Ag |
10 |
V. natriegens
|
DNA damage and cell membrane rupture by reactive oxygen species (ROS) |
Green catalysis |
[25] |
Au |
20 |
S. pneumoniae
|
Cell lysis |
Chemical reduction |
[26] |
Pd |
13–18 |
S. aureus, S. pyrogens, B. subtilis
|
Cell membrane destruction and apoptosis |
Biosynthesis (plant) |
[27] |
Ga |
305 |
M. tuberculosis
|
Reduction of the growth of mycobacterium |
Homogenizer |
[28] |
Cu |
15–25 |
S. aureus, B. subtilis
|
Synergistic effects of organic functional groups |
Biosynthesis (plant) |
[29] |
Pt |
2–5 |
E. coli, A. hydrophila
|
Decrease in the bacterial cell viability and ROS generation |
Chemical reduction |
[30] |
Si |
90–100 |
S. aureus, P. aeruginosa
|
Mechanical damage of the bacterial membrane |
Laser ablation |
[31] |
Se |
117 |
Klebsiella sp. |
Production of ROS, disruption of the phospholipid bilayer |
Biosynthesis (plant) |
[32] |
55.9 |
B. subtilis, E. coli
|
Ionic interaction between NPs and bacteria-caused cell damage |
Biosynthesis (plant) |
[33] |
85 |
E. coli, S. aureus
|
Cell membrane damage due to action of ROS |
Laser ablation |
[34] |
Ni |
60 |
P. aeruginosa
|
Cell membrane destruction |
Biosynthesis (plant) |
[35] |
Mn |
50–100 |
S. aureus, E. coli
|
Inactivation of proteins and decrease in the membrane permeability |
Biosynthesis (plant) |
[36] |
Fe |
474 |
E. coli.
|
Attraction between negatively charged cell membrane and NPs |
Biosynthesis (plant) |
[37] |
Bi |
40 |
B. anthracis, C. jejuni, E. coli, M. arginini
|
Inhibition of protein synthesis |
Chemical condensation |
[38] |
Ag2O |
10–60 |
S. mutans, L. acidophilus
|
Penetration of the cells and hindrance of the growth of the pathogen |
Biosynthesis (plant) |
[39] |
CuO |
60 |
B. cereus
|
Disturbance of various biochemical processes when copper ions invade inside the cells |
Biosynthesis (plant) |
[40] |
ZnO |
30 |
A. baumannii
|
Increase in the production of ROS |
Sol–gel and biosynthesis |
[41] |
TiO2
|
9.2 |
E. coli
|
Decomposition of outer cell membrane by ROS, primarily hydroxyl radicals (OH·) |
Biosynthesis (plant) |
[42] |
NiO |
40–100 |
B. subtilis, E. coli
|
Induction of membrane damage by oxidative stress created at the NiO NP interface |
Hydrothermal |
[43] |
Fe3O4
|
25–40 |
S. aureus, E. coli, S. dysentery
|
Cellular enzyme deactivation and disruption in plasma membrane permeability |
Coprecipitation |
[44] |
α-Fe2O3
|
16 |
B. subtilis, S. aureus, E. coli, K. pneumonia
|
Desorption of membrane by the generated free radicals, including O2· and OH· |
Biosynthesis (plant) |
[45] |
CaO |
58 |
E. coli, S. aureus, K. pneumonia
|
Cell membrane destruction |
Biosynthesis (plant) |
[46] |
MgO |
27 |
Bacillus sp., E. coli
|
Destruction of cell membrane integrity resulting in leakage of intracellular materials |
Ultrasonication |
[47] |
Al2O3
|
30–50 |
F. oxysporum, S. typhi, A. flavus, C. violaceum
|
Decomposition of bacterial outer membranes by ROS |
Biosynthesis (fungi) |
[48] |
CeO2
|
5–20 |
L. monocytogenes, E. coli, B. cereus
|
ROS generation by CeO2 as a pro-oxidant |
Precipitation |
[49] |
Mn3O4
|
130 |
K. pneumonia, P. aeruginosa
|
Membrane damage of bacterial cells by the easy penetration of Mn3O4 NPs |
Hydrothermal |
[50] |
ZrO2
|
2.5 |
S. mutans, S. mitis, R. dentocariosa, R. mucilaginosa
|
Enhancement of the interactions between NPs and bacterial constituents |
Solvothermal |
[51] |
Ag2S |
65 |
Phormidium spp. |
Inhibition of cell membrane by Ag2S NPs, resulting in harmful effects on other biological activities |
Chemical reduction |
[52] |
ZnS |
65 |
Streptococcus sp., S. aureus, Lactobacillus sp., C. albicans
|
Dischargement of ions, which react with the thiol groups in the proteins present on the cell membrane |
Biosynthesis (bacteria) |
[53] |
CdS |
25 |
Streptococcus sp., S. aureus, Lactobacillus sp., C. albicans
|
Impregnation and surrounding the bacterial cells by CdS NPs |
Biosynthesis (bacteria) |
[53] |
FeS |
35 |
S. aureus, E. coli, E. faecalis
|
NP internalization through the fine cell membrane |
Hydrothermal |
[54] |
Mn-MOF |
˗ |
E. coli, E. faecalis, S. aureus, P. aeruginosa
|
Peptide–nalidixic acid conjugate formation |
Mechanochemical |
[55] |
Mg-MOF |
˗ |
E. coli, E. faecalis, S. aureus, P. aeruginosa
|
Peptide–nalidixic acid conjugate formation |
Mechanochemical |
[55] |
Ag-MOF |
˗ |
S. aureus
|
High stability in water and the existence of Ag ion |
Solvothermal |
[56] |
Cu-MOF |
˗ |
S. aureus, E. coli, K. pneumonia, P. aeruginosa, S. aureus
|
Attachment to the bacterial surfaces by active surface metal sites in Cu-MOF |
Hydrothermal |
[57] |
Zn-MOF |
˗ |
P. aeruginosa
|
Penetration inside the bacteria, causing cell damage by interaction with lipotropic acid |
Solvothermal |
[58] |
Co-MOF |
˗ |
E. coli
|
Strong interaction with membranes containing glycerophosphoryl moieties |
Hydro-solvothermal |
[59] |