Skip to main content
. 2021 Feb 9;26(4):912. doi: 10.3390/molecules26040912

Table 1.

Antimicrobial activity of monometallic and metal oxide nanoparticles (NPs).

NPs Size (nm) Bacteria Mode of Action Synthesis Ref.
Ag 10 V. natriegens DNA damage and cell membrane rupture by reactive oxygen species (ROS) Green catalysis [25]
Au 20 S. pneumoniae Cell lysis Chemical reduction [26]
Pd 13–18 S. aureus, S. pyrogens, B. subtilis Cell membrane destruction and apoptosis Biosynthesis (plant) [27]
Ga 305 M. tuberculosis Reduction of the growth of mycobacterium Homogenizer [28]
Cu 15–25 S. aureus, B. subtilis Synergistic effects of organic functional groups Biosynthesis (plant) [29]
Pt 2–5 E. coli, A. hydrophila Decrease in the bacterial cell viability and ROS generation Chemical reduction [30]
Si 90–100 S. aureus, P. aeruginosa Mechanical damage of the bacterial membrane Laser ablation [31]
Se 117 Klebsiella sp. Production of ROS, disruption of the phospholipid bilayer Biosynthesis (plant) [32]
55.9 B. subtilis, E. coli Ionic interaction between NPs and bacteria-caused cell damage Biosynthesis (plant) [33]
85 E. coli, S. aureus Cell membrane damage due to action of ROS Laser ablation [34]
Ni 60 P. aeruginosa Cell membrane destruction Biosynthesis (plant) [35]
Mn 50–100 S. aureus, E. coli Inactivation of proteins and decrease in the membrane permeability Biosynthesis (plant) [36]
Fe 474 E. coli. Attraction between negatively charged cell membrane and NPs Biosynthesis (plant) [37]
Bi 40 B. anthracis, C. jejuni, E. coli, M. arginini Inhibition of protein synthesis Chemical condensation [38]
Ag2O 10–60 S. mutans, L. acidophilus Penetration of the cells and hindrance of the growth of the pathogen Biosynthesis (plant) [39]
CuO 60 B. cereus Disturbance of various biochemical processes when copper ions invade inside the cells Biosynthesis (plant) [40]
ZnO 30 A. baumannii Increase in the production of ROS Sol–gel and biosynthesis [41]
TiO2 9.2 E. coli Decomposition of outer cell membrane by ROS, primarily hydroxyl radicals (OH·) Biosynthesis (plant) [42]
NiO 40–100 B. subtilis, E. coli Induction of membrane damage by oxidative stress created at the NiO NP interface Hydrothermal [43]
Fe3O4 25–40 S. aureus, E. coli, S. dysentery Cellular enzyme deactivation and disruption in plasma membrane permeability Coprecipitation [44]
α-Fe2O3 16 B. subtilis, S. aureus, E. coli, K. pneumonia Desorption of membrane by the generated free radicals, including O2· and OH· Biosynthesis (plant) [45]
CaO 58 E. coli, S. aureus, K. pneumonia Cell membrane destruction Biosynthesis (plant) [46]
MgO 27 Bacillus sp., E. coli Destruction of cell membrane integrity resulting in leakage of intracellular materials Ultrasonication [47]
Al2O3 30–50 F. oxysporum, S. typhi, A. flavus, C. violaceum Decomposition of bacterial outer membranes by ROS Biosynthesis (fungi) [48]
CeO2 5–20 L. monocytogenes, E. coli, B. cereus ROS generation by CeO2 as a pro-oxidant Precipitation [49]
Mn3O4 130 K. pneumonia, P. aeruginosa Membrane damage of bacterial cells by the easy penetration of Mn3O4 NPs Hydrothermal [50]
ZrO2 2.5 S. mutans, S. mitis, R. dentocariosa, R. mucilaginosa Enhancement of the interactions between NPs and bacterial constituents Solvothermal [51]
Ag2S 65 Phormidium spp. Inhibition of cell membrane by Ag2S NPs, resulting in harmful effects on other biological activities Chemical reduction [52]
ZnS 65 Streptococcus sp., S. aureus, Lactobacillus sp., C. albicans Dischargement of ions, which react with the thiol groups in the proteins present on the cell membrane Biosynthesis (bacteria) [53]
CdS 25 Streptococcus sp., S. aureus, Lactobacillus sp., C. albicans Impregnation and surrounding the bacterial cells by CdS NPs Biosynthesis (bacteria) [53]
FeS 35 S. aureus, E. coli, E. faecalis NP internalization through the fine cell membrane Hydrothermal [54]
Mn-MOF ˗ E. coli, E. faecalis, S. aureus, P. aeruginosa Peptide–nalidixic acid conjugate formation Mechanochemical [55]
Mg-MOF ˗ E. coli, E. faecalis, S. aureus, P. aeruginosa Peptide–nalidixic acid conjugate formation Mechanochemical [55]
Ag-MOF ˗ S. aureus High stability in water and the existence of Ag ion Solvothermal [56]
Cu-MOF ˗ S. aureus, E. coli, K. pneumonia, P. aeruginosa, S. aureus Attachment to the bacterial surfaces by active surface metal sites in Cu-MOF Hydrothermal [57]
Zn-MOF ˗ P. aeruginosa Penetration inside the bacteria, causing cell damage by interaction with lipotropic acid Solvothermal [58]
Co-MOF ˗ E. coli Strong interaction with membranes containing glycerophosphoryl moieties Hydro-solvothermal [59]