 0.005015 -4.37323 Down LRP1 antisense RNA
NPIPA1 -1.5363 0.003113 0.043191 -3.07949 Down nuclear pore complex interacting protein family member A1
NLRP2 -1.53625 0.00031 0.012977 -3.82661 Down NLR family pyrin domain containing 2
MMEL1 -1.5346 0.000336 0.013596 -3.80163 Down membrane metalloendopeptidase like 1
SPDYE5 -1.53457 0.000116 0.007921 -4.12051 Down speedy/RINGO cell cycle regulator family member E5
CCL28 -1.5342 5.69E-05 0.005435 -4.32942 Down C-C motif chemokine ligand 28
KLHDC1 -1.53297 0.000501 0.016732 -3.67754 Down kelch domain containing 1
FRMPD1 -1.53279 4.28E-05 0.004701 -4.41134 Down FERM and PDZ domain containing 1
LINC00211 -1.53271 0.00019 0.010241 -3.97414 Down long intergenic non-protein coding RNA 211
ATP6V1G2 -1.53264 0.000799 0.021227 -3.53045 Down ATPase H+ transporting V1 subunit G2
PRIMA1 -1.53113 0.000786 0.021056 -3.53546 Down proline rich membrane anchor 1
NPTX1 -1.52859 0.000253 0.011808 -3.88811 Down neuronal pentraxin 1
LOC101928107 -1.5272 0.0003 0.012783 -3.83612 Down uncharacterized LOC101928107
GFRA3 -1.5245 8.59E-06 0.002428 -4.86161 Down GDNF family receptor alpha 3
LOC101929595 -1.51972 1.12E-05 0.002709 -4.78841 Down uncharacterized LOC101929595
FLJ37453 -1.51859 7.55E-06 0.002243 -4.8971 Down uncharacterized LOC729614
MACC1 -1.51799 0.000573 0.017831 -3.6354 Down MET transcriptional regulator MACC1
LINC00607 -1.51637 2.68E-05 0.00371 -4.5447 Down long intergenic non-protein coding RNA 607
FAM86B1 -1.5153 0.000332 0.013573 -3.80528 Down family with sequence similarity 86 member B1
MIR4477B -1.51191 2.05E-05 0.00341 -4.62019 Down microRNA 4477b
CNNM2 -1.50798 0.001668 0.03072 -3.29062 Down cyclin and CBS domain divalent metal cation transport mediator 2
SKA1 -1.50659 0.00086 0.02226 -3.50665 Down spindle and kinetochore associated complex subunit 1
ABRACL -1.50603 0.001136 0.025784 -3.41701 Down ABRA C-terminal like
LINC00954 -1.50484 0.000652 0.019135 -3.59472 Down long intergenic non-protein coding RNA 954
ZBP1 -1.50412 0.002141 0.035221 -3.20719 Down Z-DNA binding protein 1
ZNF528 -1.50042 0.000464 0.016097 -3.70168 Down zinc finger protein 528
ACTG1P4 -1.50023 0.000252 0.011803 -3.88932 Down actin gamma 1 pseudogene 4
MYO10 -1.50014 0.003103 0.043113 -3.08058 Down myosin X

Fig. 2.

Fig. 2

Heat map of differentially expressed genes. Legend on the top left indicate log fold change of genes. (A1 – A2 = normal control samples; B1 – B30 = PCOS samples)

GO and pathway enrichment of DEGs in PCOS

The top 739 DEGs were chosen to perform GO and REACTOME pathway enrichment analyses. Gene Ontology (GO) analysis identified that the DEGs were significantly enriched in BP, including the peptide metabolic process, intracellular protein transport, plasma membrane bounded cell projection organization and cell morphogenesis (Table 3). In terms of CC, DEGs were mainly enriched in organelle envelope, catalytic complex, neuron projection and cell junction were the most significantly enriched GO term (Table 3). In addition, MF demonstrated that the DEGs were enriched in the RNA binding, transcription factor binding, DNA-binding transcription factor activity, RNA polymerase II-specific and ATP binding (Table 3). REACTOME pathway enrichment analysis was used to screen the signaling pathways for differential genes. These DEGs were mainly involved in the translation, respiratory electron transport, generic transcription pathway and transmembrane transport of small molecules (Table 4).

Table 3.

The enriched GO terms of the up and down regulated differentially expressed genes

GO ID CATEGORY GO Name P Value FDR B&H FDR B&Y Bonferroni Gene Count Gene
Up regulated genes
GO:0006518 BP peptide metabolic process 1.51E-13 2.66E-11 2.37E-10 6.37E-10 52 RPL24,RPL27,RPL30,RPL29,RPL34,RPL35A,RPL36A,RPLP0,MRPL12,MRPS12,RPS5,RPS8,ETF1,RPS10,EIF3E,RPS15,RPS15A,SRP72,RPS20,RPS21,RPS23,RPS24,RPS29,EIF6,EIF3L,MRPS21,MRPL24,MRPL20,COA3,RBM3,TRMT112,MRPL54,CPE,RPL14,RPS27L,EIF2D,DPH5,EIF1AX,ATP6AP2,ZNF706,SEC11A,MRPS24,UHMK1,EIF5,MRPS15,MRPS6,MRPS34,LSM14A,RPL35,RPL13A,MRPL9,RSL24D1
GO:0006886 BP intracellular protein transport 6.75E-12 8.16E-10 7.28E-09 2.86E-08 66 GIPC1,SNAPIN,RPL24,TCTN3,RPL27,RPL30,RPL29,RPL34,ROMO1,RPL35A,RPL36A,RPLP0,RPS5,RPS8,RPS10,RPS15,RPS15A,PHB2,SRP72,RPS20,HMGCL,RPS21,RPS23,RPS24,RPS29,ARFIP2,TOMM5,EIF6,RAB10,ATP6V1D,SNX8,PEX19,AGFG1,PEX2,ZFAND6,RABGEF1,SNX9,RAB4A,PMM1,TOMM7,SRSF6,ANP32B,RPAIN,TNPO2,DERL2,FIS1,RPL14,APOD,ECH1,IFI27,YWHAH,TMED4,ARF5,NDUFA13,EXOC5,EIF2D,UBL5,TIMM8B,ICMT,UHMK1,DYNLL2,VPS28,RPL35,SYVN1,RPL13A,STX10
GO:0031967 CC organelle envelope 2.36E-19 1.71E-17 1.20E-16 1.47E-16 72 ROMO1,PRELID1,MRPL12,MRPS12,PET100,BAK1,PHB2,LRRC59,HMGCL,GCHFR,COA4,NDUFA2,SLC25A26,BLOC1S1,ECSIT,SUCLG1,NDUFB2,TOMM5,NDUFC2,BANF1,MOAP1,NDUFS4,NDUFS5,PHB,BNIP3,PI4KB,FDX1,MRPS21,AGFG1,SLC25A11,TMEM97,UQCRC1,UQCRFS1,UQCRH,UQCR11,NME2,MRPL24,CERS2,MRPL20,TOMM7,COA3,COX4I1,COX5B,DTYMK,ANXA4,COX6A1,NDUFAF3,COX6B1,MRPL54,COX6C,COX7A2,COX7C,COX8A,FIS1,IFI27,MAD2L1BP,CCND2,NDUFA13,CYB5B,TMEM256,TIMM8B,AIFM1,MRPS24,MRPS15,CHCHD2,MRPS6,MRPS34,COX7A2L,UQCRQ,HSD17B10,MTDH,MRPL9
GO:1902494 CC catalytic complex 1.31E-12 5.84E-11 4.09E-10 8.17E-10 67 PRPF31,DCAF6,ERH,SAP18,OST4,PSMB1,PSMB4,ETFB,PSMB7,PSMC5,PSMD3,PSMD10,NDUFA2,EZH1,SUCLG1,NDUFB2,NDUFC2,NDUFS4,NDUFS5,LSM3,CKS1B,TSPAN17,SLC9A3R1,UBE2E1,RBMX,MORF4L1,PEX2,AK1,PRMT1,UQCRC1,UQCRFS1,UQCRH,TAF7,ANAPC5,TADA3,ANAPC13,RBX1,CUL4A,POLR3GL,RBBP7,PIGS,POLR2J,POLR2K,DERL2,BCCIP,POLE4,NAA38,CCNC,CCND2,RMRP,NDUFA13,POLR1D,GTF2A2,ORMDL1,SEC11A,SF3B6,DYNLL2,SMARCD2,UQCRQ,HSD17B10,KLHL12,SYVN1,CDC27,PSMD14,SNRPD2,RPPH1,KRTCAP2
GO:0003723 MF RNA binding 1.66E-10 4.49E-08 3.30E-07 1.45E-07 76 RPL24,PRPF31,RPL27,RPL30,RPL29,RPL34,RPL35A,RPL36A,ERH,RPLP0,MRPL12,MRPS12,SAP18,RSL1D1,RPS5,RPS8,ETF1,RPS10,EIF3E,RPS15,RPS15A,SRP72,RPS20,LRRC59,RPS21,RPS23,RPS24,SUCLG1,EIF6,LSM3,RBMX,EIF3L,MRPS21,NQO1,AGFG1,LSM4,PRMT1,SLC25A11,TBCA,MRPL20,NUDT16,SRSF6,S100A16,GLRX3,RBBP7,RBM3,MRPL54,NELFB,BCCIP,RDX,RPL14,C7orf50,XRCC5,SERPINH1,RPS27L,EIF2D,GTF3A,FAM32A,EIF1AX,SBDS,SF3B6,MRPS24,UHMK1,EIF5,MRPS15,SLTM,MRPS6,LSM14A,HSD17B10,RPL35,RPL13A,SNRPD2,MTDH,MRPL9,SF3B5,RSL24D1
GO:0008134 MF transcription factor binding 1.05E-02 1.83E-01 1.00E+00 1.00E+00 23 NAB1,PHB2,PSMC5,FAM89B,NBN,PSMD10,MDFI,TAF7,SETD3,TADA3,RBX1,WIPI1,ANXA4,TEAD3,IFI27,YWHAH,GTF2A2,MED4,ICMT,CHCHD2,HSD17B10,MTDH,TRIB1
Down regulated genes
GO:0120036 BP plasma membrane bounded cell projection organization 7.28E-05 2.19E-02 1.94E-01 2.91E-01 49 EPHB4,STK36,MAK,SPAST,ZFYVE27,TTLL3,MYO7A,MYO10,SDCCAG8,SPTB,SARM1,RAP1GAP2,NPHP4,GFRA3,AMIGO1,HECW2,GLI2,GLI3,SYNE2,WRAP73,NGFR,NTN1,NLGN2,FGFR3,PLD1,CEP126,NYAP1,DNAH5,UBXN10,PLXNB3,SEMA6B,FAT4,NPTX1,NEDD4L,STXBP5,FBF1,LAMA5,RFFL,ODF2,FAS,RFX3,ATL1,TRAK1,WDR19,FEZ1,AVIL,CEP135,IFT122,EPHA4
GO:0000902 BP cell morphogenesis 3.10E-03 1.93E-01 1.00E+00 1.00E+00 31 EPHB4,CDH26,SPAST,ZFYVE27,MYO7A,MYO10,CDHR3,SPTB,SARM1,GFRA3,AMIGO1,HECW2,GLI2,GLI3,NGFR,NTN1,FGFR3,NYAP1,PLXNB3,SEMA6B,NPTX1,NEDD4L,STXBP5,LAMA5,CDH19,ATL1,TRAK1,WDR19,FEZ1,C8orf37,EPHA4
GO:0043005 CC neuron projection 3.65E-05 7.26E-03 5.00E-02 2.00E-02 46 EPHB4,MAK,PDE4B,SNPH,SPAST,ZFYVE27,MYO7A,MYO10,ESR1,SDCCAG8,SARM1,RAP1GAP2,N4BP3,NPHP4,SNAP47,TIAM2,AMIGO1,KCNC1,PTPRN2,SYNJ2,NGFR,NLGN2,BSN,NPTX1,CALCR,PLXDC1,STXBP5,ERO1A,GRK4,AAK1,APBA1,KLC2,VTI1A,FAS,ATL1,TRAK1,WDR19,SHISA9,FEZ1,KCNQ4,AVIL,UNC13C,IFT122,CTNND1,EPHA4,GABRA4
GO:0030054 CC cell junction 3.04E-03 8.34E-02 5.74E-01 1.00E+00 34 CDH26,SNPH,CDHR3,SDCCAG8,SARM1,OBSCN,NPHP4,ABCB4,ARHGAP22,RASIP1,PTPRN2,SYNE2,LPXN,NGFR,NLGN2,FGFR3,BSN,FHL3,CDC42BPA,PLXDC1,STXBP5,FBF1,LCK,CDH19,CLDN1,PRIMA1,SHISA9,LMO7,CTNNA3,UNC13C,C8orf37,CTNND1,EPHA4,GABRA4
GO:0000981 MF DNA-binding transcription factor activity, RNA polymerase II-specific 9.75E-04 3.67E-01 1.00E+00 7.35E-01 43 ZNF717,ZXDC,HIVEP1,ERG,ZNF154,ESR1,ZSCAN25,ARNTL2,ZNF836,ZNF469,ZNF547,GLI2,GLI3,ZNF347,ZNF778,BATF3,TET3,ZNF687,ZNF114,MACC1,ZNF555,ZNF493,FOXP2,NRL,ZNF596,ZNF689,ZNF300,ZKSCAN2,RFX3,ZNF496,IKZF4,RLF,KAT7,DMRT2,ZNF334,MTF1,ZKSCAN3,ZNF559-ZNF177,ZNF69,ZNF528,ZNF543,GLIS1,ZNF124
GO:0005524 MF ATP binding 2.83E-02 4.14E-01 1.00E+00 1.00E+00 34 EPHB4,PRPS2,STK36,MAK,CNNM2,SPAST,TTLL3,MYO7A,MYO10,NEK10,OBSCN,PFAS,TOR4A,ABCB4,FGFR3,XYLB,DNAH5,DNHD1,ATP13A4,DNAH3,CDC42BPA,ATP13A1,GRK4,MAP 3K14,AAK1,ABCC5,LCK,NLRP2,NLRP6,TRIB3,CHEK2,ERCC6L2,MAST3,EPHA4

BP Biological Process, CC Cellular Component and MF Molecular Functions

Table 4.

The enriched pathway terms of the up and down regulated differentially expressed genes

Pathway ID Pathway Name P-value FDR B&H FDR B&Y Bonferroni Gene Count Geness
Up regulated genes
1268678 Translation 8.83E-20 4.54E-17 3.26E-16 6.54E-17 30 RPL24,RPL27,RPL30,RPL29,RPL34,RPL35A,RPL36A,RPLP0,RPS5,RPS8,ETF1,RPS10,EIF3E,RPS15,RPS15A,SRP72,RPS20,RPS21,RPS23,RPS24,RPS29,EIF3L,TRMT112,RPL14,RPS27L,EIF1AX,SEC11A,EIF5,RPL35,RPL13A
1270128 Respiratory electron transport 2.39E-16 1.27E-14 9.10E-14 1.77E-13 22 ETFB,NDUFA2,ECSIT,NDUFB2,NDUFC2,NDUFS4,NDUFS5,UQCRC1,UQCRFS1,UQCRH,UQCR11,COX4I1,COX5B,COX6A1,NDUFAF3,COX6B1,COX6C,COX7C,COX8A,NDUFA13,COX7A2L,UQCRQ
1268677 Metabolism of proteins 6.29E-10 1.46E-08 1.05E-07 4.66E-07 72 B4GALT2,RPL24,RPL27,RPL30,RPL29,UAP1,RPL34,RPL35A,RPL36A,RPLP0,RPS5,PSMB1,RPS8,ETF1,RPS10,PSMB4,ETFB,EIF3E,PSMB7,RPS15,RPS15A,PSMC5,SRP72,PSMD3,RPS20,PFDN1,RPS21,RPS23,PFDN5,PSMD10,RPS24,COA4,RPS29,TOMM5,GFPT1,NEDD8,RAB10,SAA1,UBE2E1,UCHL1,EIF3L,TADA3,RAB4A,TBCA,PMM1,TOMM7,WIPI1,TRMT112,TNIP2,PIGS,AMDHD2,USP24,DERL2,CPE,RPL14,RPS27L,ARF5,EXOC5,TIMM8B,DPH5,ICMT,EIF1AX,ATP6AP2,SEC11A,DYNLL2,EIF5,CHCHD2,SUMO3,RPL35,SYVN1,RPL13A,PSMD14
1269649 Gene Expression 1.72E-09 3.85E-08 2.77E-07 1.27E-06 77 CDKN2B,RPL24,PRPF31,RPL27,RPL30,RPL29,RPL34,RPL35A,RPL36A,PRELID1,TMEM219,RPLP0,SAP18,RPS5,PSMB1,RPS8,ETF1,RPS10,PSMB4,EIF3E,PSMB7,RPS15,RPS15A,PSMC5,NBN,SRP72,PSMD3,RPS20,RPS21,RPS23,PSMD10,RPS24,RPS29,LSM3,RBMX,EIF3L,NABP2,LSM4,PRMT1,TAF7,SRSF6,POLR3GL,RBBP7,COX4I1,TRMT112,COX5B,COX6A1,COX6B1,POLR2J,POLR2K,NELFB,COX6C,COX7C,COX8A,RPL14,TEAD3,SKIL,YWHAH,RPS27L,CCNC,POLR1D,GTF2A2,MED4,GTF3A,LAMTOR4,EIF1AX,ZNF706,SEC11A,SF3B6,EIF5,COX7A2L,HSD17B10,RPL35,RPL13A,PSMD14,SNRPD2,SF3B5
1269852 Autodegradation of Cdh1 by Cdh1:APC/C 1.22E-06 2.58E-05 1.86E-04 9.04E-04 10 PSMB1,PSMB4,PSMB7,PSMC5,PSMD3,PSMD10,UBE2E1,ANAPC5,CDC27,PSMD14
1268843 Mitochondrial translation initiation 2.55E-06 4.96E-05 3.57E-04 1.89E-03 11 MRPL12,MRPS12,MRPS21,MRPL24,MRPL20,MRPL54,MRPS24,MRPS15,MRPS6,MRPS34,MRPL9
Down regulated genes
1269650 Generic Transcription Pathway 1.96E-04 1.10E-01 7.63E-01 1.10E-01 29 ZNF717,ZNF486,ZNF154,ESR1,ZSCAN25,MEN1,ZNF547,BANP,ZNF347,ZNF778,TAF4B,ZNF114,ZNF573,ZNF555,ZNF493,NEDD4L,ZNF596,ZNF689,ZNF300,RFFL,FAS,ZNF496,ZNF334,ZKSCAN3,CHEK2,ZNF528,ZNF543,TOP3A,ZNF124
1269903 Transmembrane transport of small molecules 2.80E-02 7.66E-01 1.00E+00 1.00E+00 18 ATP6V1G2,SLC22A15,SLCO4A1,ASIC3,ABCB4,SLC24A4,SLC44A5,SCNN1D,SLC9A7,ATP13A4,NEDD4L,ATP13A1,ABCC5,SLC1A7,SLC5A4,SLC30A7,NDC1,GABRA4
1268846 Cilium Assembly 3.71E-02 7.66E-01 1.00E+00 1.00E+00 7 SDCCAG8,NPHP4,FBF1,ODF2,WDR19,CEP135,IFT122
1269957 Metabolism of carbohydrates 1.11E-01 7.66E-01 1.00E+00 1.00E+00 8 PRPS2,CHST14,XYLB,MGAM,ABCC5,SLC5A4,NDC1,SLC25A13
1269443 Signalling by NGF 1.63E-01 7.66E-01 1.00E+00 1.00E+00 11 EREG,SPTB,OBSCN,KBTBD7,GFRA3,TIAM2,NGFR,FGFR3,BCL2L11,LCK,TRIB3
1269171 Adaptive Immune System 1.86E-01 7.66E-01 1.00E+00 1.00E+00 17 EREG,LRSAM1,HLA-H,RAP1GAP2,KBTBD7,SLAMF6,HECW2,FGFR3,KIR2DL4,TREML1,LILRA3,NEDD4L,MAP 3K14,KLC2,LCK,TRIB3,LMO7

PPI networks construction and module Analysis

Following the analysis based on the PPI networks, 4141 nodes and 14853 edges were identified in Cytoscape (Fig. 3a). The genes with higher scores were the hub genes, as the genes of node degree, betweenness centrality, stress centrality, closeness centrality may be linked with PCOS. The top 10 hub genes were SAA1, ADCY6, POLR2K, RPS15, RPS15A, ESR1, LCK, S1PR5, CCL28 and CTNND1 and are listed in Table 5. Enrichment analysis demonstrated that module 1 (Fig. 3b) and module 2 (Fig. 3c) might be associated with respiratory electron transport, organelle envelope, catalytic complex, gene expression, signaling by NGF and neuron projection.

Fig. 3.

Fig. 3

PPI network and the most significant modules of DEGs. a The PPI network of DEGs was constructed using Cytoscape. b The most significant module was obtained from PPI network with 26 nodes and 160 edges for up regulated genes. c The most significant module was obtained from PPI network with 26 nodes and 71 edges for up regulated genes. Up regulated genes are marked in green; down regulated genes are marked in red

Table 5.

Topology table for up and down regulated genes

Regulation Node Degree Betweenness Stress Closeness
Up SAA1 315 0.10107 69407430 0.321603
Up ADCY6 312 0.072777 44726506 0.302897
Up POLR2K 236 0.037471 28379862 0.302013
Up RPS15 212 0.008152 26431684 0.308863
Up RPS15A 211 0.007809 26602340 0.309741
Up RPS5 209 0.007859 26492428 0.309463
Up RPL13A 207 0.007846 22124842 0.309533
Up RPS23 205 0.005989 23951504 0.308794
Up RPLP0 205 0.00818 22450450 0.310438
Up RPL35 203 0.006165 21837168 0.309417
Up RPS20 202 0.005559 24073032 0.308564
Up RPS29 198 0.004498 20672292 0.308426
Up RBX1 197 0.044386 26711280 0.318217
Up POLR2J 192 0.020679 20252592 0.293659
Up RPL30 187 0.006891 19563996 0.308265
Up RPS8 177 0.004042 18164736 0.30678
Up RPL35A 174 0.003759 16445648 0.30783
Up RPS24 174 0.003192 15939464 0.304838
Up RPL24 173 0.003533 16772430 0.306803
Up C3AR1 172 0.003177 5121210 0.274955
Up RPL34 172 0.004039 16061864 0.30719
Up RPL29 171 0.00494 18453558 0.307647
Up RPS21 170 0.002685 15196960 0.304636
Up SNRPD2 168 0.03814 33998368 0.309486
Up RPS10 164 0.002949 14807414 0.306055
Up RPL14 163 0.00328 15070824 0.306826
Up RPL27 160 0.002277 14404254 0.305716
Up PSMC5 145 0.016771 20051716 0.327066
Up PSMD14 138 0.008797 20693344 0.312311
Up RBBP7 136 0.039699 19307334 0.314733
Up PSMD3 132 0.006138 19507196 0.312264
Up SRSF6 130 0.01551 18603044 0.305242
Up PSMB4 128 0.006024 19460760 0.31217
Up PSMB1 126 0.005935 19159108 0.312736
Up PSMD10 125 0.006564 19293068 0.313162
Up PSMB7 121 0.004879 18406276 0.311911
Up CDC27 121 0.014082 17205180 0.314709
Up PLCG2 119 0.031441 10514426 0.284595
Up UBE2E1 111 0.01698 18575766 0.315597
Up MRPL24 111 0.004006 3985902 0.27419
Up SEC11A 107 0.005316 8457436 0.302168
Up EIF3E 105 0.00271 6755804 0.298099
Up EIF1AX 105 0.00175 6248608 0.298099
Up ETF1 104 0.003209 7817310 0.300348
Up SF3B5 104 0.003133 6307886 0.271298
Up EIF5 103 0.002157 5951468 0.298056
Up MRPS12 103 0.001566 3803642 0.27381
Up RPS27L 103 0.003987 8037762 0.3043
Up RBMX 102 0.006533 8629778 0.302543
Up SF3B6 101 0.007747 10034416 0.30272
Up RPL36A 101 0.001189 3109720 0.271102
Up RSL24D1 100 0.010421 6175826 0.267684
Up ANAPC5 100 0.005802 14180882 0.312854
Up ITGAV 98 0.047765 36204220 0.313518
Up SRP72 98 0.001539 6042806 0.299696
Up NME2 94 0.034644 15645818 0.312029
Up YWHAH 93 0.030402 22230232 0.316369
Up MRPS15 86 0.001926 2385992 0.260394
Up UQCRQ 83 0.003421 1615130 0.240866
Up CCNC 83 0.010303 8511008 0.281231
Up UQCRC1 82 0.02328 14231790 0.289875
Up MED4 80 0.018252 17775072 0.301683
Up UQCRFS1 78 0.001699 1157234 0.244233
Up CCND2 77 0.023553 14830028 0.314399
Up MRPL12 77 0.002782 2194820 0.259789
Up POLR1D 75 0.0061 4678140 0.274081
Up UQCRH 72 0.001221 959168 0.244147
Up KLHL12 68 0.003828 3608276 0.303719
Up SLC9A3R1 63 0.021981 10906810 0.303987
Up XRCC5 63 0.016826 12450448 0.298895
Up EIF6 62 0.005109 3166876 0.251672
Up GTF3A 61 0.016181 6249890 0.308426
Up MRPS6 60 6.26E-04 932952 0.249563
Up PLA2G2A 59 0.016536 3353206 0.267442
Up NDUFC2 58 0.009137 6243750 0.288562
Up TAF7 58 0.008456 6200048 0.248053
Up NDUFA13 58 0.010438 6851160 0.289086
Up TSG101 57 0.016521 11031600 0.306145
Up SAP18 57 0.012307 5315482 0.302256
Up NDUFS4 56 0.001242 656204 0.239889
Up SMAD5 56 0.020424 14462992 0.296201
Up RSL1D1 56 0.011475 16770568 0.229134
Up NDUFA2 54 7.42E-04 556554 0.239861
Up NBN 54 0.015436 11207188 0.30323
Up NEDD8 53 0.011483 3600034 0.320831
Up PRMT1 52 0.012592 15575898 0.301332
Up MORF4L1 51 0.010667 4279006 0.296795
Up CUL4A 50 0.007675 2678820 0.299544
Up LAMA2 49 0.007709 8570206 0.278844
Up COX6A1 48 0.001525 801088 0.240334
Up AK1 46 0.003174 1615960 0.250894
Up COX5B 42 0.001215 595708 0.239861
Up TADA3 40 0.010349 2368830 0.281307
Up SUMO3 40 0.011044 5466788 0.300348
Up CDKN2B 36 0.006521 2033654 0.280983
Up SERPINH1 36 0.01212 7196482 0.29909
Up MRPL20 34 0.002069 1471944 0.293201
Up COMT 34 0.015004 4152910 0.286109
Up LSM4 34 0.007332 2056240 0.254456
Up EXOC5 33 0.00443 1785404 0.263041
Up SYVN1 32 0.012143 5434366 0.291078
Up BAK1 31 0.006508 1183542 0.267425
Up RAB10 30 0.008921 6109230 0.296328
Up PFDN5 29 0.010966 3969486 0.290567
Up SCARB1 28 0.010079 5204710 0.299544
Up COX6C 27 4.36E-04 219006 0.232011
Up COX4I1 26 6.32E-04 186792 0.232493
Up EZH1 26 0.001591 543666 0.245377
Up SUCLG1 26 0.008369 8540110 0.200727
Up OXCT1 25 0.007475 2818178 0.199778
Up PHB 24 0.005122 2747910 0.293388
Up BANF1 20 0.005143 1975740 0.295651
Up BCCIP 20 0.003654 1838164 0.269444
Up RDX 18 0.004798 4656272 0.29563
Up CFL2 15 0.005519 1602836 0.286624
Up ARF5 12 0.004972 1234824 0.284419
Up UCHL1 12 0.001629 954606 0.29618
Up PFN2 11 0.003745 1598036 0.28734
Up NDUFB2 8 0 0 0.225404
Up COX6B1 8 0 0 0.225073
Up COX7A2L 8 0 0 0.225073
Up COX7C 8 0 0 0.225073
Up PRPF31 8 1.73E-04 119394 0.213127
Up COX8A 8 0 0 0.225073
Up NDUFS5 8 0 0 0.225404
Up PHB2 8 0.001363 712242 0.308449
Up ETFB 4 0 0 0.224963
Up NELFB 3 2.95E-04 570978 0.27419
Up CKS1B 3 6.28E-06 1544 0.254284
Up ANAPC13 3 0 0 0.245741
Up GTF2A2 3 0 0 0.236342
Up POLE4 3 2.39E-04 114402 0.254863
Up TYROBP 2 0 0 0.248948
Up DCAF6 2 0 0 0.241724
Up SKIL 2 0 0 0.239764
Up S100A16 2 0 0 0.172622
Up HMGCL 2 0 0 0.172622
Up ARHGAP12 2 7.30E-07 10130 0.210056
Up STX10 2 0 0 0.222748
Up UQCR11 2 0 0 0.194129
Up GADD45B 1 0 0 0.188748
Up PFDN1 1 0 0 0.225159
Up CDIPT 1 0 0 0.221556
Up TOMM7 1 0 0 0.211009
Up MRPS24 1 0 0 0.206607
Up SBDS 1 0 0 0.201078
Up COPS7A 1 0 0 0.230512
Up DERL2 1 0 0 0.225466
Up DTYMK 1 0 0 0.237835
Up NDFIP1 1 0 0 0.237726
Up BTF3L4 1 0 0 0.213292
Up AFAP1L1 1 0 0 0.195053
Up ATP6V1D 1 0 0 0.235992
Up LSM3 1 0 0 0.202852
Up ARFIP2 1 0 0 0.22145
Up F13A1 1 0 0 0.201558
Up ABI3BP 1 0 0 0.18668
Up NDUFAF3 1 0 0 0.193485
Up APOD 1 0 0 0.201401
Up UBL5 1 0 0 0.242915
Up MFAP5 1 0 0 0.160727
Up RAB4A 1 0 0 0.234402
Up SNAPIN 1 0 0 0.232493
Up UROS 1 0 0 0.212264
Up PLTP 1 0 0 0.201401
Up VPS28 1 0 0 0.234402
Up EIF3L 1 0 0 0.229656
Up NUDT16 1 0 0 0.237835
Up BLOC1S1 1 0 0 0.256919
Down ESR1 250 0.13227 1.07E+08 0.34572
Down LCK 209 0.099202 95979964 0.328259
Down S1PR5 174 0.006652 8092966 0.28169
Down CCL28 174 0.003314 5208440 0.274992
Down CTNND1 106 0.042469 42968374 0.310275
Down KNTC1 101 0.02909 80024314 0.25565
Down NGFR 100 0.036602 63182380 0.318388
Down TIAM2 95 0.021154 62011932 0.265317
Down OBSCN 86 0.010365 36096562 0.247534
Down PLD1 73 0.033394 17246708 0.30421
Down CALCR 71 0.002592 2172836 0.25466
Down PTGDR 70 0.002067 1966748 0.255524
Down FASLG 69 0.019813 7248566 0.301244
Down NEDD4L 68 0.023391 18526624 0.311841
Down GLI3 68 0.017183 7308126 0.2879
Down CEP135 65 0.013666 21907982 0.267857
Down SDCCAG8 65 0.013666 21907982 0.267857
Down ARHGAP39 61 0.006186 28702190 0.252655
Down TNKS 60 0.004206 3754360 0.297842
Down CHEK2 60 0.016237 7288936 0.307601
Down GLI2 58 0.012509 5073890 0.282922
Down ENTPD5 57 0.005964 2743528 0.250015
Down FAM13B 56 0.004818 23506158 0.251122
Down ARHGAP22 56 0.004818 23506158 0.251122
Down LAMA5 52 0.00723 12112106 0.258896
Down SYNJ2 52 0.010084 13175450 0.253879
Down BCL2L11 52 0.016836 10636772 0.313969
Down ALOX15 49 0.008753 5227944 0.244161
Down FGFR3 49 0.011331 25238840 0.255587
Down GEMIN5 47 0.001525 2623902 0.254973
Down FAS 47 0.009545 4674560 0.293347
Down PDE4B 46 0.005717 3857072 0.252024
Down KCNC1 45 0.011352 17732982 0.215233
Down TAF4B 45 0.004747 2685668 0.266101
Down TOP3A 45 0.011616 46078906 0.231272
Down TTF1 43 0.001327 799808 0.270889
Down KCNQ4 42 0.027528 31515762 0.226874
Down MUC17 42 0.019711 25257640 0.157086
Down NTN1 40 0.012007 10110832 0.266152
Down COL8A1 38 0.013121 17046748 0.212558
Down MMRN1 38 0.011827 11815884 0.252424
Down EPHA4 38 0.003668 1364992 0.273358
Down MEN1 35 0.006804 6211974 0.272297
Down GOSR1 34 0.008526 3939382 0.285714
Down SKA1 32 0.002897 9913724 0.243129
Down VTI1A 31 0.007925 4181998 0.286386
Down SYNE2 30 0.007519 9249888 0.228212
Down ITIH4 26 0.007262 1264158 0.272297
Down LCAT 26 0.005782 971078 0.252178
Down TRIB3 24 0.002492 6242350 0.248261
Down TRAF5 24 0.00684 5476244 0.212395
Down DNAH3 24 0.007222 8565654 0.215524
Down PFAS 24 0.014988 8957870 0.288321
Down SNPH 24 0.00801 15545944 0.224536
Down GADD45G 20 0.003326 13947820 0.23265
Down SFRP5 20 0.006774 5015824 0.211927
Down SPTB 20 0.0063 11636704 0.233978
Down KAT7 18 0.003392 3121342 0.235683
Down EPHB4 18 0.001434 905566 0.260034
Down DNAH5 17 0.002849 3119232 0.205745
Down HIVEP1 17 0.005211 11367638 0.232859
Down DNAJC18 16 0.004758 4513144 0.228489
Down SCNN1D 16 0.001683 759732 0.291057
Down ZBP1 16 0.0032 6672792 0.233555
Down RAP1GAP2 15 0.003133 3581154 0.225872
Down SARDH 15 0.005309 5233702 0.183926
Down PRPS2 15 0.006081 1607396 0.285281
Down MYO10 15 0.004221 1310316 0.235723
Down ABCB4 14 5.59E-04 1308566 0.227248
Down SPN 13 0.003074 2890384 0.244522
Down ERO1A 13 0.004612 1425588 0.287161
Down LPXN 13 0.002728 4156340 0.242304
Down CD82 12 0.001605 269660 0.279107
Down CFP 12 0.004063 2388686 0.220588
Down CDC20B 12 7.24E-04 204270 0.243429
Down EREG 11 0.00292 4060738 0.221568
Down GABRA4 11 0.004826 844010 0.188362
Down STK36 10 5.16E-06 1410 0.231582
Down CLDN1 10 0.002949 1746194 0.196311
Down SCAF4 10 0.003013 2202372 0.198039
Down MFAP3 9 0.003861 3290616 0.191498
Down PPT2 9 0.003141 1767236 0.210548
Down NPHP4 9 0.003191 1398268 0.215199
Down ABI3 8 0.001847 2267982 0.229515
Down BATF3 8 6.07E-04 393104 0.226291
Down KLC2 8 0.00245 1875364 0.222485
Down GRK4 8 5.59E-04 417560 0.222533
Down ARNTL2 7 0.001968 1639758 0.209684
Down PPP1R3B 7 0.002897 1494078 0.211732
Down IFT122 7 0.001127 614274 0.187492
Down AHSP 7 0.002414 2877402 0.186226
Down ASIC3 7 0.001895 501964 0.235361
Down WDR19 7 0.001287 982818 0.187492
Down MGAM 7 0.002455 406020 0.181388
Down STXBP5 6 0.00108 832104 0.196993
Down SLC30A7 6 0.002041 1162028 0.211776
Down NRL 6 0.001496 1056416 0.226267
Down KCNMB4 5 0.001932 644596 0.189223
Down SPAST 5 0.001932 3015012 0.17458
Down MTF1 5 8.87E-04 1194192 0.226862
Down FOXP2 5 0.001059 361276 0.219804
Down IWS1 4 4.91E-04 486888 0.21999
Down LRSAM1 4 4.66E-04 327264 0.292456
Down ECD 4 3.00E-08 6 0.246517
Down RFX3 3 9.66E-04 260498 0.235696
Down IPP 3 4.83E-04 255296 0.199412
Down ERG 3 0.001157 1993680 0.288401
Down SLC9A7 2 4.83E-04 102030 0.189205
Down KBTBD7 2 4.83E-04 116108 0.284029
Down CARD14 2 2.67E-05 3564 0.219501
Down ANKRD6 2 3.60E-07 366 0.212744
Down ZFYVE1 2 4.83E-04 123952 0.234428
Down LNX2 1 0 0 0.215132
Down ATL1 1 0 0 0.148637
Down LMO7 1 0 0 0.195467

Construction of miRNA - target regulatory network

After combining the results of miRNA-target genes with the interactive network of miRNAs, 281 hub genes were selected and 2138 were miRNAs. The genes and miRNAs are shown in Fig. 4a. Specifically, 97 miRNAs (ex, hsa-mir-8067) that regulate RPL13A, 95 miRNAs (ex, hsa-mir-4518) that regulate RPS15A, 71 miRNAs (ex, hsa-mir-3685) that regulate RPLP0, 65 miRNAs (ex, hsa-mir-1202) that regulates ADCY6, 48 miRNAs (ex, hsa-mir-4461) that regulate RPS29, 129 miRNAs (ex, hsa-mir-8082) that regulate CTNND1, 98 miRNAs (ex, hsa-mir-4422) that regulate ESR1, 76 miRNAs (ex, hsa-mir-548am-5p) that regulate NEDD4L, 62 miRNAs (ex, hsa-mir-6886-3p) that regulate KNTC1 and 56 miRNAs (ex, hsa-mir-9500) that regulate NGFR were detected (Table 6).

Fig. 4.

Fig. 4

a Target gene - miRNA regulatory network between target genes and miRNAs. b Target gene - TF regulatory network between target genes and TFs. Up regulated genes are marked in green; down regulated genes are marked in red; The purple color diamond nodes represent the key miRNAs; the blue color triangle nodes represent the key TFs.

Table 6.

miRNA - target gene and TF - target gene interaction

Regulation Target Genes Degree MicroRNA Regulation Target Genes Degree TF
Up RPL13A 97 hsa-mir-8067 Up RBX1 15 PER3
Up RPS15A 95 hsa-mir-4518 Up RPS15 13 CTCF
Up RPLP0 71 hsa-mir-3685 Up RPS20 12 E2F7
Up ADCY6 65 hsa-mir-1202 Up ADCY6 11 LMO2
Up RPS29 48 hsa-mir-4461 Up POLR2K 9 POLR2H
Up RPL30 47 hsa-mir-6811-5p Up RPS15A 8 FOXF2
Up RPL35 44 hsa-mir-2278 Up RPL35 8 MYB
Up RPS23 40 hsa-mir-4282 Up RPS23 5 USF1
Up SAA1 33 hsa-mir-4701-3p Up RPL13A 5 NFYA
Up RPS5 29 hsa-mir-1301-3p Up RPS29 5 JUN
Up RBX1 29 hsa-mir-5187-3p Up POLR2J 5 POLR2C
Up RPS20 26 hsa-mir-708-5p Up RPL30 4 IRF7
Up RPS15 23 hsa-mir-1260b Up RPLP0 3 SMAD3
Up POLR2K 13 hsa-mir-5680 Up RPS5 3 GABPA
Up POLR2J 9 hsa-mir-129-2-3p Up SAA1 2 CEBPB
Down CTNND1 129 hsa-mir-8082 Up PHB2 1 PHB2
Down ESR1 98 hsa-mir-4422 Down ESR1 122 NCOA2
Down NEDD4L 76 hsa-mir-548am-5p Down LCK 21 EBF1
Down KNTC1 62 hsa-mir-6886-3p Down GLI3 18 SMAD2
Down NGFR 56 hsa-mir-9500 Down NEDD4L 17 JUND
Down TIAM2 49 hsa-mir-3679-5p Down CALCR 15 FOXO3
Down GLI3 33 hsa-mir-1913 Down NGFR 10 POU2F1
Down FASLG 25 hsa-mir-7849-3p Down FASLG 8 DAXX
Down PLD1 22 hsa-mir-3200-3p Down CTNND1 7 GATA1
Down OBSCN 19 hsa-mir-3657 Down KNTC1 5 SP1
Down CALCR 12 hsa-mir-4735-5p Down PLD1 4 E2F1
Down PTGDR 11 hsa-mir-4477b Down TIAM2 4 FOXD1
Down CCL28 8 hsa-mir-770-5p Down GLI2 1 GLI3
Down LCK 6 hsa-mir-520c-3p Down ERG 1 ESR1
Down S1PR5 4 hsa-mir-31-5p Down PTGDR 1 RORA
Down CCL28 1 FOS
Down OBSCN 1 CUX1

Construction of TF - target regulatory network

After combining the results of TF-target genes with the interactive network of TFs, 455 hub genes were selected and 274 were TFs. The genes and TFs are shown in Fig. 4b. Specifically, 15 TFs (ex, PER3) that regulate RBX1, 13 TFs (ex, CTCF) that regulate RPS15, 12 TFs (ex, E2F7) that regulate RPS20, 11 TFs (ex, LMO2) that regulate ADCY6, 9 TFs (ex, POLR2H) that regulate POLR2K, 122 TFs (ex, NCOA2) that regulate ESR1, 21 miRNAs (ex, EBF1) that regulate LCK, 18 TFs (ex, SMAD2) that regulate GLI3, 17 TFs (ex, JUND) that regulate NEDD4L, and 15 TFs (ex, FOXO3) that regulate CALCR were detected (Table 6).

Receiver operating characteristic (ROC) curve analysis

Moreover, ROC curve analysis using “pROC” packages was performed to calculate the capacity of ten hub genes to distinguish PCOS from normal control. SAA1, ADCY6, POLR2K, RPS15, RPS15A, CTNND1, ESR1, NEDD4L, KNTC1 and NGFR all exhibited excellent diagnostic efficiency (AUC > 0.7) (Fig. 5).

Fig. 5.

Fig. 5

ROC curve validated the sensitivity, specificity of hub genes as a predictive biomarker for PCOS prognosis. a SAA1, b ADCY6, c POLR2K, d RPS15, e RPS15A, f ESR1, g LCK, h S1PR5, i CCL28, j CTNND1

Validation of the expression levels of hub genes by RT-PCR

Aiming to further verify the expression patterns of selected hub genes, real-time PCR, which allows quantitative analysis of hub gene expression, was applied. The results showed that the relative expression levels of 10 hub genes including SAA1, ADCY6, POLR2K, RPS15, RPS15A, CTNND1, ESR1, NEDD4L, KNTC1 and NGFR were consistent with the expression profiling by high throughput sequencing (Fig. 6).

Fig. 6.

Fig. 6

Validation of hub genes by RT- PCR. a SAA1, b ADCY6, c POLR2K, d RPS15, e RPS15A, f ESR1, g LCK, h S1PR5, i CCL28, j CTNND1

Molecular docking studies

In the present analysis, the docking simulations are performed to classify the active site conformation and significant interactions with the receptor binding sites responsible for complex stability. The over expressed genes is recognized in polycystic ovary syndrome and their x-ray crystallographic proteins structure are selected from PDB for docking studies. The standard drugs containing steroid nucleus are most commonly used either alone or in combination with other drugs. The docking studies of standard molecules containing the steroid ring have been carried out using Sybyl X 2.1 drug design software. The docking studies were performed to know the biding interaction of standard molecules on identified overexpressed genes of protein. The X- RAY crystallographic structure of one protein in each of four over expressed genes of POLR2K, RPS15, RPS15 and SAA1 of their co-crystallised protein of PDB code 1LE9, 3OW2, 1G1X and 4IP8 respectively were selected for the docking (Fig. 7). A total of three drug molecules of ethinylestradiol (ETE), levonorgestril (LNG) and desogestril (DSG) were docked with over expressed proteins to assess the binding affinity with proteins. The binding score greater than six are said to be good, all three drug molecules obtained binding score greater than 7 respectively. The molecules ETE obtained with a high binding score of 9.943 with SAA1 of PDB code 4IP8 and 8.260, 8.223 and 8.019 with 1G1X, 3OW2 and 1LE9. The LNG obtained highest binding score of 8.535 with SAA1 of PDB code 4IP8 and 8.351, 7.973 and 7.854 with RPS15, POLR2K and RPS15 alpha of PDB code 3OW2, 1LE9 and 1G1X respectively. DSG: highest with POLR2K of 8.273 with PDB code 1LE9, 8.158 with SAA1 of PDB code 4IP8, 7.745 with RPS15 alpha of PDB code 1G1X and obtained least binding score of 5.674 with RPS15 of PDB code 3OW2 respectively (Table 7). The molecule ETE and LNG has highest binding score its interaction with protein 4IP8 and hydrogen bonding and other bonding interactions with amino acids are depicted by 3D (Fig. 8) and 2D (Fig. 9)

Fig. 7.

Fig. 7

Structures of Designed Molecules

Table 7.

Docking results of standard drugs on overexpressed proteins

Sl. No/ Code Over expressed gene: POLR2K Over expressed gene: RPS15 Over expressed gene: RPS15 alpha Over expressed gene: SAA1
PDB: 1LE9 PDB: 3OW2 PDB: 1G1X PDB: 4IP8
Total Score Crash
(-Ve)
Polar Total Score Crash
(-Ve)
Polar Total Score Crash
(-Ve)
Polar Total Score Crash
(-Ve)
Polar
ETE 8.019 -0.755 1.219 8.223 -1.768 2.517 8.260 -0.857 3.135 9.943 -1.689 0.891
LNG 7.973 -0.945 1.295 8.351 -2.752 3.465 7.854 -0.599 2.373 8.535 -1.948 0.057
DSG 8.273 -1.124 1.116 5.674 -1.611 2.212 7.745 -1.046 2.306 8.158 -1.997 0.000

Fig. 8.

Fig. 8

2D Binding of Molecule ETE with 4IP8

Fig. 9.

Fig. 9

3D Binding of Molecule ETE with 4IP8

Discussion

PCOS is a most prevalent endocrine disorder with hyperandrogenism and chronic anovulation [29]. If not treated promptly and effectively, PCOS can seriously reduce the quality of life. There is no doubt that considerate syndrome at the molecular level will help to develop their diagnosis and treatment [30]. Up to now, various biomarkers have been identified to be linked with PCOS and might be selected as therapeutic targets, but the detailed mechanism of gene regulation leading to syndrome advancement remains elusive [31].

In our investigation, we aimed to identify biomarkers of PCOS and uncover their biological functions through bioinformatics analysis. Dataset GSE84958 was selected as expression profiling by high throughput sequencing dataset in our analysis. As a result, 360 up regulated and 379 down regulated genes at least 4-fold change between PCOS and normal control samples were screened out. ABI3BP protein expression in heart tissue was significantly related with cardiovascular disease [32], but this gene might be liable for progression of PCOS. Romo-Yáñez et al [33] have revealed the expression of BNIP3 was linked with diabetic in pregnancies, but this gene might be responsible for progression of PCOS. F13A1 is an essential regulatory factor to be associated in PCOS development [34]. An investigation has reported that the ITIH4 can promote non-alcoholic fatty liver disease [35], but this gene might be important for progression of PCOS. Da et al [36] have suggested that the TET3 is an important role in controlling type 2 diabetes progressions, but this gene might be key role in PCOS.

The GO and pathway enrichment analysis was of great importance for interpreting the molecular mechanisms of the key cellular activities in PCOS. RPS5 [37], RBM3 [38], BAK1 [39], NDUFC2 [40], NDUFS4 [41], NDUFS5 [42], UQCRFS1 [43], COX6B1 [44], NDUFA13 [45], PRMT1 [46], RDX (radixin) [47], EPHB4 [48], SYNE2 [49], DNAH5 [50], NEDD4L [51], PDE4B [52] and CTNND1 [53] plays a critical role in the process of cardiovascular disease, but these genes might be linked with development of PCOS. Ostergaard et al [54], Zi et al [55], Kunej et al [56], Van der Schueren et al [57], Jin et al [58], Emdad et al [59], Liu et al [60], Scherag et al [61], Shi and Long [62], Sharma et al [63], Parente et al [64], Saint-Laurent et al [65] and Lee [66] demonstrated that over expression of COA3, PHB (prohibitin), UQCRC1, COX4I1, IFI27, MTDH (metadherin), S100A16, SDCCAG8, GLI2, NTN1, NLGN2, FGFR3 and PTPRN2 could cause obesity, but these genes might be involved in progression of PCOS. Alsters et al [67], Lee et al [68], Shiffman et al [69], Yaghootkar et al [70], Rotroff et al [71], Cheng et al [72], Baig et al [73], Zhang et al [74], Lebailly et al [75], Ferris et al [76], Lempainen et al [77] and McCallum et al [78] presented that high expression of CPE (carboxypeptidase E), RPL13A, CERS2, CCND2, PRPF31, SARM1, PLD1, EPHA4, ARNTL2, BATF3, IKZF4 and MEN1 were associated with diabetes, but these genes might be linked with advancement of PCOS. Wang et al [79], Tian et al [80], Zhang et al [81] and Carr et al [82] demonstrated that over expression of ATP6AP2, FIS1, GRK4 and KCNQ4 were found to be substantially related to hypertension, but these genes might be essential for PCOS progression. Atiomo et al [83], Lara et al [84] and Douma et al [85] were reported that NQO1, NGFR (nerve growth factor receptor) and ESR1 could be an index for PCOS. Jin et al [86] presented that GLI3 was associated with non-alcoholic fatty liver disease, but this gene might be linked with development of PCOS.

In the present investigation, PPI network and its modules has been shown that significant amount of hub gene might be associated with progression of PCOS. Zhang et al [87] proposed that SAA1 was linked with progression of obesity, but this gene might be important for progression of PCOS. Deng et al [88] indicated that ADCY6 was responsible for development of cardiovascular disease, but this gene might be associated with advancement of PCOS. POLR2K, RPS15, RPS15A, ESR1, LCK (LCK proto-oncogene, Src family tyrosine kinase), S1PR5, CCL28, CTNND11, UQCRQ (ubiquinol-cytochrome c reductase complex III subunit VII), UQCRH (ubiquinol-cytochrome c reductase hinge protein), COX7C, COX6C, COX8A, COX5B, COX6A1, COX7A2L, ARHGAP39, OBSCN (obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF) and TIAM2 might be novel biomarkers for PCOS.

MiRNA-target genes and TF-target genes regulatory networks revealed that the miRNAs, TF and target genes were might be involved in PCOS. Hsa-mir-6886-3p was liable for progression of hypertension [89], but this gene might be involved in progression of PCOS. Some investigations determined that expression of PER3 [90] and SMAD2 [91] were associated with diabetes, but these genes might be linked with advancement of PCOS. NCOA2 was found to be associated with advancement of obesity [92], but this gene might be involved in progression of PCOS. Recently, increasing evidence demonstrated that EBF1 was expressed in coronary artery disease [93], but this gene might be responsible for progression of PCOS. FOXO3 was involved in progression of PCOS [94]. RPLP0, RPS29, KNTC1, hsa-mir-8067, hsa-mir-4518, hsa-mir-3685, hsa-mir-1202, hsa-mir-4461, hsa-mir-8082, hsa-mir-4422, hsa-mir-548am-5p, hsa-mir-9500, RBX1, RPS20, CALCR (calcitonin receptor), CTCF (CCCTC-binding factor), E2F7, LMO2, POLR2H and JUND (jun D proto-oncogene) might be novel biomarkers for PCOS.

Among all three of molecules of ethinylestradiol, levonorgestrel and desogetril respectively, ethinylestradiolhas obtained highest binding score (c-score) of 9.943 with protein of PDB code 4IP8 and obtained 8.260, 8.223 and 8.019 with protein of PDB 1G1X, 3OW2 and 1LE9 respectively. The phenolic -OH group in ring A of ethinylestradiol formed favourable bonding interactions with ALA-14 of Chain A and pi-pi bonding interactions of alicyclic ring B TRP-18. Ethinylestradiol also formed alkyl and pi-alkyl interaction of ring B, C and D with TRP-18, ARG-62, TYR-21, PHE-69, ILE-65 and ILE-58. Ethinylestradiol also formed Van der Waals interactions with ACA-61, MET-17, MET-24 and GLN-66 respectively. It is assumed that the highest binding score (c-score) of ethinylestradiol is due to the presence of aromatic ring and the phenolic –OH group.

In conclusion, we used a series of bioinformatics analysis methods to find the crucial genes and pathways associated in PCOS initiation and development from expression profiling by high throughput sequencing containing PCOS samples and normal control samples. Our investigations provide a more specific molecular mechanism for the advancement of PCOS, detail information on the potential biomarkers and therapeutic targets. However, the interacting mechanism and function of genes need to be confirmed in further experiments.

Acknowledgement

We thank Wiebke Arlt, University of Birmingham, Institute of Metabolism and Systems Research (IMSR), Birmingham, United Kingdom, very much, the author who deposited their microarray dataset, GSE84958, into the public GEO database.

Informed consent

No informed consent because this study does not contain human or animals participants.

Authors’ contributions

Praveenkumar Devarbhavi - Investigation and resources. Lata Telang - Writing original draft and investigation. Basavaraj Vastrad - Writing original draft, and review and editing. Anandkumar Tengli - Investigation, and review and editing. Chanabasayya Vastrad - Software and investigation. Iranna Kotturshetti - Supervision and resources. The authors read and approved the final manuscript.

Availability of data and materials

The datasets supporting the conclusions of this article are available in the GEO (http://www.ncbi.nlm.nih.gov/geo) repository. [(GSE84958) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84958)]

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Meier RK. Polycystic Ovary Syndrome. Nurs Clin North Am. 2018;53(3):407–420. doi: 10.1016/j.cnur.2018.04.008. [DOI] [PubMed] [Google Scholar]
  • 2.Belenkaia LV, Lazareva LM, Walker W, Lizneva DV, Suturina LV. Criteria, phenotypes and prevalence of polycystic ovary syndrome. Minerva Ginecol 2019;71(3):211-223. doi:10.23736/S0026-4784.19.04404-6 [DOI] [PubMed]
  • 3.Escobar-Morreale HF, Roldán-Martín MB. Type 1 Diabetes and Polycystic Ovary Syndrome: Systematic Review and Meta-analysis. Diabetes Care. 2016;39(4):639–648. doi: 10.2337/dc15-2577. [DOI] [PubMed] [Google Scholar]
  • 4.Oliver-Williams C, Vassard D, Pinborg A, Schmidt L. Risk of cardiovascular disease for women with polycystic ovary syndrome: results from a national Danish registry cohort study. Eur J Prev Cardiol. 2020:2047487320939674. 10.1177/2047487320939674. [DOI] [PubMed]
  • 5.Lim SS, Norman RJ, Davies MJ, Moran LJ. The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Rev. 2013;14(2):95–109. doi: 10.1111/j.1467-789X.2012.01053.x. [DOI] [PubMed] [Google Scholar]
  • 6.Wu J, Yao XY, Shi RX, Liu SF, Wang XY. A potential link between polycystic ovary syndrome and non-alcoholic fatty liver disease: an update meta-analysis. Reprod Health. 2018;15(1):77. doi: 10.1186/s12978-018-0519-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Joham AE, Boyle JA, Zoungas S, Teede HJ. Hypertension in Reproductive-Aged Women With Polycystic Ovary Syndrome and Association With Obesity. Am J Hypertens. 2015;28(7):847–851. doi: 10.1093/ajh/hpu251. [DOI] [PubMed] [Google Scholar]
  • 8.Forlenza GP, Calhoun A, Beckman KB, Halvorsen T, Hamdoun E, Zierhut H, Sarafoglou K, Polgreen LE, Miller BS, Nathan B, et al. Next generation sequencing in endocrine practice. Mol Genet Metab. 2015;115(2-3):61–71. doi: 10.1016/j.ymgme.2015.05.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Wang LP, Peng XY, Lv XQ, Liu L, Li XL, He X, Lv F, Pan Y, Wang L, Liu KF, et al. High throughput circRNAs sequencing profile of follicle fluid exosomes of polycystic ovary syndrome patients. J Cell Physiol 2019. doi:10.1002/jcp.28201 [DOI] [PubMed]
  • 10.Clough E, Barrett T. The Gene Expression Omnibus Database. Methods Mol Biol. 2016;1418:93–110. doi: 10.1007/978-1-4939-3578-9_5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43(7):e47. doi:10.1093/nar/gkv007 [DOI] [PMC free article] [PubMed]
  • 12.Ferreira JA. The Benjamini-Hochberg method in the case of discrete test statistics. Int J Biostat 2007;3(1):. doi:10.2202/1557-4679.1065 [DOI] [PubMed]
  • 13.Thomas PD. The Gene Ontology and the Meaning of Biological Function. Methods Mol Biol. 2017;1446:15–24. doi: 10.1007/978-1-4939-3743-1_2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 2009;37(Web Server issue):W305-W311. doi:10.1093/nar/gkp427 [DOI] [PMC free article] [PubMed]
  • 15.Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–D655. doi: 10.1093/nar/gkx1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–D452. doi: 10.1093/nar/gku1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B. Ideker T Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Przulj N, Wigle DA, Jurisica I. Functional topology in a network of protein interactions. Bioinformatics. 2004;20(3):340–348. doi: 10.1093/bioinformatics/btg415. [DOI] [PubMed] [Google Scholar]
  • 19.Nguyen TP, Liu WC, Jordán F. Inferring pleiotropy by network analysis: linked diseases in the human PPI network. BMC Syst Biol 2011;5:179. Published 2011 Oct 31. doi:10.1186/1752-0509-5-179 [DOI] [PMC free article] [PubMed]
  • 20.Shi Z, Zhang B. Fast network centrality analysis using GPUs. BMC Bioinformatics. 2011;12:149. doi: 10.1186/1471-2105-12-149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Fadhal E, Gamieldien J, Mwambene EC. Protein interaction networks as metric spaces: a novel perspective on distribution of hubs. BMC Syst Biol. 2014;8:6. doi: 10.1186/1752-0509-8-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Zaki N, Efimov D, Berengueres J. Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics. 2013;14:163. doi: 10.1186/1471-2105-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Fan Y, Xia J. miRNet-Functional Analysis and Visual Exploration of miRNA-Target Interactions in a Network Context. Methods Mol Biol. 2018;1819:215–233. doi: 10.1007/978-1-4939-8618-7_10. [DOI] [PubMed] [Google Scholar]
  • 24.Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi: 10.1186/1471-2105-12-77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262. [DOI] [PubMed] [Google Scholar]
  • 26.Shah KN, Patel SS. Phosphatidylinositide 3-kinase inhibition: A new potential target for the treatment of polycystic ovarian syndrome. Pharm Biol. 2016;54(6):975–983. doi: 10.3109/13880209.2015.1091482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Wang Y, Fu X, Xu J, Wang Q, Kuang H. Systems pharmacology to investigate the interaction of berberine and other drugs in treating polycystic ovary syndrome. Sci Rep 2016;6:28089. Published 2016 Jun 16. doi:10.1038/srep28089 [DOI] [PMC free article] [PubMed]
  • 28.Wu XK, Zhou SY, Liu JX, Pöllänen P, Sallinen K, Mäkinen M, Erkkola R. Selective ovary resistance to insulin signaling in women with polycystic ovary syndrome. Fertil Steril. 2003;80(4):954–965. doi: 10.1016/s0015-0282(03)01007-0. [DOI] [PubMed] [Google Scholar]
  • 29.Polak K, Czyzyk A, Simoncini T, Meczekalski B. New markers of insulin resistance in polycystic ovary syndrome. J Endocrinol Invest. 2017;40(1):1–8. doi: 10.1007/s40618-016-0523-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–284. doi: 10.1038/nrendo.2018.24. [DOI] [PubMed] [Google Scholar]
  • 31.Carvalho LML, Ferreira CN, Sóter MO, Sales MF, Rodrigues KF, Martins SR, Candido AL, Reis FM, Silva IFO, Campos FMF, et al. Microparticles: Inflammatory and haemostatic biomarkers in Polycystic Ovary Syndrome. Mol Cell Endocrinol. 2017;443:155–162. doi: 10.1016/j.mce.2017.01.017. [DOI] [PubMed] [Google Scholar]
  • 32.Delfín DA, DeAguero JL, McKown EN. The Extracellular Matrix Protein ABI3BP in Cardiovascular Health and Disease. Front Cardiovasc Med. 2019;6:23. doi: 10.3389/fcvm.2019.00023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Romo-Yáñez J, Domínguez-Castro M, Flores-Reyes JS, Estrada-Juárez H, Mancilla-Herrera I, Hernández-Pineda J, Bazan-Tejeda ML, Aguinaga-Ríos M, Reyes-Muñoz E. Hyperglycemia differentially affects proliferation, apoptosis, and BNIP3 and p53 mRNA expression of human umbilical cord Wharton's jelly cells from non-diabetic and diabetic pregnancies. Biochem Biophys Res Commun. 2019;508(4):1149–1154. doi: 10.1016/j.bbrc.2018.12.037. [DOI] [PubMed] [Google Scholar]
  • 34.Schweighofer N, Lerchbaum E, Trummer O, Schwetz V, Pilz S, Pieber TR, Obermayer-Pietsch B. Androgen levels and metabolic parameters are associated with a genetic variant of F13A1 in women with polycystic ovary syndrome. Gene. 2012;504(1):133–139. doi: 10.1016/j.gene.2012.04.050. [DOI] [PubMed] [Google Scholar]
  • 35.Nakamura N, Hatano E, Iguchi K, Sato M, Kawaguchi H, Ohtsu I, Sakurai T, Aizawa N, Iijima H, Nishiguchi S, et al. Elevated levels of circulating ITIH4 are associated with hepatocellular carcinoma with nonalcoholic fatty liver disease: from pig model to human study. BMC Cancer. 2019;19(1):621. doi: 10.1186/s12885-019-5825-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Da Li, Cao T, Sun X, Jin S, Di Xie, Huang X, Yang X, Carmichael GG, Taylor HS, Diano S, et al. Hepatic TET3 contributes to type-2 diabetes by inducing the HNF4α fetal isoform. Nat Commun 2020;11(1):342. doi:10.1038/s41467-019-14185-z [DOI] [PMC free article] [PubMed]
  • 37.Zhang X, Hu C, Zhang N, Wei WY, Li LL, Wu HM, Ma ZG, Tang QZ. Matrine attenuates pathological cardiac fibrosis via RPS5/p38 in mice. Acta Pharmacol Sin 2020. doi:10.1038/s41401-020-0473-8 [DOI] [PMC free article] [PubMed]
  • 38.Rosenthal LM, Leithner C, Tong G, Streitberger KJ, Krech J, Storm C, Schmitt KRL. RBM3 and CIRP expressions in targeted temperature management treated cardiac arrest patients-A prospective single center study. PLoS One. 2019;14(12):e0226005. doi: 10.1371/journal.pone.0226005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Hatchwell E. BAK1 gene variation and abdominal aortic aneurysms-variants are likely due to sequencing of a processed gene on chromosome 20. Hum Mutat. 2010;31(1):108–111. doi: 10.1002/humu.21147. [DOI] [PubMed] [Google Scholar]
  • 40.Raffa S, Chin XLD, Stanzione R, Forte M, Bianchi F, Cotugno M, Marchitti S, Micaloni A, Gallo G, Schirone L, et al. The reduction of NDUFC2 expression is associated with mitochondrial impairment in circulating mononuclear cells of patients with acute coronary syndrome. Int J Cardiol. 2019;286:127–133. doi: 10.1016/j.ijcard.2019.02.027. [DOI] [PubMed] [Google Scholar]
  • 41.Zhang H, Gong G, Wang P, Zhang Z, Kolwicz SC, Rabinovitch PS, Tian R, Wang W. Heart specific knockout of Ndufs4 ameliorates ischemia reperfusion injury. J Mol Cell Cardiol. 2018;123:38–45. doi: 10.1016/j.yjmcc.2018.08.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Iwahana T, Okada S, Kanda M, Oshima M, Iwama A, Matsumiya G, Kobayashi Y. Novel myocardial markers GADD45G and NDUFS5 identified by RNA-sequencing predicts left ventricular reverse remodeling in advanced non-ischemic heart failure: a retrospective cohort study. BMC Cardiovasc Disord. 2020;20(1):116. doi: 10.1186/s12872-020-01396-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Gusic M, Schottmann G, Feichtinger RG, Du C, Scholz C, Wagner M, Mayr JA, Lee CY, Yépez VA, Lorenz N, et al. Bi-Allelic UQCRFS1 Variants Are Associated with Mitochondrial Complex III Deficiency, Cardiomyopathy, and Alopecia Totalis. Am J Hum Genet. 2020;106(1):102–111. doi: 10.1016/j.ajhg.2019.12.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Abdulhag UN, Soiferman D, Schueler-Furman O, Miller C, Shaag A, Elpeleg O, Edvardson S, Saada A. Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. Eur J Hum Genet. 2015;23(2):159–164. doi: 10.1038/ejhg.2014.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Hu H, Nan J, Sun Y, Zhu D, Xiao C, Wang Y, Zhu L, Wu Y, Zhao J, Wu R, et al. Electron leak from NDUFA13 within mitochondrial complex I attenuates ischemia-reperfusion injury via dimerized STAT3. Proc Natl Acad Sci U S A. 2017;114(45):11908–11913. doi: 10.1073/pnas.1704723114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Pyun JH, Kim HJ, Jeong MH, Ahn BY, Vuong TA, Lee DI, Choi S, Koo SH, Cho H, Kang JS. Cardiac specific PRMT1 ablation causes heart failure through CaMKII dysregulation. Nat Commun. 2018;9(1):5107. doi: 10.1038/s41467-018-07606-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Cetinkaya A, Berge B, Sen-Hild B, Troidl K, Gajawada P, Kubin N, Valeske K, Schranz D, Akintürk H, Schönburg M, et al. Radixin Relocalization and Nonmuscle α-Actinin Expression Are Features of Remodeling Cardiomyocytes in Adult Patients with Dilated Cardiomyopathy. Dis Markers. 2020;2020:9356738. doi: 10.1155/2020/9356738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Yang D, Jin C, Ma H, Huang M, Shi GP, Wang J, Xiang M. EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease. Angiogenesis. 2016;19(3):297–309. doi: 10.1007/s10456-016-9514-9. [DOI] [PubMed] [Google Scholar]
  • 49.Chen S, Wang C, Wang X, Xu C, Wu M, Wang P, Tu X, Wang QK. Significant Association Between CAV1 Variant rs3807989 on 7p31 and Atrial Fibrillation in a Chinese Han Population. J Am Heart Assoc. 2015;4(5):e001980. doi: 10.1161/JAHA.115.001980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Nöthe-Menchen T, Wallmeier J, Pennekamp P, Höben IM, Olbrich H, Loges NT, Raidt J, Dougherty GW, Hjeij R, Dworniczak B, et al. Randomization of left-right Asymmetry and Congenital Heart defects: the role of DNAH5 in humans and mice. Circ Genom Precis Med 2019;doi:10.1161/CIRCGEN.119.002686 [DOI] [PMC free article] [PubMed]
  • 51.Dahlberg J, Sjögren M, Hedblad B, Engström G, Melander O. Genetic variation in NEDD4L, an epithelial sodium channel regulator, is associated with cardiovascular disease and cardiovascular death. J Hypertens. 2014;32(2):294–299. doi: 10.1097/HJH.0000000000000044. [DOI] [PubMed] [Google Scholar]
  • 52.Karam S, Margaria JP, Bourcier A, Mika D, Varin A, Bedioune I, Lindner M, Bouadjel K, Dessillons M, Gaudin F, et al. Cardiac Overexpression of PDE4B Blunts β-Adrenergic Response and Maladaptive Remodeling in Heart Failure. Circulation. 2020;142(2):161–174. doi: 10.1161/CIRCULATIONAHA.119.042573. [DOI] [PubMed] [Google Scholar]
  • 53.Alharatani R, Ververi A, Beleza-Meireles A, Ji W, Mis E, Patterson QT, Griffin JN, Bhujel N, Chang CA, Dixit A, et al. Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome. Hum Mol Genet. 2020;29(11):1900–1921. doi: 10.1093/hmg/ddaa050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Ostergaard E, Weraarpachai W, Ravn K, Born AP, Jønson L, Duno M, Wibrand F, Shoubridge EA, Vissing J. Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature. J Med Genet. 2015;52(3):203–207. doi: 10.1136/jmedgenet-2014-102914. [DOI] [PubMed] [Google Scholar]
  • 55.Zi Xu YX, Ande SR, Mishra S. Prohibitin: A new player in immunometabolism and in linking obesity and inflammation with cancer. Cancer Lett. 2018;415:208–216. doi: 10.1016/j.canlet.2017.12.001. [DOI] [PubMed] [Google Scholar]
  • 56.Kunej T, Wang Z, Michal JJ, Daniels TF, Magnuson NS, Jiang Z. Functional UQCRC1 polymorphisms affect promoter activity and body lipid accumulation. Obesity. 2007;15(12):2896–2901. doi: 10.1038/oby.2007.344. [DOI] [PubMed] [Google Scholar]
  • 57.Van der Schueren B, Vangoitsenhoven R, Geeraert B, De Keyzer D, Hulsmans M, Lannoo M, Huber HJ, Mathieu C, Holvoet P. Low cytochrome oxidase 4I1 links mitochondrial dysfunction to obesity and type 2 diabetes in humans and mice. Int J Obes. 2015;39(8):1254–1263. doi: 10.1038/ijo.2015.58. [DOI] [PubMed] [Google Scholar]
  • 58.Jin W, Jin W, Pan D. Ifi27 is indispensable for mitochondrial function and browning in adipocytes. Biochem Biophys Res Commun. 2018;501(1):273–279. doi: 10.1016/j.bbrc.2018.04.234. [DOI] [PubMed] [Google Scholar]
  • 59.Emdad L, Das SK, Hu B, Kegelman T, Kang DC, Lee SG, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: A Promiscuous Protein Partner Critical in Cancer, Obesity, and CNS Diseases. Adv Cancer Res. 2016;131:97–132. doi: 10.1016/bs.acr.2016.05.002. [DOI] [PubMed] [Google Scholar]
  • 60.Liu Y, Zhang R, Xin J, Sun Y, Li J, Wei D, Zhao AZ. Identification of S100A16 as a novel adipogenesis promoting factor in 3T3-L1 cells. Endocrinology. 2011;152(3):903–911. doi: 10.1210/en.2010-1059. [DOI] [PubMed] [Google Scholar]
  • 61.Scherag A, Kleber M, Boes T, Kolbe AL, Ruth A, Grallert H, Illig T, Heid IM, Toschke AM, Grau K, et al. SDCCAG8 obesity alleles and reduced weight loss after a lifestyle intervention in overweight children and adolescents. Obesity. 2012;20(2):466–470. doi: 10.1038/oby.2011.339. [DOI] [PubMed] [Google Scholar]
  • 62.Shi Y, Long F. Hedgehog signaling via Gli2 prevents obesity induced by high-fat diet in adult mice. Elife. 2017;6:e31649. doi: 10.7554/eLife.31649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Sharma M, Schlegel M, Brown EJ, Sansbury BE, Weinstock A, Afonso MS, Corr EM, van Solingen C, Shanley LC, Peled D, et al. Netrin-1 Alters Adipose Tissue Macrophage Fate and Function in Obesity. Immunometabolism 2019;1(2):e190010. doi:10.20900/immunometab20190010 [DOI] [PMC free article] [PubMed]
  • 64.Parente DJ, Garriga C, Baskin B, Douglas G, Cho MT, Araujo GC, Shinawi M. Neuroligin 2 nonsense variant associated with anxiety, autism, intellectual disability, hyperphagia, and obesity. Am J Med Genet A. 2017;173(1):213–216. doi: 10.1002/ajmg.a.37977. [DOI] [PubMed] [Google Scholar]
  • 65.Saint-Laurent C, Garcia S, Sarrazy V, Dumas K, Authier F, Sore S, Tran A, Gual P, Gennero I, Salles JP, et al. Early postnatal soluble FGFR3 therapy prevents the atypical development of obesity in achondroplasia. PLoS One. 2018;13(4):e0195876. doi: 10.1371/journal.pone.0195876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Lee S. The association of genetically controlled CpG methylation (cg158269415) of protein tyrosine phosphatase, receptor type N2 (PTPRN2) with childhood obesity. Sci Rep. 2019;9(1):4855. doi: 10.1038/s41598-019-40486-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Alsters SI, Goldstone AP, Buxton JL, Zekavati A, Sosinsky A, Yiorkas AM, Holder S, Klaber RE, Bridges N, van Haelst MM, et al. Truncating Homozygous Mutation of Carboxypeptidase E (CPE) in a Morbidly Obese Female with Type 2 Diabetes Mellitus, Intellectual Disability and Hypogonadotrophic Hypogonadism. PLoS One. 2015;10(6):e0131417. doi: 10.1371/journal.pone.0131417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Lee J, Harris AN, Holley CL, Mahadevan J, Pyles KD, Lavagnino Z, Scherrer DE, Fujiwara H, Sidhu R, Zhang J, et al. Rpl13a small nucleolar RNAs regulate systemic glucose metabolism. J Clin Invest. 2016;126(12):4616–4625. doi: 10.1172/JCI88069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Shiffman D, Pare G, Oberbauer R, Louie JZ, Rowland CM, Devlin JJ, Mann JF, McQueen MJ. A gene variant in CERS2 is associated with rate of increase in albuminuria in patients with diabetes from ONTARGET and TRANSCEND. PLoS One. 2014;9(9):e106631. doi: 10.1371/journal.pone.0106631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Yaghootkar H, Stancáková A, Freathy RM, Vangipurapu J, Weedon MN, Xie W, Wood AR, Ferrannini E, Mari A, Ring SM, et al. Association analysis of 29,956 individuals confirms that a low-frequency variant at CCND2 halves the risk of type 2 diabetes by enhancing insulin secretion. Diabetes. 2015;64(6):2279–2285. doi: 10.2337/db14-1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Rotroff DM, Yee SW, Zhou K, Marvel SW, Shah HS, Jack JR, Havener TM, Hedderson MM, Kubo M, Herman MA, et al. Genetic Variants in CPA6 and PRPF31 Are Associated With Variation in Response to Metformin in Individuals With Type 2 Diabetes. Diabetes. 2018;67(7):1428–1440. doi: 10.2337/db17-1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Cheng Y, Liu J, Luan Y, Liu Z, Lai H, Zhong W, Yang Y, Yu H, Feng N, Wang H, et al. Sarm1 Gene Deficiency Attenuates Diabetic Peripheral Neuropathy in Mice. Diabetes. 2019;68(11):2120–2130. doi: 10.2337/db18-1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Baig MH, Kausar MA, Husain FM, Shakil S, Ahmad I, Yadav BS, Saeed M. Interfering PLD1-PED/PEA15 interaction using self-inhibitory peptides: An in silico study to discover novel therapeutic candidates against type 2 diabetes. Saudi J Biol Sci. 2019;26(1):160–164. doi: 10.1016/j.sjbs.2018.08.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Zhang Z, Tremblay J, Raelson J, Sofer T, Du L, Fang Q, Argos M, Marois-Blanchet FC, Wang Y, Yan L, et al. EPHA4 regulates vascular smooth muscle cell contractility and is a sex-specific hypertension risk gene in individuals with type 2 diabetes. J Hypertens. 2019;37(4):775–789. doi: 10.1097/HJH.0000000000001948. [DOI] [PubMed] [Google Scholar]
  • 75.Lebailly B, He C, Rogner UC. Linking the circadian rhythm gene Arntl2 to interleukin 21 expression in type 1 diabetes. Diabetes. 2014;63(6):2148–2157. doi: 10.2337/db13-1702. [DOI] [PubMed] [Google Scholar]
  • 76.Ferris ST, Carrero JA, Mohan JF, Calderon B, Murphy KM, Unanue ER. A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity. 2014;41(4):657–669. doi: 10.1016/j.immuni.2014.09.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Lempainen J, Härkönen T, Laine A, Knip M. Ilonen J; Finnish Pediatric Diabetes Register. Associations of polymorphisms in non-HLA loci with autoantibodies at the diagnosis of type 1 diabetes: INS and IKZF4 associate with insulin autoantibodies. Pediatr Diabetes. 2013;14(7):490–496. doi: 10.1111/pedi.12046. [DOI] [PubMed] [Google Scholar]
  • 78.McCallum RW, Parameswaran V, Burgess JR. Multiple endocrine neoplasia type 1 (MEN 1) is associated with an increased prevalence of diabetes mellitus and impaired fasting glucose. Clin Endocrinol. 2006;65(2):163–168. doi: 10.1111/j.1365-2265.2006.02563.x. [DOI] [PubMed] [Google Scholar]
  • 79.Wang Y, Bao MH, Zhang QS, Li JM, Tang L. Association of ATP6AP2 Gene Polymorphisms with Essential Hypertension in a South Chinese Han Population. Asian Pac J Cancer Prev. 2015;16(17):8017–8018. doi: 10.7314/apjcp.2015.16.17.8017. [DOI] [PubMed] [Google Scholar]
  • 80.Tian L, Neuber-Hess M, Mewburn J, Dasgupta A, Dunham-Snary K, Wu D, Chen KH, Hong Z, Sharp WW, Kutty S, et al. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. J Mol Med. 2017;95(4):381–393. doi: 10.1007/s00109-017-1522-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Zhang Y, Wang S, Huang H, Zeng A, Han Y, Zeng C, Zheng S, Ren H, Wang Y, Huang Y, et al. GRK4-mediated adiponectin receptor-1 phosphorylative desensitization as a novel mechanism of reduced renal sodium excretion in hypertension. Clin Sci. 2020;134(18):2453–2467. doi: 10.1042/CS20200671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Carr G, Barrese V, Stott JB, Povstyan OV, Jepps TA, Figueiredo HB, Zheng D, Jamshidi Y, Greenwood IA. MicroRNA-153 targeting of KCNQ4 contributes to vascular dysfunction in hypertension. Cardiovasc Res. 2016;112(2):581–589. doi: 10.1093/cvr/cvw177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Atiomo W, Shafiee MN, Chapman C, Metzler VM, Abouzeid J, Latif A, Chadwick A, Kitson S, Sivalingam VN, Stratford IJ, et al. Corrigendum: Expression of NAD(P) H quinone dehydrogenase 1 (NQO1) is increased in the endometrium of women with endometrial cancer and women with polycystic ovary syndrome. Clin Endocrinol. 2017;87(6):886. doi: 10.1111/cen.13515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Lara HE, Dissen GA, Leyton V, Paredes A, Fuenzalida H, Fiedler JL, Ojeda SR. An increased intraovarian synthesis of nerve growth factor and its low affinity receptor is a principal component of steroid-induced polycystic ovary in the rat. Endocrinology. 2000;141(3):1059–1072. doi: 10.1210/endo.141.3.7395. [DOI] [PubMed] [Google Scholar]
  • 85.Douma Z, Dallel M, Bahia W, Ben Salem A, Hachani B, Ali F, Almawi WY, Lautier C, Haydar S, Grigorescu F, Mahjoub T. Association of estrogen receptor gene variants (ESR1 and ESR2) with polycystic ovary syndrome in Tunisia. Gene 2020;741:144560. doi:10.1016/j.gene.2020.144560 [DOI] [PubMed]
  • 86.Jin SS, Lin XF, Zheng JZ, Wang Q, Guan HQ. lncRNA NEAT1 regulates fibrosis and inflammatory response induced by nonalcoholic fatty liver by regulating miR-506/GLI3. Eur Cytokine Netw. 2019;30(3):98–106. doi: 10.1684/ecn.2019.0432. [DOI] [PubMed] [Google Scholar]
  • 87.Zhang X, Tang QZ, Wan AY, Zhang HJ, Wei L. SAA1 gene variants and childhood obesity in China. Lipids Health Dis. 2013;12:161. doi: 10.1186/1476-511X-12-161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Deng Y, Wang J, Xie G, Zeng X, Li H. Circ-HIPK3 Strengthens the Effects of Adrenaline in Heart Failure by MiR-17-3p - ADCY6 Axis. Int J Biol Sci. 2019;15(11):2484–2496. doi: 10.7150/ijbs.36149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Miao R, Wang Y, Wan J, Leng D, Gong J, Li J, Zhang Y, Pang W, Zhai Z, Yang Y, Miao R, Wang Y, Wan J, et al. Microarray Analysis and Detection of MicroRNAs Associated with Chronic Thromboembolic Pulmonary Hypertension. Biomed Res Int. 2017;2017:8529796. doi: 10.1155/2017/8529796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Karthikeyan R, Marimuthu G, Sooriyakumar M, BaHammam AS, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP. Per3 length polymorphism in patients with type 2 diabetes mellitus. Horm Mol Biol Clin Investig. 2014;18(3):145–149. doi: 10.1515/hmbci-2013-0049. [DOI] [PubMed] [Google Scholar]
  • 91.Lu Y, Habtetsion TG, Li Y, Zhang H, Qiao Y, Yu M, Tang Y, Zhen Q, Cheng Y, Liu Y. Association of NCOA2 gene polymorphisms with obesity and dyslipidemia in the Chinese Han population. Int J Clin Exp Pathol. 2015;8(6):7341–7349. [PMC free article] [PubMed] [Google Scholar]
  • 92.Zhu Q, Chang A, Xu A, Luo K. The regulatory protein SnoN antagonizes activin/Smad2 protein signaling and thereby promotes adipocyte differentiation and obesity in mice. J Biol Chem. 2018;293(36):14100–14111. doi: 10.1074/jbc.RA118.003678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Ying Y, Luo Y, Peng H. EBF1 gene polymorphism and its interaction with smoking and drinking on the risk of coronary artery disease for Chinese patients. Biosci Rep. 2018;38(3):BSR20180324. doi: 10.1042/BSR20180324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Zhang S, Deng W, Liu Q, Wang P, Yang W, Ni W. Altered m6 A modification is involved in up-regulated expression of FOXO3 in luteinized granulosa cells of non-obese polycystic ovary syndrome patients. J Cell Mol Med. 2020;24(20):11874–11882. doi: 10.1111/jcmm.15807. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets supporting the conclusions of this article are available in the GEO (http://www.ncbi.nlm.nih.gov/geo) repository. [(GSE84958) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84958)]


Articles from Reproductive Biology and Endocrinology : RB&E are provided here courtesy of BMC

RESOURCES