Skip to main content
Vaccines logoLink to Vaccines
. 2021 Feb 16;9(2):160. doi: 10.3390/vaccines9020160

COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates

Malik Sallam 1,2
Editor: Davide Gori
PMCID: PMC7920465  PMID: 33669441

Abstract

Utility of vaccine campaigns to control coronavirus 2019 disease (COVID-19) is not merely dependent on vaccine efficacy and safety. Vaccine acceptance among the general public and healthcare workers appears to have a decisive role in the successful control of the pandemic. The aim of this review was to provide an up-to-date assessment of COVID-19 vaccination acceptance rates worldwide. A systematic search of the peer-reviewed English survey literature indexed in PubMed was done on 25 December 2020. Results from 31 peer-reviewed published studies met the inclusion criteria and formed the basis for the final COVID-19 vaccine acceptance estimates. Survey studies on COVID-19 vaccine acceptance rates were found from 33 different countries. Among adults representing the general public, the highest COVID-19 vaccine acceptance rates were found in Ecuador (97.0%), Malaysia (94.3%), Indonesia (93.3%) and China (91.3%). However, the lowest COVID-19 vaccine acceptance rates were found in Kuwait (23.6%), Jordan (28.4%), Italy (53.7), Russia (54.9%), Poland (56.3%), US (56.9%), and France (58.9%). Only eight surveys among healthcare workers (doctors and nurses) were found, with vaccine acceptance rates ranging from 27.7% in the Democratic Republic of the Congo to 78.1% in Israel. In the majority of survey studies among the general public stratified per country (29/47, 62%), the acceptance of COVID-19 vaccination showed a level of ≥70%. Low rates of COVID-19 vaccine acceptance were reported in the Middle East, Russia, Africa and several European countries. This could represent a major problem in the global efforts to control the current COVID-19 pandemic. More studies are recommended to address the scope of COVID-19 vaccine hesitancy. Such studies are particularly needed in the Middle East and North Africa, Sub-Saharan Africa, Eastern Europe, Central Asia, Middle and South America. Addressing the scope of COVID-19 vaccine hesitancy in various countries is recommended as an initial step for building trust in COVID-19 vaccination efforts.

Keywords: vaccine hesitancy, vaccine acceptance, anti-vaccination, vaccination coverage rates, COVID-19, coronavirus, SARS-CoV-2, vaccine rejection

1. Introduction

Based on the Strategic Advisory Group of Experts on Immunization (SAGE), vaccine hesitancy is the term used to describe: “delay in acceptance or refusal of vaccination despite availability of vaccination services” [1]. Factors that affect the attitude towards acceptance of vaccination include complacency, convenience and confidence [1,2]. Complacency denotes the low perception of the disease risk; hence, vaccination was deemed unnecessary. Confidence refers to the trust in vaccination safety, effectiveness, besides the competence of the healthcare systems. Convenience entails the availability, affordability and delivery of vaccines in a comfortable context [2].

The complex nature of motives behind vaccine hesitancy can be analysed using the epidemiologic triad of environmental, agent and host factors [3,4]. Environmental factors include public health policies, social factors and the messages spread by the media [5,6,7]. The agent (vaccine and disease) factors involve the perception of vaccine safety and effectiveness, besides the perceived susceptibility to the disease [7,8,9]. Host factors are dependent on knowledge, previous experience, educational and income levels [4,10].

Previous studies have shown that vaccine hesitancy is a common phenomenon globally, with variability in the cited reasons behind refusal of vaccine acceptance [11,12,13]. The most common reasons included: perceived risks vs. benefits, certain religious beliefs and lack of knowledge and awareness [14,15,16]. The aforementioned reasons can be applied to COVID-19 vaccine hesitancy, as shown by the recent publications that showed a strong correlation between intent to get coronavirus vaccines and its perceived safety [17], association of the negative attitude towards COVID-19 vaccines and unwillingness to get the vaccines [18], and the association of religiosity with lower intention to get COVID-19 vaccines [19].

Studying the global impact of vaccine hesitancy—including willingness to accept COVID-19 vaccines—could be complicated by the multifaceted nature of this phenomenon [1]. This entails the existence of cognitive, psychologic, socio-demographic and cultural factors that contribute to vaccine hesitancy [20,21,22,23]. Analysis of such factors is needed to address COVID-19 vaccine hesitancy, following the assessment of the scope and magnitude of this public health threat [24]. This can help in guiding interventional measures aimed at building and maintaining responses to tackle this threat [25].

Earlier studies that assessed attitudes towards vaccines revealed the existence of regional variability in perceiving the safety and effectiveness of vaccination [12,26,27]. Higher-income regions were the least certain regarding vaccine safety with 72%–73% of people in Northern America and Northern Europe who agreed that vaccines are safe. This rate was even lower in Western Europe (59%), and in Eastern Europe (50%), despite the presence of a substantial variability in Eastern European countries (from 32% in Ukraine, 48% in Russia, to 77% in Slovakia). However, the majority of people in lower-income areas agreed that vaccines are safe, with the highest proportions seen in South Asia (95%) and in Eastern Africa (92%) [26]. A similar pattern was observed regarding vaccine effectiveness, with Eastern Europe as the region where people are the least likely to agree that vaccines are effective, as opposed to South Asia and Eastern Africa [26]. The assessment of such regional differences can be invaluable in addressing and fighting public health threats posed by vaccine hesitancy [28].

The current coronavirus disease 2019 (COVID-19) pandemic does not seem to show any signs of decline, with more than 1.7 million deaths and more than 80 million reported cases worldwide, as of 27 December 2020 [29,30]. The ebb and flow of COVID-19 cases can be driven by human factors, including attitude towards physical distancing and protective measures, while viral factors are driven by mutations that commonly occur in severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) genome [31,32,33,34,35,36,37]. The viral factors can particularly be of high relevance considering the recent reports of resurgence in COVID-19 infections in UK due to a new variant of the virus [38].

The global efforts to lessen the effects of the pandemic, and to reduce its health and socio-economic impact, rely to a large extent on the preventive efforts [39,40]. Thus, huge efforts by the scientific community and pharmaceutical industry backed by governments’ support, were directed towards developing efficacious and safe vaccines for SARS-CoV-2 [41]. These efforts were manifested by the approval of several vaccines for emergency use, in addition to more than 60 vaccine candidates in clinical trials. Moreover, more than 170 COVID-19 vaccine candidates are in the pre-clinical phase [42].

Despite the huge efforts made to achieve successful COVID-19 vaccines, a major hindrance can be related to vaccine hesitancy towards the approved and prospective COVID-19 vaccination [43]. To identify the scope of this problem, this systematic review aimed to assess the acceptance rates for COVID-19 vaccine(s) in different countries worldwide, which can provide an initial step to study the factors implicated in regional and cultural differences behind COVID-19 vaccine hesitancy.

2. Materials and Methods

This review was conducted following the PRISMA guidelines [44].

Published papers in PubMed/Medline that aimed at evaluating COVID-19 vaccine hesitancy/vaccine acceptance using a survey/questionnaire were eligible for inclusion in this review.

Only studies in English language that met the inclusion criteria were considered in this review. The inclusion criteria were: (1) peer-reviewed published articles indexed in PubMed; (2) survey studies among the general population, health-care workers, students, or parents/guardians); (3) the major aim of the study was to evaluate COVID-19 vaccine acceptance/hesitancy; and (4) publication language was English.

The exclusion criteria were: (1) unpublished manuscripts (preprints); (2) the article did not aim to evaluate COVID-19 vaccine acceptance/hesitancy; and (3) publication language was not English.

A search was done as of 25 December 2020, using the following strategy: (COVID * vaccine * hesitancy [Title/Abstract]) OR (COVID * vaccine acceptance[Title/Abstract])) OR (COVID * vaccine * hesitanc *[Title/Abstract])) OR (COVID * intention to vaccine * [Title/Abstract]) OR (COVID* vaccine * accept *[Title/Abstract]) AND (2020:2020[pdat]).

Screening of titles and abstracts was conducted, followed by data extraction for the following items: date of survey, country/countries in which the survey was conducted, target population for survey (e.g., general public, healthcare workers, and students), total number of respondents, and COVID-19 vaccine acceptance rate (which included the number of respondents who answered: agree/somewhat/completely agree/leaning towards yes/definitely yes).

3. Results

A total of 178 records were identified, and following the screening process, a total of 30 articles were included in this review (Figure 1). In addition, data collected in a recently published article that surveyed the general public residing in Jordan and Kuwait were added to the final analysis [45].

Figure 1.

Figure 1

Flow chart of the study selection process.

3.1. Characteristics of the Papers Included in This Review

A total of 30 published papers were analysed in this review, with an additional recently published article that focused on COVID-19 vaccine acceptance in Jordan and Kuwait to yield a total of 31 studies. These studies comprised surveys on COVID-19 vaccine acceptance from a total of 33 different countries. Surveys were done most commonly in the UK (n = 6), followed by France and the US (n = 5, for each country), and China and Italy (n = 4, for each country). Dates of survey distribution ranged from February 2020 until December 2020. A few studies were conducted in more than one country, including the study by Lazarus et al., involving 19 countries and the study by Neumann-Böhme et al., involving seven European countries [46,47].

Stratified per country, a total of 60 surveys were found with the largest sample size (n = 5114) in the study conducted in the UK by Freeman et al., while the smallest sample size (n = 123) was found in the study conducted in Malta by Gretch et al., among general practitioners and trainees [48,49]. Out of these 60 surveys, 47 were among the general public, eight surveys were among healthcare workers (doctors, nurses, or others), three surveys were among parents/guardians and two surveys involved University students (Table 1). Surveys were most commonly conducted in June or July (23/60, 38%), followed by March or April (20/60, 33%).

Table 1.

COVID-19 acceptance rates divided by the included studies and sorted based on the date of survey.

Study Country Date of Survey Response Recorded as Vaccine Acceptance N 6 Target Population Acceptance Rate (%) Age/Sex Correlation with Higher Vaccine Acceptance
Wang et al. [50] Hong Kong February and March, 2020 Intend to accept 806 Nurses 40.0 Male
Wang et al. [51] China March, 2020 Yes 2058 General population 91.3 Male
Harapan et al. [52] Indonesia March and April 2020 Yes 1359 General population 93.3 None
Dror et al. [53] Israel March and April 2020 Yes 388 Doctors 78.1 -
Detoc et al. [54] France March and April 2020 Yes certainly/possibly 3259 General population 77.6 Male, age
Dror et al. [53] Israel March and April 2020 Yes 1112 General population 75.0 -
Kwok et al. [55] Hong Kong March and April 2020 Likely to vaccinate (scored 6 or above out of 10) 1205 Nurses 63.0 Age
Dror et al. [53] Israel March and April 2020 Yes 211 Nurses 61.1 -
Nzaji et al. [56] DRC 2 March and April 2020 Yes 613 Healthcare workers 27.7 Age
Gagneux-Brunon et al. [57] France March to July, 2020 Yes 2047 Healthcare workers 76.9 Male, age
Sarasty et al. [58] Ecuador April, 2020 Willing to accept a vaccine 1050 General population 97.0 -
Wong et al. [59] Malaysia April, 2020 Definitely, probably or possibly yes 1159 General population 94.3 Male
Neumann-Böhme et al. [47] 1 Denmark April, 2020 Yes 1000 General population 80.0 -
Neumann-Böhme et al. [47] UK 3 April, 2020 Yes 1000 General population 79.0 -
Neumann-Böhme et al. [47] Italy April, 2020 Yes 1500 General population 77.3 -
Ward et al. [60] France April and May 2020 Certainly or probably 5018 General population 76.0 None
Neumann-Böhme et al. [47] Portugal April, 2020 Yes 1000 General population 75.0 -
Neumann-Böhme et al. [47] Netherland April, 2020 Yes 1000 General population 73.0 -
Neumann-Böhme et al. [47] Germany April, 2020 Yes 1000 General population 70.0 -
Neumann-Böhme et al. [47] France April, 2020 Yes 1000 General population 62.0 -
Fisher et al. [61] US 4 April, 2020 Yes 1003 General population 56.9 Male, age
Salali & Uysal [62] UK May, 2020 Yes 1088 General population 83.0 None
Lin et al. [63] China May, 2020 Definitely/probably yes 3541 General population 83.5 None
Taylor et al. [64] Canada May, 2020 Yes 1902 General population 80.0 Male, age
Taylor et al. [64] US May, 2020 Yes 1772 General population 75.0 Male, age
Salali & Uysal [62] Turkey May, 2020 Yes 3936 General population 66.0 Male
Reiter et al. [65] US May, 2020 Definitely/probably willing 2006 General population 68.5 Male
Malik et al. [66] US May, 2020 Agree/strongly agree 672 General population 67.0 Male, age
Lazarus et al. [46] China June, 2020 Completely/somewhat agree 712 General population 88.6 -
Barello et al. [67] Italy June, 2020 Yes 735 University students 86.1 -
Lazarus et al. [46] Brazil June, 2020 Completely/somewhat agree 717 General population 85.4 -
Lazarus et al. [46] South Africa June, 2020 Completely/somewhat agree 619 General population 81.6 -
Lazarus et al. [46] South Korea June, 2020 Completely/somewhat agree 752 General population 79.8 -
Lazarus et al. [46] Mexico June, 2020 Completely/somewhat agree 699 General population 76.3 -
Lazarus et al. [46] US June, 2020 Completely/somewhat agree 773 General population 75.4 -
Lazarus et al. [46] India June, 2020 Completely/somewhat agree 742 General population 74.5 -
Lazarus et al. [46] Spain June, 2020 Completely/somewhat agree 748 General population 74.3 -
Lazarus et al. [46] Ecuador June, 2020 Completely/somewhat agree 741 General population 71.9 -
Lazarus et al. [46] UK June, 2020 Completely/somewhat agree 768 General population 71.5 -
Lazarus et al. [46] Italy June, 2020 Completely/somewhat agree 736 General population 70.8 -
Lazarus et al. [46] Canada June, 2020 Completely/somewhat agree 707 General population 68.7 -
Lazarus et al. [46] Germany June, 2020 Completely/somewhat agree 722 General population 68.4 -
Lazarus et al. [46] Singapore June, 2020 Completely/somewhat agree 655 General population 67.9 -
Lazarus et al. [46] Sweden June, 2020 Completely/somewhat agree 650 General population 65.2 -
Lazarus et al. [46] Nigeria June, 2020 Completely/somewhat agree 670 General population 65.2 -
Lazarus et al. [46] France June, 2020 Completely/somewhat agree 669 General population 58.9 -
Lazarus et al. [46] Poland June, 2020 Completely/somewhat agree 666 General population 56.3 -
Lazarus et al. [46] Russia June, 2020 Completely/somewhat agree 680 General population 54.9 -
Rhodes et al. [68] Australia June, 2020 Yes 2018 Parents and guardians 75.8 Male, age
Bell et al. [69] UK July, 2020 Yes, definitely or unsure but leaning towards yes 1252 Parents and guardians 89.1 -
Sherman et al. [70] UK July, 2020 Very likely 1500 General population 64.0 Age
Zhang et al. [71] China September, 2020 Likely or very likely 1052 Parents and guardians 72.6 None
Gretch et al. [49] Malta September, 2020 Likely 123 GPs and GP trainees 61.8 -
La Vecchia et al. [72] Italy September, 2020 Yes/probably yes 1055 General population 53.7 -
Gretch et al. [73] Malta September, 2020 Likely 1002 Healthcare workers 52.0 -
Gretch & Gauci [74] Malta September, 2020 Likely 852 University students/staff 44.2 -
Freeman et al. [48] UK September and October, 2020 Endorsing 4/7 items of Oxford Scale 5 5114 General population 71.7 Male, age
Al-Mohaithef & Badhi [75] Saudi Arabia Unknown Yes 992 General population 64.7 None
Sallam et al. [45] Jordan December, 2020 Yes 2173 General population 28.4 Male
Sallam et al. [45] Kuwait December, 2020 Yes 771 General population 23.6 Male

1 The study by Neumann-Böhme et al. reported that males and participants > 55 years were more willing to accept COVID-19 vaccines; however, this finding was not stratified per country. 2 DRC: The Democratic Republic of the Congo; 3 UK: United Kingdom; 4 US: United States; 5 Oxford Scale: Oxford COVID-19 vaccine hesitancy scale developed by Freeman et al. [48]; 6 N: Number.

3.2. Rates of COVID-19 Vaccine Acceptance

The results of the COVID-19 vaccine acceptance rates in different studies included in this review and stratified by country are shown in Table 1. Classified per study, the highest vaccine acceptance rates (>90%) among the general public were found in four studies from Ecuador (97.0%), Malaysia (94.3%), Indonesia (93.3%) and China (91.3%). On the contrary, the lowest vaccine acceptance rates (<60%) among the general public were found in seven studies to be from Kuwait (23.6%), Jordan (28.4%), Italy (53.7), Russia (54.9%), Poland (56.3%), US (56.9%), and France (58.9%). In Figure 2, COVID-19 vaccine acceptance rates are shown per country, with the latest estimate used for countries with multiple studies.

Figure 2.

Figure 2

COVID-19 vaccine acceptance rates worldwide. For countries with more than one survey study, the vaccine acceptance rate of the latest survey was used in this graph. The estimates were also based on studies from the general population, except in the following cases where no studies from the general public were found (Australia: parents/guardians; DRC: healthcare workers; Hong Kong: healthcare workers; Malta: healthcare workers).

For the eight studies conducted on healthcare workers, three surveys reported vaccine acceptance rates below 60%, with the highest rate being among doctors in Israel (78.1%) and the lowest vaccine acceptance rate (27.7%) reported among healthcare workers in the Democratic Republic of the Congo (DRC).

For the three studies conducted among parents/guardians, the vaccine acceptance rates were more than 70%. For the two studies among University students, the vaccine acceptance rate was 57.3% in Malta (excluding university staff), and 86.1% in Italy.

Male sex was associated with significantly higher rates of COVID-19 vaccine in 15 countries/studies, while the age was a significant factor in 11 studies/countries.

3.3. Changes in COVID-19 Vaccine Acceptance over Time in Countries with Multiple Survey Studies

In countries with multiple surveys over time, the following changes in COVID-19 vaccine acceptance rates were observed. In the UK, the vaccine acceptance rate was 79.0% in April, 83.0% in May, 71.5% in June, 64.0% in July and 71.7% in September/October. In France, the vaccine acceptance rate ranged from 62.0% to 77.1% in March/April and was 58.9% in June. In Italy, the vaccine acceptance rate was 77.3% in April, 70.8% in June and it reached 53.7% in September.

For the vaccine acceptance rates in the US, it was 56.9% in April, and ranged from 67.0% to 75.0% in May, and reached 75.4% in June. In China, three studies reported high rates of vaccine acceptance with the first study that reported a vaccine acceptance rate of 91.3% in March, the second study reported a rate of 83.5% in May and the third study reported a rate of 88.6% in June.

4. Discussion

Vaccine hesitancy is an old phenomenon that represents a serious threat to the global health, as shown by the resurgence of some infectious diseases (e.g., outbreaks of measles and pertussis) [76,77,78,79,80]. The huge leaps in developing efficacious and safe COVID-19 vaccines within a short period were unprecedented [81,82,83]. Nevertheless, COVID-19 vaccine hesitancy can be the limiting step in the global efforts to control the current pandemic with its negative health and socio-economic effects [43,84,85].

Assessing the level of population immunity necessary to limit the pathogen spread is dependent on the basic reproductive number for that infectious disease [86]. The latest estimates on COVID-19, pointed out a range of 60–75% immune individuals that would be necessary to halt the forward transmission of the virus and community spread of the virus [87,88,89]. Vaccine cost, effectiveness and duration of protection appear as important factors to achieve such a goal [83,90,91]. However, vaccine hesitancy can be a decisive factor that would hinder the successful control of the current COVID-19 pandemic [43,92]. Thus, estimates of vaccine acceptance rates can be helpful to plan actions and intervention measures necessary to increase the awareness and assure people about the safety and benefits of vaccines, which in turn would help to control virus spread and alleviate the negative effects of this unprecedented pandemic [93,94]. Evaluation of attitudes and acceptance rates towards COVID-19 vaccines can help to initiate communication campaigns that are much needed to strengthen trust in health authorities [24].

In this review, a large variability in COVID-19 vaccine acceptance rates was found. However, certain patterns can be deduced based on descriptive analysis of the reported vaccine acceptance rates. First, in East and South East Asia, the overall acceptance rates among the general public were relatively high. This includes more than 90% acceptance rates in Indonesia, Malaysia and one study from China [51,52,59]. Another two surveys on the general public in China reported vaccine acceptance rates of more than 80%, with an additional survey in South Korea that reported a rate of 79.8% [46,63]. A later survey from Shenzhen, China, by Zhang et al., which surveyed parents/guardians who were factory workers, on their acceptability of children COVID-19 vaccination reported a lower rate of 72.5% compared to previous studies [71]. Similarly, an online survey on Australian parents showed an acceptance rate of 75.8%, dropping from a rate of 85.8% in April among adults in Australia who were surveyed in April 2020 [68,95]. The lowest COVID-19 vaccine acceptance rate among the general public in the region was reported by Lazarus et al., in Singapore (67.9%) [46]. The relatively high rates of vaccine acceptance in the region were attributed to strong trust in governments [46]. Additionally, the only survey in India reported a vaccine acceptance rate of 74.5% [46]. The relatively high rates of COVID-19 vaccine acceptance might be related to stronger confidence in vaccine safety and effectiveness, as reported previously in Asia [27].

However, two studies that dated back to the early part of the pandemic (February and March) among nurses in Hong Kong reported low rates of COVID-19 acceptance (40.0% and 63.0%) [50,55]. Likewise, Kabamba Nzaji et al. reported a very low rate of COVID-19 vaccine acceptance among healthcare workers in the DRC (27.7%) [56]. This issue is alarming considering the front-line position of healthcare workers in fighting the spread and effects of the COVID-19 pandemic, which put them at a higher risk of infection, and hence their higher need for protective measures [96,97,98].

Additionally, the vaccine acceptance rates were relatively high in Latin America, where results from Brazil and Ecuador reported more than 70% acceptance rates [46,58]. This was also seen in the survey from Mexico with a vaccine acceptance rate of 76.3% [46].

In Europe, the results were largely variable, with countries around the Mediterranean reporting vaccine acceptance rates as low as 53.7% in Italy, and 58.9% in France; no surveys among the general public in Malta were found [46,72]. The results in Italy and France can be viewed from the perspective of lacking confidence in the safety of these vaccines, since such a negative attitude was reported previously in these countries [27]. In addition, low rates of COVID-19 vaccine acceptance were reported among students and healthcare workers in Malta—44.2% and 52.0%, respectively [73,74]. Variable results were also reported in other European countries with rates as high as 80.0% in Denmark, and as low as 56.3% in Poland [46,47]. The vaccine acceptance rates were even lower in Russia (54.9%), which needs further evaluation considering the heavy toll of COVID-19 on the country [29,46]. Variability in vaccine acceptance rates was also seen in the UK, US and Canada over the course of the pandemic [61,62,64,65,70]. Additionally, a drop in COVID-19 vaccine acceptance was noticed in a few European countries, which is in line with the recent report by Lin et al. [24]. Such patterns of COVID-19 vaccine hesitancy were consistent with a previous report that showed relatively high rates of vaccine hesitancy in Western and Eastern Europe, in addition to Russia [26]. The aforementioned low rates can be linked to lower confidence in vaccine safety and effectiveness in these regions [26].

The Middle East was among the regions with the lowest COVID-19 vaccine acceptance rates globally. The acceptance rate was the lowest in Kuwait (23.6%), followed by Jordan (28.4%), Saudi Arabia (64.7%) and Turkey (66.0%) [45,62,75]. Such low rates can be related to the widespread embrace of conspiratorial beliefs in the region, with its subsequent negative attitude towards vaccination [23,99,100,101]. However, the highest vaccine acceptance rate was reported in Israel (75.0%); however, this rate was much lower among nurses surveyed in the same study (61.1%) [53].

Only two surveys among the general public in African countries reported an acceptance rate of 81.6% in South Africa and 65.2% in Nigeria [46]. Early knowledge, attitudes and practices survey study towards COVID-19, from North-Central Nigeria, reported an acceptance rate of barely 29.0%, which highlights the need for more studies for an accurate depiction of COVID-19 vaccine hesitancy in Africa due to possible large regional and sub-regional variations [102]. Thus, more studies are recommended in Africa to address COVID-19 vaccine hesitancy in the continent. Despite the previous findings of an overall low prevalence of vaccine hesitancy in Eastern Africa, the attitude towards the newer vaccines, including those of COVID-19, remains a study topic that has not been explored to a large degree [12]. Besides Africa, more studies are needed from Central Asia, Eastern Europe, Central and South America to reach reliable conclusions about the scope of COVID-19 vaccine hesitancy around the globe.

Finally, the assessment of the role of sex and age in COVID-19 vaccine hesitancy revealed that males were more inclined to accept COVID-19 vaccines. This can be related to their higher perception of COVID-19 dangers and lower belief in conspiratorial claims surrounding the disease [45,99,101]. These variables should be considered for an accurate interpretation of COVID-19 acceptance rates, since sampling bias, particularly in sex distribution, can affect the reported rates.

The limitations of this review include the sole dependence on PubMed in the search study; however, this approach was done to provide a concise and succinct evaluation of COVID-19 vaccine hesitancy. This approach could have resulted in the inevitable missing of a few relevant studies tackling the subject of this review (e.g., the study by Head et al. assessing SARS-CoV-2 vaccination intentions among adults in the US) [103]. In addition, the research studies included in this review represented cross-sectional studies, which can be seen as snapshots of vaccine hesitancy status in each country/region, with different sampling strategies, which may partly explain the differences in vaccine acceptance rates reported in various studies from a single country. Thus, the results should be interpreted with extreme caution since they cannot predict the future changes in vaccine acceptance rates. The results of this study can be used as an initial motivation and guide for future studies and vaccine awareness campaigns. Finally, an important limitation was related to the different approaches used to express the willingness to accept COVID-19 vaccines in various studies (i.e., some studies used a binary response of yes/no, while others used a scale of strongly agree/agree/neutral/disagree/strongly disagree to deduce the inclination towards vaccine acceptance, etc.); thus, this variable should be taken into account for accurate comparisons of vaccine acceptance rates between different studies.

5. Conclusions

Large variability in COVID-19 vaccine acceptance rates was reported in different countries and regions of the world. A sizable number of studies reported COVID-19 acceptance rates below 60%, which would pose a serious problem for efforts to control the current COVID-19 pandemic. Low COVID-19 vaccine acceptance rates were more pronounced in the Middle East, Eastern Europe and Russia. High acceptance rates in East and South East Asia would help to achieve proper control of the pandemic. More studies are recommended to assess the attitude of general public and healthcare workers in Africa, Central Asia and the Middle East besides Central and South America. Such studies would help to evaluate COVID-19 vaccine hesitancy and its potential consequences in these regions, and around the globe.

The major challenges that could face successful implementation of COVID-19 vaccination programs to fight the unprecedented pandemic include mass manufacturing of vaccines, its fair distribution across the world and the uncertainty regarding its long-term efficacy. However, vaccine hesitancy can be the major hindrance of the control efforts to lessen the negative consequences of COVID-19 pandemic, at least in certain countries/regions.

The widespread prevalence of COVID-19 vaccine hesitancy mandates collaborative efforts of governments, health policy makers, and media sources, including social media companies. It is recommended to build COVID-19 vaccination trust among the general public, via the spread of timely and clear messages through trusted channels advocating the safety and efficacy of currently available COVID-19 vaccines.

Acknowledgments

I wish to express my sincere gratitude for the reviewers, for their insightful and valuable comments on the manuscript that helped to improve its quality to a great degree.

Funding

This research received no external funding.

Institutional Review Board Statement

Ethical approval is not applicable for this systematic review since data from previous published studies in which informed consent was obtained by primary investigators was analyzed.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data supporting this systematic review are available in the reference section. In addition, the analyzed data that were used during the current systematic review are available from the author on reasonable request.

Conflicts of Interest

The author declares no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.MacDonald N.E., Sage Working Group on Vaccine Hesitancy Vaccine hesitancy: Definition, scope and determinants. Vaccine. 2015;33:4161–4164. doi: 10.1016/j.vaccine.2015.04.036. [DOI] [PubMed] [Google Scholar]
  • 2.SAGE Working Group on Vaccine Hesitancy Report of the SAGE Working Group on Vaccine Hesitancy. [(accessed on 26 December 2020)]; Available online: https://www.who.int/immunization/sage/meetings/2014/october/1_Report_WORKING_GROUP_vaccine_hesitancy_final.pdf.
  • 3.Gowda C., Dempsey A.F. The rise (and fall?) of parental vaccine hesitancy. Hum. Vaccines Immunother. 2013;9:1755–1762. doi: 10.4161/hv.25085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Kumar D., Chandra R., Mathur M., Samdariya S., Kapoor N. Vaccine hesitancy: Understanding better to address better. Isr. J. Health Policy Res. 2016;5:2. doi: 10.1186/s13584-016-0062-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Daley M.F., Narwaney K.J., Shoup J.A., Wagner N.M., Glanz J.M. Addressing Parents’ Vaccine Concerns: A Randomized Trial of a Social Media Intervention. Am. J. Prev. Med. 2018;55:44–54. doi: 10.1016/j.amepre.2018.04.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Arede M., Bravo-Araya M., Bouchard E., Singh Gill G., Plajer V., Shehraj A., Adam Shuaib Y. Combating Vaccine Hesitancy: Teaching the Next Generation to Navigate Through the Post Truth Era. Front. Public Health. 2018;6:381. doi: 10.3389/fpubh.2018.00381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Dube E., Vivion M., MacDonald N.E. Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: Influence, impact and implications. Expert Rev. Vaccines. 2015;14:99–117. doi: 10.1586/14760584.2015.964212. [DOI] [PubMed] [Google Scholar]
  • 8.Salmon D.A., Dudley M.Z., Glanz J.M., Omer S.B. Vaccine Hesitancy: Causes, Consequences, and a Call to Action. Am. J. Prev. Med. 2015;49:S391–S398. doi: 10.1016/j.amepre.2015.06.009. [DOI] [PubMed] [Google Scholar]
  • 9.Larson H.J., Cooper L.Z., Eskola J., Katz S.L., Ratzan S. Addressing the vaccine confidence gap. Lancet. 2011;378:526–535. doi: 10.1016/S0140-6736(11)60678-8. [DOI] [PubMed] [Google Scholar]
  • 10.Olson O., Berry C., Kumar N. Addressing Parental Vaccine Hesitancy towards Childhood Vaccines in the United States: A Systematic Literature Review of Communication Interventions and Strategies. Vaccines. 2020;8:590. doi: 10.3390/vaccines8040590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Lane S., MacDonald N.E., Marti M., Dumolard L. Vaccine hesitancy around the globe: Analysis of three years of WHO/UNICEF Joint Reporting Form data-2015–2017. Vaccine. 2018;36:3861–3867. doi: 10.1016/j.vaccine.2018.03.063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Wagner A.L., Masters N.B., Domek G.J., Mathew J.L., Sun X., Asturias E.J., Ren J., Huang Z., Contreras-Roldan I.L., Gebremeskel B., et al. Comparisons of Vaccine Hesitancy across Five Low- and Middle-Income Countries. Vaccines. 2019;7:155. doi: 10.3390/vaccines7040155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.The Lancet Child & Adolescent Health Vaccine hesitancy: A generation at risk. Lancet Child Adolesc. Health. 2019;3:281. doi: 10.1016/S2352-4642(19)30092-6. [DOI] [PubMed] [Google Scholar]
  • 14.Karafillakis E., Larson H.J., Consortium A. The benefit of the doubt or doubts over benefits? A systematic literature review of perceived risks of vaccines in European populations. Vaccine. 2017;35:4840–4850. doi: 10.1016/j.vaccine.2017.07.061. [DOI] [PubMed] [Google Scholar]
  • 15.Pelcic G., Karacic S., Mikirtichan G.L., Kubar O.I., Leavitt F.J., Cheng-Tek Tai M., Morishita N., Vuletic S., Tomasevic L. Religious exception for vaccination or religious excuses for avoiding vaccination. Croat. Med. J. 2016;57:516–521. doi: 10.3325/cmj.2016.57.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Yaqub O., Castle-Clarke S., Sevdalis N., Chataway J. Attitudes to vaccination: A critical review. Soc. Sci. Med. 2014;112:1–11. doi: 10.1016/j.socscimed.2014.04.018. [DOI] [PubMed] [Google Scholar]
  • 17.Karlsson L.C., Soveri A., Lewandowsky S., Karlsson L., Karlsson H., Nolvi S., Karukivi M., Lindfelt M., Antfolk J. Fearing the disease or the vaccine: The case of COVID-19. Personal. Individ. Differ. 2021;172:110590. doi: 10.1016/j.paid.2020.110590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Paul E., Steptoe A., Fancourt D. Attitudes towards vaccines and intention to vaccinate against COVID-19: Implications for public health communications. Lancet Reg. Health Eur. 2021;1 doi: 10.1016/j.lanepe.2020.100012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Olagoke A.A., Olagoke O.O., Hughes A.M. Intention to Vaccinate Against the Novel 2019 Coronavirus Disease: The Role of Health Locus of Control and Religiosity. J. Relig. Health. 2020 doi: 10.1007/s10943-020-01090-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Murphy J., Vallieres F., Bentall R.P., Shevlin M., McBride O., Hartman T.K., McKay R., Bennett K., Mason L., Gibson-Miller J., et al. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nat. Commun. 2021;12:29. doi: 10.1038/s41467-020-20226-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Pomares T.D., Buttenheim A.M., Amin A.B., Joyce C.M., Porter R.M., Bednarczyk R.A., Omer S.B. Association of cognitive biases with human papillomavirus vaccine hesitancy: A cross-sectional study. Hum. Vaccines Immunother. 2020;16:1018–1023. doi: 10.1080/21645515.2019.1698243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Browne M., Thomson P., Rockloff M.J., Pennycook G. Going against the Herd: Psychological and Cultural Factors Underlying the ‘Vaccination Confidence Gap’. PLoS ONE. 2015;10:e0132562. doi: 10.1371/journal.pone.0132562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Hornsey M.J., Harris E.A., Fielding K.S. The psychological roots of anti-vaccination attitudes: A 24-nation investigation. Health Psychol. 2018;37:307–315. doi: 10.1037/hea0000586. [DOI] [PubMed] [Google Scholar]
  • 24.Lin C., Tu P., Beitsch L.M. Confidence and Receptivity for COVID-19 Vaccines: A Rapid Systematic Review. Vaccines. 2021;9:16. doi: 10.3390/vaccines9010016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.de Figueiredo A., Simas C., Karafillakis E., Paterson P., Larson H.J. Mapping global trends in vaccine confidence and investigating barriers to vaccine uptake: A large-scale retrospective temporal modelling study. Lancet. 2020;396:898–908. doi: 10.1016/S0140-6736(20)31558-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Wellcome Global Monitor How Does the World Feel about Science and Health? [(accessed on 9 February 2021)]; Available online: https://wellcome.org/sites/default/files/wellcome-global-monitor-2018.pdf.
  • 27.Larson H.J., de Figueiredo A., Xiahong Z., Schulz W.S., Verger P., Johnston I.G., Cook A.R., Jones N.S. The State of Vaccine Confidence 2016: Global Insights Through a 67-Country Survey. EBioMedicine. 2016;12:295–301. doi: 10.1016/j.ebiom.2016.08.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.The All-Party Parliamentary Group (APPG) on Vaccinations for All The Next Decade of Vaccines: Addressing the Challenges That Remain towards Achieving Vaccinations for All. [(accessed on 9 February 2021)]; Available online: https://www.results.org.uk/sites/default/files/files/NextDecadeOfVaccines_Single_NoBleed.pdf.
  • 29.Worldometer COVID-19 Coronavirus Pandemic. [(accessed on 10 January 2021)]; Available online: https://www.worldometers.info/coronavirus/
  • 30.World Health Organization COVID-19 Weekly Epidemiological Update, 22 December 2020. [(accessed on 26 December 2020)]; Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update---22-december-2020.
  • 31.Prem K., Liu Y., Russell T.W., Kucharski A.J., Eggo R.M., Davies N., Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group. Jit M., Klepac P. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health. 2020;5:e261–e270. doi: 10.1016/S2468-2667(20)30073-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Viner R.M., Russell S.J., Croker H., Packer J., Ward J., Stansfield C., Mytton O., Bonell C., Booy R. School closure and management practices during coronavirus outbreaks including COVID-19: A rapid systematic review. Lancet Child Adolesc. Health. 2020;4:397–404. doi: 10.1016/S2352-4642(20)30095-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Feng S., Shen C., Xia N., Song W., Fan M., Cowling B.J. Rational use of face masks in the COVID-19 pandemic. Lancet Respir. Med. 2020;8:434–436. doi: 10.1016/S2213-2600(20)30134-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Hengartner N., Giorgi E.E., Bhattacharya T., Foley B. Tracking changes in SARS-CoV-2 Spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182:812–827.e19. doi: 10.1016/j.cell.2020.06.043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Grubaugh N.D., Hanage W.P., Rasmussen A.L. Making sense of mutation: What D614G means for the COVID-19 pandemic remains unclear. Cell. 2020;182:794–795. doi: 10.1016/j.cell.2020.06.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Sallam M., Ababneh N.A., Dababseh D., Bakri F.G., Mahafzah A. Temporal increase in D614G mutation of SARS-CoV-2 in the Middle East and North Africa. Heliyon. 2021;7:e06035. doi: 10.1016/j.heliyon.2021.e06035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Wise J. Covid-19: New Coronavirus Variant Is Identified in UK. British Medical Journal Publishing Group; London, UK: 2020. [DOI] [PubMed] [Google Scholar]
  • 38.European Centre for Disease Prevention and Control Threat Assessment Brief: Rapid Increase of a SARS-CoV-2 Variant with Multiple Spike Protein Mutations Observed in the United Kingdom. [(accessed on 26 December 2020)]; Available online: https://www.ecdc.europa.eu/en/publications-data/threat-assessment-brief-rapid-increase-sars-cov-2-variant-united-kingdom.
  • 39.Nicola M., Alsafi Z., Sohrabi C., Kerwan A., Al-Jabir A., Iosifidis C., Agha M., Agha R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020;78:185–193. doi: 10.1016/j.ijsu.2020.04.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Calina D., Docea A.O., Petrakis D., Egorov A.M., Ishmukhametov A.A., Gabibov A.G., Shtilman M.I., Kostoff R., Carvalho F., Vinceti M., et al. Towards effective COVID19 vaccines: Updates, perspectives and challenges (Review) Int. J. Mol. Med. 2020;46:3–16. doi: 10.3892/ijmm.2020.4596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Conte C., Sogni F., Affanni P., Veronesi L., Argentiero A., Esposito S. Vaccines against Coronaviruses: The State of the Art. Vaccines. 2020;8:309. doi: 10.3390/vaccines8020309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.World Health Organization (WHO) Draft Landscape of COVID-19 Candidate Vaccines. [(accessed on 26 December 2020)]; Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
  • 43.Harrison E.A., Wu J.W. Vaccine confidence in the time of COVID-19. Eur. J. Epidemiol. 2020;35:325–330. doi: 10.1007/s10654-020-00634-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Moher D., Liberati A., Tetzlaff J., Altman D.G., Group P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Sallam M., Dababseh D., Eid H., Al-Mahzoum K., Al-Haidar A., Taim D., Yaseen A., Ababneh N.A., Bakri F.G., Mahafzah A. High rates of COVID-19 vaccine hesitancy and its association with conspiracy beliefs: A study in Jordan and Kuwait among other Arab countries. Vaccines. 2021;9:42. doi: 10.3390/vaccines9010042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Lazarus J.V., Ratzan S.C., Palayew A., Gostin L.O., Larson H.J., Rabin K., Kimball S., El-Mohandes A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2020 doi: 10.1038/s41591-020-1124-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Neumann-Böhme S., Varghese N.E., Sabat I., Barros P.P., Brouwer W., van Exel J., Schreyögg J., Stargardt T. Once We Have It, Will We Use It? A European Survey on Willingness to Be Vaccinated against COVID-19. Springer; Berlin/Heidelberg, Germany: 2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Freeman D., Loe B.S., Chadwick A., Vaccari C., Waite F., Rosebrock L., Jenner L., Petit A., Lewandowsky S., Vanderslott S., et al. COVID-19 Vaccine Hesitancy in the UK: The Oxford Coronavirus Explanations, Attitudes, and Narratives Survey (OCEANS) II. Psychol. Med. 2020:1–34. doi: 10.1017/S0033291720005188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Grech V., Bonnici J., Zammit D. Vaccine hesitancy in Maltese family physicians and their trainees vis-a-vis influenza and novel COVID-19 vaccination. Early Hum. Dev. 2020:105259. doi: 10.1016/j.earlhumdev.2020.105259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Wang K., Wong E.L.Y., Ho K.F., Cheung A.W.L., Chan E.Y.Y., Yeoh E.K., Wong S.Y.S. Intention of nurses to accept coronavirus disease 2019 vaccination and change of intention to accept seasonal influenza vaccination during the coronavirus disease 2019 pandemic: A cross-sectional survey. Vaccine. 2020;38:7049–7056. doi: 10.1016/j.vaccine.2020.09.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Wang J., Jing R., Lai X., Zhang H., Lyu Y., Knoll M.D., Fang H. Acceptance of COVID-19 Vaccination during the COVID-19 Pandemic in China. Vaccines. 2020;8:482. doi: 10.3390/vaccines8030482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Harapan H., Wagner A.L., Yufika A., Winardi W., Anwar S., Gan A.K., Setiawan A.M., Rajamoorthy Y., Sofyan H., Mudatsir M. Acceptance of a COVID-19 Vaccine in Southeast Asia: A Cross-Sectional Study in Indonesia. Front. Public Health. 2020;8:381. doi: 10.3389/fpubh.2020.00381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Dror A.A., Eisenbach N., Taiber S., Morozov N.G., Mizrachi M., Zigron A., Srouji S., Sela E. Vaccine hesitancy: The next challenge in the fight against COVID-19. Eur. J. Epidemiol. 2020;35:775–779. doi: 10.1007/s10654-020-00671-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Detoc M., Bruel S., Frappe P., Tardy B., Botelho-Nevers E., Gagneux-Brunon A. Intention to participate in a COVID-19 vaccine clinical trial and to get vaccinated against COVID-19 in France during the pandemic. Vaccine. 2020;38:7002–7006. doi: 10.1016/j.vaccine.2020.09.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Kwok K.O., Li K.K., Wei W.I., Tang A., Wong S.Y.S., Lee S.S. Influenza vaccine uptake, COVID-19 vaccination intention and vaccine hesitancy among nurses: A survey. Int. J. Nurs. Stud. 2020;114:103854. doi: 10.1016/j.ijnurstu.2020.103854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Kabamba Nzaji M., Kabamba Ngombe L., Ngoie Mwamba G., Banza Ndala D.B., Mbidi Miema J., Luhata Lungoyo C., Lora Mwimba B., Cikomola Mwana Bene A., Mukamba Musenga E. Acceptability of Vaccination Against COVID-19 Among Healthcare Workers in the Democratic Republic of the Congo. Pragmat. Obs. Res. 2020;11:103–109. doi: 10.2147/POR.S271096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Gagneux-Brunon A., Detoc M., Bruel S., Tardy B., Rozaire O., Frappe P., Botelho-Nevers E. Intention to get vaccinations against COVID-19 in French healthcare workers during the first pandemic wave: A cross sectional survey. J. Hosp. Infect. 2020 doi: 10.1016/j.jhin.2020.11.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Sarasty O., Carpio C.E., Hudson D., Guerrero-Ochoa P.A., Borja I. The demand for a COVID-19 vaccine in Ecuador. Vaccine. 2020;38:8090–8098. doi: 10.1016/j.vaccine.2020.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Wong L.P., Alias H., Wong P.F., Lee H.Y., AbuBakar S. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay. Hum. Vaccines Immunother. 2020;16:2204–2214. doi: 10.1080/21645515.2020.1790279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Ward J.K., Alleaume C., Peretti-Watel P., Group C. The French public’s attitudes to a future COVID-19 vaccine: The politicization of a public health issue. Soc. Sci. Med. 2020;265:113414. doi: 10.1016/j.socscimed.2020.113414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Fisher K.A., Bloomstone S.J., Walder J., Crawford S., Fouayzi H., Mazor K.M. Attitudes Toward a Potential SARS-CoV-2 Vaccine: A Survey of U.S. Adults. Ann. Intern. Med. 2020;173:964–973. doi: 10.7326/M20-3569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Salali G.D., Uysal M.S. COVID-19 vaccine hesitancy is associated with beliefs on the origin of the novel coronavirus in the UK and Turkey. Psychol. Med. 2020:1–3. doi: 10.1017/S0033291720004067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Lin Y., Hu Z., Zhao Q., Alias H., Danaee M., Wong L.P. Understanding COVID-19 vaccine demand and hesitancy: A nationwide online survey in China. PLoS Negl. Trop. Dis. 2020;14:e0008961. doi: 10.1371/journal.pntd.0008961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Taylor S., Landry C.A., Paluszek M.M., Groenewoud R., Rachor G.S., Asmundson G.J.G. A Proactive Approach for Managing COVID-19: The Importance of Understanding the Motivational Roots of Vaccination Hesitancy for SARS-CoV2. Front. Psychol. 2020;11:575950. doi: 10.3389/fpsyg.2020.575950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Reiter P.L., Pennell M.L., Katz M.L. Acceptability of a COVID-19 vaccine among adults in the United States: How many people would get vaccinated? Vaccine. 2020;38:6500–6507. doi: 10.1016/j.vaccine.2020.08.043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Malik A.A., McFadden S.M., Elharake J., Omer S.B. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine. 2020;26:100495. doi: 10.1016/j.eclinm.2020.100495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Barello S., Nania T., Dellafiore F., Graffigna G., Caruso R. ‘Vaccine hesitancy’ among university students in Italy during the COVID-19 pandemic. Eur. J. Epidemiol. 2020;35:781–783. doi: 10.1007/s10654-020-00670-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Rhodes A., Hoq M., Measey M.A., Danchin M. Intention to vaccinate against COVID-19 in Australia. Lancet Infect. Dis. 2020 doi: 10.1016/S1473-3099(20)30724-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Bell S., Clarke R., Mounier-Jack S., Walker J.L., Paterson P. Parents’ and guardians’ views on the acceptability of a future COVID-19 vaccine: A multi-methods study in England. Vaccine. 2020;38:7789–7798. doi: 10.1016/j.vaccine.2020.10.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Sherman S.M., Smith L.E., Sim J., Amlot R., Cutts M., Dasch H., Rubin G.J., Sevdalis N. COVID-19 vaccination intention in the UK: Results from the COVID-19 vaccination acceptability study (CoVAccS), a nationally representative cross-sectional survey. Hum. Vaccines Immunother. 2020:1–10. doi: 10.1080/21645515.2020.1846397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Zhang K.C., Fang Y., Cao H., Chen H., Hu T., Chen Y.Q., Zhou X., Wang Z. Parental acceptability of COVID-19 vaccination for children under the age of 18 years in China: Cross-sectional online survey. JMIR Pediatr. Parent. 2020 doi: 10.2196/24827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.La Vecchia C., Negri E., Alicandro G., Scarpino V. Attitudes towards influenza vaccine and a potential COVID-19 vaccine in Italy and differences across occupational groups, September 2020. Med. Lav. 2020;111:445–448. doi: 10.23749/mdl.v111i6.10813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Grech V., Gauci C., Agius S. Vaccine hesitancy among Maltese healthcare workers toward influenza and novel COVID-19 vaccination. Early Hum. Dev. 2020:105213. doi: 10.1016/j.earlhumdev.2020.105213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Grech V., Gauci C. Vaccine hesitancy in the University of Malta Faculties of Health Sciences, Dentistry and Medicine vis-a-vis influenza and novel COVID-19 vaccination. Early Hum. Dev. 2020:105258. doi: 10.1016/j.earlhumdev.2020.105258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Al-Mohaithef M., Padhi B.K. Determinants of COVID-19 Vaccine Acceptance in Saudi Arabia: A Web-Based National Survey. J. Multidiscip. Healthc. 2020;13:1657–1663. doi: 10.2147/JMDH.S276771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Phadke V.K., Bednarczyk R.A., Salmon D.A., Omer S.B. Association between Vaccine Refusal and Vaccine-Preventable Diseases in the United States: A Review of Measles and Pertussis. JAMA. 2016;315:1149–1158. doi: 10.1001/jama.2016.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Benecke O., DeYoung S.E. Anti-Vaccine Decision-Making and Measles Resurgence in the United States. Glob. Pediatr. Health. 2019;6 doi: 10.1177/2333794X19862949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Gangarosa E.J., Galazka A.M., Wolfe C.R., Phillips L.M., Gangarosa R.E., Miller E., Chen R.T. Impact of anti-vaccine movements on pertussis control: The untold story. Lancet. 1998;351:356–361. doi: 10.1016/S0140-6736(97)04334-1. [DOI] [PubMed] [Google Scholar]
  • 79.Borba R.C., Vidal V.M., Moreira L.O. The re-emergency and persistence of vaccine preventable diseases. An. Acad. Bras. Cienc. 2015;87:1311–1322. doi: 10.1590/0001-3765201520140663. [DOI] [PubMed] [Google Scholar]
  • 80.Wong L.P., Wong P.F., AbuBakar S. Vaccine hesitancy and the resurgence of vaccine preventable diseases: The way forward for Malaysia, a Southeast Asian country. Hum. Vaccines Immunother. 2020;16:1511–1520. doi: 10.1080/21645515.2019.1706935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Lurie N., Saville M., Hatchett R., Halton J. Developing Covid-19 vaccines at pandemic speed. N. Engl. J. Med. 2020;382:1969–1973. doi: 10.1056/NEJMp2005630. [DOI] [PubMed] [Google Scholar]
  • 82.Graham B.S. Rapid COVID-19 vaccine development. Science. 2020;368:945–946. doi: 10.1126/science.abb8923. [DOI] [PubMed] [Google Scholar]
  • 83.Sharma O., Sultan A.A., Ding H., Triggle C.R. A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Front. Immunol. 2020;11:585354. doi: 10.3389/fimmu.2020.585354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Pogue K., Jensen J.L., Stancil C.K., Ferguson D.G., Hughes S.J., Mello E.J., Burgess R., Berges B.K., Quaye A., Poole B.D. Influences on Attitudes Regarding Potential COVID-19 Vaccination in the United States. Vaccines. 2020;8:582. doi: 10.3390/vaccines8040582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Hamadani J.D., Hasan M.I., Baldi A.J., Hossain S.J., Shiraji S., Bhuiyan M.S.A., Mehrin S.F., Fisher J., Tofail F., Tipu S.M.U. Immediate impact of stay-at-home orders to control COVID-19 transmission on socioeconomic conditions, food insecurity, mental health, and intimate partner violence in Bangladeshi women and their families: An interrupted time series. Lancet Glob. Health. 2020;8:e1380–e1389. doi: 10.1016/S2214-109X(20)30366-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Ridenhour B., Kowalik J.M., Shay D.K. Unraveling r 0: Considerations for public health applications. Am. J. Public Health. 2018;108:S445–S454. doi: 10.2105/AJPH.2013.301704r. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Billah M.A., Miah M.M., Khan M.N. Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence. PLoS ONE. 2020;15:e0242128. doi: 10.1371/journal.pone.0242128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Anderson R.M., Vegvari C., Truscott J., Collyer B.S. Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination. Lancet. 2020;396:1614–1616. doi: 10.1016/S0140-6736(20)32318-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Britton T., Ball F., Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science. 2020;369:846–849. doi: 10.1126/science.abc6810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Wang J., Peng Y., Xu H., Cui Z., Williams R.O., 3rd The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation. AAPS Pharm. Sci. Tech. 2020;21:225. doi: 10.1208/s12249-020-01744-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Teerawattananon Y., Dabak S.V. COVID Vaccination Logistics: Five Steps to Take Now. Nature Publishing Group; London, UK: 2020. [DOI] [PubMed] [Google Scholar]
  • 92.Palamenghi L., Barello S., Boccia S., Graffigna G. Mistrust in biomedical research and vaccine hesitancy: The forefront challenge in the battle against COVID-19 in Italy. Eur. J. Epidemiol. 2020;35:785–788. doi: 10.1007/s10654-020-00675-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Weintraub R.L., Subramanian L., Karlage A., Ahmad I., Rosenberg J. COVID-19 Vaccine To Vaccination: Why Leaders Must Invest In Delivery Strategies Now: Analysis describe lessons learned from past pandemics and vaccine campaigns about the path to successful vaccine delivery for COVID-19. Health Aff. 2021;40:33–41. doi: 10.1377/hlthaff.2020.01523. [DOI] [PubMed] [Google Scholar]
  • 94.Habersaat K.B., Betsch C., Danchin M., Sunstein C.R., Böhm R., Falk A., Brewer N.T., Omer S.B., Scherzer M., Sah S. Ten considerations for effectively managing the COVID-19 transition. Nat. Hum. Behav. 2020;4:677–687. doi: 10.1038/s41562-020-0906-x. [DOI] [PubMed] [Google Scholar]
  • 95.Dodd R.H., Cvejic E., Bonner C., Pickles K., McCaffery K.J., Sydney Health Literacy Lab COVID-19 Group Willingness to vaccinate against COVID-19 in Australia. Lancet Infect. Dis. 2020 doi: 10.1016/S1473-3099(20)30559-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Nguyen L.H., Drew D.A., Graham M.S., Joshi A.D., Guo C.-G., Ma W., Mehta R.S., Warner E.T., Sikavi D.R., Lo C.-H. Risk of COVID-19 among front-line health-care workers and the general community: A prospective cohort study. Lancet Public Health. 2020;5:e475–e483. doi: 10.1016/S2468-2667(20)30164-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Shaukat N., Ali D.M., Razzak J. Physical and mental health impacts of COVID-19 on healthcare workers: A scoping review. Int. J. Emerg. Med. 2020;13:40. doi: 10.1186/s12245-020-00299-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Nie Q., Li X., Chen W., Liu D., Chen Y., Li H., Li D., Tian M., Tan W., Zai J. Phylogenetic and phylodynamic analyses of SARS-CoV-2. Virus Res. 2020;287:198098. doi: 10.1016/j.virusres.2020.198098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Sallam M., Dababseh D., Yaseen A., Al-Haidar A., Taim D., Eid H., Ababneh N.A., Bakri F.G., Mahafzah A. COVID-19 misinformation: Mere harmless delusions or much more? A knowledge and attitude cross-sectional study among the general public residing in Jordan. PLoS ONE. 2020;15:e0243264. doi: 10.1371/journal.pone.0243264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Nyhan B., Zeitzoff T. Conspiracy and misperception belief in the Middle East and North Africa. J. Politics. 2018;80:1400–1404. doi: 10.1086/698663. [DOI] [Google Scholar]
  • 101.Sallam M., Dababseh D., Yaseen A., Al-Haidar A., Ababneh N.A., Bakri F.G., Mahafzah A. Conspiracy Beliefs Are Associated with Lower Knowledge and Higher Anxiety Levels Regarding COVID-19 among Students at the University of Jordan. Int. J. Environ. Res. Public Health. 2020;17:4915. doi: 10.3390/ijerph17144915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Reuben R.C., Danladi M.M.A., Saleh D.A., Ejembi P.E. Knowledge, Attitudes and Practices Towards COVID-19: An Epidemiological Survey in North-Central Nigeria. J. Community Health. 2020 doi: 10.1007/s10900-020-00881-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Head K.J., Kasting M.L., Sturm L.A., Hartsock J.A., Zimet G.D. A National Survey Assessing SARS-CoV-2 Vaccination Intentions: Implications for Future Public Health Communication Efforts. Sci. Commun. 2020;42:698–723. doi: 10.1177/1075547020960463. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Data supporting this systematic review are available in the reference section. In addition, the analyzed data that were used during the current systematic review are available from the author on reasonable request.


Articles from Vaccines are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES