Abstract
Background
Species lists are fundamental for knowledge of species diversity in regions subject to intense anthropogenic pressure, especially in poorly-studied ecosystems. The dataset comes from an inventory conducted in 30 fragments of Myrtaceae swamp forest, located in an agroforestry matrix landscape of the coastal La Araucanía Region in Chile. The data collection was carried out using line transect sampling, which was traced through the core of each fragment orientated towards its longest axis. The dataset provides a record of 55 species (24 trees, 1 vine [as a host], 16 herbs and 15 shrubs) including accidental epiphytes (n = 7), hemiparasites (n = 4), host (n = 10) and additionally woody debris (n = 36). The most frequent trees in the landscape were Myrceugenia exsucca (n = 36 records) and Blepharocalyx cruckshanksii (n = 33 records), species that were also the most common hosts. Drimys winteri was a companion species, other trees and shrubs generally being rarely observed, as was the case of the introduced species (Prunus avium, Rubus constrictus and Ulex europaeus). Branches were the most common microhabitat for hemiparasites. Within this group, Lepidoceras chilense was the most frequent species. For accidental epiphytes, Drimys winteri, which commonly grows on the ground (soil), were the most common species found in the main trunk crotch. Some unusual observations were the climber Cissus striata as host of Tristerix corymbosus (hemiparasite) and Tristerix corymbosus as host of Lepidoceras chilense (hemiparasite).
New information
This study represents a landscape-scale sample of the swamp forest, which is distributed in a dispersed pattern over a large stretch of Chile. The data were collected from 30 forest patches (from 0.05 to 936 ha), located on the coast of the Araucanía. The database includes the presence of 55 species of vascular plants in 356 records. The main novelty of this contribution is the systematic classification of species under six traits, never before reported in the same database: (i) condition (coarse woody debris, fallen log, live, snag), (ii) habit (herb, shrub, tree), (iii) growth microhabitat (e.g. tree trunk, branch, main trunk crotch), (iv) growth form (accidental epiphyte, hemiparasite, terricolous, vegetative), (v) host species (as appropriate) and (vi) relative location of the species in the sampled patch and surrounding areas (core, border, matrix). Species not previously observed in these forests were: Gavilea spp., Hieracium spp., Lophosoria quadripinnata, Berberis actinacantha, Gaultheria phillyreifolia, Ovidia pillo-pillo, Amomyrtus meli and Caldcluvia paniculata. In addition, two introduced species are novelties for the catalogue of vascular plants of Chile (Cupressus macrocarpa and Prunus avium). Several of these ecosystem traits are indeed new reports for these types of forests (e.g. accidental epiphytes, fallen logs, species-host relationship); at the same time, more frequent data (i.e. species composition, habit) are found in different contributions, making the comprehensive process of analysis difficult. Accordingly, the database is made available in this manuscript.
Keywords: biodiversity, cultural landscape, metacommunity, species richness, species inventory, wetlands
Introduction
Species lists are fundamental for knowledge of species diversity in regions subject to strong anthropogenic pressure (Funk 2006, Hortal et al. 2007, Hermoso et al. 2013, Pincheira-Ulbrich et al. 2016, Cornwell et al. 2019).
South American swamp forests dominated by species of the family Myrtaceae Juss. are distributed in Chile in a dispersed pattern from 30ºS (Coquimbo) to 41º28'S (Puerto Montt), in a transition from semi-arid to temperate rain climate, representing one of the widest geographic and climatic distribution ecosystems in Chile (Maldonado and Villagrán 2001, San Martín 2005, Armesto et al. 2007, Ramírez et al. 2014).
To the north, their formations are located along the coast, while towards the centre and south of Chile, the patches are found both on the coast and in central plains and less frequently in the Andean foothills. Their location and extension are determined by the presence of surface phreatic layers, so the type of soil does not seem to be a determining factor in their growth. In this sense, these forests are described as azonal hydrophilic formations, meaning that their presence is not determined by the regional climate, but rather by an excess of edaphic humidity (see Amigo and Ramírez 1998, Maldonado and Villagrán 2001, Peña-Cortés et al. 2011, Ramírez et al. 2014).
Swamp forests are a particular type of wetland, classified by the Ramsar Convention as “forested freshwater wetlands”. At the international level, wetland areas have been recognised for their high biological and environmental value and as providers of ecosystem services (Zedler and Kercher 2005,Barbier 2013, Marton et al. 2015). In Chile, there is a Wetland Protection Policy expressed in the National Wetland Strategy and the National Biodiversity Strategy. However, swamp forests are one of the most altered ecosystems in this country, as they have frequently been threatened by human use pressure for agricultural fields, grazing and firewood extraction (San Martín et al. 1988, Squeo F et al. 2001, Ramírez et al. 2014).
These ecosystems are home to a rich diversity of vascular plants that varies from eight species in a highly-degraded site in central Chile (Ramírez et al. 2014) to 61 species in better-conserved sites in the central-southern zone of this country (Hauenstein et al. 2014). At a regional scale, the richness varies between 158 and 182 species, amongst landscapes in the northern area (San Martín et al. 1988) and south of their distribution (Larrain 2011), respectively. Along the coast of Araucania, these forests are mainly composed of Myrceugenia exsucca O.Berg and Blepharocalyx cruckshanksii (Hook. & Arn.) Nied. They are represented by an area of 7,675 ha, which is approximately 4.6% of this territory and where 427 forest fragments are distributed within a predominantly agricultural and forestry matrix. Forest is found exclusively in flat areas (alluvial plains), associated with both watercourses and different levels of soil waterlogging (Peña-Cortés et al. 2011).
In this contribution, we present a database of vascular plants in 30 swamp forest fragments distributed along the coast of the Araucanía Region (Table 1, Suppl. material 1). The data describes (i) species composition (Fig. 1) , (ii) condition (coarse woody debris, fallen log, live, snag), (iii) habit (herb, shrub, tree, Fig. 1), (iv) growth microhabitat (e.g. tree trunk, branch, main trunk crotch, fallen log, soil, Fig. 2), (v) growth form [accidental epiphyte (Fig. 3), hemiparasite (Fig. 4), terricolous (Fig. 5), vegetative], (vi) host species (as appropriate, Fig. 2) and (vii) relative location of the species in the sampled patch and surrounding areas (core, border, matrix). In addition, two introduced species were observed (Cupressus macrocarpa and Prunus avium) that are new to the catalogue of vascular plants of Chile (Rodríguez et al. 2018). Several of the biological backgrounds presented here have not been reported in literature (e.g. Hauenstein et al. 2002, Hauenstein et al. 2017,Urrutia-Estrada et al. 2018), so the database is left available in this manuscript. This contribution complements the work of Pincheira-Ulbrich et al. (2016) who reported the complete catalogue of climbing plants and vascular epiphytes in coastal Myrtaceae swamp forest in La Araucanía Region.
Table 1.
Trees, shrubs and herbs of the Myrtaceae swamp forest. Classification of species according to the criteria of Phyllum, Family, Habitat and Geographical origin is based on Rodríguez et al. (2018).
| n | Specie | Phylum | Family | Habit | Geographic origin |
| 1 | Acacia melanoxylon R. Br. | Magnoliophyta | Fabaceae | Tree | Introduced |
| 2 | Acaena spp. | Magnoliophyta | Rosaceae | Herb | Native |
| 3 | Aextoxicon punctatum Ruiz & Pav. | Magnoliophyta | Aextoxicaceae | Tree | Native |
| 4 | Amomyrtus luma (Molina) D. Legrand & Kause | Magnoliophyta | Myrtaceae | Tree | Native |
| 5 | Amomyrtus meli (Phil.) D. Legrand & Kausel | Magnoliophyta | Myrtaceae | Tree | Endemic |
| 6 | Antidaphne punctulata (Clos) Kuijt | Magnoliophyta | Santalaceae | Shrub | Endemic |
| 7 | Aristotelia chilensis (Molina) Stuntz | Magnoliophyta | Elaeocarpaceae | Tree | Native |
| 8 | Berberis actinacantha Mart. | Magnoliophyta | Berberidaceae | Shrub | Endemic |
| 9 | Blechnum chilense (Kaulf.) Mett. | Pterophyta | Blechnaceae | Herb | Native |
| 10 | Blechnum hastatum Kaulf. | Pterophyta | Blechnaceae | Herb | Native |
| 11 | Blepharocalyx cruckshanksii (Hook. & Arn.) Nied. | Magnoliophyta | Myrtaceae | Tree | Endemic |
| 12 | Caldcluvia paniculata (Cav.) D. Don | Magnoliophyta | Cunoniaceae | Tree | Native |
| 13 | Chusquea quila Kunth | Liliopsida | Poaceae | Herb | Endemic |
| 14 | Cissus striata Ruiz & Pav. | Magnoliophyta | Vitaceae | Vine | Native |
| 15 | Cupressus macrocarpa Hartw | Pinophyta | Cupressaceae | Tree | Introduced |
| 16 | Dioscorea auriculata Poepp. | Liliopsida | Dioscoreaceae | Herb | Endemic |
| 17 | Drimys winteri J.R. Forst. & G. Forst. | Magnoliophyta | Winteraceae | Tree | Endemic |
| 18 | Eucryphia cordifolia Cav. | Magnoliophyta | Eucryphiaceae | Tree | Native |
| 19 | Fuchsia magellanica Lam. | Magnoliophyta | Onagraceae | Shrub | Native |
| 20 | Galium hypocarpium (L.) Endl. ex Griseb. | Magnoliophyta | Rubiaceae | Herb | Native |
| 21 | Gaultheria phillyreifolia (Pers.) Sleumer | Magnoliophyta | Ericaceae | Shrub | Native |
| 22 | Gavilea spp. | Liliopsida | Orchidaceae | Herb | Native |
| 23 | Greigia sphacelata (Ruiz & Pav.) Regel | Liliopsida | Bromeliaceae | Herb | Native |
| 24 | Hieracium spp. | Magnoliophyta | Asteraceae | Herb | UD |
| 25 | Hydrocotyle poeppigii DC. | Magnoliophyta | Apiaceae | Herb | Endemic |
| 26 | Juncus spp. | Liliopsida | Juncaceae | Herb | Native |
| 27 | Lepidoceras chilense (Molina) Kuijt | Magnoliophyta | Santalaceae | Shrub | Endemic |
| 28 | Lomatia ferruginea (Cav.) R. Br. | Magnoliophyta | Proteaceae | Tree | Native |
| 29 | Lophosoria quadripinnata (J.F. Gmel.) C. Chr. | Pterophyta | Dicksoniaceae | Herb | Native |
| 30 | Luma apiculata (DC.) Burret | Magnoliophyta | Myrtaceae | Tree | Native |
| 31 | Luma chequen (Molina) A. Gray | Magnoliophyta | Myrtaceae | Tree | Endemic |
| 32 | Maytenus boaria Molina | Magnoliophyta | Celastraceae | Tree | Native |
| 33 | Myrceugenia exsucca (DC.) O. Berg | Magnoliophyta | Myrtaceae | Tree | Native |
| 34 | Myrceugenia parvifolia (DC.) Kausel | Magnoliophyta | Myrtaceae | Shrub | Endemic |
| 35 | Myrceugenia planipes (Hook. & Arn.) O. Berg | Magnoliophyta | Myrtaceae | Tree | Native |
| 36 | Myriophyllum aquaticum (Vell.) Verdc. | Magnoliophyta | Haloragaceae | Herb | Native |
| 37 | Nertera granadensis (Mutis ex L.f.) Druce | Magnoliophyta | Rubiaceae | Herb | Native |
| 38 | Notanthera heterophylla (Ruiz & Pav.) G. Don | Magnoliophyta | Loranthaceae | Shrub | Endemic |
| 39 | Nothofagus dombeyi (Mirb.) Oerst. | Magnoliophyta | Nothofagaceae | Tree | Native |
| 40 | Nothofagus obliqua (Mirb.) Oerst. | Magnoliophyta | Nothofagaceae | Tree | Native |
| 41 | Ovidia pillo-pillo (Gay) Meisn. | Magnoliophyta | Thymelaeaceae | Shrub | Endemic |
| 42 | Persea lingue (Ruiz & Pav.) Nees | Magnoliophyta | Lauraceae | Tree | Native |
| 43 | Prunus avium (L.) L. | Magnoliophyta | Rosaceae | Tree | Introduced |
| 44 | Rhamnus diffusus Clos | Magnoliophyta | Rhamnaceae | Shrub | Endemic |
| 45 | Rhaphithamnus spinosus (Juss.) Moldenke | Magnoliophyta | Verbenaceae | Shrub | Native |
| 46 | Ribes trilobum Meyen | Magnoliophyta | Grossulariaceae | Shrub | Endemic |
| 47 | Rubus constrictus P.J. Müll. & Lefèvre | Magnoliophyta | Rosaceae | Shrub | Introduced |
| 48 | Salix babylonica L. | Magnoliophyta | Salicaceae | Tree | Introduced |
| 49 | Salix caprea L. | Magnoliophyta | Salicaceae | Tree | Introduced |
| 50 | Sophora cassioides (Phil.) Sparre | Magnoliophyta | Fabaceae | Tree | Endemic |
| 51 | Sp1 | Liliopsida | Cyperaceae | Herb | Native |
| 52 | Tepualia stipularis (Hook. & Arn.) Griseb | Magnoliophyta | Myrtaceae | Tree | Native |
| 53 | Tristerix corymbosus (L.) Kuijt | Magnoliophyta | Loranthaceae | Shrub | Native |
| 54 | Ugni molinae Turcz. | Magnoliophyta | Myrtaceae | Shrub | Native |
| 55 | Ulex europaeus L. | Magnoliophyta | Fabaceae | Shrub | Introduced |
Figure 1.
Species richness classified by number of families (top) and habit (bottom). In both figures, the species are arranged according to Phyllum, while in the upper figure, the geographical origin is also included.
Figure 2.
Species richness sorted by host (left) and microhabitat (right).
Figure 3.

Accidental epiphytes: A. Drimys winteri growing on the base of a Myrceugenia exsucca trunk; B. Drimys winteri growing on Cupressus macrocarpa main trunk crotch; C. Nertera granadensis growing on Cupressus macrocarpa main trunk crotch; D. Aristotelia chilensis growing on Blepharocalyx cruckshanksii main trunk crotch; E. Hieracium spp. growing on the base of a Myrceugenia exsucca trunk; F. Chusquea quila growing on the base of a Myrceugenia exsucca trunk; G. Ribes trilobum growing on Blepharocalyx cruckshanksii main trunk crotch; H. Lomatia ferruginea growing on Amomyrtus luma main trunk crotch.
Figure 4.

Hemiparasites: A. Antidaphne punctulata growing on Myrceugenia exsucca; B. Antidaphne punctulata growing on Luma apiculata; C. Lepidoceras chilense, insertion point on an Blepharocalyx cruckshanksii branch; D. Lepidoceras chilense, leaf distribution; E. Notanthera heterophylla growing on Myrceugenia exsucca; F. Notanthera heterophylla, details leaves and fruits; G. Tristerix corymbosus growing on climber Cissus striata; H. Tristerix corymbosus, details leaves and flower.
Figure 5.

Common tree/shrub species. Leaves and bark: A. Amomyrtus luma; B. Amomyrtus meli; C. Blepharocalyx cruckshanksii; D. Luma chequen; E. Myrceugenia exsucca; F. Myrceugenia parvifolia; G. Myrceugenia planipes; H. Tepualia stipularis. Leaves and fruits (berries): I. Rhamnus diffusus; J. Ugni molinae.
General description
Purpose
This contribution provides background information for biodiversity, meta-community or macro-ecological studies, as it also includes the geographical location of forest fragments. Some biodiversity traits have not been reported in literature, such as the recording of tree remains and accidental epiphytes. These data are expected to contribute to the local valuation and conservation of these highly-degraded ecosystems.
Project description
Study area description
The study area is located on the coast of the Araucanía Region of Chile (38°30′–39°30′S, 72°45′–73°30′W). It covers an area of 1656 km2, bounded by the Imperial River in the south and the Queule in the north and lying between the Coastal Range to the east and the Pacific Ocean to the west. The climate is oceanic with a Mediterranean influence, with average annual precipitation of 1200–1600 mm (Luebert and Pliscoff 2006).
The territory is distributed amongst numerous indigenous Mapuche communities and private farming/forestry properties (Pincheira-Ulbrich 2018). The land is divided into small plots, with high poverty and rural dwelling, mostly unchanged since the middle of the 20th century (Gissi 2004, Peña-Cortés et al. 2020). As a result, the historical and current pressure on the forest has meant that most of its area is in a degraded state, set in a matrix of anthropogenic landscape (Peña-Cortés et al. 2011, Hauenstein et al. 2014, Peña-Cortés et al. 2020b). Therefore, the forest is a secondary ecosystem (diameter at breast height of trees x = 19 ± 11 cm), consisting mainly of native species of the Myrtaceae family (10 species).
Design description
The forest patches were grouped into five size classes: < 0.5 ha, 0.5–2 ha, 2–10 ha, 10–50 ha and > 50 ha. The seven largest fragments (> 50 ha) were chosen subjectively and six fragments were selected at random from each of the other classes, except the 0.5–2 ha class, which contained only five fragments. This produced a total of 30 sampling sites distributed over the whole study area (see Pincheira-Ulbrich et al. 2016). In the field, sampling design was non-random in order to include the largest possible variety of micro-habitats and rare species (Croft and Chow-Fraser 2009, Dieckman et al. 2007). Data were collected from 2011 to 2013, with 32 days spent in the field.
Sampling methods
Sampling description
Sampling followed a transect sampling observations protocol, orientated from the edge towards the centre of the fragment (Brower et al. 1990). Field notes and photographs, taken throughout the transect, were reviewed in the lab. Seven types of data were recorded: (i) Taxonomic identity, following the criteria established in the publications of Marticorena and Rodríguez (Marticorena and Rodríguez 2001, Marticorena and Rodríguez 2003, Marticorena and Rodríguez 2005, Marticorena and Rodríguez 2011), (ii) condition (coarse woody debris, fallen log, live, snag), according to Enrong et al. (2006), (iii) habit (herb, shrub, tree) according to Harris and Harris (2001), (iv) growth microhabitat (e.g. tree trunk, branch, main trunk crotch, fallen log soil) according to field observations, (v) growth form (accidental epiphyte, hemiparasite, terricolous, vegetative) according to Benzing (2008), (vi) host species (as appropriate) and (vii) relative location of the species in the sampled patch and surrounding areas (core, border, matrix). The taxonomic nomenclature was based on Rodríguez et al. (2018) and The International Plant Names Index (2019).
Geographic coverage
Description
The study area is located on the coast of the Araucanía Region of Chile (38°30′–39°30′S, 72°45′–73°30′W). It covers an area of 1656 km2, bounded by the Imperial River in the south and the Queule in the north and lying between the Coastal Range to the east and the Pacific Ocean to the west.
Coordinates
Imperial River and Tolten Rive Latitude; Pacific Ocean and Coastal mountain range. Longitude.
Traits coverage
Trees, shrubs, accidental epiphytes, host.
Temporal coverage
Notes
2011-2013
Usage licence
Usage licence
Creative Commons Public Domain Waiver (CC-Zero)
Data resources
Data package title
Trees, shrubs and herbs of the coastal Myrtaceae swamp forest in La Araucanía: a dataset
Number of data sets
1
Data set 1.
Data set name
Trees, shrubs and herbs of the coastal Myrtaceae swamp forest in La Araucanía: a dataset
Data format
csv
Number of columns
20
Data format version
csv
Description
The dataset provides a record of 55 species (24 trees, 1 vine, 16 herbs, and 15 shrubs) including accidental epiphytes (n = 6), hemiparasites (n = 4), host (n = 11) and additionally woody debris (n = 36) in 356 records. The data describes (i) species composition, (ii) condition (coarse woody debris, fallen log, live, snag), (iii) habit (herb, shrub, tree), (iv) growth microhabitat (e.g. tree trunk, branch, main trunk crotch, fallen log, soil), (v) growth form (accidental epiphyte, hemiparasite, terricolous, vegetative), (vi) host species (as appropriate) and (vii) relative location of the species in the sampled patch and surrounding areas (core, border, matrix). Several of the biological backgrounds presented here have not been reported in literature, so the database is left available in this manuscript.
Data set 1.
| Column label | Column description |
|---|---|
| Patch size (ha) | Forest fragment size in hectares. |
| Latitude | Geographic coordinate that specifies the north–south position of a point on the Earth's surface |
| Longuitude | Geographic coordinate that specifies the east–west position of a point on the Earth's surface |
| ID | Record number |
| Species | Scientific name of species |
| Condition | Living trees and tree debris. Coarse woody debris, Fallen log, Live, Snag |
| Habit | Growth habit according to literature. Herb, Shrub, Tree, NA (Not applicable) |
| Microhabitat | Site where the individual was observed growing. Base of trunk, Branch, Fallen log, Main trunk crotch, Soil, Stem, Trunk |
| Growth form | Growth form observed in the field. Accidental ephyphyte, Hemiparasite, Terricolous, Vegetative, NA (Not applicable) |
| Host | Scientific name of species. |
| Location1 | Relative location 1 of the record in the field. Core, Core-Gap, Edge, Gap-Edge, Matrix. |
| CoordinateUncertaintyInMetres1 | Horizontal distance (in metres) from the given decimal Latitude and decimal Longitude describing the smallest circle containing the whole of the Location. |
| Location2 | Relative location 2 of the record in the field. Core, Core-Gap, Edge, Gap-Edge, Matrix, NA (Not applicable) |
| CoordinateUncertaintyInMetres2 | Horizontal distance (in metres) from the given decimal Latitude and decimal Longitude describing the smallest circle containing the whole of the Location. |
| Location3 | Relative location 3 of the record in the field. Core, Core-Gap, Edge, Gap-Edge, Matrix, NA (Not applicable) |
| CoordinateUncertaintyInMetres3 | Horizontal distance (in metres) from the given decimal Latitude and decimal Longitude describing the smallest circle containing the whole of the Location. |
| Date | Registration date. |
| Sampling protocol | Field sampling protocol. |
| Observer name | Name of person who collected data in the field. |
| Notes | Other observations in the field, UD (Undefined) |
Supplementary Material
Trees, shrubs and herbs of the coastal Myrtaceae swamp forest in La Araucanía: a dataset
Jimmy Pincheira-Ulbrich, Elías Andrade Mansilla, Fernando Peña-Cortés, Cristian Vergara Fernández
Data type
Occurrences
Brief description
The dataset provides a record of 55 species (24 trees, 1 vine, 16 herbs and 15 shrubs) including accidental epiphytes (n = 6), hemiparasites (n = 4), host (n = 11) and additionally woody debris (n = 36) in 357 records. The data describe (i) species composition, (ii) condition (coarse woody debris, fallen log, live, snag), (iii) habit (herb, shrub, tree), (iv) growth microhabitat (e.g. tree trunk, branch, main trunk crotch), (v) growth form (accidental epiphyte, hemiparasite, terricolous, vegetative), (vi) host species (as appropriate) and (vii) relative location of the species in the sampled patch and surrounding areas (core, border, matrix). Several of the biological backgrounds presented here have not been reported in literature, so the database is left available in this manuscript.
File: oo_511976.csv
Acknowledgements
Erwin Vázquez, Enrique Hauenstein, Ulises Sambrano, María Jesús Vargas, Martina Pincheira, Alvaro Montaña, Erna Chaparro, Elías Painevilo and Rodrigo Cid for their collaboration in the field. Enrique Hauenstein, Diego Alarcón, Liliana Casaa, Cristian Larsen, Jonathan Urrutia and the CONC Herbarium for their generous help in identifying rare species. To Robert Mesibov for his dedicated work reviewing the database. To the small landowners, administrators and estate owners for allowing us access to their farms. This work was supported by the “Fondo Nacional de Desarrollo Científico y Tecnológico” [FONDECYT] Project 1181954: “Escenarios participativos para el ordenamiento territorial: hacia la sustentabilidad del paisaje en las regiones de La Araucanía y Los Ríos”.
Funding Statement
This work was supported by Project 075/2011 ‘Plantas trepadoras y epifitas vasculares en bosques pantanosos del borde costero de la Araucanía; determinación de especies y áreas de conservación’ and FONDECYT: [Grant Number 1181954]: ‘Escenarios participativos para el ordenamiento territorial: hacia la sustentabilidad del paisaje en las regiones de la Araucanía y Los Ríos’
Author contributions
Jimmy Pincheira-Ulbrich: Conceptualisation, Application of method, Data analysis. Elías Andrade Mansilla: Data discussion, Investigation. Fernando Peña-Cortés: Visualisation, Reviewing and Editing. Cristián Vergara: Visualisation, Reviewing and Editing.
References
- Amigo J., Ramírez C. A bioclimatic classification of Chile: woodland communities in the temperate zone. https://link.springer.com/article/10.1023/A:1009714201917. Plant Ecology. 1998;136:9–26. doi: 10.1023/A:1009714201917. [DOI] [Google Scholar]
- Armesto J., Arroyo M., Hinojosa L. The Mediterranean environment of Central Chile. In: Veblen Thomas, Young Kenneth R., Orme Antony R., editors. The physical geography of South America. 2007. [DOI]
- Barbier Edward. Valuing Ecosystem Services for Coastal Wetland Protection and Restoration: Progress and Challenges. Resources. 2013;2(3):213–230. doi: 10.3390/resources2030213. [DOI] [Google Scholar]
- Benzing D. Vascular Epiphytes. Cambridge University Press; Cambridge: 2008. [DOI] [Google Scholar]
- Brower J., Zar J., Von Ende C. Field and laboratory methods for general ecology. Brown Company Publishers; Dubuque: 1990. [Google Scholar]
- Cornwell William K., Pearse William D., Dalrymple Rhiannon L., Zanne Amy. What we (don’t) know about global plant diversity. Ecography. 2019;42(11):1819–1831. doi: 10.1101/404376. [DOI] [Google Scholar]
- Croft Melanie V., Chow-Fraser P. Non-random sampling and its role in habitat conservation: a comparison of three wetland macrophyte sampling protocols. Biodiversity and Conservation. 2009;18(9):2283–2306. doi: 10.1007/s10531-009-9588-4. [DOI] [Google Scholar]
- Dieckman M., Küne A., Isermann M. Random vs non-random sampling: effects on patterns of species abundance, species richness and vegetation-environment relationships. Folia Geobotanica. 2007;42:179–190. doi: 10.1007/BF02893884. [DOI] [Google Scholar]
- Enrong Y., Xihua W., Jianjua H. Concept and Classification of Coarse Woody Debris in Forest Ecosystems. Frontier of Biology in China. 2006;1:76–84. doi: 10.1007/s11515-005-0019-y. [DOI] [Google Scholar]
- Funk Victoria A. Floras: a model for biodiversity studies or a thing of the past? TAXON. 2006;55(3):581–588. doi: 10.2307/25065635. [DOI] [Google Scholar]
- Gissi N. Segregación Espacial Mapuche en la Ciudad: ¿Negación o revitalización identitaria? Revista de Urbanismo. 2004;9:1–12. doi: 10.5354/0717-5051.2004.18669. [DOI] [Google Scholar]
- Harris J., Harris M Woolf. Plant identification terminology: An illustrated glossary. Second Edition. Utha, Spring Lake Publishing; 2001. [Google Scholar]
- Hauenstein Enrique, González Marcos, Peña-Cortés Fernando, Muñoz-Pedreros Andrés. Clasificación y caracterización de la flora y vegetación de los humedales de la costa de Toltén (IX región, Chile) Gayana Botánica. 2002;59(2):87–10. doi: 10.4067/s0717-66432002000200006. [DOI] [Google Scholar]
- Hauenstein E., Peña-Cortés F., Bertrán C., Tapia J., Vargas-Chacoff L., Urrutia O. Composición florística y evaluación de la degradación del bosque pantanoso costero de temu-pitra en la Región de La Araucanía, Chile. Gayana Botánica. 2014;71(1):43–57. doi: 10.4067/S0717-66432014000100008. [DOI] [Google Scholar]
- Hauenstein E., Guillermo A., Hernández M., Sánchez P., Urrutia J., Peña-Cortés F. Los bosques pantanosos de mahuidanche, sitio prioritario para la conservación de biodiversidad, región de La Araucanía, Chile. https://www.ceachile.cl/revista/cdn/5_GA_33_2017_Hauenstein.pdf Gestión Ambiental. 2017;33:43–6. [Google Scholar]
- Hermoso Virgilio, Kennard Mark J., Linke Simon. Data Acquisition for Conservation Assessments: Is the Effort Worth It? PLoS ONE. 2013;8(3):e59662. doi: 10.1371/journal.pone.0059662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hortal Joaquín, Lobo Jorge M, Jiménez-Valverde Alberto. Limitations of biodiversity databases: case study on seed-plant diversity in Tenerife, Canary Islands. Conservation Biology : the journal of the Society for Conservation Biology. 2007;21(3):853–63. doi: 10.1111/j.1523-1739.2007.00686.x. [DOI] [PubMed] [Google Scholar]
- Larrain F. Evaluación y propuesta de clasificación de los bosques pantanosos de mirtceas (hualves), presentes en la XIV Región De Los Ríos, Chile. Memoria para optar al título profesional de Ingeniero en Recursos Naturales Renovables. Universidad de Chile; 2011. [Google Scholar]
- Luebert F., Pliscoff P. Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria; 2006. [Google Scholar]
- Maldonado A., Villagrán C. Historia del bosque pantanoso de Ñague, costa de Los Vilos (IV Región, Chile) y sus relaciones con los cambios paleoambientales de los últimos 5.300 años A.P. In: Squeo F., Arancio G., Gutiérrez J., editors. Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación: Región de Coquimbo. Vol. 17. Ediciones Universidad de La Serena; 2001. [Google Scholar]
- Marticorena C., Rodríguez R. Flora de Chile: Winteraceae-Ranunculaceae. Universidad de Concepción; 2001. [Google Scholar]
- Marticorena C., Rodríguez R. Flora de Chile: Berberidaceae-Betulaceae. Vol. 2. Universidad de Concepción; 2003. [Google Scholar]
- Marticorena C., Rodríguez R. Flora de Chile: Plumbaginaceae-Malvaceae. Universidad de Concepción; 2005. [Google Scholar]
- Marticorena C., Rodríguez R. Flora de Chile: Misodendraceae-Zygophyllaceae. Universidad de Concepción; 2011. [Google Scholar]
- Marton John M., Creed Irena F., Lewis David B., Lane Charles R., Basu Nandita B., Cohen Matthew J., Craft Christopher B. Geographically Isolated Wetlands are Important Biogeochemical Reactors on the Landscape. BioScience. 2015;65(4):408–418. doi: 10.1093/biosci/biv009. [DOI] [Google Scholar]
- Peña-Cortés F., Pincheira-Ulbrich J., Bertrán C., Tapia J., Hauenstein E., Fernández E., Rozas D. A study of the geographic distribution of swamp forest in the coastal zone of the Araucanía Region, Chile. Applied Geography. 2011;31(2):545–555. doi: 10.1016/j.apgeog.2010.11.008. [DOI] [Google Scholar]
- Peña-Cortés F., Pincheira-Ulbrich J., Fernández-Soto E., Andrade E., Rebolledo G. Ordenamiento Territorial en Chile: desafíos para incorporar la gestión integrada de zonas costeras. In: Martinez C., Hidalgo R., Henríquez C., Arenas F., Rangel-Buitrago N., Contreras-López M., editors. La zona costera en Chile: adaptación y planificación para la resilencia. LOM; 2020. [Google Scholar]
- Peña-Cortés Fernando, Escalona Miguel, Soria-Lara Julio A., Pincheira-Ulbrich Jimmy, Salinas-Silva Camila, Alarcón Freddy. Translating sociocultural transformations into historical maps on land use changes: the case of Lafkenmapu (Araucanía, Chile) Journal of Maps. 2020;16(1):163–171. doi: 10.1080/17445647.2020.1793817. [DOI] [Google Scholar]
- Pincheira-Ulbrich J., Hernández C., Saldaña A., Peña-Cortés F., Aguilera-Benavente F. Assessing the completeness of inventories of vascular epiphytes and climbing plants in Chilean swamp forest remnants. New Zealand Journal of Botany. 2016;54(4):458–474. doi: 10.1080/0028825x.2016.1218899. [DOI] [Google Scholar]
- Pincheira-Ulbrich Jimmy. Los últimos fragmentos de bosque pantanoso costero de La Araucanía. Una estrecha relación entre epífitas vasculares y plantas trepadoras. Editorial Académica Española; Mauritius: 2018. 57. Spanish. [Google Scholar]
- Ramírez C., Fariña J., Contreras D., Camaño A., San Martín C., Molina M., Moraga P., Vidal O., Pérez Y. La diversidad florística del humedal "Ciénagas del Name" (Región del Maule) comparada con otros humedales costeros de Chile. Gayana Botánica. 2014;71(1):108–119. doi: 10.4067/s0717-66432014000100011. [DOI] [Google Scholar]
- Rodríguez Roberto, Marticorena Clodomiro, Alarcón Diego, Baeza Carlos, Cavieres Lohengrin, Finot Víctor L., Fuentes Nicol, Kiessling Andrea, Mihoc Maritza, Pauchard Aníbal, Ruiz Eduardo, Sanchez Paulina, Marticorena Alicia. Catálogo de las plantas vasculares de Chile. Gayana. Botánica. 2018;75(1):1–430. doi: 10.4067/s0717-66432018000100001. [DOI] [Google Scholar]
- San Martín J., Troncoso A., Ramírez Carlos. Estudio fitosociológico de los bosques pantanosos nativos de la Cordillera de la Costa en Chile central. Bosque. 1988;9(1):17–33. doi: 10.4206/bosque.1988.v9n1-03. [DOI] [Google Scholar]
- San Martín J. Vegetación y diversidad florística en la cordillera de la costa de Chile Central (34°44′-35°50′S) In: Smith-Ramírez C., Armesto J., Valdovinos C, editors. Historia, biodiversidad y ecología de los bosques costeros de Chile. Editorial Universitaria; 2005. [Google Scholar]
- Squeo F, Arancio G, Cavieres L. Sitios Prioritarios para la Conservación de la Flora Nativa con Riesgos de Extinción en la IV Región de Coquimbo, Chile. In: Squeo F, Arancio G, Gutiérrez J, editors. Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación: Región de Coquimbo. Universidad de La Serena; 2001. [Google Scholar]
- Index The International Plant Names. The international plant names index [cited 2020 March 19] http://www.ipni.org/
- Urrutia-Estrada Jonathan, Fuentes-Ramírez Andrés, Correa-Araneda Francisco, Hauenstein Enrique. Impactos De La fragmentación Sobre La composición florística En Bosques Pantanosos Del Centro-Sur De Chile. Boletín De La Sociedad Argentina De Botánica. 2018;53(2):279–294. doi: 10.31055/1851.2372.v53.n2.20584. [DOI] [Google Scholar]
- Zedler Joy B., Kercher Suzanne. WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. Annual Review of Environment and Resources. 2005;30(1):39–74. doi: 10.1146/annurev.energy.30.050504.144248. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Trees, shrubs and herbs of the coastal Myrtaceae swamp forest in La Araucanía: a dataset
Jimmy Pincheira-Ulbrich, Elías Andrade Mansilla, Fernando Peña-Cortés, Cristian Vergara Fernández
Data type
Occurrences
Brief description
The dataset provides a record of 55 species (24 trees, 1 vine, 16 herbs and 15 shrubs) including accidental epiphytes (n = 6), hemiparasites (n = 4), host (n = 11) and additionally woody debris (n = 36) in 357 records. The data describe (i) species composition, (ii) condition (coarse woody debris, fallen log, live, snag), (iii) habit (herb, shrub, tree), (iv) growth microhabitat (e.g. tree trunk, branch, main trunk crotch), (v) growth form (accidental epiphyte, hemiparasite, terricolous, vegetative), (vi) host species (as appropriate) and (vii) relative location of the species in the sampled patch and surrounding areas (core, border, matrix). Several of the biological backgrounds presented here have not been reported in literature, so the database is left available in this manuscript.
File: oo_511976.csv


