Abstract
We described a silver(I)-mediated intramolecular oxidative C–H amination that enables the construction of assorted 1H-indazoles that are widely applicable in medicinal chemistry. The developed amination was found to be efficient for the synthesis of a variety of 3-substituted indazoles that are otherwise difficult to be synthesized by other means of C–H aminations. Preliminary mechanistic studies suggested that the current amination proceeds via single electron transfer (SET) mediated by Ag(I) oxidant.
Introduction
Indazole and its derivatives are ubiquitously found in a broad spectrum of biological and pharmaceutical applications.1 In particular, as a surrogate of indole that is a central motif in natural and synthetic pharmacophores,2 indazole still has extensive space of derivatization to expand a new chemical territory for the acquisition of patents. Indeed, indazole moiety is found in a variety of FDA-approved drugs such as Granisetron (5-HT3 antagonist) as an antiemetic drug3a and Lonidamine (antiglycolytic drug) for brain tumor treatment.3b In addition, indazoles are also found as a core structure in tyrosine kinase inhibitors such as Axitinib, Pazopanib, and Entrectinib for renal cell carcinoma treatment3c,3d or for ROS-1 positive, metastatic nonsmall cell lung cancer.3f More recently, poly[ADP-ribose]polymerase inhibitor (PARP inhibitor) Niraparib with indazole core was FDA-approved for recurrent epithelial ovarian cancer3e (Scheme 1).
Scheme 1. 1H-Indazole Derivatives in Pharmaceutical Use.
Based on this high demand of indazole derivatives in pharmaceutical chemistry, a wide range of synthetic approaches have been reported in precedent literature (Scheme 2):4 (a) [3 + 2] cycloaddition of diazomethanes with benzyne,4a−4i (b) diazotization or nitrosation of ortho-alkylanilines,4j−4l (c) intramolecular amination of ortho-haloarylhydrazones,4m−4q and (d) addition and cyclization of hydrazines with ortho-haloarylaldehydes or ketones.4r−4w More recently, as a straightforward and atom-efficient method, C–H bond functionalization has recently been developed,5 and C–C- or C–N-bond-forming reactions in both inter-/intramolecular C–H functionalization grant access to synthetic variants of indazole moiety (Scheme 3).6
Scheme 2. Diverse Approaches to 1H-Indozoles.
Scheme 3. Synthesis of 1H-Indozoles via C–H Functionalization.
Despite recent advances, a vast majority of current methods still exhibit a limited access to indazoles possessing 3-carbonyl or 3-alkenyl substituents, which have been proven to exhibit an exceptional level of pharmaceutical activity (Scheme 1, upper line). These considerations led us to develop a new C–H amination system that allows us to give an array of 3-substituted 1H-indazoles as a promising potential pharmacophore (Scheme 3).
Results and Discussion
We commenced our study on intramolecular C–H amination via the cross-dehydrogenative coupling (CDC) strategy with α-ketoester-derived hydrazone 1a under catalytic oxidative conditions (Table 1). The initial effort on the application of well-established Pd- or Cu-mediated systems4 that are previously employed in C–H amidation/amination was totally ineffective (entries 1 and 2). During the course of investigation employing precedent CDC reaction conditions,7 we realized that the iridium(III)-based catalyst system8 successfully afforded the desired product (entry 3). Surprisingly, it was revealed that the amination was high-yielding in the absence of iridium catalyst (entry 4). This result differentiates the current reaction protocol from the previous example. A set of control experiments suggested that the copper species promotes the reaction, but not is not necesary for the amination (entries 5 and 6). These results imply that copper plays a role as a base additive, rather than a chemical oxidant. Not only the amount of silver(I) oxidant (entry 7) but also the choice of the counteranion (entries 8 and 9) was found to be crucial. We were pleased to see that the amination showed an excellent yield under elevated temperatures (entry 10). However, the use of silver as a catalyst by employing terminal oxidants was not efficient, showing a low catalyst turnover at the present stage (entries 11 and 12).
Table 1. Reaction Optimizationa.
| entry | catalyst (mol %) | additive (equiv) | oxidant (equiv) | temp (°C) | yield (%)b |
|---|---|---|---|---|---|
| 1 | Pd(OTf)2 (5) | Na2S2O8 (4.0) | 80 | n.r. | |
| 2 | Cu(OAc)2 (100) | Na2CO3 (1.0) | O2 (1 atm) | 80 | n.r.c |
| 3 | [IrCp*Cl2]2 (5) | Cu(OAc)2 (0.5) | AgNTf2 (3.0) | 25 | 90 |
| 4 | Cu(OAc)2 (0.5) | AgNTf2 (3.0) | 25 | 92 | |
| 5 | AgNTf2 (3.0) | 25 | 73 | ||
| 6 | NaOAc (1.0) | AgNTf2 (3.0) | 25 | 60 | |
| 7 | Cu(OAc)2 (0.5) | AgNTf2 (1.0) | 25 | 50 | |
| 8 | Cu(OAc)2 (0.5) | Ag2CO3 (3.0) | 25 | n.r. | |
| 9 | Cu(OAc)2 (0.5) | AgOTf (3.0) | 25 | 25 | |
| 10 | Cu(OAc)2 (0.5) | AgNTf2 (3.0) | 80 | 97 (95) | |
| 11 | AgNTf2 (20) | Cu(OAc)2 (0.5) | Na2S2O8 (4.0) | 80 | 21 |
| 12 | AgNTf2 (20) | Cu(OAc)2 (0.5) | PhI(OAc)2 (2.0) | 80 | 22 |
1a (0.3 mmol), catalyst, additive and oxidant in 1,2-dichloroethane (1.0 mL) for 24 h.
Yield based on 1H NMR analysis of the crude reaction mixture using CH2Br2 as the internal standard (isolated yield in parentheses).
DMSO (2.0 mL) as a solvent.
With the optimized reaction conditions in hand, we next investigated the scope of the current amination (Table 2). The arylhydrazones bearing electron-donating substituents at para-position (1a–1f) smoothly participated in the present amination in give good to excellent yields. It was notable to see that the substrate with unmasked amine substituent successfully converted into desired product (2f). It was also revealed that the intramolecular amination of arylhydrazones with electron-withdrawing substituents was successful (2g–2k), showing a good compatibility with halogen substituents such as F, Cl, and Br (1i–1k). Biaryl- or naphthyl-derived arylhydrazones (1l–1m) also showed good yields. The current amination took place to form a more sterically accessible C–H bond when a meta-substituted arylhydrazone was tested (2n). Disubstituted arylhydrazones (1o–1p) were also converted to the desired products in moderate yields. Notably, 1H-indazoles including amide, ketone, olefin, aryl, and even CF3 group as substituents at 3-position could be obtained under the current C–H amination protocol (2q–2u).
Table 2. Substrate Scope of 1H-Indazolesa.
1 (0.3 mmol), 0.5 equiv Cu(OAc)2, and 3.0 equiv AgNTf2 in 1,2-dichloromethane (1.0 mL) at 80 °C for 24 h. Isolated yields are reported.
We subsequently investigated the substrate scope with respect to the substituents on the 1-aryl group of indazole (Table 3). A wide range of functional groups on para-position was successfully applied to afford indazole products regardless of the electronic nature of the substituents (4a–4h). Substrates bearing ortho- (3i–3k) or meta- (3l–3n) substituents were also tested, albeit with somewhat diminished reaction efficiency. Besides, reaction with multisubstituted aryl rings were proven to be effective as well (4o–4q), furnishing the generality of current amination.
Table 3. Substrate Scope with Respect to 1-Aryl Substituentsa.
3 (0.3 mmol), 0.5 equiv Cu(OAc)2, and 3.0 equiv AgNTf2 in 1,2-dichloromethane (1.0 mL) at 80 °C for 24 h. Isolated yields are reported.
To gain mechanistic insight for current amination, we first conducted an initial rate comparison test with deuterium-labeled substrate under standard reaction conditions (Figure 1A). No significant amount of primary kinetic isotope effect (KIE) value was measured (kH/kD = 1.04), implying that the C–H bond cleavage step is not involved in the rate-determining stage.
Figure 1.
Preliminary mechanistic investigation.
Cyclic voltammetry (CV) data showed that the oxidation of 3e displayed two irreversible anodic waves with peak potentials of 1.5 and 2.2 V, respectively (Figure 1B, black line). And it was found that the second oxidation is responsible for the corresponding 1H-indazole product 4e (red line). Since the low potential threshold for an outer-sphere electron transfer event (e.g., from anode to 3e) is typically ca. 500 mV below the thermodynamic potential of the substrate,9 this results provided a clue that the reaction can go through outer-sphere electron transfer from the employed Ag(I) oxidant (1.05 V vs Ag/AgCl)10 to afford desired 1H-indazole products from direct oxidation of α-ketoester-derived hydrazones. In addition, the reaction efficiency was measured to be significantly dropped when (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), butylated hydroxytoluene (BHT), and 1,1-diphenylethylene (DPE) were utilized as radical scavengers, indicating that the current amination presumably proceeds via a radical intermediacy (Figure 1C).
Although additional mechanistic details remained unclear at the present stage, a plausible reaction pathway is depicted on the basis of the above preliminary experiments and precedent literature6,11 (Figure 1D). First, an equivalent amount of silver induces proton-coupled oxidation via single electron transfer (SET) to give a nitrogen-centered radical (NCR) intermediate (II).12 A rapid intramolecular C–N bond formation is proposed to give a subsequent radical intermediate III, which could afford the desired product IV by second SET oxidation followed by concomitant base-assisted rearomatization. According to the optimization study (Table 1, entry 2), Cu(II) is more likely involved in deprotonation rather than an oxidation of a substrate.
Conclusions
In conclusion, we report a new synthetic route to 1H-indazoles by intramolecular oxidative C–H amination. This silver(I)-mediated process was found to be particularly efficient for the synthesis of assorted 1H-indazoles possessing amide, ketone, ester, olefin, aryl, and even CF3 groups on 3-position that are widely applicable in medicinal chemistry. Preliminary mechanistic studies suggest that it proceeds via outer-sphere electron transfer mediated by the employed Ag(I) oxidant.
Experimental Section
General Methods
All chemicals and solvents were purchased from Sigma-Aldrich, Alfa Aesar, and TCI Chemicals unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed using EMD 0.2 mm silica gel 60-F plates. Column chromatography was performed on E. Merck 60 Å silica gel (230–400 mesh). 1H NMR spectra were recorded on Bruker 300 (300 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0 ppm for TMS. 1H NMR data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, td = triplet of doublet, m = multiplet), integration, and coupling constant (s) J in hertz (Hz). 13C NMR spectra were recorded on a Varian Gemini 500 (125 MHz). Chemical shifts were reported in ppm referenced to the center of a triplet at 77.0 ppm of chloroform-d. 19F NMR spectra were recorded on a Bruker Avance NEO 500 (471 MHz). Infrared (IR) spectra were recorded on FR-IR spectrometer. High-resolution mass spectra (HRMS) were recorded on a Varian 1200L quadrupole MS (EI) spectrophotometer. Melting points were obtained on a Mettler Toledo MP40 apparatus.
Preparation of Arylhydrazones
α-Ketoester-derived hydrazones were prepared according to the reference procedure.13
General Procedure for the Synthesis of 1H-Indazoles via Silver(I)-Mediated Intramolecular Oxidative C–H Amination
To a screw-capped vial with a Spinvane triangular-shaped Teflon spinbar were added arylhydrazones (0.3 mmol), AgNTf2 (0.6 mmol), Cu(OAc)2 (0.15 mmol), and 1,2-dichloroethane (1.0 mL) under atmospheric conditions. The reaction mixture was stirred in a preheated oil bath at 80 °C for 24 h. The reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by chromatography on silica gel to give the desired product.
Methyl 1-(4-methoxyphenyl)-1H-indazole-3-carboxylate (2a)
White solid; mp 117–119 °C; 1H NMR (CDCl3) δ 8.31 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.3 Hz, 3H), 7.46 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.06 (d, J = 8.5 Hz, 2H), 4.07 (s, 3H), 3.89 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.1, 159.4, 140.5, 136.2, 132.2, 127.5, 125.6, 124.2, 123.6, 122.3, 114.6, 110.8, 55.6, 52.1; IR (cm–1) 3027, 2957, 2841, 1716, 1517, 1475, 1436, 1408, 1301, 1244, 1193, 1124, 1058, 1020, 970, 835, 819, 790, 771, 743; HRMS (EI) calcd. For C16H14N2O3 [M]+ 282.1004, found 282.1003.
Methyl 1-(4-methoxyphenyl)-6-methyl-1H-indazole-3-carboxylate (2b)
White solid; mp 137–139 °C; 1H NMR (CDCl3) δ 8.17 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 8.9 Hz, 2H), 7.39 (s, 1H), 7.19 (s, 1H), 7.06 (d, J = 8.9 Hz, 2H), 4.05 (s, 3H), 3.89 (s, 3H), 2.50 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.2, 159.3, 141.1, 138.0, 136.1, 132.3, 125.9, 125.6, 122.4, 121.8, 114.6, 110.1, 55.6, 52.1, 22.0; IR (cm–1) 3030, 2962, 2918, 1711, 1517, 1451, 1398, 1302, 1249, 1209, 1160, 1138, 1103, 1059, 1022, 972, 836, 814, 759; HRMS (EI) calcd. For C17H16N2O3 [M]+ 296.1161, found 296.1158.
Methyl 6-methoxy-1-(4-methoxyphenyl)-1H-indazole-3-carboxylate (2c)
White solid; mp 218–220 °C; 1H NMR (CDCl3) δ 8.14 (d, J = 8.9 Hz, 1H), 7.59 (d, J = 8.9 Hz, 2H), 7.06 (d, J = 8.9 Hz, 2H), 7.01 (dd, J = 9.0, 2.1 Hz, 1H), 6.91 (d, J = 2.1 Hz, 1H), 4.04 (s, 3H), 3.89 (s, 3H), 3.85 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.2, 160.2, 159.3, 141.9, 136.2, 132.3, 125.7, 123.0, 118.9, 115.7, 114.7, 91.5, 55.6, 52.1; IR (cm–1) 2958, 2843, 1714, 1624, 1509, 1467, 1432, 1407, 1355, 1273, 1172, 1126, 1084, 1038, 1017, 972, 880, 833, 821, 784; HRMS (EI) calcd. For C17H16N2O4 [M]+ 312.1110, found 312.1090.
Methyl 1-(4-methoxyphenyl)-6-phenoxy-1H-indazole-3-carboxylate (2d)
Colorless oil; 1H NMR (CDCl3) δ 8.24 (d, J = 8.9 Hz, 1H), 7.55 (d, J = 9.0 Hz, 2H), 7.35 (t, J = 8.0 Hz, 2H), 7.17–7.15 (m, 1H), 7.13–7.08 (m, 2H), 7.05–7.00 (m, 4H), 4.06 (s, 3H), 3.86 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.0, 159.3, 157.4, 156.9, 141.3, 136.3, 132.1, 129.9, 125.3, 123.7, 123.5, 120.6, 118.9, 117.2, 114.6, 99.4, 55.6, 52.1; IR (cm–1) 3255, 2953, 1709, 1547, 1482, 1459, 1444, 1317, 1270, 1241, 1197, 1166, 1117, 1059, 932, 886, 805, 766, 715; HRMS (EI) calcd. For C22H18N2O4 [M]+ 374.1267, found 374.0777.
Methyl 6-(dimethylamino)-1-(4-methoxyphenyl)-1H-indazole-3-carboxylate (2e)
Yellow solid; mp 130–132 °C; 1H NMR (CDCl3) δ 8.08 (d, J = 9.1 Hz, 1H), 7.61 (d, J = 8.9 Hz, 2H), 7.05 (d, J = 8.9 Hz, 2H), 6.95 (dd, J = 9.1, 2.2 Hz, 1H), 6.60 (d, J = 2.1 Hz, 1H), 4.03 (s, 3H), 3.88 (s, 3H), 3.02 (s, 6H); 13C NMR (125 MHz, CDC13) δ 163.4, 159.0, 150.7, 142.7, 136.1, 132.7, 125.6, 122.3, 116.4, 114.5, 113.1, 90.0, 55.6, 51.9, 40.9; IR (cm–1) 2995, 2947, 2915, 2847, 1703, 1621, 1513, 1440, 1394, 1352, 1298, 1249, 1198, 1141, 1113, 1059, 1026, 958, 849, 806, 791, 776, 746; HRMS (EI) calcd. For C18H19N3O3 [M]+ 325.1426, found 325.1418.
Methyl 6-amino-1-(4-methoxyphenyl)-1H-indazole-3-carboxylate (2f)
Brown oil; 1H NMR (CDCl3) δ 8.03 (dd, J = 8.5, 0.9 Hz, 1H), 7.57 (d, J = 8.9 Hz, 2H), 7.02 (d, J = 9.0 Hz, 2H), 6.77–6.73 (m, 2H), 4.02 (s, 3H), 3.87 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.3, 159.1, 146.7, 142.3, 136.3, 125.5, 123.0, 117.9, 115.3, 114.5, 92.9, 55.6, 52.0; IR (cm–1) 3373, 2953, 2843, 1714, 1627, 1480, 1323, 1196, 1123, 1054, 798, 743; HRMS (EI) calcd. For C16H15N3O3 [M]+ 297.1113, found 297.1114.
Methyl 1-(4-methoxyphenyl)-6-(methylsulfonyl)-1H-indazole-3-carboxylate (2g)
White solid; mp 206–208 °C; 1H NMR (CDCl3) δ 8.52 (d, J = 8.6 Hz, 1H), 8.27–8.26 (m, 1H), 7.87 (dd, J = 8.6, 1.5 Hz, 1H), 7.61 (d, J = 8.9 Hz, 2H), 7.10 (d, J = 8.9 Hz, 2H), 4.09 (s, 3H), 3.91 (s, 3H), 3.12 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.4, 160.1, 139.7, 139.5, 136.5, 131.2, 131.0, 127.9, 126.7, 125.7, 124.1, 121.2, 115.0, 111.7, 55.7, 52.5, 44.7; IR (cm–1) 3012, 2996, 2916, 1706, 1592, 1513, 1404, 1361, 1289, 1243, 1191, 1132, 1057, 1025, 967, 839, 835, 783, 763; HRMS (EI) calcd. For C17H16N2O5S [M]+ 360.0780, found 360.0777.
Dimethyl 1-(4-methoxyphenyl)-1H-indazole-3,6-dicarboxylate (2h)
White solid; mp 196–198 °C; 1H NMR (CDCl3) δ 8.35 (d, J = 7.0 Hz, 1H), 8.34 (s, 1H), 8.03 (d, J = 9.5 Hz, 1H), 7.63 (d, J = 8.9 Hz, 2H), 7.09 (d, J = 8.9 Hz, 2H), 4.08 (s, 3H), 3.96 (s, 3H), 3.91 (s, 3H); 13C NMR (125 MHz, CDC13) δ 166.8, 162.7, 159.7, 140.1, 136.2, 131.7, 129.3, 126.7, 125.7, 124.0, 122.3, 114.8, 113.2, 55.7, 52.5, 52.3; IR (cm–1) 2955, 2840, 1714, 1518, 1442, 1412, 1294, 1259, 1238, 1196, 1130, 1087, 1063, 1025, 985, 966, 825, 797, 765, 734; HRMS (EI) calcd. For C18H16N2O5 [M]+ 340.1059, found 340.1059.
Methyl 6-fluoro-1-(4-methoxyphenyl)-1H-indazole-3-carboxylate (2i)
White solid; mp 139–141 °C; 1H NMR (CDCl3) δ 8.26 (dd, J = 8.9, 5.2 Hz, 1H), 7.58 (d, J = 8.9 Hz, 2H), 7.28–7.24 (m, 2H), 7.14 (td, J = 9.0, 2.2 Hz, 1H), 7.06 (d, J = 8.9 Hz, 2H), 4.06 (s, 3H), 3.89 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.7, 162.8, 161.7, 159.5, 140.9 (d, J = 12.7 Hz) 136.4, 131.9, 125.4, 123.9 (d, J = 10.9 Hz), 121.0, 114.8, 113.6 (d, J = 25.7 Hz), 96.6 (d, J = 26.9 Hz), 55.6, 52.2; 19F NMR (471 MHz, CDC13) δ −112.4; IR (cm–1) 3080, 3051, 2948, 2846, 1715, 1626, 1520, 1502, 1471, 1443, 1408, 1304, 1250, 1199, 1177, 1111, 1062, 1033, 959, 826, 807, 795; HRMS (EI) calcd. For C16H13FN2O3 [M]+ 300.0910, found 300.0880.
Methyl 6-chloro-1-(4-methoxyphenyl)-1H-indazole-3-carboxylate (2j)
White solid; mp 156–158 °C; 1H NMR (CDCl3) δ 8.23 (d, J = 8.7 Hz, 1H), 7.61–7.57 (m, 3H), 7.33 (dd, J = 8.7, 1.7 Hz, 1H), 7.07 (d, J = 8.9 Hz, 2H), 4.06 (s, 3H), 3.90 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.7, 159.6, 140.9, 136.4, 134.1, 131.7, 125.6, 124.7, 123.3, 122.7, 114.8, 110.6, 55.7, 52.3; IR (cm–1) 3014, 2988, 2954, 2836, 1734, 1706, 1609, 1517, 1484, 1431, 1395, 1306, 1256, 1195, 1178, 1126, 1056, 1022, 975, 938, 824, 809, 799, 789, 735; HRMS (EI) calcd. For C16H13ClN2O3 [M]+ 316.0615, found 316.0613.
Methyl 6-bromo-1-(4-methoxyphenyl)-1H-indazole-3-carboxylate (2k)
White solid; mp 158–160 °C; 1H NMR (CDCl3) δ 8.17 (d, J = 8.7 Hz, 1H), 7.79 (s, 1H), 7.58 (d, J = 8.8 Hz, 2H), 7.47 (d, J = 8.7 Hz, 1H), 7.07 (d, J = 8.8 Hz, 2H), 4.06 (s, 3H), 3.90 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.7, 159.6, 141.2, 136.4, 131.7, 127.3, 125.6, 123.5, 123.0, 122.1, 114.8, 113.7, 55.7, 52.3; IR (cm–1) 3077, 3015, 2953, 2835, 1735, 1708, 1607, 1517, 1481, 1392, 1306, 1257, 1194, 1177, 1126, 1048, 1021, 826, 808, 798, 785; HRMS (EI) calcd. For C16H13BrN2O3 [M]+ 360.0110, found 360.0104.
Methyl 1-(4-methoxyphenyl)-6-phenyl-1H-indazole-3-carboxylate (2l)
White solid; mp 131–133 °C; 1H NMR (CDCl3) δ 8.35 (d, J = 8.5 Hz, 1H), 7.75 (s, 1H), 7.67–7.62 (m, 5H), 7.47 (t, J = 8.7 Hz, 1H), 7.41–7.36 (m, 1H), 7.07 (d, J = 8.8 Hz, 2H), 4.08 (s, 3H), 3.90 (s, 3H); 13C NMR (125 MHz, CDC13) δ163.1, 159.4, 141.2, 140.8, 136.2, 132.2, 128.9, 127.8, 127.7, 125.7, 123.9, 123.4, 122.5, 114.7, 108.8, 55.6, 52.2; IR (cm–1) 3088, 3026, 2999, 2960, 2843, 1129, 1614, 1516, 1467, 1427, 1403, 1259, 1233, 1186, 1169, 1130, 1061, 1018, 969, 899, 846, 798, 714; HRMS (EI) calcd. For C22H18N2O3 [M]+ 358.1317, found 358.1317.
Methyl 1-(4-methoxyphenyl)-1H-benzo[f]indazole-3-carboxylate (2m)
White solid; mp 160–162 °C; 1H NMR (CDCl3) δ 8.29 (d, J = 8.9 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 8.9 Hz, 1H), 7.57–7.49 (m, 4H), 7.37–7.32 (m, 1H), 7.10 (d, J = 8.9 Hz, 2H), 4.07 (s, 3H), 3.95 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.3, 160.6, 137.9, 136.4, 134.0, 133.2, 129.1, 128.7, 126.7, 126.4, 125.5, 121.8, 121.6, 120.7, 119.5, 114.7, 55.7, 52.1; IR (cm–1) 3003, 2954, 2903, 2841, 1714, 1605, 1515, 1478, 1460, 1440, 1385, 1326, 1251, 1171, 1119, 1103, 1055, 1028, 980, 835, 822, 788, 692; HRMS (EI) calcd. For C20H16N2O3 [M]+ 332.1161, found 332.1160.
Methyl 5-methoxyl-1-(4-methoxyphenyl)-1H-indazole-3-carboxylate (2n)
White solid; mp 173–175 °C; 1H NMR (CDCl3) δ 7.64 (d, J = 2.4 Hz, 1H), 7.60 (d, J = 8.9 Hz, 2H), 7.51 (d, J = 9.2 Hz, 1H), 7.11 (dd, J = 9.2, 2.4 Hz, 1H), 7.05 (d, J = 9.0 Hz, 2H), 4.05 (s, 3H), 3.93 (s, 3H), 3.88 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.4, 159.3, 156.8, 125.3, 120.0, 114.6, 111.9, 100.8, 55.8, 55.6, 52.0; IR (cm–1) 3018, 2950, 2831, 1701, 1619, 1518, 1498, 1479, 1459, 1442, 1408, 1348, 1309, 1270, 1252, 1193, 1171, 1161, 1141, 1105, 1052, 1019, 975, 884, 877, 833, 797, 697; HRMS (EI) calcd. For C17H16N2O4 [M]+ 312.1110, found 312.1085.
Methyl 5,6-dimethoxyl-1-(4-methoxyphenyl)-1H-indazole-3-carboxylate (2o)
White solid; mp 177–179 °C; 1H NMR (CDCl3) δ 7.61 (s, 1H), 7.58 (d, J = 8.9 Hz, 2H), 7.06 (d, J = 9.0 Hz, 2H), 6.91 (s, 1H), 4.03 (s, 3H), 4.01 (s, 3H). 3.91 (s, 3H), 3.88 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.6, 159.4, 151.4, 148.3, 136.2, 135.4, 132.3, 125.6, 118.1, 114.7, 100.8, 91.7, 56.3, 56.2, 55.6, 52.1, 50.8; IR (cm–1) 2953, 2837, 1722, 1632, 1515, 1494, 1463, 1436, 1427, 1399, 1352, 1284, 1247, 1192, 1159, 1135, 1111, 1056, 1032, 1012, 977, 868, 830, 796, 783, 744, 703; HRMS (EI) calcd. For C18H18N2O5 [M]+ 342.1216, found 342.1224.
Methyl 1-(4-methoxyphenyl)-6,7-dihydro-1H-[1,4]dioxino[2,3-f]indazole-3-carboxylate (2p)
White solid; mp 199–201 °C; 1H NMR (CDCl3) δ 7.72 (s, 1H), 7.60 (d, J = 9.0 Hz, 2H), 7.09 (s, 1H), 7.05 (d, J = 9.0 Hz, 2H), 4.34 (s, 4H), 4.05 (s, 3H), 3.89 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.2, 159.1, 145.6, 142.3, 136.3, 135.5, 132.5, 125.1, 119.1, 114.6, 107.6, 97.2, 64.6, 64.1, 55.6, 52.0; IR (cm–1) 3072, 2957, 2874, 1172, 1635, 1607, 1589, 1569, 1509, 1483, 1456, 1440, 1420, 1399, 1388, 1334, 1292, 1268, 1245, 1220, 1183, 1157, 1123, 1106, 1069, 1057, 1033, 1022, 969, 936, 909, 874, 862, 832, 796, 783, 726, 707, 692; HRMS (EI) calcd. For C18H16N2O5 [M]+ 340.1059, found 340.1054.
1-(4-Methoxyphenyl)-N-methyl-1H-indazole-3-carboxamide (2q)
Yellow solid; mp 127–129 °C; 1H NMR (CDCl3) δ 8.47 (d, J = 8.2 Hz, 1H), 7.65–7.55 (m, 3H), 7.50–7.39 (m, 1H), 7.39–7.28 (m, 1H), 7.12–7.03 (m, 2H), 3.90 (s, 3H), 3.07 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.2, 159.1, 140.6, 138.9, 132.5, 127.5, 125.0, 123.4, 123.1, 114.7, 110.3, 55.6, 25.7; IR (cm–1) 3348, 3061, 2969, 1734, 1647, 1535, 1508, 1488, 1448, 1434, 1405, 1370, 1297, 1249, 1199, 1173, 1155, 1130, 1106, 1087, 1030, 1009, 996, 944, 851, 827, 806, 797, 789, 772, 742, 690, 670; HRMS (EI) calcd. For C16H15N3O2 [M]+ 281.1164, found 281.1147.
(1-(4-Methoxyphenyl)-1H-indazole-3-yl)(phenyl)methanone (2r)
Yellow oil; 1H NMR (CDCl3) δ 8.56 (d, J = 7.9 Hz, 1H), 8.42 (d, J = 7.4 Hz, 2H), 7.70–7.66 (m, 3H), 7.59 (d, J = 7.1 Hz, 1H), 7.55–7.47 (m, 3H), 7.42 (t, J = 7.4 Hz, 1H), 7.09 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H); 13C NMR (125 MHz, CDC13) δ 188.6, 159.3, 143.1, 140.1, 137.9, 132.5, 130.7, 128.2, 127.6, 125.2, 124.1, 123.4, 114.8, 110.6, 55.7; IR (cm–1) 3055, 2834, 1636, 1596, 1574, 1512, 1465, 1404, 1300, 1279, 1246, 1200, 1177, 1157, 1132, 1106, 1082, 1027, 967, 884, 831, 802, 760, 745, 708, 687; HRMS (EI) calcd. For C21H16N2O2 [M]+ 328.1212, found 328.1183.
(E)-1-(4-Methoxyphenyl)-3-(prop-1-en-1-yl)-1H-indazole (2s)
Colorless oil; 1H NMR (CDCl3) δ 7.85 (d, J = 7.2 Hz, 2H), 7.43–7.37 (m, 4H), 7.32–7.28 (m, 1H), 6.99 (d, J = 8.9 Hz, 2H), 6.50 (s, 1H), 3.86 (s, 3H), 2.33 (s, 3H); 13C NMR (125 MHz, CDC13) δ 159.1, 151.1, 140.3, 133.4, 128.6, 127.7, 126.6, 125.7, 114.2, 103.8, 55.6, 12.4; IR (cm–1) 3058, 3013, 2912, 2835, 1611, 1551, 1508, 1466, 1453, 1439, 1411, 1365, 1302, 1251, 1175, 1135, 1112, 1082, 1041, 1022, 1003, 972, 951, 840, 826, 798, 764, 735, 716, 693, 658; HRMS (EI) calcd. For C17H163N2O [M]+ 264.1263, found 264.1282.
1-(4-Methoxyphenyl)-3-phenyl-1H-indazole (2t)
White solid; mp 126–128 °C; 1H NMR (CDCl3) δ 8.09 (d, J = 8.2 Hz, 1H), 8.07–8.01 (m, 2H), 7.72–7.63 (m, 3H), 7.59–7.50 (m, 2H), 7.49–7.40 (m, 2H), 7.34–7.27 (m, 1H), 7.12–7.03 (m, 2H), 3.90 (s, 3H); 13C NMR (125 MHz, CDC13) δ 158.5, 145.5, 140.6, 133.4, 133.2, 128.8, 128.2, 127.7, 126.9, 124.8, 122.7, 121.7, 121.5, 114.6, 110.5, 55.6; IR (cm–1) 3044, 2837, 1601, 1519, 1508, 1470, 1446, 1419, 1398, 1362, 1348, 1309, 1296, 1251, 1227, 1173, 1126, 1113, 1098, 1072, 1025, 992, 940, 847, 830, 809, 779, 770, 750, 741, 727, 700, 667; HRMS (EI) calcd. For C20H16N2O [M]+ 300.1263, found 300.1257.
1-(4-Methoxyphenyl)-3-(trifluoromethyl)-1H-indazole (2u)
White solid; mp 70–72 °C; 1H NMR (CDCl3) δ 7.91 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.6 Hz, 1H), 7.60 (d, J = 9.0 Hz, 2H), 7.49 (t, J = 7.7 Hz, 1H), 7.35 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 9.0 Hz, 2H), 3.89 (s, 3H); 13C NMR (125 MHz, CDC13) δ 159.3, 140.2, 132.1, 127.9, 125.3, 123.1, 120.3, 114.8, 110.9, 55.7; 19F NMR (471 MHz, CDC13) δ −60.7; IR (cm–1) 3065, 2850, 1588, 1518, 1497, 1467, 1427, 1409, 1347, 1301, 1282, 1248, 1175, 1151, 1116, 1027, 1007, 946, 828, 772, 756, 739, 681; HRMS (EI) calcd. For C15H11F3N2O [M]+ 292.0823, found 292.0822.
Methyl 1-(p-tolyl)-1H-indazole-3-carboxylate (4a)
White solid; mp 119–121 °C; 1H NMR (CDCl3) δ 8.32 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.61 (d, J = 8.2 Hz, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.40–7.34 (m, 3H), 4.07 (s, 3H), 2.45 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.1, 140.3, 138.1, 136.7, 136.4, 130.1, 127.5, 124.4, 123.8, 123.6, 122.3, 110.9, 52.1, 21.2; IR (cm–1) 2949, 2921, 1708, 1516, 1473, 1439, 1407, 1351, 1249, 1194, 1170, 1118, 1056, 970, 829, 789, 770, 751; HRMS (EI) calcd. For C16H14N2O2 [M]+ 266.1055, found 266.1048.
Methyl 1-(4-isopropylphenyl)-1H-indazole-3-carboxylate (4b)
White solid; mp 92–94 °C; 1H NMR (CDCl3) δ 8.32 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.47 (t, J = 7.7 Hz, 1H), 7.42–7.36 (m, 3H), 4.07 (s, 3H), 3.08–2.94 (m, 1H), 1.31 (d, J = 6.9 Hz, 6H); 13C NMR (125 MHz, CDC13) δ 163.1, 149.0, 140.3, 137.0, 136.4, 127.5, 124.4, 123.9, 123.6, 122.3, 111.0, 52.1, 33.9, 24.0; IR (cm–1) 3059, 2955, 2866, 1718, 1605, 1515, 1474, 1435, 1404, 1360, 1258, 1193, 1170, 1164, 1123, 1052, 854, 835, 787, 770, 754; HRMS (EI) calcd. For C18H18N2O2 [M]+ 294.1368, found 294.1366.
Methyl 1-phenyl-1H-indazole-3-carboxylate (4c)
White solid; mp 71–73 °C; 1H NMR (CDCl3) δ 8.32 (d, J = 8.1 Hz, 1H), 7.76–7.70 (m, 3H), 7.56 (t, J = 7.8 Hz, 2H), 7.51–7.35 (m, 3H), 4.07 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.1, 140.2, 139.2, 136.7, 129.6, 128.1, 127.7, 124.5, 123.9, 123.8, 122.4, 110.9, 52.2; IR (cm–1) 3006, 2953, 1727, 1597, 1476, 1458, 1409, 1364, 1257, 1169, 1127, 1075, 1058, 969, 863, 755, 722; HRMS (EI) calcd. For C15H12N2O2 [M]+ 252.0899, found 252.0927.
Methyl 1-(4-(trifluoromethoxyl)phenyl)-1H-indazole-3-carboxylate (4d)
White solid; mp 68–70 °C; 1H NMR (CDCl3) δ 8.34 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.9 Hz, 2H), 7.71 (d, J = 8.5 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.44–7.39 (m, 3H), 4.08 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.8, 148.3, 140.1, 137.7, 137.2, 128.0, 125.1, 124.5, 123.9, 122.6, 122.1, 120.4 (q, J = 256.4 Hz), 110.5, 52.2; 19F NMR (471 MHz, CDC13) δ −58.0; IR (cm–1) 3053, 2954, 1729, 1511, 1478, 1408, 1253, 1222, 1194, 1152, 1123, 1044, 969, 951, 921, 860, 808, 789, 749; HRMS (EI) calcd. For C16H11F3N2O3 [M]+ 336.0722, found 336.0727.
Methyl 1-(4-(trifluoromethyl)phenyl)-1H-indazole-3-carboxylate (4e)
White solid; mp 100–102 °C; 1H NMR (CDCl3) δ 8.34 (d, J = 8.1 Hz, 1H), 7.93 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 8.6 Hz, 2H), 7.77 (d, J = 8.5 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 4.08 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.8, 142.1, 140.0, 137.8, 129.7 (q, J = 33.0 Hz), 128.3, 126.8 (q, J = 3.6 Hz), 124.8, 124.2, 123.5, 122.8, 110.6, 52.3; 19F NMR (471 MHz, CDC13) δ −62.5; IR (cm–1) 2956, 1739, 1611, 1483, 1319, 1248, 1157, 1116, 1104, 1066, 1013, 969, 843, 789, 772, 766; HRMS (EI) calcd. For C16H11F3N2O2 [M]+ 320.0773, found 320.0771.
Methyl 1-(4-fluorophenyl)-1H-indazole-3-carboxylate (4f)
White solid; mp 140–142 °C; 1H NMR (CDCl3) δ 8.33 (d, J = 8.1 Hz, 1H), 7.77–7.68 (m, 2H), 7.65 (d, J = 8.5 Hz, 1H), 7.50 (t, J = 7.7 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.26 (t, J = 8.5 Hz, 2H), 4.07 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.0, 162.0 (d, J = 247.2 Hz), 140.3, 136.8, 135.3 (d, J = 3.5 Hz), 127.8, 125.8 (d, J = 8.9 Hz), 124.4, 123.8, 122.5, 116.5 (d, J = 22.6 Hz), 110.6, 52.2; 19F NMR (471 MHz, CDC13) δ −112.9; IR (cm–1) 3056, 2967, 1711, 1511, 1474, 1423, 1403, 1252, 1198, 1153, 1123, 1060, 972, 846, 810, 790, 738; HRMS (EI) calcd. For C15H11FN2O2 [M]+ 270.0805, found 270.0803.
Methyl 1-(4-chlorophenyl)-1H-indazole-3-carboxylate (4g)
White solid; mp 131–133 °C; 1H NMR (CDCl3) δ 8.33 (d, J = 8.1 Hz, 1H), 7.75–7.64 (m, 3H), 7.55–7.48 (m, 3H), 7.40 (t, J = 7.5 Hz, 1H), 4.08 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.9, 140.1, 137.8, 137.1, 133.7, 129.7, 128.0, 124.9, 124.5, 123.9, 122.6, 110.6, 52.3; IR (cm–1) 2993, 2919, 2850, 1709, 1493, 1474, 1408, 1350, 1248, 1194, 1168, 1119, 1090, 1083, 1009, 968, 835, 791, 744, 735; HRMS (EI) calcd. For C15H11ClN2O2 [M]+ 286.0509, found 286.0508.
Methyl 1-(4-bromophenyl)-1H-indazole-3-carboxylate (4h)
White solid; mp 110–112 °C; 1H NMR (CDCl3) δ 8.33 (d, J = 8.1 Hz, 1H), 7.71–7.63 (m, 5H), 7.51 (t, J = 7.7 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 4.08 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.9, 140.1, 138.3, 137.2, 132.7, 128.0, 125.2, 124.6, 124.0, 122.6, 121.6, 110.6, 52.3; IR (cm–1) 3080, 3051, 2946, 1715, 1586, 1481, 1447, 1418, 1343, 1246, 1199, 1169, 1120, 1069, 1057, 835, 820, 792, 771, 743; HRMS (EI) calcd. For C15H11BrN2O2 [M]+ 330.0004, found 330.0001.
Methyl 1-(2-methoxyphenyl)-1H-indazole-3-carboxylate (4i)
White solid; mp 166–168 °C; 1H NMR (CDCl3) δ 8.30 (d, J = 7.9 Hz, 1H), 7.51–7.44 (m, 2H), 7.42–7.33 (m, 2H), 7.24 (s, 1H), 7.13–7.09 (m, 2H), 4.05 (s, 3H), 3.76 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.2, 154.6, 142.0, 136.5, 130.6, 129.0, 127.5, 127.1, 123.6, 123.3, 121.9, 120.9, 112.2, 111.4, 55.8, 52.1; IR (cm–1) 3073, 2969, 2841, 1729, 1598, 1507, 1478, 1432, 1405, 1244, 1193, 1163, 1142, 1124, 1115, 1066, 953, 810, 789, 769; HRMS (EI) calcd. For C16H14N2O3 [M]+ 282.1004, found 282.1003.
Methyl 1-(o-tolyl)-1H-indazole-3-carboxylate (4j)
White solid; mp 77–79 °C; 1H NMR (CDCl3) δ 8.32 (d, J = 7.7 Hz, 1H), 7.46–7.35 (m, 6H), 7.23 (d, J = 8.3 Hz, 1H), 4.06 (s, 3H), 2.08 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.2, 141.7, 137.4, 136.2, 135.9, 131.3, 129.7, 127.7, 127.5, 126.8, 123.5, 123.4, 122.1, 110.6, 52.1, 17.7; IR (cm–1) 3057, 2944, 1706, 1495, 1472, 1441, 1403, 1251, 1210, 1193, 1132, 1115, 1060, 986, 776, 751, 729; HRMS (EI) calcd. For C16H14N2O2 [M]+ 266.1055, found 266.1046.
Methyl 1-(2-fluorophenyl)-1H-indazole-3-carboxylate (4k)
White solid; mp 95–97 °C; 1H NMR (CDCl3) δ 8.32 (d, J = 8.8 Hz, 1H), 7.69–7.63 (m, 1H), 7.54–7.47 (m, 2H), 7.42–7.30 (m, 4H), 4.07 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.9, 157.5, 155.5, 141.6, 137.6, 130.6 (d, J = 7.7 Hz), 128.6, 127.8, 126.7 (d, J = 11.9 Hz), 125.0 (d, J = 3.8 Hz), 123.8, 122.2, 117.0 (d, J = 19.3 Hz), 110.9 (d, J = 4.3 Hz), 52.2; 19F NMR (471 MHz, CDC13) δ −120.2; IR (cm–1) 3010, 2959, 1720, 1509, 1440, 1404, 1250, 1222, 1195, 1177, 1126, 1098, 1060, 1028, 827, 808, 768; HRMS (EI) calcd. For C15H11FN2O2 [M]+ 270.0805, found 270.0818.
Methyl 1-(m-tolyl)-1H-indazole-3-carboxylate (4l)
Colorless oil; 1H NMR (CDCl3) δ 8.32 (d, J = 8.1 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.57–7.35 (m, 5H), 7.23 (s, 1H), 4.07 (s, 3H), 2.46 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.1, 140.2, 139.8, 139.1, 136.5, 129.2, 128.8, 127.6, 124.6, 123.7, 122.4, 120.8, 111.0, 52.2, 21.4; IR (cm–1) 3031, 2951, 1713, 1608, 1591, 1477, 1438, 1407, 1348, 1252, 1214, 1166, 1123, 1062, 1011, 936, 846, 788, 749, 694; HRMS (EI) calcd. For C16H14N2O2 [M]+ 266.1055, found 266.1048.
Methyl 1-(3-(trifluoromethyl)phenyl)-1H-indazole-3-carboxylate (4m)
White solid; mp 83–85 °C; 1H NMR (CDCl3) δ 8.35 (d, J = 8.1 Hz, 1H), 8.05 (s, 1H), 7.99–7.96 (m, 1H), 7.74–7.70 (m, 3H), 7.57–7.51 (m, 1H), 7.46–7.40 (m, 1H), 4.09 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.7, 140.0, 139.7, 137.6, 132.2 (q, J = 32.8 Hz), 130.2, 128.2, 126.6, 124.6, 124.5 (q, J = 3.9 Hz), 124.1, 123.5 (q, J = 271.0 Hz), 122.7, 120.6 (q, J = 3.8 Hz), 110.4, 52.3; 19F NMR (471 MHz, CDC13) δ −62.7; IR (cm–1) 2956, 1711, 1595, 1484, 1445, 1414, 1318, 1271, 1243, 1199, 1170, 1103, 1061, 933, 886, 828, 792, 756, 696; HRMS (EI) calcd. For C16H11F3N2O2 [M]+ 320.0773, found 320.0790.
Methyl 1-(3-bromophenyl)-1H-indazole-3-carboxylate (4n)
White solid; mp 113–115 °C; 1H NMR (CDCl3) δ 8.33 (d, J = 8.1 Hz, 1H), 7.95 (t, J = 2.0 Hz, 1H), 7.77–7.67 (m, 2H), 7.63–7.48 (m, 2H), 7.48–7.38 (m, 2H), 4.08 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.8, 140.3, 140.1, 137.3, 131.0, 130.8, 128.1, 126.8, 124.6, 124.0, 123.1, 122.6, 122.1, 110.7, 52.3; IR (cm–1) 3054, 2951, 1724, 1709, 1590, 1486, 1470, 1436, 1409, 1250, 1196, 1185, 1123, 1063, 986, 875, 786, 761, 749, 696; HRMS (EI) calcd. For C15H11BrN2O2 [M]+ 330.0004, found 329.9999.
Methyl 1-(2,5-dimethylphenyl)-1H-indazole-3-carboxylate (4o)
White solid; mp 108–110 °C; 1H NMR (CDCl3) δ 8.32 (d, J = 7.8 Hz, 1H), 7.46–7.34 (m, 2H), 7.28–7.20 (m, 4H), 4.06 (s, 3H), 2.37 (s, 3H), 2.02 (s, 3H); 13C NMR (125 MHz, CDC13) δ 163.2, 141.6, 137.2, 136.7, 136.1, 132.4, 131.1, 130.4, 128.3, 127.4, 123.4, 122.1, 110.7, 52.1, 20.7, 17.2; IR (cm–1) 3053, 3004, 2954, 2918, 1714, 1508, 1495, 1476, 1438, 1403, 1250, 1217, 1187, 1172, 1151, 1142, 1122, 1112, 1055, 1002, 933, 828, 796, 772, 752; HRMS (EI) calcd. For C17H16N2O2 [M]+ 280.1212, found 280.1211.
Methyl 1-(3-chloro-4-methylphenyl)-1H-indazole-3-carboxylate (4p)
White solid; mp 94–96 °C; 1H NMR (CDCl3) δ 8.32 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 2.2 Hz, 1H), 7.72–7.36 (m, 1H), 7.55–7.48 (m, 2H), 7.42–7.37 (m, 2H), 4.08 (s, 3H), 2.47 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.9, 140.1, 137.9, 136.9, 136.0, 135.1, 131.5, 127.9, 124.5, 124.3, 123.9, 122.5, 121.8, 110.7, 52.2, 19.8; IR (cm–1) 3058, 2984, 2948, 1711, 1604, 1493, 1476, 1443, 1409, 1247, 1210, 1192, 1119, 1063, 943, 863, 839, 817, 796, 737; HRMS (EI) calcd. For C16H13ClN2O2 [M]+ 300.0666, found 300.0651.
Methyl 1-(3,5-dichlorophenyl)-1H-indazole-3-carboxylate (4q)
White solid; mp 148–150 °C; 1H NMR (CDCl3) δ 8.33 (d, J = 8.1 Hz, 1H), 7.59–7.47 (m, 4H), 7.41 (t, J = 7.5 Hz, 1H), 7.29 (s, 1H), 4.07 (s, 3H); 13C NMR (125 MHz, CDC13) δ 162.7, 141.5, 137.7, 137.1, 133.4, 131.5, 130.9, 130.1, 130.0, 127.9, 123.9, 123.5, 122.4, 110.9, 52.3; IR (cm–1) 3077, 2957, 1719, 1588, 1489, 1439, 1341, 1250, 1197, 1143, 1122, 1064, 942, 867, 831, 805, 789, 745, 679; HRMS (EI) calcd. For C15H10Cl2N2O2 [M]+ 320.0119, found 320.0093.
Acknowledgments
This work was supported by the Ewha Womans University Research Grant of 2020 and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [NRF-2020R1F1A1069242 (H.K.)]. This work was also supported by the Korea Research Institute of Chemical Technology [SI-1805-01 (A.P. and H.L.) and KK2132-10 (H.L.)]. This study made use of the NMR facility supported by Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (NRF-2020R1A6C101B194). The authors thank Prof. Sukbok Chang (KAIST) for helpful discussion.
Supporting Information Available
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c00025.
Procedures and characterization data (PDF)
The authors declare no competing financial interest.
Supplementary Material
References
- a Thangadurai A.; Minu M.; Wakode S.; Agrawal S.; Narasimhan A. Indazole: a medicinally important heterocyclic moiety. Med. Chem. Res. 2012, 21, 1509–1523. 10.1007/s00044-011-9631-3. [DOI] [Google Scholar]; b Gaikwad D. D.; Chapolikar A. D.; Devkate C. G.; Warad K. D.; Tayade A. P.; Pawar R. P.; Domb A. J. Synthesis of indazole motifs and their medicinal importance: An Overview. Eur. J. Med. Chem. 2015, 90, 707–731. 10.1016/j.ejmech.2014.11.029. [DOI] [PubMed] [Google Scholar]; c Dong J.; Zhang Q.; Wang Z.; Huang G.; Li S. Recent Advances in the Development of Indazole-based Anticancer Agents. ChemMedChem 2018, 13, 1490–1507. 10.1002/cmdc.201800253. [DOI] [PubMed] [Google Scholar]; d Zhang S.-G.; Liang C.-G.; Zhang W.-H. Recent advances in indazole-containing derivatives: Synthesis and Biological Perspectives. Molecules 2018, 23, 2783. 10.3390/molecules23112783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inman M.; Moody C. J. Indole synthesis – something old, something new. Chem. Sci. 2013, 4, 29–41. 10.1039/C2SC21185H. [DOI] [Google Scholar]
- a Navari R.; Grandara D.; Hesketh P.; Hall S.; Mailliard J.; Friedman H. R.; Fitts D.; et al. Comparative clinical trial of granisetron and ondansetron in the prophylaxis of cisplatin −induced emesis. The Graninsetron study group. J. Clin. Oncol. 1995, 13, 1242–1248. 10.1200/JCO.1995.13.5.1242. [DOI] [PubMed] [Google Scholar]; b Nath K.; Guo L.; Nancolas B.; Nelson D. S.; Shestov A. A.; Lee S.-C.; Roman J.; Zhou R.; Leeper D. B.; Halestrap A. P.; Blair I. A.; Glickson J. D. Mechanism of Antineoplastic Activity of Lonidamine. Biochim. Biophys. Acta, Rev. Cancer 2016, 1866, 151–162. 10.1016/j.bbcan.2016.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Grünwald V.; Merseburger A. S. Axitinib for the treatment of patients with advanced metastatic renal cell carcinoma (mRCC) after failure of prior systemic treatment. OncoTargets Ther. 2012, 5, 111–117. 10.2147/OTT.S23273. [DOI] [PMC free article] [PubMed] [Google Scholar]; d Modi S. J.; Kulkarni V. M. Vascular Endothelial Growth Factor Receptor (VEGFR-2)/KDR Inhibitors: Medicinal Chemistry Perspective. Med. Drug Discovery 2019, 2, 100009 10.1016/j.medidd.2019.100009. [DOI] [Google Scholar]; e Drilon A.; Siena S.; Dziadziuszko R.; Barlesi F.; Krebs M. G.; Shaw A. T.; de Braud F.; Rolfo S.; Ahn M.-J.; Wolf J.; Seto T.; Cho B. C.; patel M. R.; Chiu C.-H.; John T.; Goto K.; Karapetis C. S.; Arkenau H.-T.; K S.-W.; Ohe Y.; Li Y.-C.; Chae Y. K.; Chung C. H.; Otterson G. A.; Murakami H.; Lin C.-C.; Tan D. S. W.; Prenen H.; Riehl T.; Chow-Maneval E.; Simmons B.; Cui N.; Johnson A.; Eng S.; Wilson T. R.; Doebele R. C. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020, 21, 261–270. 10.1016/S1470-2045(19)30690-4. [DOI] [PMC free article] [PubMed] [Google Scholar]; f Ison G.; Howie L. J.; Amiri-Kordestani L.; Zhang L.; Tang S.; Sridhara R.; Pierre V.; Charlab R.; Ramamoorthy A.; Song P.; Li F.; Yu J.; Manheng W.; Palmby T. R.; Ghosh S.; Horne H. N.; Lee E. Y.; Philip R.; Dave K.; Chen X. H.; Kelly S. L.; Janoria K. G.; Banerjee A.; Eradiri O.; Dinin J.; Goldberg K. B.; Pierce W. F.; Ibrahim A.; Kluetz P. G.; Blumenthal G. M.; Beaver J. A.; Pazdur R. FDA Approval Summary: Niraparib for the Maintenance Treatment of Patients with Recurrent Ovarian Cancer in Response to Platinum-Based Chemotherapy. Clin. Cancer Res. 2018, 24, 4066–4071. 10.1158/1078-0432.CCR-18-0042. [DOI] [PubMed] [Google Scholar]
- a Jin T.; Yamamoto Y. An Efficient, Facile, and General Synthesis of 1H-Indazoles by 1,3-Dipolar Cycloaddition of Arynes with Diazomethane Derivatives. Angew. Chem., Int. Ed. 2007, 46, 3323–3325. 10.1002/anie.200700101. [DOI] [PubMed] [Google Scholar]; b Liu Z.; Shi F.; Martinez P. D. G.; Raminelli C.; Larock R. C. Synthesis of Indazoles by the [3+2] Cycloaddition of Diazo Compounds with Arynes and Subsequent Acyl Migration. J. Org. Chem. 2008, 73, 219–226. 10.1021/jo702062n. [DOI] [PubMed] [Google Scholar]; c Liu Z.; Shi F.; Martinez P. D. G.; Raminelli C.; Larock R. C. Synthesis of indazoles by the [3+2] cycloaddition of diazo compounds with arynes and subsequent acyl migration. J. Org. Chem. 2008, 73, 219–226. 10.1021/jo702062n. [DOI] [PubMed] [Google Scholar]; d Spiteri C.; Keeling S.; Moses J. E. New Synthesis of 1-Substituted-1H-indazoles via 1,3-Dipolar Cycloaddition of in situ Generated Nitrile Imines and Banzyne. Org. Lett. 2010, 12, 3368–3371. 10.1021/ol101150t. [DOI] [PubMed] [Google Scholar]; e Li P.; Zhao J.; Wu C.; Larock R. C.; Shi F. Synthesis of 2-Substituted Indazoles from Arynes and N-Tosylhydrazones. Org. Lett. 2011, 13, 3340–3343. 10.1021/ol201086g. [DOI] [PubMed] [Google Scholar]; f Li P.; Wu C.; Zhao J.; Rogness D. C.; Shi F. Synthesis of Substituted 1H-Indazoles from Arynes and Hydrazones. J. Org. Chem. 2012, 77, 3149–3158. 10.1021/jo202598e. [DOI] [PubMed] [Google Scholar]; g Liu Z.; Wang L.; Tan H.; Zhou S.; Fu T.; Xia Y.; Zhang Y.; Wang J. Synthesis of 1H-indazoles from N-tosylhydrazones and nitroaromatic compounds. Chem. Commun. 2014, 50, 5061–5063. 10.1039/C4CC00962B. [DOI] [PubMed] [Google Scholar]; h Phatake R. S.; Mullapudi V.; Wakchaure V. C.; Ramana C. V. Fluoride-Mediated Dephosphonylation of α–Diazo-β-carbonyl Phosphonates. Org. Lett. 2017, 19, 372–375. 10.1021/acs.orglett.6b03573. [DOI] [PubMed] [Google Scholar]; i Chen G.; Hu M.; Peng Y. Switchable Synthesis of 3-Substituted 1H-Indazoles and 3,3-Disubstituted 3H-Indazole-3-phosphonates Tuned by Phosphoryl Groups. J. Org. Chem. 2018, 83, 1591–1597. 10.1021/acs.joc.7b02857. [DOI] [PubMed] [Google Scholar]; j Stadlbauer W.Indazoles. In Science of Synthesis; Neier R., Ed.; Georg-Thieme-Verlag Stuttgart: New York, 2002; pp 227–324. [Google Scholar]; k Caron S.; Vazquez E. A Versatile and Efficient Synthesis of Substituted 1H-Indazoles. Synthesis 1999, 588–592. 10.1055/s-1999-3431. [DOI] [Google Scholar]; l Haag B.; Peng Z.; Knochel P. Preparation of polyfunctional indazoles and heteroarylazo compounds using highly functionalized Zinc reagents. Org. Lett. 2009, 11, 4270–4273. 10.1021/ol901585k. [DOI] [PubMed] [Google Scholar]; m Song J. J.; Yee N. K. Synthesis of 1-aryl-1H-indazoles via the palladium-catalyzed cyclization of N-aryl-N′-(o-bromobenzyl)hydrazines and [N-aryl-N′-(o-bromobenzyl)-hydrazinato-N′]-triphenylphosphonium bromides. Tetrahedron Lett. 2001, 42, 2937–2940. 10.1016/S0040-4039(01)00273-8. [DOI] [Google Scholar]; n Inamoto K.; Katsuno M.; Yoshino T.; Suzuki I.; Hiroya K.; Sakamoto T. Efficient Synthesis of 3-Substituted Indazoles Using Pd-Catalyzed Intramolecular Amination Reaction of N-Tosylhydrazones. Chem. Lett. 2004, 33, 1026–1027. 10.1246/cl.2004.1026. [DOI] [Google Scholar]; o Inamoto K.; Katsuno M.; Yoshino T.; Arai Y.; Hiroya K.; Sakamoto T. Synthesis of 3-substituted indazoles and benzoisoxazoles via Pd-catalyzed cyclization reactions: application to the synthesis of nigellicine. Tetrahedron 2007, 63, 2695–2711. 10.1016/j.tet.2007.01.010. [DOI] [Google Scholar]; p Thomé I.; Besson C.; Kieine T.; Bolm C. Base-Catalyzed Synthesis of Substituted Indazoles under Mild, Transition-Metal-Free Conditions. Angew. Chem., Int. Ed. 2013, 52, 7509–7513. 10.1002/anie.201300917. [DOI] [PubMed] [Google Scholar]; q Tang M.; Kong Y.; Chu B.; Feng D. Copper(I) Oxide-Mediated Cyclization of o-Haloaryl N-Tosylhydrazones: Efficient Synthesis of Indazoles. Adv. Synth. Catal. 2016, 358, 926–939. 10.1002/adsc.201500953. [DOI] [Google Scholar]; r Cho C. S.; Lim D. K.; Heo N. H.; Kim T.-J.; Shim S. C. Facile palladium-catalyesd synthesis of 1-aryl-1H-indazoles from 2-bromobenzaldehydes and arylhydrazines. Chem. Commun. 2004, 104–105. 10.1039/b312154m. [DOI] [PubMed] [Google Scholar]; s Lebedev A. Y.; Khartulyari A. S.; Voxkoboynikov A. Z. Synthesis of 1-Aryl-1H-indazoles via Palladium-Catalyzed Intramolecular Amination of Aryl Halides. J. Org. Chem. 2005, 70, 596–602. 10.1021/jo048671t. [DOI] [PubMed] [Google Scholar]; t Lukin K.; Hsu M. C.; Femando D.; Leanna M. B. New Practical Synthesis of Indazoles via Condensation of o-Fluorobenzaldehydes and Their O-Methyloximes with Hydrazin. J. Org. Chem. 2006, 71, 8166–8172. 10.1021/jo0613784. [DOI] [PubMed] [Google Scholar]; u Viña D.; Olmo E.; Lópea-Pérez J. L.; Feliciano A. S. Regioselective Synthesis of 1-Alkyl- or 1-Aryl-1H-indazoles via Copper-Catalyzed Cyclizations of 2-Haloarylcarbonylic Compounds. Org. Lett. 2007, 9, 525–528. 10.1021/ol062890e. [DOI] [PubMed] [Google Scholar]; v Veerareddy A.; Gogireddy S.; Dubey P. K. Resioselective Synthesis of 1-substituted Indazole-3-carboxylic acid. J. Heterocycl. Chem. 2014, 51, 1311–1321. 10.1002/jhet.1717. [DOI] [Google Scholar]; w Tang X.; Gao H.; Yang J.; Wu W.; Jiang H. Efficient access to 1H-indazoles via copper-catalyzed cross-coupling/cyclization of 2-bromoaryl oxime acetates and amines. Org. Chem. Front. 2014, 1, 1295–1298. 10.1039/C4QO00244J. [DOI] [Google Scholar]; x Conlon I. L.; Konsein K.; Morel Y.; Chan A.; Fletcher S. Construction of 1H-Indazoles from ortho-aminobenzoximes by the Mitsunobu reaction. Tetrahedron Lett. 2019, 60, 150929 10.1016/j.tetlet.2019.07.020. [DOI] [Google Scholar]; y Li X.; Ye C.; Wei C.; Shan C.; Wojtas L.; Wang Q.; Shi X. Diazo Actication with Diazonium Salts: Synthesis of Indazoles and 1,2,4-Triazole.. Org. Lett. 2020, 22, 4151–4155. 10.1021/acs.orglett.0c01232. [DOI] [PMC free article] [PubMed] [Google Scholar]; z Zhang L.; Chen J.; Chen X.; Zheng X.; Zhou J.; Zhong T.; Chen Z.; Yang Y.-F.; Jiang X.; She Y.-B.; Yu C. Rh(III)-catalyzed, hydrazine-directed C-H functionalization with 1-alkynylcyclobutanols: a new strategy for 1H-indazoles. Chem. Commun. 2020, 56, 7415–7418. 10.1039/C9CC08884A. [DOI] [PubMed] [Google Scholar]
- a Colby D. A.; Bergman R. G.; Ellman J. A. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation. Chem. Rev. 2010, 110, 624–655. 10.1021/cr900005n. [DOI] [PMC free article] [PubMed] [Google Scholar]; b Lyons T. W.; Sanford M. S. Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions. Chem. Rev. 2010, 110, 1147–1169. 10.1021/cr900184e. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Ackermann L. Carboxylate-Assisted Transition-Metal-Catalyzed C-H Bond Functionalizations: Mechanism and Scope. Chem. Rev. 2011, 111, 1315–1345. 10.1021/cr100412j. [DOI] [PubMed] [Google Scholar]; d McMurray L.; O′Hara F.; Gaunt M. J. Recent developments in natural product synthesis using metal-catalysed C-H bond functionalization. Chem. Soc. Rev. 2011, 40, 1885–1898. 10.1039/c1cs15013h. [DOI] [PubMed] [Google Scholar]; e Wencel-Delord J.; Dröge T.; Liu F.; Glorius F. Towards mild metal-catalyzed C-H bond activation. Chem. Soc. Rev. 2011, 40, 4740–4761. 10.1039/c1cs15083a. [DOI] [PubMed] [Google Scholar]; f Cho S. H.; Kim J. Y.; Kwak J.; Chang S. Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation. Chem. Soc. Rev. 2011, 40, 5068–5083. 10.1039/c1cs15082k. [DOI] [PubMed] [Google Scholar]; g Arockiam P. B.; Bruneau C.; Dixneuf P. H. Ruthenium(II)-Catalyzed C-H Bond Activation and Functionalization. Chem. Rev. 2012, 112, 5879–5918. 10.1021/cr300153j. [DOI] [PubMed] [Google Scholar]; h Song G.; Wang F.; Li X. C-C, C-O and C-N bond formation via rhodium(III)-catalyzed oxidative C-H activation. Chem. Soc. Rev. 2012, 41, 3651–3678. 10.1039/c2cs15281a. [DOI] [PubMed] [Google Scholar]; i Engle K. M.; Mei T.-S.; Wasa M.; Yu J.-Q. Weak Coordination as a Powerful Means for Developing Broadly Useful C-H Functionalization Reactions. Acc. Chem. Res. 2012, 45, 788–802. 10.1021/ar200185g. [DOI] [PMC free article] [PubMed] [Google Scholar]; j Guo X.-X.; Gu D.-W.; Wu Z.; Zhang W. Copper-Catalyzed C-H Functionalization Reactions: Efficient Synthesis of Heterocycles. Chem. Rev. 2015, 115, 1622–1651. 10.1021/cr500410y. [DOI] [PubMed] [Google Scholar]; k Liu C.; Yuan J.; Gao M.; Tang S.; Li W.; Shi R.; Lei A. Oxidative Coupling between Two Hydrocarbons: An Update of Recent C-H Functionalizations. Chem. Rev. 2015, 115, 12138–12204. 10.1021/cr500431s. [DOI] [PubMed] [Google Scholar]; l Song G.; Li X. Substrate Activation Strategies in Rhodium(III)-Catalyzed Selective Functionalization of Arenes.. Acc. Chem. Res. 2015, 48, 1007–1020. 10.1021/acs.accounts.5b00077. [DOI] [PubMed] [Google Scholar]; m Gensch T.; Hopkinson M. N.; Glorius F.; Wencel-Delord J. Mild metal-catalyzed C-H activation: examples and concepts. Chem. Soc. Rev. 2016, 45, 2900–2936. 10.1039/C6CS00075D. [DOI] [PubMed] [Google Scholar]; n Qin Y.; Zhu L.; Luo S. Organocatalysis in Inert C-H Bond Functionalization. Chem. Rev. 2017, 117, 9433–9520. 10.1021/acs.chemrev.6b00657. [DOI] [PubMed] [Google Scholar]; o Sambiagio C.; Schönbauer D.; Blieck R.; Dao-Huy T.; Pototschnig G.; Schaaf P.; Wiesinger T.; Zia M. F.; Wencel-Delord J.; Besset T.; Maes B. U. W.; Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalization chemistry. Chem. Soc. Rev. 2018, 47, 6603–6743. 10.1039/C8CS00201K. [DOI] [PMC free article] [PubMed] [Google Scholar]; p Rej S.; Chatani N. Rhodium-Catalyzed C(sp2)-or C(sp3)-H Bond Functionalization Assisted by Removable Directing Groups. Angew. Chem., Int. Ed. 2019, 58, 8304–8329. 10.1002/anie.201808159. [DOI] [PubMed] [Google Scholar]; q Woźniak Ł.; Tan J.-F.; Nguyen Q.-H.; Vigné A. M.; Smal V.; Cao Y.-X.; Cramer N. Catalytic Enantioselective Functionalizations of C-H Bonds by Chiral Iridium Complexes. Chem. Rev. 2020, 120, 10516–10543. 10.1021/acs.chemrev.0c00559. [DOI] [PubMed] [Google Scholar]
- a Inamoto K.; Saito T.; Katsuno M.; Sakamoto T.; Hiroya K. Palladium-Catalyzed C-H Activation/Intramolecular Amination Reaction: A New Route to 2-Aryl/Alkylindazoles. Org. Lett. 2007, 9, 2931–2934. 10.1021/ol0711117. [DOI] [PubMed] [Google Scholar]; b Lian Y.; Bergman R. G.; Lavis L. D.; Ellman J. A. Rhodium(III)-Catalyzed Indazole Synthesis by C-H Bond Functionalization and Cyclative Capture. J. Am. Chem. Soc. 2013, 135, 7122–7125. 10.1021/ja402761p. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Yu D. G.; Suri M.; Glorius F. RhIII/CuII-Cocatalyzed Synthesis of 1H-Indazoles through C-H Amidation and N-N Bond Formation. J. Am. Chem. Soc. 2013, 135, 8802–8805. 10.1021/ja4033555. [DOI] [PubMed] [Google Scholar]; d Zhang T.; Bao W. Synthesis of 1H-indazoles and 1H-Pyrazoles via FeBr3/O2 Mediated Intramolecular C-H Amination. J. Org. Chem. 2013, 78, 1317–1322. 10.1021/jo3026862. [DOI] [PubMed] [Google Scholar]; e Li X.; He L.; Chen H.; Wu W.; Jiang H. Copper-Catalyzed Aerobic C(sp2)-H Functionalization for C-N Bond Formation: Synthesis of Pyrazoles and Indazoles. J. Org. Chem. 2013, 78, 3636–3646. 10.1021/jo400162d. [DOI] [PubMed] [Google Scholar]; f Kashiwa M.; Sonoda M.; Tanimori S. Facile Access to 1H-Indazoles through Iodobenzene-Catalyzed C-H Amination under Mild, Transition-Metal-Free Conditions. Eur. J. Org. Chem. 2014, 4720–4723. 10.1002/ejoc.201402488. [DOI] [Google Scholar]; g Hu J.; Xu H.; Nie P.; Xie X.; Nie Z.; Rao Y. Synthsis of Indazoles and Azaindazoles by Intramolecular Aerobic Oxidative C-N Coupling under Transition-Metal-Free Conditions. Chem. - Eur. J. 2014, 20, 3932–3938. 10.1002/chem.201304923. [DOI] [PubMed] [Google Scholar]; h Yu J.; Lim J. W.; Kim S. Y.; Kim J.; Kim J. N. An efficient transition-metal-free synthesis 1H-indazoles from arylhydrazones with montmorillonite K-10 under O2 atmosphere. Tetrahedron Lett. 2015, 56, 1432–1436. 10.1016/j.tetlet.2015.01.183. [DOI] [Google Scholar]; i Wang Q.; Li Z. Synthesis of 1H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis. Org. Lett. 2016, 18, 2102–2105. 10.1021/acs.orglett.6b00727. [DOI] [PubMed] [Google Scholar]; j Xu P.; Wang G.; Wu Z.; Li S.; Zhu C. Rh(III)-catalyzed double C-H activation of aldehyde hydrazones: a route for functionalized 1H-indazole synthesis. Chem. Sci. 2017, 8, 1303–1308. 10.1039/C6SC03888C. [DOI] [PMC free article] [PubMed] [Google Scholar]; k Zhang Z.; Huang Y.; Huang G.; Zhang G.; Liu Q. [Bis-(trifluoroacetoxy)iodo]benzene-Mediated Oxidative Direct Amination C-N Bond Formations: Synthesis of 1H-Indazoles. J. Heterocycl. Chem. 2017, 54, 2426–2433. 10.1002/jhet.2839. [DOI] [Google Scholar]; l Wei W.; Wang Z.; Yang X.; Yu W.; Chang J. Divergent Synthesis of 1H-Indazoles and 1H-Pyrazoles from Hydrazones via Iodine-Mediated Intramolecular Aryl and sp3 C-H Amination. Adv. Synth. Catal. 2017, 359, 3378–3387. 10.1002/adsc.201700824. [DOI] [Google Scholar]; m Chopra R.; Kumar M.; Bhalla V. Fabrication of Polythiophene-Supported Ag@Fe3O4 Nanoclusters and Their Utilization as Photocatalyst in Dehydrogenative Coupling Reactions. ACS Sustainable Chem. Eng. 2018, 6, 7412–7419. 10.1021/acssuschemeng.7b04891. [DOI] [Google Scholar]; n Janardhanan J. C.; Mishra R. K.; Das G.; Sini S.; Jayamurthy P.; Suresh C. H.; Praveen V. K.; Manoj N.; Babu B. P. Functionalizable 1H-Indazoles by Palladium Catalyzed Aza-Nenitzescu Reaction: Pharmacophores to Donor-Acceptor Type Multi-Luminescent Fluorophores. Asian J. Org. Chem. 2018, 7, 2094–2104. 10.1002/ajoc.201800413. [DOI] [Google Scholar]; o Zhang G.; Fan Q.; Zhao Y.; Ding C. Copper-Promoted Oxidative intramolecular C-H Amination of Hydrazones to Synthesize 1H-indazoles and 1H-Pyrazoles Using a Cleavable Directing Group. Eur. J. Org. Chem. 2019, 5801–5806. 10.1002/ejoc.201900947. [DOI] [Google Scholar]; p Wang G.; Sun J.; Wang K.; Han J.; Li H.; Duan G.; You G.; Li F.; Xia C. Palladium-catalyzed direct C-H nitration and intramolecular C-H functionalization for the synthesis of 3-nitro-1-(phenylsulfonyl)-1H-indazole derivatives. Org. Chem. Front. 2019, 6, 1608–1612. 10.1039/C9QO00367C. [DOI] [Google Scholar]
- a Monguchi D.; Fujiwara T.; Furukawa H.; Mori A. Direct Amination of Azoles via Catalytic C–H, N–H Coupling. Org. Lett. 2009, 11, 1607–1610. 10.1021/ol900298e. [DOI] [PubMed] [Google Scholar]; b Wang Q.; Schreiber S. L. Copper-Mediated Amidation of Heterocyclic and Aromatic C–H Bonds. Org. Lett. 2009, 11, 5178–5180. [DOI] [PMC free article] [PubMed] [Google Scholar]; c Oda Y.; Hirano K.; Satoh T.; Miura M. Synthesis of N-Azolylindoles by Copper-Catalyzed C–H/N–H Coupling–Annulation Sequence of o-Alkynylanilines. Org. Lett. 2012, 14, 664–667. 10.1021/ol203392r. [DOI] [PubMed] [Google Scholar]; d Cho S. H.; Kim J.; Lee S. Y.; Chang S. Silver-Mediated Direct Amination of Benzoxazoles: Tuning the Amino Group Source from Formamides to Parent Amines. Angew. Chem., Int. Ed. 2009, 48, 9127–9130. 10.1002/anie.200903957. [DOI] [PubMed] [Google Scholar]; e Kuhl N.; Hopkinson M. N.; Wencel-Delord J.; Glorius F. Beyond Directing Groups: Transition-Metal-Catalyzed C–H Activation of Simple Arenes. Angew. Chem., Int. Ed. 2012, 51, 10236–10254. 10.1002/anie.201203269. [DOI] [PubMed] [Google Scholar]; f Kim H.; Chang S. Transition-Metal-Mediated Direct C–H Amination of Hydrocarbons with Amine Reactants: The Most Desirable but Challenging C–N Bond-Formation Approach. ACS Catal. 2016, 6, 2341–2351. 10.1021/acscatal.6b00293. [DOI] [Google Scholar]
- Kim H.; Shin K.; Chang S. Iridium-Catalyzed C.–H. Amination with Anilines at Room Temperature: Compatibility of Iridacycles with External Oxidants. J. Am. Chem. Soc. 2014, 136, 5904–5907. 10.1021/ja502270y. [DOI] [PubMed] [Google Scholar]
- Francke R.; Little R. D. Redox Catalysis in Organic Electrosynthesis: Basic Principles and Recent Developments. Chem. Soc. Rev. 2014, 43, 2492–2521. 10.1039/c3cs60464k. [DOI] [PubMed] [Google Scholar]
- Connelly N. G.; Geiger W. E. Chemical Redox Agents for Organometallic Chemistry.. Chem. Rev. 1996, 96, 877–910. 10.1021/cr940053x. [DOI] [PubMed] [Google Scholar]
- a Park Y.; Kim Y.; Chang S. Transition Metal-Catalyzed C–H Amination: Scope, Mechanism, and Applications. Chem. Rev. 2017, 117, 9247–9301. 10.1021/acs.chemrev.6b00644. [DOI] [PubMed] [Google Scholar]; b Suzuki C.; Hirano K.; Satoh T.; Miura M. Direct Synthesis of N–H Carbazoles via Iridium(III)-Catalyzed Intramolecular C–H Amination. Org. Lett. 2015, 17, 1597–1600. 10.1021/acs.orglett.5b00502. [DOI] [PubMed] [Google Scholar]; c Maity S.; Zheng N. A Visible-Light-Mediated Oxidative C–N Bond Formation/Aromatization Cascade: Photocatalytic Preparation of N-Arylindoles. Angew. Chem., Int. Ed. 2012, 51, 9562–9566. 10.1002/anie.201205137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- a Xiong T.; Zhang Q. New amination strategies based on nitrogen-centered radical chemistry. Chem. Soc. Rev. 2016, 45, 3069–3087. 10.1039/C5CS00852B. [DOI] [PubMed] [Google Scholar]; b Hioe J.; Šakić D.; Vrček V.; Zipse H. The stability of nitrogen-centered radicals. Org. Biomol. Chem. 2015, 13, 157–169. 10.1039/C4OB01656D. [DOI] [PubMed] [Google Scholar]
- Zhuang J.; Wang C.; Xie F.; Zhang W. One-pot efficient synthesis of aryl α–keto esters from aryl-ketones. Tetrahedron 2009, 65, 9797–9800. 10.1016/j.tet.2009.09.076. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.










