In the original article, there was an error. A portion of the text in the introduction was reproduced from another article, this has now been rephrased and appropriately attributed. A correction has been made to the second paragraph of the Introduction, paragraph two, the corrected paragraph appears below:
There is a symbiotic relationship between microbiota and their hosts (Rees et al., 2018; Dietz et al., 2019). The main benefit of microbes was to obtain a relatively stable habitat and adequate food source (Kohl, 2012; McFall-Ngai et al., 2013). Meanwhile, microbes play an important role in many aspects of host physiology, including nutrition, metabolism, and intestinal homeostasis (Walker et al., 2017). Early colonization of microbiota can have long-standing consequences on host such as determining the production of essential metabolites which facilitate postnatal development and enhance immune function (Lee and Mazmanian, 2010; Funkhouser and Bordenstein, 2013; Gensollen et al., 2016; Stinson et al., 2017). Neonates of mammals can acquire maternal microbiota through the placenta, amniotic fluid, vagina, and breast milk (Digiulio et al., 2008; Satokari et al., 2009; Albesharat et al., 2011; Stout et al., 2013; Aagaard et al., 2014). The prenatal exposure is an important step in modulating the embryonic development and the maturation of immune system (Nylund et al., 2014). Fetuses are highly susceptible to disease infections, not only because their immature immune system is less capable of generating adaptive immune effectors, such as antibodies, but also because they lack diverse commensal microbiota that can antagonize pathogens independently of host responses (Basha et al., 2014; Simon et al., 2015; Zheng et al., 2020). Although the chicken embryo is isolated from the mother, the core microbial colonizers of maternal hens can be transmitted to the embryos in the process of fertilization and egg formation in the oviduct (Ding et al., 2017). Likewise, prenatal bacteria transfer may occur in other birds. The relatively high percentage of shared operational taxonomic units (OTUs) between neonates and females is a strong indication that neonates of rock pigeons obtain bacteria through prenatal transfer (Dietz et al., 2019). Research has shown that lactobacilli is important in maintaining a healthy microbial balance in the chicken crop (Fuller, 1977), but as regard to crop secretions, it is not known the pigeon milk microbial composition and function, and whether these microbes can be transmitted from parent pigeons to squabs.
The authors apologize for error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
References
- Aagaard K., Ma J., Antony K. M., Ganu R., Petrosino J., Versalovic J. (2014). The placenta harbors a unique microbiome. Sci. Transl. Med. 6:237ra65. 10.1126/scitranslmed.3008599 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albesharat R., Ehrmann M. A., Korakli M., Yazaji S., Vogel R. F. (2011). Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst. Appl. Microbiol. 34, 148–155. 10.1016/j.syapm.2010.12.001 [DOI] [PubMed] [Google Scholar]
- Basha S., Surendran N., Pichichero M. (2014). Immune responses in neonates. Expert Rev. Clin. Immunol. 10, 1171–1184. 10.1586/1744666X.2014.942288 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietz M. W., Salles J. F., Hsu B. -Y., Dijkstra C., Groothuis T. G. G., van der Velde M., et al. (2019). Prenatal transfer of gut bacteria in rock pigeon. Microorganisms 8:61. 10.3390/microorganisms8010061 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Digiulio D. B., Romero R., Amogan H. P., Kusanovic J. P., Bik E. M., Gotsch F., et al. (2008). Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3:e3056. 10.1371/journal.pone.0003056 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding J., Dai R., Yang L., He C., Xu K., Liu S., et al. (2017). Inheritance and establishment of gut microbiota in chickens. Front. Microbiol. 8:1967. 10.3389/fmicb.2017.01967 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller R. (1977). The importance of lactobacilli in maintaining normal microbial balance in the crop. Br. Poult. Sci. 18, 85–94. 10.1080/00071667708416332 [DOI] [PubMed] [Google Scholar]
- Funkhouser L. J., Bordenstein S. R. (2013). Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 11:e1001631. 10.1371/journal.pbio.1001631 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gensollen T., Iyer S. S., Kasper D. L., Blumberg R. S. (2016). How colonization by microbiota in early life shapes the immune system. Science 352, 539–544. 10.1126/science.aad9378 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohl K. D. (2012). Diversity and function of the avian gut microbiota. J. Comp. Physiol. B. 182, 591–602. 10.1007/s00360-012-0645-z [DOI] [PubMed] [Google Scholar]
- Lee Y. K., Mazmanian S. K. (2010). Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330, 1768–1773. 10.1126/science.1195568 [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFall-Ngai M., Hadfield M. G., Bosch T. C. G., Carey H. V., Domazet-Loso T., Douglas A. E., et al. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. U. S. A. 110, 3229–3236. 10.1073/pnas.1218525110 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nylund L., Satokari R., Salminen S., de Vos W. M. (2014). Intestinal microbiota during early life—impact on health and disease. Proc. Nutr. Soc. 73, 457–469. 10.1017/S0029665114000627 [DOI] [PubMed] [Google Scholar]
- Rees T., Bosch T., Douglas A. E. (2018). How the microbiome challenges our concept of self. PLoS Biol. 16:e2005358. 10.1371/journal.pbio.2005358 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satokari R., Gronroos T., Laitinen K., Salminen S., Isolauri E. (2009). Bifidobacterium and Lactobacillus DNA in the human placenta. Lett. Appl. Microbiol. 48, 8–12. 10.1111/j.1472-765X.2008.02475.x [DOI] [PubMed] [Google Scholar]
- Simon A. K., Hollander G. A., McMichael A. (2015). Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282:20143085. 10.1098/rspb.2014.3085 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stinson L. F., Payne M. S., Keelan J. A. (2017). Planting the seed: origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit. Rev. Microbiol. 43, 352–369. 10.1080/1040841X.2016.1211088 [DOI] [PubMed] [Google Scholar]
- Stout M. J., Conlon B., Landeau M., Lee I., Bower C., Zhao Q., et al. (2013). Identification of intracellular bacteria in the basal plate of the human placenta. Am. J. Obstet. Gynecol. 208:226.e1-7. 10.1016/j.ajog.2013.01.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker R. W., Clemente J. C., Peter I., Loos R. J. F. (2017). The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr. Obes. 12, 3–17. 10.1111/ijpo.12217 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng W., Zhao W., Wu M., Song X., Caro F., Sun X., et al. (2020). Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature 577, 543–548. 10.1038/s41586-019-1898-4 [DOI] [PMC free article] [PubMed] [Google Scholar]