Skip to main content
Saudi Journal of Biological Sciences logoLink to Saudi Journal of Biological Sciences
. 2021 Feb 2;28(3):1557–1560. doi: 10.1016/j.sjbs.2021.01.038

Phylotranscriptomic analysis of Dillenia indica L. (Dilleniales, Dilleniaceae) and its systematics implication

Mohammad Ajmal Ali 1
PMCID: PMC7938110  PMID: 33732040

Abstract

The recent massive development in the next-generation sequencing platforms and bioinformatics tools including cloud based computing have proven extremely useful in understanding the deeper-level phylogenetic relationships of angiosperms. The present phylotranscriptomic analyses address the poorly known evolutionary relationships of the order Dilleniales to order of the other angiosperms using the minimum evolution method. The analyses revealed the nesting of the representative taxon of Dilleniales in the MPT but distinct from the representative of the order Santalales, Caryophyllales, Asterales, Cornales, Ericales, Lamiales, Saxifragales, Fabales, Malvales, Vitales and Berberidopsidales.

Keywords: Dillenia indica, Dilleniales, Dilleniaceae, Phylotranscriptome, Angiosperm, Phylogeny

1. Introduction

The family Dilleniaceae (Parad. Lond. sub t. 73, 1806) previously placed in subclass Dilleniidae (Phytologia 74(3): 171, 1993) (Cronquist and Takhtadzhi︠, 1981), were unplaced in Angiosperm Phylogeny Group, APG (APG, 1998; APG II, 2003; APG III, 2009) to as an order; later APG IV (APG IV, 2016) recognized as the new monofamilial order Dilleniales (Prir. Rostlin 223, 1820) (characterized as mostly woody; lvs if veins strong, proceed to apex of teeth flw mostly K5, persisting, mostly Androceium ∞, Gynoceium mostly slightly connate seeds often with aril; fruits usually follicles) under clade core eudicots containing family Dilleniaceae only (-the family of trees, shrubs, and lianas) based on molecular phylogenetic studies (Soltis et al., 2011, Ruhfel et al., 2014). The APG system recognizes 12 genera [viz. 1. Acrotrema Jack (Malayan Misc. 1(5): 36, 1820), 2. Curatella Loefl. (Iter Hispan. 229, 260, 1758), 3. Davilla Vand. (Fl. Lusit. Bras. Spec. 35, f. 14, 1788), 4. Didesmandra Stapf (Hooker's Icon. Pl. 27:, ad t. 2646, 1900), 5. Dillenia L. (Sp. Pl. 1: 535, 1753), 6. Doliocarpus Rol. (Kongl. Svenska Vetensk. Acad. Handl. 17: 260–261, 1756), 7. Hibbertia Andrews (Bot. Repos. 2:, t. 126, 1800), 8. Neodillenia Aymard (Harvard Pap. Bot. 10: 121, 1997), 9. Pachynema R. Br. ex DC. (Syst. Nat. 1: 397, 411, 1818), 10. Pinzona Mart. & Zucc. (Abh. Math.-Phys. Cl. Königl. Bayer. Akad. Wiss. 1: 371, 1832), 11. Schumacheria Vahl (Skr. Naturhist.-Selsk. 6: 122, 1810) and 12. Tetracera L. (Sp. Pl. 1: 533, 1753)] and c. 430 species of the family Dilleniaceae (http://www.mobot.org/MOBOT/research/APweb/welcome.html). Since, the evolutionary relationship of the order Dilleniales among the angiosperms phylogeny remains poorly known, the present study explores the relationship of the order Dilleniales in the angiosperm phylogeny based on phylotrasncriptomic analyses.

2. Materials and methods

2.1. Taxon selection

The RNA transcriptome SRA data of Dillenia indica L. (order Dilleniales, family Dilleniaceae) was available from the study of ‘One Thousand Plant Transcriptomes Initiative’ (Leebens-Mack, 2019) were retrieved, and analyzed together with representatives from the order Asterales, Berberidopsidales, Caryophyllales, Cornales, Ericales, Fabales, Gunnerales, Lamiales Malvales, Santalales, Saxifragales and Vitales. The RNA transcriptome data of Gunnera manicata (order Gunnerales, family Gunneraceae) was used as the outgroup in the phylotranscriptomic analysis (Table 1).

Table 1.

Taxon used in the phylotranscriptomic analyses to infer relationships of Dilleniales.

S. No. Taxon Family Order Clade GenBank
Ingroup
1. Dillenia indica L. Dilleniaceae Dilleniales Eudicots,
Core eudicots
ERS1829252
2. Phoradendron serotinum (Raf.) M.C. Johnst. Santalaceae Santalales Eudicots,
Superasterids
ERS1829342
3. Silene latifolia Poir. Caryophyllaceae Caryophyllales Superasterids ERS1829296
4. Inula helenium L. Asteraceae Asterales Asterids,
Campanulids
ERS368261
5. Cornus florida L. Cornaceae Cornales Eudicots,
Asterids
ERS1829540
6. Cavendishia cuatrecasasii A.C. Sm. Ericaceae Ericales Eudicots,
Asterids
ERS1829554
7. Lavandula angustifolia Mill. Lamiaceae Lamiales Asterids,
Lamiids
ERS1829627
8. Astilbe chinensis (Maxim.) Franch. & Sav. Saxifragaceae Saxifragales Eudicots,
Core eudicots
ERS1829362
9. Lupinus polyphyllus C.E. Anderson Fabaceae Fabales Rosids,
Fabids
ERS631113
10. Hibiscus cannabinus L. Malvaceae Malvales Rosids,
Malvids
ERS368256
11. Cissus quadrangularis L. Vitaceae Vitales Superrosids ERS1829366
12. Berberidopsis beckleri (F. Muell.) Veldkamp Berberidopsidaceae Berberidopsidales Eudicots,
Superasterids
ERS1829251
Outgroup
13. Gunnera manicata Linden ex André Gunneraceae Gunnerales Eudicots,
Core eudicots
ERS1829249

2.2. Phylotranscriptomic analyses

The retrieved aligned data were then imported to MEGA X (Kumar et al., 2018) for pairwise sequence alignment. The aligned sequence data set saved into mega format and the evolutionary analyses (outgroup at Gunnera manicata, order Gunnerales, family Gunneraceae) were performed using Maximum Parsimony (MP) bootstrap methods (Felsenstein, 1985) in MEGA X (Kumar et al., 2018) in order to detect proximity of Dillenia indica (the representative of the order Dilleniales with the representatives of the order Asterales Link, Berberidopsidales Doweld, Caryophyllales Benth. & Hook. f., Cornales Link, Ericales Bercht. & J. Presl, Fabales Bromhead, Gunnerales Takht. ex Reveal, Lamiales Bromhead, Malvales Juss., Santalales R. Br. ex Bercht. & J. Presl, Saxifragales Bercht. & J. Presl and Vitales Juss. ex Bercht. & J. Presl.

3. Results and discussion

The present phylotranscriptomic analyses of 28,176 parsimony informative sites out of a total of 1,42,796 positions in the aligned (the aligned data set contains 64,202 conserved, 71,580 variable and 41,870 singleton sites, Fig. 1) transcriptome dataset of D. indica, P. serotinum, S. latifolia, I. helenium, C. florida, C. cuatrecasasii, L. angustifolia, A. chinensis, L. polyphyllus, H. cannabinus, C. quadrangularis, B. beckleri and G. manicata inferred using the MP method recovered the MPT with length of 1,72,735 [consistency index 0.795270 (0.647002), retention index 0.253898, composite index 0.201917]. The MPT revealed the nesting of the representative taxon of Dilleniales (D. indica) but distinct from the representative of Santalales (P. serotinum), Caryophyllales (S. latifolia), Asterales (I. helenium), Cornales (C. florida), Ericales (C. cuatrecasasii), Lamiales (L. angustifolia), Saxifragales (A. chinensis), Fabales (L. polyphyllus), Malvales (H. cannabinus), Vitales (C. quadrangularis) and Berberidopsidales (B. beckleri) (Fig. 2) which is also evident from the estimates of evolutionary divergence between the sequences (Zuckerkandl and Pauling, 1965) used to infer the phylogeny using MEGA X (Kumar et al., 2018) (Table 2).

Fig. 1.

Fig. 1

The final transcriptome data set showing number of sites.

Fig. 2.

Fig. 2

The evolutionary history of the order Dilleniales inferred from phylotranscriptomic analysis.

Table 2.

The estimates of evolutionary divergence between the sequences (Zuckerkandl and Pauling, 1965) used to infer the phylogeny sung MEGA X (Kumar et al., 2018).

D. indica 0.256
P. serotinum 0.309 0.326
S. latifolia 0.309 0.322 0.359
I. helenium 0.282 0.300 0.345 0.332
C. florida 0.233 0.259 0.308 0.312 0.266
C. cuatrecasasii 0.244 0.269 0.311 0.310 0.260 0.211
L. angustifolia 0.283 0.292 0.344 0.327 0.292 0.270 0.262
A. chinensis 0.232 0.252 0.302 0.302 0.277 0.226 0.235 0.281
L. polyphyllus 0.283 0.289 0.337 0.315 0.303 0.273 0.274 0.290 0.270
H. cannabinus 0.259 0.272 0.318 0.304 0.289 0.251 0.254 0.281 0.244 0.268
C. quadrangularis 0.243 0.261 0.309 0.312 0.289 0.239 0.246 0.289 0.229 0.276 0.249
B. beckleri 0.202 0.228 0.278 0.294 0.264 0.186 0.208 0.269 0.192 0.255 0.227

The recent massive development in the next-generation sequencing platforms (Eid et al., 2009, Rothberg et al., 2011, Shendure and Aiden, 2012, Pattnaik et al., 2014, Jain et al., 2016), and bioinformatics tools (Mavromatis et al., 2007, Knudsen et al., 2010, Hu et al., 2012, Huang et al., 2012, McElroy et al., 2012, Shendure and Aiden, 2012, Yang and Rannala, 2012, Caboche et al., 2014, Shcherbina, 2014, Kwon et al., 2015, Escalona et al., 2016, Langmead and Nellore, 2018) and Cloud computing (Langmead and Nellore, 2018) have proven extremely useful in evaluating assembly, mapping, phasing or genotyping (Nielsen et al., 2011, Angly et al., 2012, Caboche et al., 2014, Shcherbina, 2014, Li et al., 2014), and have led to public archives (Kodama et al., 2012), collaborations (Collins and Varmus, 2015, Melé et al., 2015, Gaziano et al., 2016, Lek et al., 2016; Trans-Omics for Precision Medicine (TOPMed) Program, 2017), and thus have entirely changed the face of plant systematics (Stuessy, 2020), and enhanced understanding of tree of life and plant genomics (Ali et al., 2020) and the transcriptomics based deeper-level phylogenetic relationships (Cannon et al., 2015, Smith et al., 2015, Yang et al., 2018).

The present phylotranscriptomic analyses revealed the nesting of the representative taxon of Dilleniales but distinct from the representative of Santalales, Caryophyllales, Asterales, Cornales, Ericales, Lamiales, Saxifragales, Fabales, Malvales, Vitales and Berberidopsidales. The monofamilial order Dilleniales (characterized as mostly woody; lvs if veins strong, proceed to apex of teeth flw mostly K5, persisting, mostly A∞, G mostly slightly connate seeds often with aril; fr usually follicles) under clade core eudicots containing family Dilleniaceae. The diagnostic taxonomic features of monophyletic Dilleniaceae (Hoot et al., 1999, Savolainen et al., 2000a, Savolainen et al., 2000b, Ingrouille et al., 2002, Hilu et al., 2003) are: combination of scabrous leaves and primary stems, leaf venation with more or less straight, parallel secondaries and scalariform tertiaries, petioles with a broad insertion at the stem, orangish inner or outer bark that exfoliates thin plates or strips, uniformly persistent and typically accrescent calyces, apopetalous, caduceus corollas, polymerous, marcescent, or tardily deciduous androecia, free stylodia, arillate seeds (Horn, 2009). Moreover, The majority of molecular phylogenetic studies resolve the family Dilleniaceae as sister to Vitaceae (Chase et al., 1993, Savolainen et al., 2000b, Hilu et al., 2003), or Caryophyllales (Hoot et al., 1999, Soltis et al., 2000, Soltis et al., 2003, Soltis et al., 2007) or under within the core group of eudicots (APG II, 2003, Moore et al., 2008), the present analyses supports the placement of Dilleniales as a new order in the angiosperm phylogeny.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.

Footnotes

Peer review under responsibility of King Saud University.

References

  1. Ali M.A., Rahman M.O., Lee J., Hemaid F., Kambhar S., Elangbam M., Gurung A. Dissecting molecular evolutionary relationship of Krameriaceae inferred from phylotranscriptomic analysis. Bangladesh J. Plant Tax. 2020;27(2):427–433. [Google Scholar]
  2. APG An ordinal classification for the families of flowering plants. Ann. Mo. Bot. Gard. 1998;85(4):531–553. [Google Scholar]
  3. APG II An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 2003;141(4):399–436. [Google Scholar]
  4. APG III An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 2009;161(2):105–121. [Google Scholar]
  5. APG IV An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016;181(1):1–20. [Google Scholar]
  6. Caboche S., Audebert C., Lemoine Y., Hot D. Comparison of mapping algorithms used in high-throughput sequencing: application to Ion Torrent data. BMC Genomics. 2014;15:264. doi: 10.1186/1471-2164-15-264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Angly F.E., Willner D., Rohwer F., Hugenholtz P., Tyson G.W. Grinder: a versatile amplicon and shotgun sequence simulator. Nucleic Acids Res. 2012;40:e94. doi: 10.1093/nar/gks251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cannon S.B., McKain M.R., Harkess A., Nelson M.N., Dash S., Deyholos M.K., Peng Y., Joyce B., Stewart C.N., Jr, Rolf M., Kutchan T., Tan X., Chen C., Zhang Y., Carpenter E., Wong G.K., Doyle J.J., Leebens-Mack J. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol. Biol. Evol. 2015;32:193–210. doi: 10.1093/molbev/msu296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chase M.W., Douglas E.S., Richard G.O., David M., Donald H.L., Brent D., Mishler M.R., Duvall R.A., Price H.G., Hills Y.-L.-Q., Kathleen A.K., Jeffrey H.R., Elena C., Jeffrey D.P., James R.M., Kenneth J.S., Helen J.M., John Kress W., Kenneth G., Karol W., Dennis C., Mikael H., Brandon S.G., Robert K.J., Ki-Joong K., Charles F.W., James F.S., Glenn R.F., Steven H.S., Qui-Yun X., Gregory M.P., Pamela S.S., Susan M.S., Stephen E.W., Paul A.G., Christopher J.Q., Luis E.E., Edward G., Gerald H.L., Sean W.G., Spencer C.H.B., Selvadurai D., Victor A.A. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. 1993;Gard:528–580. [Google Scholar]
  10. Collins F.S., Varmus H. A new initiative on precision medicine. N. Engl. J. Med. 2015;372:793–795. doi: 10.1056/NEJMp1500523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cronquist A., Takhtadzhian A.L. Columbia University Press; 1981. An integrated system of classification of flowering plants. [Google Scholar]
  12. Eid J., Fehr A., Gray J., Luong K., Lyle J., Otto G., Peluso P., Rank D., Baybayan P., Bettman B. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–138. doi: 10.1126/science.1162986. [DOI] [PubMed] [Google Scholar]
  13. Escalona M., Rocha S., Posada D. A comparison of tools for the simulation of genomic next-generation sequencing data. Nat. Rev. Genet. 2016;17:459. doi: 10.1038/nrg.2016.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. [DOI] [PubMed] [Google Scholar]
  15. Gaziano J.M., Concato J., Brophy M., Fiore L., Pyarajan S., Breeling J., Whitbourne S., Deen J., Shannon C., Humphries D., Guarino P., Aslan M., Anderson D., LaFleur R., Hammond T., Schaa K., Moser J., Huang G., Muralidhar S., Przygodzki R., O'Leary T.J. Million Veteran Program: A mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 2016;70:214–223. doi: 10.1016/j.jclinepi.2015.09.016. [DOI] [PubMed] [Google Scholar]
  16. Hilu K.W., Borsch T., Müller K., Soltis D.E., Soltis P.S., Savolainen V., Chase M.W., Powell M.P., Alice L.A., Evans R., Sauquet H., Neinhuis C., Slotta T.A., Rohwer J.G., Campbell C.S., Chatrou L.W. Angiosperm phylogeny based on matK sequence information. Am. J. Bot. 2003;90:1758–1776. doi: 10.3732/ajb.90.12.1758. [DOI] [PubMed] [Google Scholar]
  17. Hoot S.B., Magallon S., Crane P.R. Phylogeny of basal eudicots based on three molecular data sets: atpB, rbcL, and 18S nuclear ribosomal DNA sequences. Ann. Missouri Bot. Gard. 1999:1–32. [Google Scholar]
  18. Horn J.W. Phylogenetics of Dilleniaceae using sequence data from four plastid loci (rbcL, infA, rps4, rpl16 intron) Int. J. Plant Sci. 2009;170:794–813. [Google Scholar]
  19. Hu X., Yuan J., Shi Y., Lu J., Liu B., Li Z., Chen Y., Mu D., Zhang H., Li N., Yue Z., Bai F., Li H., Fan W. pIRS: Profile-based Illumina pair-end reads simulator. Bioinformatics. 2012;28:1533–1535. doi: 10.1093/bioinformatics/bts187. [DOI] [PubMed] [Google Scholar]
  20. Huang W., Li L., Myers J.R., Marth G.T. ART: a next-generation sequencing read simulator. Bioinformatics. 2012;28:593–594. doi: 10.1093/bioinformatics/btr708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ingrouille M.J., Chase M.W., Fay M.F., Bowman D., Van Der Bank M., Bruijn A.D.E. Systematics of Vitaceae from the viewpoint of plastid rbcL DNA sequence data. Bot. J. Linn. Soc. 2002;138:421–432. [Google Scholar]
  22. Jain M., Olsen H.E., Paten B., Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17:239. doi: 10.1186/s13059-016-1103-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35(6):1547–1549. doi: 10.1093/molbev/msy096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Knudsen B., Forsberg R., Miyamoto M.M. A computer simulator for assessing different challenges and strategies of de novo sequence assembly. Genes (Basel). 2010;1:263–282. doi: 10.3390/genes1020263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kodama Y., Shumway M., Leinonen R. The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res. 2012;40:D54–D56. doi: 10.1093/nar/gkr854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kwon T., Yoo W.G., Lee W.J., Kim D.W. Next-generation sequencing data analysis on cloud computing. Genes Genom. 2015;37:489–501. [Google Scholar]
  27. Langmead B., Nellore A. Cloud computing for genomic data analysis and collaboration. Nat. Rev. Genet. 2018;19:208. doi: 10.1038/nrg.2017.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lek M., Karczewski K., Minikel E. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Li B., Fillmore N., Bai Y., Collins M., Thomson J.A., Stewart R., Dewey C.N. Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol. 2014;15:553. doi: 10.1186/s13059-014-0553-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Leebens-Mack J.H., Barker M.S. One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574:679–685. doi: 10.1038/s41586-019-1693-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mavromatis K., Ivanova N., Barry K. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Methods. 2007;4:495–500. doi: 10.1038/nmeth1043. [DOI] [PubMed] [Google Scholar]
  32. McElroy K.E., Luciani F., Thomas T. GemSIM: general, error-model based simulator of next-generation sequencing data. BMC Genomics. 2012;13:74. doi: 10.1186/1471-2164-13-74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Melé, M., Ferreira, P.G., Reverter, F., DeLuca, D.S., Monlong, J., Sammeth, M., Young, T.R., Goldmann, J.M., Pervouchine, D.D., Sullivan, T.J., Johnson, R., Segrè, A.V., Djebali, S., Niarchou, A.; GTEx Consortium, Wright, F.A., Lappalainen, T., Calvo, M., Getz, G., Dermitzakis, E.T., Ardlie, K.G., Guigó, R., 2015. Human genomics. The human transcriptome across tissues and individuals. Science. 2015 348(6235), 660-665. [DOI] [PMC free article] [PubMed]
  34. Moore, M., Bell, C., Soltis, P.S., Soltis, D.E., 2008. Analysis of an 83-gene, 86-taxon plastid data set resolves relationships among several recalcitrant deep-level eudicot lineages. Botany 2008 Conference Abstracts.
  35. Nielsen R., Paul J.S., Albrechtsen A., Song Y.S. Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Genet. 2011;12:443–451. doi: 10.1038/nrg2986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pattnaik S., Gupta S., Rao A.A., Panda B. SInC: an accurate and fast error-model based simulator for SNPs, Indels and CNVs coupled with a read generator for short-read sequence data. BMC Bioinf. 2014;15:1–9. doi: 10.1186/1471-2105-15-40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rothberg J., Hinz W., Rearick T. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475:348–352. doi: 10.1038/nature10242. [DOI] [PubMed] [Google Scholar]
  38. Ruhfel B.R., Gitzendanner M.A., Soltis P.S., Soltis D.E., Burleigh J.G. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 2014;14:23. doi: 10.1186/1471-2148-14-23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Savolainen V., Chase M.W., Hoot S.B., Morton C.M., Soltis D.E., Bayer C., Fay M.F., De Bruijn A.Y., Sullivan S., Qiu Y.-L. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst. Biol. 2000;49:306–362. doi: 10.1093/sysbio/49.2.306. [DOI] [PubMed] [Google Scholar]
  40. Savolainen V., Fay M.F., Albach D.C., Backlund A., van der Bank M., Cameron K.M., Johnson S.A., Lledó M.D., Pintaud J.C., Powell M., Sheahan M.C., Soltis D.E., Soltis P.S., Weston P., Whitten W.M., Wurdack K.J., Chase M.W. Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bull. 2000:257–309. [Google Scholar]
  41. Shcherbina A. FASTQSim: platform-independent data characterization and in silico read generation for NGS datasets. BMC Res. Notes. 2014;7:533. doi: 10.1186/1756-0500-7-533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shendure J., Aiden E.L. The expanding scope of DNA sequencing. Nat. Biotechnol. 2012;30:1084. doi: 10.1038/nbt.2421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Smith S.A., Moore M.J., Brown J.W., Yang Y. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 2015;15:150. doi: 10.1186/s12862-015-0423-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Soltis D.E., Gitzendanner M.A., Soltis P.S. A 567-taxon data set for angiosperms: the challenges posed by Bayesian analyses of large data sets. Int. J. Plant Sci. 2007;168:137–157. [Google Scholar]
  45. Soltis D.E., Senters A.E., Zanis M.J., Kim S., Thompson J.D., Soltis P.S., Ronse De Craene L.P., Endress P.K., Farris J.S. Gunnerales are sister to other core eudicots: implications for the evolution of pentamery. Am. J. Bot. 2003;90:461–470. doi: 10.3732/ajb.90.3.461. [DOI] [PubMed] [Google Scholar]
  46. Soltis D.E., Smith S.A., Cellinese N., Wurdack K.J., Tank D.C., Brockington S.F., Refulio-Rodriguez N.F., Walker J.B., Moore M.J., Carlsward B.S., Bell C.D., Latvis M., Crawley S., Black C., Diouf D., Xi Z., Rushworth C.A., Gitzendanner M.A., Sytsma K.J., Qiu Y.L., Hilu K.W., Davis C.C., Sanderson M.J., Beaman R.S., Olmstead R.G., Judd W.S., Donoghue M.J., Soltis P.S. Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 2011;98:704–730. doi: 10.3732/ajb.1000404. [DOI] [PubMed] [Google Scholar]
  47. Soltis D.E., Soltis P.S., Chase M.W., Mort M.E., Albach D.C., Zanis M., Savolainen V., Hahn W.H., Hoot S.B., Fay M.F., Axtell M., Swensen S.M., Prince L.M., John Kress W., Nixon K.C., Farris J.S. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc. 2000;133:381–461. [Google Scholar]
  48. Stuessy T.F. Challenges facing systematic biology. Taxon. 2020;69(4):655–667. [Google Scholar]
  49. Trans-Omics for Precision Medicine (TOPMed) Program 2017. National Heart, Lung, and Blood Institute https://www.nhlbi.nih.gov/science/trans-omicsprecision-medicine-topmed-program (2017). [DOI] [PMC free article] [PubMed]
  50. Yang Z., Rannala B. Molecular phylogenetics: principles and practice. Nat. Rev. Genet. 2012;13:303–314. doi: 10.1038/nrg3186. [DOI] [PubMed] [Google Scholar]
  51. Yang Y., Moore M.J., Brockington S.F., Mikenas J., Olivieri J., Walker J.F., Smith S.A. Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytol. 2018;217:855–870. doi: 10.1111/nph.14812. [DOI] [PubMed] [Google Scholar]
  52. Zuckerkandl, E., Pauling, L., 1965. Evolutionary divergence and convergence in proteins. Edited in Evolving Genes and Proteins by V. Bryson and H.J. Vogel. 97-166. Academic Press, New York.

Articles from Saudi Journal of Biological Sciences are provided here courtesy of Elsevier

RESOURCES