Abstract
软骨干细胞是关节软骨中具有自我增殖、表面抗原表达特性及多向分化潜能的细胞,作为一种理想的干细胞来源,在干细胞治疗中有良好的应用前景。本文就软骨干细胞的标记、软骨分化信号通路、骨关节炎的临床治疗方法等研究进展进行综述。
Keywords: 软骨干细胞, 标记物, 软骨成骨, 骨关节炎
Abstract
Cartilage stem cells (CSCs) are cells that self-proliferate, have surface antigen expression, and have multidirectional differentiation potential in the articular cartilage. CSCs, as an ideal source of stem cells, has a good application prospect in stem cell therapy. This article reviews the CSCs markers, cartilage differentiation signaling pathway, and clinical treatment of osteoarthritis.
Keywords: cartilage stem cells, marker, cartilage ossification, osteoarthritis
关节软骨缺乏血管和神经营养,自我修复能力不足,如受到损伤时骨髓间充质干细胞难以自发补充至损伤区域,形成修复性软骨[1],往往为纤维瘢痕组织所替代,影响关节的正常生理结构和功能,长期的病理刺激最终可导致骨关节炎(osteoarthritis,OA)等组织退行性疾病的发生[2]。因此,阻止早期软骨损伤的进一步发展,启动软骨修复机制是目前研究的热点。随着组织工程、干细胞治疗技术的发展,软骨干细胞的发现和研究为从不同角度治疗软骨病变提供了新思路。
正常关节软骨分为4层,包括表层、中间层、深层以及由潮带分开的钙化软骨层,不同区域有不同的生物学基质成分和细胞表型[3]。关节软骨含有大量的干细胞或祖细胞,软骨干细胞来源于关节软骨表层。Dowthwaite等[4]研究发现,牛关节软骨表层细胞有更高的Notch-1表达阳性率,提示关节软骨表层存在软骨干细胞。Pretzel等[5]发现,CD166+细胞几乎只存在关节表层和中间层。Barbero等[6]对关节表层细胞进行筛选后再培养,可以获得具有多向分化能力、增殖能力的细胞,该细胞具有多种干细胞表面标志物的表达。软骨干细胞可以在自我更新、多向分化和迁移能力的基础上进行体外分离和鉴定[7],然而没有单一、特异的细胞标记物可以在体内对其进行示踪或区分[3]。由于缺乏稳定的标记来源,人类软骨干细胞的发育起源尚未明确,但是仍有证据表明软骨细胞中至少有2个不同的亚群在软骨发育中共存,软骨干细胞(cartilage stem cells,CSCs)和软骨祖细胞(cartilage progenitor cells,CPCs)。由于干细胞和祖细胞本质很难区分[8],因此本文统一采用干细胞来表示。
1. 软骨干细胞的标记鉴定
干细胞的标记及示踪是开展干细胞研究的前提,通过示踪不仅可以直观了解其分布,而且可以追踪体内的分化转归和调控机制。目前对软骨干细胞标记的研究还停留在寻找与骨髓间充质干细胞标记物共性和特异性的对比中和参考细胞治疗国际协会制定的间充质干细胞(mesenchymal stem cells,MSCs)的鉴定标准,即:贴壁性,特定细胞表面标记物的表达,成脂、成骨、成软骨的能力[9]。
1.1. CD家族
细胞治疗国际协会认为满足以下条件可考虑为MSCs:细胞表面标记物CD73/CD90/CD105表达阳性,CD14/CD34/CD45/HLA-DR表达阴性[9]。MSCs标记物既可为单一表达也可为共表达。从健康软骨中分离培养细胞进行表型分析,CD105+CD166+、STRO-1+、Notch-1+、CD166+CD90+、CD106+ STRO-1+Notch-1+均可考虑为MSCs[3],[10]。Pretzel等[5]采用流式细胞术和免疫荧光分析CD105+CD166+作为MSCs的标记组合。Hynes等[11]通过培养多能诱导干细胞获得类MSCs细胞,其中的MSCs核心表面标记物(CD73、CD90、CD105、CD146、CD166)表达阳性、多向性标记物(TRA160、TRA181、碱性磷酸酶)和造血标记物(CD14、CD34、CD45)表达阴性。
1.2. EdU与BrdU
EdU与BrdU均可以通过和胸腺嘧啶特异性竞争掺入DNA合成期细胞单链DNA核苷序列中,从而示踪增殖期的软骨干细胞[12]。该标记方法简单、安全、快速,对活体细胞毒性小。
与BrdU标记相比,EdU标记后仍可进行其他DNA染色,实现细胞多重检测和多参数分析,而分子量较小使其能够快速有效地扩散和穿透组织,标记速度更快,但高浓度长时间标记会影响细胞的代谢及增殖分化。由于标记物存在于细胞DNA中,且强度随细胞分裂逐渐减低,标记细胞死亡后会出现假阳性结果,主要用作干细胞的短期示踪。
1.3. PKH26、PKH67标记
PKH26、PKH67、Dil标记细胞膜,DAPI标记细胞核,在激发光下显示不同颜色,均可用于软骨干细胞示踪[13]–[14]。与BrdU相比,其荧光保持时间长,敏感度高,对活细胞毒性小。da Silva等[15]利用PKH67与CD34/CD38免疫染色结合,对14 d内骨髓和脐带中干细胞分裂动力学的差异进行分析。Shuai等[16]通过 PKH26与Gd-DTPA双标记研究人脐带MSCs在体内的迁移和示踪。研究表明,PKH26、PKH67不影响干细胞生物学特性的表达,对细胞增殖、存活、迁移能力无副作用[17],然而随细胞有丝分裂进行,荧光强度逐渐降低,适合于干细胞的短期或初始标记[18]。
1.4. 荧光蛋白标记
绿色荧光蛋白(green flurescent protein,GFP)在荧光显微镜下可自发产生绿色荧光,利用其特性可用于干细胞标记。通过质粒转染、病毒载体转染等方式可标记间充质干细胞,然而获得持续、高效、稳定表达的GFP克隆程序复杂,过高水平的GFP表达有一定的细胞毒性,且GFP信号无法扩增,不能用于定量分析。Tao等[19]对比BrdU、PKH26、慢病毒-GFP标记人脐带MSCs研究发现,PKH26和BrdU随细胞分裂标记强度减低,适合于MSCs的短期标记,而慢病毒-GFP提供高感染性和强效的荧光强度允许标记稳定持续的表达,适用于MSCs的长期追踪。
2. 软骨干细胞获取途径和方法
软骨干细胞来源于关节软骨表层,Barbero等[6]对人关节软骨细胞经过单层培养扩增去分化后,一小部分仍然具有细胞克隆和向成脂、成骨、成软骨分化的能力。将健康关节软骨样本在0.15%Ⅱ型胶原酶中降解,在培养基中传代,细胞克隆增殖后采用流式细胞术和多抗体组合免疫标记筛选,如CD9/CD90/CD166[20]、CD44/CD151/CD49c[21]等,然后对成脂、成骨、成软骨能力进行验证,可以得到相对可靠的CSCs。另外有学者[22]将关节软骨利用序列蛋白酶和胶原酶消化分离,将分离的细胞在不同的纤维连接蛋白黏附条件下培养扩增,采用流式细胞术和免疫组织化学标记CD105/CD166/CD44/CD29/CD49e筛选出CSCs。
3. 软骨干细胞诱导分化信号通路
软骨成骨是一个复杂的过程,受到多种信号通路和细胞因子的调节[9],参与诱导软骨干细胞分化的生长因子有转化生长因子-β(transforming growth factor-β,TGF-β)、胰岛素样生长因子1(insulin-like growth factors-1,IGF-1)、骨形态发生蛋白(bone morphogenetic protein,BMP)、人甲状旁腺激素相关蛋白(parathyroid hormone-like related protein,PThrP)等。
3.1. Ihh-PTHrP
机械刺激通过Ihh/PTHrP信号通路负反馈调节软骨细胞的增殖和分化,影响出生前后髁突软骨生长发育[23]–[24]。Ihh是PTHrP的上游信号分子,与PTHrP共同参与了软骨成骨的过程[24]。低压力环境下,PTHrP、ColⅠ、ColⅡ基因表达和蛋白合成增加,软骨细胞趋向于增殖,而在高压力环境下,Ihh、ColⅩ基因表达和蛋白合成增加,软骨细胞趋向于成熟分化。环巴胺通过拮抗Smo抑制Ihh信号通路,证明PTHrP基因表达受上游信号分子Ihh的调控,同时过量PTHrP反向抑制Ihh表达合成,PTHrP表达下降。Ihh-PTHrP负反馈调节机制协同调节软骨内成骨过程。
3.2. TGF-β与BMP
TGF-β与BMP信号通路对软骨生长发育存在直接或间接调控,与其他细胞因子如成纤维细胞生长因子(fibroblast growth factor,FGF)、Ihh、Notch、PTHrP等协同调节成骨细胞和软骨细胞分化。同时TGF-β与BMP受到多种调节,如细胞外基质蛋白、抑制性Smads、泛素酶、转录因子抑制剂、miRNA和表型遗传等[25]。TGF-β信号通路早期促进成骨祖细胞富集和分化,其信号上调正向调节Sox9表达,下调Dlx5导致Runx9表达下调,影响髁突软骨细胞的增殖水平[26]。同时TGF-β1介导Akt信号活化增加β-连环蛋白核积累,随后调节细胞周期蛋白D1/c-myc基因转录干细胞增殖加速[27]。在后期TGF-β负反馈调节成骨细胞分化和矿化,TGF-β1与Wnt/β-连环蛋白信号通路相互作用抑制成骨细胞分化,诱导软骨生成[9]。TGF-β既参与骨形成也参与骨吸收,缺失和过量都会导致骨关节炎进展。BMP信号参与软骨内成骨过程,包括间充质聚集、软骨细胞增殖及分化,在维持关节形态中有重要作用[25]。
3.3. Sox9
Sox9在维持软骨细胞增殖、肥大、ColⅩ胶原表达中发挥重要作用。Sox9可刺激Ihh表达,PTHrP表达增加,抑制软骨细胞肥大影响软骨生成[28]。Pref-1可能作为Sox9上游信号调节Sox9表达,Sox9与Sox5、Sox6协同诱导间充质细胞分化为软骨细胞。FGF可激活Notch信号通路,反向调节Sox9的表达,影响软骨细胞的增殖[26]。
3.4. Runx2
Runx2信号调节分子mMyocyte enhancer factor 2c(Mef2c)和histone deacetylase4(HDAC4)间的动态平衡影响Runx2基因表达,从而调控软骨细胞肥大、软骨内骨化和血管形成[28]。途径一:Runx2通过C/EBPβ作用增强成骨表达,ColⅩ和基质金属蛋白酶13(matrix metallopeptidase 13,MMP13)表达增加,软骨细胞肥大,转录激活因子4(activating transcription factor 4,ATF4)则与Ihh表达启动子结合,正向反馈Ihh调节软骨成骨。途径二:Runx2作为Osterix的上游信号,Osterix表达上调随之MMP13表达上调,导致软骨发育后期软骨基质的骨化和降解,基质内血管形成。核结合因子β(core binding factor beta,Cbfβ)和Run-x2相互作用影响软骨细胞增殖分化和骨形态保持[29]。Cbfβ基因缺乏表现为生长发育受损和严重的骨畸形。
3.5. Notch
Notch信号通路由受体、配体、DNA结合蛋白及下游转录因子组成。其信号通路在细胞分化不同阶段对软骨发育的调控作用不同。早期表现为促进MSCs向软骨细胞分化,后期负反馈调节软骨细胞发育,介导Twist1抑制MSCs向成骨细胞分化[30]–[31]。在软骨发育过程中,Notch信号一方面通过抑制镁离子依赖的蛋白磷酸酶1A(protein phosphatase magnesium-dependent 1A,PPM1A)活性介导p-SMAD1/5/8表达上调,细胞周期抑制剂p57基因表达上调,软骨细胞逐渐停止分裂,从增殖转向分化[32];另一方面Notch信号活化抑制Sox9表达,上调ColⅩ和MMP13的表达,促进软骨细胞肥大和终末分化,有利于软骨成骨的发生[33]–[34]。在正常软骨发育和关节形态稳定中,功能重组信号序列结合蛋白(recombination signal sequence binding protein,RBP-jk)-依赖型Notch信号在软骨成骨细胞中是必需的,但在软骨下骨成骨细胞中Notch信号的丢失不受影响[35]。异常或病理性的Notch信号调控OA的发生发展,其过度活化会导致肿瘤的发生[30],[33]。
3.6. FGF
FGF信号通过4种受体FGFR1~4调节各种细胞过程(包括软骨生长和软骨内骨形成)。FGF3是骨生长的负调节因子,除了直接上调骨形成和抑制破骨细胞生成增加骨量,同时通过旁分泌机制调节软骨形成间接影响骨形成量[36]–[37]。FGF与WNT/β-连环蛋白协同抑制软骨细胞分化,增强成骨细胞分化[38]。
4. 软骨干细胞在软骨修复及骨关节炎治疗中的作用
4.1. 软骨修复机制
正常软骨受到创伤时,位于软骨表面的CSCs和免疫细胞互相作用迁移至损伤部位,诱导外周耐受,并抑制促炎细胞因子的释放和促进组织修复[2]–[3],[7]。炎性细胞因子白细胞介素(interleukin,IL)-1β、肿瘤坏死因子-α(tumor necrosis factor α,TNF-α)、TGF-β1通过上调MMPs的表达提高MSCs的迁移能力。首先MSCs迁移进入组织成为骨-软骨细胞群,随后分化形成CSCs,CSCs受到Runx2和Sox9的共同调控。Runx2表达下调,Sox9表达上调,CSCs分化为软骨细胞,分泌ColⅡ形成正常软骨,反之CSCs分化形成纤维软骨样细胞,分泌ColⅠ形成类瘢痕样组织[39]–[40]。
关节软骨缺乏血管,不利于软骨细胞自我修复,当发生损伤时,细胞迁移能力受限,无法及时修复损伤组织,新的细胞外基质(extracellular matrix,ECM)合成受阻,随年龄增长,软骨细胞数量减少伴随修复能力下降,关节退行性疾病如OA更易发生[2]。Mazor等[10]研究发现,OA组织细胞中CD105、CD166、Notch-1表达比健康组织高。壳多糖酶3样蛋白1(chitinase-3-like protein 1,CHI3L1)和润滑蛋白是软骨活化和OA进展的潜在标志物,润滑蛋白在正常软骨表层中过表达,在OA软骨中表达下降,CHI3L1在OA软骨中深层过表达,在正常软骨中表达下降[41]。软骨干细胞迁移功能障碍如迁移方向错误可能是OA中基质成分改变和组织修复能力下降的原因,从而导致关节结构改变和功能紊乱[42]。CSCs参与了修复损伤和OA的各个阶段,其细胞迁移能力在OA早期和晚期表现不同[3]。在OA早期,治疗的主要目标是保持组织结构和功能,调节细胞外基质的转归和延缓软骨退变。在OA晚期,CSCs的迁移能力在关节软骨、软骨下骨和其他关节软组织起到通讯作用,迁移细胞充当了细胞间穿梭的信使细胞群,但是具体机制尚不明确。
4.2. 临床治疗方法
OA是一种退行性关节疾病,主要表现为疼痛和功能障碍,以老年人多见。其治疗目标是减轻疼痛和改善关节功能。治疗方法包括理疗、药物治疗、手术治疗和再生治疗[43]。理疗如水疗、按摩、针灸可以改善OA症状但缺乏依据。传统药物治疗可以减轻疼痛但无法逆转关节损伤,同时存在明显副作用,如消化道副作用、过敏以及肝肾功能的影响。新型药物具有更有效的效果和更少的副作用,如抗骨质疏松药Forteo可以提高蛋白成分抑制软骨退变,但停药后续效果无法确保[44],合成分子Kartogenin可以通过调节CBF/RUNX1转录轴促进软骨再生[45],但是单独使用清除较快,仍需解决长期稳定缓释的问题来达到理想的临床效果。手术治疗包括关节腔注射、微骨折、全关节置换等。关节内注射富血小板血浆(platelet-rich plasma,PRP)可以改善关节修复的微环境,促进软骨修复和对抗炎症反应,改善临床症状[46]–[47]。早期OA患者关节内注射富血小板血浆(platelet-rich plasma,PRP)可以减轻疼痛并改善功能,但在晚期应用PRP和透明质酸疗效无差别[48]–[49]。干细胞移植存在步骤繁琐、成本较高、有创操作等缺点,但其对于治疗早期OA效果较好,同时可以采用组织工程技术将软骨干细胞与支架结合,或添加生长因子来达到更为理想的治疗效果。
再生治疗主要包括同种异体或自体软骨移植、自体软骨细胞移植(autologous chondrocyte implantation,ACI)、基质相关干细胞移植(matrix-associated stem cell transplantation,MAST)。对伴有大范围缺损的年轻OA患者首先考虑同种异体软骨移植[48],但存在成本较高、手术创伤较大及移植软骨的来源问题。ACI是目前应用最广泛的基于细胞修复关节软骨的技术之一,主要通过取自同一患者的健康软骨组织体外分离培养扩增获得软骨细胞,注射于关节缺损部位用于组织修复,但再植入的细胞不具有再分化能力[2],注射过程中剪切力使部分细胞死亡、植入后关节间隙细胞渗出等原因导致损伤部位实际MSCs浓度降低[50]。随着组织工程技术的进步,出现了含软骨细胞生物材料支架的复合体,为细胞的附着、增殖和分化提供了必要的条件[51]。研究[51]–[52]发现,短期内富含干细胞或生长因子的支架较普通支架具有更好的软骨修复效果。MSCs来源丰富,具有多向分化能力,骨髓、胚胎、脂肪来源的MSCs移植治疗OA在临床上均有应用,脂肪来源的MSCs因其容易获取并能够培养出足够的MSCs,相比其他来源的MSCs在软骨修复上具有更大的优势[53]。将MSCs用生物材料封装成球形颗粒,可以避免注射剪切力导致的细胞死亡和细胞关节渗漏问题,同时不影响MSCs分泌细胞因子促进软骨修复[50],[54]。关于MSCs治疗软骨缺损和早期OA的效果,临床和MRI检测结果均证实其有效,但尚缺乏长期的随访,包括双盲、对照、前瞻性、多中心的临床证据,对确定最佳的细胞来源、细胞剂量、培养方法、使用技术和适应证的选择有待进一步研究[48],[55]–[57]。目前临床上利用MSCs移植治疗OA的报道较多,软骨干细胞移植治疗OA报道较少,动物研究有迹可循。将自组装纳米肽凝胶与已转染TGF-β3的前软骨干细胞复合体移植入大鼠股骨缺损处,可用于软骨损伤的修复。Jang等[58]使用低强度脉冲超声诱导CSCs迁移到受伤部位促进软骨愈合,可以延迟或预防骨关节炎的发生。
综上所述,软骨干细胞因具有自我更新、多向分化的能力,而在治疗骨关节病方面具有光明的应用前景,但目前关于标记物的鉴定尚未达成共识,未来将着眼于研究软骨干细胞的分化信号通路,为治疗骨关节病提供新的思路。
Funding Statement
[基金项目] 国家自然科学基金(81200802);浙江省自然科学基金(Y2111273)
Supported by: The National Natural Science Foundation of China (81200802); Zhejiang Provincial Natural Science Foundation (Y2111273).
Footnotes
利益冲突声明:作者声明本文无利益冲突。
References
- 1.Grigolo B, Lisignoli G, Desando G, et al. Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit[J] Tissue Eng Part C Methods. 2009;15(4):647–658. doi: 10.1089/ten.TEC.2008.0569. [DOI] [PubMed] [Google Scholar]
- 2.Mobasheri A, Kalamegam G, Musumeci G, et al. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions[J] Maturitas. 2014;78(3):188–198. doi: 10.1016/j.maturitas.2014.04.017. [DOI] [PubMed] [Google Scholar]
- 3.Jiang YZ, Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis[J] Nat Rev Rheumatol. 2015;11(4):206–212. doi: 10.1038/nrrheum.2014.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population[J] J Cell Sci. 2004;117(Pt 6):889–897. doi: 10.1242/jcs.00912. [DOI] [PubMed] [Google Scholar]
- 5.Pretzel D, Linss S, Rochler S, et al. Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage[J] Arthritis Res Ther. 2011;13(2):R64. doi: 10.1186/ar3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Barbero A, Ploegert S, Heberer M, et al. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes[J] Arthritis Rheum. 2003;48(5):1315–1325. doi: 10.1002/art.10950. [DOI] [PubMed] [Google Scholar]
- 7.Wei X, Yang X, Han ZP, et al. Mesenchymal stem cells: a new trend for cell therapy[J] Acta Pharmacol Sin. 2013;34(6):747–754. doi: 10.1038/aps.2013.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Tajbakhsh S. Stem cell: what's in a name[J] Nat Rep Stem Cells. 2009 doi: 10.1038/stemcells.2009.90. [DOI] [Google Scholar]
- 9.Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells—current trends and future prospective[J] Biosci Rep. 2015;35(2):e00191. doi: 10.1042/BSR20150025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Mazor M, Cesaro A, Ali M, et al. Progenitor cells from cartilage: grade specific differences in stem cell marker expression[J] Int J Mol Sci. 2017;18(8):E1759. doi: 10.3390/ijms18081759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Hynes K, Menicanin D, Mrozik K, et al. Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines[J] Stem Cells Dev. 2014;23(10):1084–1096. doi: 10.1089/scd.2013.0111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.刘子 双一, 王 德利, 阮 狄克. 细胞核标记物5-乙炔基-2′脱氧尿嘧啶核苷的研究及应用进展[J] 北京医学. 2014;36(8):474–477. [Google Scholar]; Liu ZSY, Wang DL, Ruan DK. Research and application progress of nuclear markers 5-ethynyl-2′-deoxyuridine[J] Beijing Med J. 2014;36(8):474–477. [Google Scholar]
- 13.Kulesza A, Burdzinska A, Szczepanska I, et al. The mutual interactions between mesenchymal stem cells and myoblasts in an autologous co-culture model[J] PLoS One. 2016;11(8):e0161693. doi: 10.1371/journal.pone.0161693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro[J] Stem Cells Dev. 2015;24(14):1635–1647. doi: 10.1089/scd.2014.0316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.da Silva CL, Gonçalves R, Porada CD, et al. Differences amid bone marrow and cord blood hematopoietic stem/progenitor cell division kinetics[J] J Cell Physiol. 2009;220(1):102–111. doi: 10.1002/jcp.21736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Shuai HL, Shi CZ, Lan JF, et al. Double labelling of human umbilical cord mesenchymal stem cells with Gd-DTPA and PKH26 and the influence on biological characteristics of hUCMSCs[J] Int J Exp Pathol. 2015;96(1):63–72. doi: 10.1111/iep.12111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Donega V, van Velthoven CT, Nijboer CH, et al. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement[J] PLoS One. 2013;8(1):e51253. doi: 10.1371/journal.pone.0051253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Pratheesh MD, Gade NE, Nath A, et al. Evaluation of persistence and distribution of intra-dermally administered PKH26 labelled goat bone marrow derived mesenchymal stem cells in cutaneous wound healing model[J] Cytotechnology. 2017;69(6):841–849. doi: 10.1007/s10616-017-0097-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Tao R, Sun TJ, Han YQ, et al. Optimization of in vitro cell labeling methods for human umbilical cord-derived mesenchymal stem cells[J] Eur Rev Med Pharmacol Sci. 2014;18(8):1127–1134. [PubMed] [Google Scholar]
- 20.Fickert S, Fiedler J, Brenner RE. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers[J] Arthritis Res Ther. 2004;6(5):R422–R432. doi: 10.1186/ar1210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Grogan SP, Barbero A, Diaz-Romero J, et al. Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity[J] Arthritis Rheum. 2007;56(2):586–595. doi: 10.1002/art.22408. [DOI] [PubMed] [Google Scholar]
- 22.Williams R, Khan IM, Richardson K, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage[J] PLoS One. 2010;5(10):e13246. doi: 10.1371/journal.pone.0013246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Jahan E, Matsumoto A, Rafiq AM, et al. Fetal jaw movement affects Ihh signaling in mandibular condylar cartilage development: the possible role of Ihh as mechanotransduction mediator[J] Arch Oral Biol. 2014;59(10):1108–1118. doi: 10.1016/j.archoralbio.2014.06.009. [DOI] [PubMed] [Google Scholar]
- 24.Han XS, Zhuang YF, Zhang ZH, et al. Regulatory mechanisms of the Ihh/PTHrP signaling pathway in fibrochondrocytes in entheses of pig Achilles tendon[J] Stem Cells Int. 2016;2016:8235172. doi: 10.1155/2016/8235172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Wu MR, Chen GQ, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease[J] Bone Res. 2016;4:16009. doi: 10.1038/boneres.2016.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Hinton RJ. Genes that regulate morphogenesis and growth of the temporomandibular joint: a review[J] Dev Dyn. 2014;243(7):864–874. doi: 10.1002/dvdy.24130. [DOI] [PubMed] [Google Scholar]
- 27.Cheng L, Zhang CY, Li D, et al. Transforming growth factor-β1 (TGF-β1) induces mouse precartilaginous stem cell proliferation through TGF-β receptor Ⅱ (TGFRⅡ)-Akt-β-catenin signaling[J] Int J Mol Sci. 2014;15(7):12665–12676. doi: 10.3390/ijms150712665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Nishimura R, Hata K, Nakamura E, et al. Transcriptional network systems in cartilage development and disease[J] Histochem Cell Biol. 2018;149(4):353–363. doi: 10.1007/s00418-017-1628-7. [DOI] [PubMed] [Google Scholar]
- 29.Tian F, Wu MR, Deng LF, et al. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation[J] J Bone Miner Res. 2014;29(7):1564–1574. doi: 10.1002/jbmr.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.马 宏炜, 吴 亚琼, 张 海锋. Notch信号通路与骨形成和骨疾病[J] 中华医学遗传学杂志. 2015;32(2):274–279. [Google Scholar]; Ma HW, Wu YQ, Zhang HF. Notch signaling in bone formation and related skeletal diseases[J] Chin J Med Genet. 2015;32(2):274–279. doi: 10.3760/cma.j.issn.1003-9406.2015.02.027. [DOI] [PubMed] [Google Scholar]
- 31.Tian Y, Xu Y, Fu Q, et al. Notch inhibits chondrogenic differentiation of mesenchymal progenitor cells by targeting Twist1[J] Mol Cell Endocrinol. 2015;403:30–38. doi: 10.1016/j.mce.2015.01.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Shang XF, Wang JW, Luo ZL, et al. Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest[J] Sci Rep. 2016;6:25594. doi: 10.1038/srep25594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Chen S, Lee BH, Bae Y. Notch signaling in skeletal stem cells[J] Calcif Tissue Int. 2014;94(1):68–77. doi: 10.1007/s00223-013-9773-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Kohn A, Rutkowski TP, Liu ZY, et al. Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9[J] Bone Res. 2015;3:15021. doi: 10.1038/boneres.2015.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Liu Z, Ren Y, Mirando AJ, et al. Notch signaling in postnatal joint chondrocytes, but not subchondral osteoblasts, is required for articular cartilage and joint maintenance[J] Osteoarthr Cartil. 2016;24(4):740–751. doi: 10.1016/j.joca.2015.10.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Wen X, Li XG, Tang YB, et al. Chondrocyte FGFR3 regulates bone mass by inhibiting osteogenesis[J] J Biol Chem. 2016;291(48):24912–24921. doi: 10.1074/jbc.M116.730093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease[J] Genes Dev. 2015;29(14):1463–1486. doi: 10.1101/gad.266551.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Buchtova M, Oralova V, Aklian A, et al. Fibroblast growth factor and canonical WNT/β-catenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage[J] Biochim Biophys Acta. 2015;1852(5):839–850. doi: 10.1016/j.bbadis.2014.12.020. [DOI] [PubMed] [Google Scholar]
- 39.Schminke B, Miosge N. Cartilage repair in vivo: the role of migratory progenitor cells[J] Curr Rheumatol Rep. 2014;16(11):461–469. doi: 10.1007/s11926-014-0461-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Tang QO, Shakib K, Heliotis M, et al. TGF-beta3: a potential biological therapy for enhancing chondrogenesis[J] Expert Opin Biol Ther. 2009;9(6):689–701. doi: 10.1517/14712590902936823. [DOI] [PubMed] [Google Scholar]
- 41.Szychlinska MA, Trovato FM, Di Rosa M, et al. Co-expression and Co-localization of cartilage glycoproteins CHI3L1 and lubricin in osteoarthritic cartilage: morphological, immunohistochemical and gene expression profiles[J] Int J Mol Sci. 2016;17(3):359–378. doi: 10.3390/ijms17030359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Bosserhoff AK, Hofmeister S, Ruedel A, et al. DCC is expressed in a CD166-positive subpopulation of chondrocytes in human osteoarthritic cartilage and modulates CRE activity[J] Int J Clin Exp Pathol. 2014;7(5):1947–1956. [PMC free article] [PubMed] [Google Scholar]
- 43.Zhang W, Ouyang HW, Dass CR, et al. Current research on pharmacologic and regenerative therapies for osteoarthritis[J] Bone Res. 2016;4:15040. doi: 10.1038/boneres.2015.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Sampson ER, Hilton MJ, Tian Y, et al. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis[J] Sci Transl Med. 2011;3(101):101ra93. doi: 10.1126/scitranslmed.3002214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Rahmati M, Nalesso G, Mobasheri A, et al. Aging and osteoarthritis: central role of the extracellular matrix[J] Ageing Res Rev. 2017;40:20–30. doi: 10.1016/j.arr.2017.07.004. [DOI] [PubMed] [Google Scholar]
- 46.Filardo G, Kon E, Roffi A, et al. Platelet-rich plasma: why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration[J] Knee Surg Sports Traumatol Arthrosc. 2015;23(9):2459–2474. doi: 10.1007/s00167-013-2743-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Abrams GD, Frank RM, Fortier LA, et al. Platelet-rich plasma for articular cartilage repair[J] Sports Med Arthrosc Rev. 2013;21(4):213–219. doi: 10.1097/JSA.0b013e3182999740. [DOI] [PubMed] [Google Scholar]
- 48.Chahla J, LaPrade RF, Mardones R, et al. Biological therapies for cartilage lesions in the hip: a new horizon[J] Orthopedics. 2016;39(4):e715–e723. doi: 10.3928/01477447-20160623-01. [DOI] [PubMed] [Google Scholar]
- 49.Dhollander AA, De Neve F, Almqvist KF, et al. Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report[J] Knee Surg Sports Traumatol Arthrosc. 2011;19(4):536–542. doi: 10.1007/s00167-010-1337-4. [DOI] [PubMed] [Google Scholar]
- 50.Hached F, Vinatier C, Le Visage C, et al. Biomaterial-assisted cell therapy in osteoarthritis: from mesenchymal stem cells to cell encapsulation[J] Best Pract Res Clin Rheumatol. 2017;31(5):730–745. doi: 10.1016/j.berh.2018.05.002. [DOI] [PubMed] [Google Scholar]
- 51.Jeon OH, Elisseeff J. Orthopedic tissue regeneration: cells, scaffolds, and small molecules[J] Drug Deliv Transl Res. 2016;6(2):105–120. doi: 10.1007/s13346-015-0266-7. [DOI] [PubMed] [Google Scholar]
- 52.Wang Y, Yuan M, Guo QY, et al. Mesenchymal stem cells for treating articular cartilage defects and osteoarthritis[J] Cell Transplant. 2015;24(9):1661–1678. doi: 10.3727/096368914X683485. [DOI] [PubMed] [Google Scholar]
- 53.Dall'Oca C, Cengarle M, Costanzo A, et al. Current concepts in treatment of early knee osteoarthritis and osteochondral lesions; the role of biological augmentations[J] Acta Biomed. 2017;88(4S):5–10. doi: 10.23750/abm.v88i4-S.6788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Tofiño-Vian M, Guillén MI, Alcaraz MJ. Extracellular vesicles: a new therapeutic strategy for joint conditions[J] Biochem Pharmacol. 2018;153:134–146. doi: 10.1016/j.bcp.2018.02.004. [DOI] [PubMed] [Google Scholar]
- 55.Xu SC, Liu HL, Xie YZ, et al. Effect of mesenchymal stromal cells for articular cartilage degeneration treatment: a Meta-analysis[J] Cytotherapy. 2015;17(10):1342–1352. doi: 10.1016/j.jcyt.2015.05.005. [DOI] [PubMed] [Google Scholar]
- 56.Filardo G, Perdisa F, Roffi A, et al. Stem cells in articular cartilage regeneration[J] J Orthop Surg Res. 2016;11:42. doi: 10.1186/s13018-016-0378-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Filardo G, Madry H, Jelic M, et al. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics[J] Knee Surg Sports Traumatol Arthrosc. 2013;21(8):1717–1729. doi: 10.1007/s00167-012-2329-3. [DOI] [PubMed] [Google Scholar]
- 58.Jang KW, Ding L, Seol D, et al. Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway[J] Ultrasound Med Biol. 2014;40(6):1177–1186. doi: 10.1016/j.ultrasmedbio.2013.12.007. [DOI] [PMC free article] [PubMed] [Google Scholar]