Skip to main content
AJNR: American Journal of Neuroradiology logoLink to AJNR: American Journal of Neuroradiology
letter
. 2017 Jun;38(6):E40–E43. doi: 10.3174/ajnr.A5179

Caution; Confusion Ahead…

R Capocci a, E Shotar b,c, N-A Sourour d, I Haffaf e, B Bartolini f, F Clarençon g,h
PMCID: PMC7960079  PMID: 28473348

We read with great interest the article entitled “Endovascular Therapy of M2 Occlusion in IMS III: Role of M2 Segment Definition and Location on Clinical and Revascularization Outcomes” by Tomsick et al.1 This study is a post hoc subgroup analysis of the patients randomized in the endovascular arm of the Interventional Management of Stroke (IMS) III study who underwent a mechanical thrombectomy (MT) for an MCA M2 segment occlusion. This article provides interesting data on distal (ie, M2) occlusions treated by endovascular means. Indeed, the recent randomized controlled trials (RCTs)27 that showed the effectiveness of MT in acute ischemic stroke with large vessel occlusion included very few cases of M2 occlusion (Table). Consequently, the American Heart Association (AHA) guidelines,8 according to the results of RCTs, suggest that only M1 and more proximal arterial occlusions should be safely treated by MT. Scant data (only nonrandomized, retrospective, monocenter series) on the safety and effectiveness of MT in M2 occlusions are available in the literature.915 Despite the potential interest of this paper, we would like to raise some comments on its methods.

Number of patients with M2 occlusion in the recent randomized controlled trials on MT

Study No. of Patients Rate of M2 Occlusion (%)
MR CLEAN2 39 7.8
SWIFT PRIME3 19 10
REVASCAT4 18 9
EXTEND-IA5 10 14.3
ESCAPE6 9 2.9
THRACE7 2 1

First, we would like to underline the fact that a subgroup analysis, as mentioned in many papers and letters,1618 is prone to bias in the statistical analysis. Consequently, the results of such post hoc analyses on small volume subgroups should be interpreted with caution.

Second, we found it very questionable to perform a post hoc analysis of a study19 that showed such a low recanalization rate, due to the use of obsolete devices like “sonography-assisted thrombolysis” (EKOS system; EKOS, Bothell, Washington) and the “Merci retriever” (Concentric Medical, Mountain View, California), in the era of stent retrievers and aspiration devices. Indeed, the overall recanalization rate of M2 occlusion in this series was only 40%. Recent monocenter retrospective studies using more recent devices showed a recanalization rate over 75%.9,13,15 Our center's experience with distal artery occlusions treated by endovascular means shows a recanalization rate of 76%.20

Third, we would like to report our disagreement with the MCA segmentation used in this paper. Indeed, the MCA segmentation commonly used is the one described in 1938 by Fischer21 (Fig 1) and further used in anatomic22 and angiographic23 descriptive studies. In Fischer's21 paper (written in the German language), the MCA segments are clearly defined:

Fig 1.

Fig 1.

Original drawings of the intracranial arteries by Fischer.21 A, Lateral view; B, frontal view. Reprinted with permission from Fischer E. Die Lageabweichungen der vorderen Hirnarterie im Gefässbild. Zentralbl Neurochir 1938;3:300–13.

Der Verlauf der A. cerebri media zerfällt in folgende Unterabschnitte:

  1. Den horizontalen Anfangsteil (M1), von der Teilungsstelle der Carotis int. Bis zu dem etwa rechtwinkligen Knie der A. cerebri media reichend,

  2. Den nach hinten zu ansteigenden Inselabschnitt (M2), welcher mit 2–3 Hauptästen dem Inselgebiet dicht aufliegt, im Seitenbild in der arteriellen Gefäßachse (Moniz) des Gehirns verläuft und im Vorderbild nahezu vertikal ansteigt,

  3. Gefäßverzweigungen (M3) der vorgenannten Hauptäste der Fossa Sylvii mit dem Kandelaber (Foix) und charakteristischen Schleifenbildungen der Aa. Frontales asc. Im Seitenbild. Auf der Vorderaufnahme bilden diese zusammen mit der folgenden Gruppe ein charakteristisches, nach oben zu scharf begrenztes Fächerbild (M3–4), das bei Tumoren der Zentral- oder Parietalregion eine typische Kompression nach unten erfährt,

  4. Gefäßverzweigungen (M4) im hintersten Teil der Fissura Sylvii (Gyrus angularis-Gebiet), die im Seitenbild deutlich hervortreten, dagegen auf der Vorderaufnahme mit dem Fächer (M3–4), zusammenfallen,

  5. Endausbreitungen (M5) der mittleren hirnarterie, Sie sind zum Teil auf der Vorderaufnahme als feinere und mehr lockere Gefäßmaschen unmittelbar über dem dichteren und etwas gröber gezeichneten Fächerbild sichtbar, besonders klar jedoch im Seitenbild als divergiende Endäste (M5) zu erkennen (Aa. Parietalis post., angularis und temporalis post.) Bei Tumoren der Hinterhauptlappens können diese Äste von unten her eine Zusammendrängung und Parallelverlagerung nach oben oder aber, bei Entwicklung des Tumors mehr von dorsal her, eine stärkere Auseinanderdrängung in rechtwinkliger bis gerader Form erfahren.

Our translation of this article reports that:

“The course of the middle cerebral artery is decomposed in the following subsections:

  1. The horizontal initial part (M1), from the internal carotid bifurcation to the distal genu of the middle cerebral artery.

  2. On the lateral view, the insular section progresses along the axis of the brain arteries toward the rear and upwardly (M2) and gives birth to 2–3 main branches lying on the insula, and, on the front view, it is ascending almost vertically.

  3. The junction of the above-mentioned main branches of the Sylvian fissure (M3) with the candelabra (Foix) shows the typical loop aspect of the ascending frontal artery on the lateral view. On the frontal view, these branches form and limit sharply with the following group a typical image of a fan turned upward (M3–4), translated downward in case of a central or parietal lobe tumor.

  4. Vessel intersection (M4) at the rear part of the Sylvian fissure (gyrus angularis), which clearly stands out on the lateral view, whereas they coincide with the fan on the frontal view.

  5. At the terminal section (M5) of the middle cerebral artery, there are, on the frontal view, fine and looser vascular stitches immediately above the attenuated and more visibly marked fan; however, on the lateral view, these appear particularly clear as the segments are divergent (M5) (posterior parietal, angular, and posterior temporal arteries). With occipital lobe tumors, these branches can be pushed together from downward and be translated upwardly, but with the development of more dorsal tumors, a stronger compression can shift these structures frontally.”

We think that using a classification without respecting criteria and landmarks that define these different segments is very confusing. Indeed, in their paper, the authors artificially created what they called an “M2 trunk” (Fig 2)1 that definitively belongs to the M1 segment according to Fischer's classification (horizontal segment, before the MCA genu). This imprecise interpretation of a segmentation commonly used worldwide may lead to substantial misunderstandings and may render the results published in this series noncomparable with other studies dealing with M2 occlusions. Recently, Goyal et al24 made an effort to clarify what should be considered as the M1 segment and detailed the M1 and M2 segment anatomic variations. In particular, they proposed to assimilate large anterior temporal artery (ATA) variation (ie, ATA supplying more than the anterior aspect of the temporal lobe) to an M2 segment.

Fig 2.

Fig 2.

Drawing summarizing the MCA segmentation used in Tomsick et al's1 article.

To definitively clarify what is an M1 or M2 occlusion, we suggest using a classification such as the one presented below. In this classification, in addition to true M1 or M2 occlusions (Fig 3), we describe “M1-like” (Fig 4) occlusions that comprise:

  • Occlusion of both branches after MCA division, proximal (short M1 segment) (Fig 4A) or distal to the MCA's genu (Fig 4B);

  • Occlusion of both branches of a duplicated or accessory MCA (Fig 4C); and,

  • Occlusion of either the superior or inferior division of the MCA, if it is a dominant branch (ie, division branch feeding ≥75% of the MCA's cortical territory) (Fig 4D).

Fig 3.

Fig 3.

Drawings summarizing true M1 and M2 occlusions. A, M1 occlusion; B, superior M2 occlusion; C, inferior M2 occlusion; D, M2 trifurcation occlusion. ACA indicates anterior cerebral artery.

Fig 4.

Fig 4.

Drawings summarizing “M1-like” occlusions. A, Occlusion of both branches after MCA division, short M1 segment; B, occlusion of both branches after MCA division, distal to the MCA's genu; C, occlusion of both branches of a duplicated or accessory MCA; D, occlusion of either the superior or inferior division of the MCA if it is a dominant branch (ie, division branch feeding ≥75% of the MCA's cortical territory). ACA indicates anterior cerebral artery.

We also describe “M2-like” (Fig 5) occlusions that comprise:

  • Occlusion of 1 branch after MCA division, proximal (short M1 segment) or distal to the MCA's genu (Fig 5A);

  • Occlusion of 1 branch of a duplicated or accessory MCA (Fig 5B); and,

  • Occlusion of the ATA if its trunk is large (ie, as big as M2) (Fig 5C).

Fig 5.

Fig 5.

Drawings summarizing “M2-like” occlusions. A, Occlusion of 1 branch after MCA division, proximal (short M1 segment) or distal to the MCA's genu; B, occlusion of 1 branch of a duplicated or accessory MCA; C, occlusion of the anterior temporal artery if its trunk is large (ie, as big as M2). ACA indicates anterior cerebral artery.

To conclude, we think that speaking the same language, by using the classifications in a common way, is the only manner to provide comparable results.

Footnotes

Disclosures: Nader Sourour—UNRELATED: Consultancy: Medtronic; Payment for Development of Educational Presentations: Medtronic, Comments: workshop; Stock/Stock Options: Medina, Comments: former investor. Bruno Bartolini—UNRELATED: Consultancy: Stryker. Frédéric Clarençon—UNRELATED: Consultancy: Codman, Medtronic.

References

  • 1. Tomsick TA, Carrozzella J, Foster L, et al. Endovascular therapy of M2 occlusion in IMS III: role of M2 segment definition and location on clinical and revascularization outcomes. AJNR Am J Neuroradiol 2017;38:84–89 10.3174/ajnr.A4979 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Berkhemer OA, Fransen PS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015;372:11–20 10.1056/NEJMoa1411587 [DOI] [PubMed] [Google Scholar]
  • 3. Saver JL, Goyal M, Bonafe A, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 2015;372:2285–95 10.1056/NEJMoa1415061 [DOI] [PubMed] [Google Scholar]
  • 4. Jovin TG, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 2015;372:2296–306 10.1056/NEJMoa1503780 [DOI] [PubMed] [Google Scholar]
  • 5. Campbell BC, Mitchell PJ, Kleinig TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015;372:1009–18 10.1056/NEJMoa1414792 [DOI] [PubMed] [Google Scholar]
  • 6. Goyal M, Demchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015;372:1019–30 10.1056/NEJMoa1414905 [DOI] [PubMed] [Google Scholar]
  • 7. Bracard S, Ducrocq X, Mas JL, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol 2016;15:1138–47 10.1016/S1474-4422(16)30177-6 [DOI] [PubMed] [Google Scholar]
  • 8. Powers WJ, Derdeyn CP, Biller J, et al. 2015 AHA/ASA focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015;46:3020–35 10.1161/STR.0000000000000074 [DOI] [PubMed] [Google Scholar]
  • 9. Park JS, Kwak HS. Manual aspiration thrombectomy using penumbra catheter in patients with acute M2 occlusion: a single-center analysis. J Korean Neurosurg Soc 2016;59:352–56 10.3340/jkns.2016.59.4.352 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Kim YW, Son S, Kang DH, et al. Endovascular thrombectomy for M2 occlusions: comparison between forced arterial suction thrombectomy and stent retriever thrombectomy. J Neurointerv Surg 2016. July 5. [Epub ahead of print] 10.1136/neurintsurg-2016-012466 [DOI] [PubMed] [Google Scholar]
  • 11. Wong JH, Do HM, Telischak NA, et al. Initial experience with SOFIA as an intermediate catheter in mechanical thrombectomy for acute ischemic stroke. J Neurointerv Surg 2016. October 27. [Epub ahead of print] 10.1136/neurintsurg-2016-012750 [DOI] [PubMed] [Google Scholar]
  • 12. Coutinho JM, Liebeskind DS, Slater LA, et al. Mechanical thrombectomy for isolated M2 occlusions: a post hoc analysis of the STAR, SWIFT, and SWIFT PRIME studies. AJNR Am J Neuroradiol 2016;37:667–72 10.3174/ajnr.A4591 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Dorn F, Lockau H, Stetefeld H, et al. Mechanical thrombectomy of M2-occlusion. J Stroke Cerebrovasc Dis 2015;24:1465–70 10.1016/j.jstrokecerebrovasdis.2015.04.013 [DOI] [PubMed] [Google Scholar]
  • 14. Sung SM, Lee TH, Lee SW, et al. Emergent intracranial stenting for acute M2 occlusion of middle cerebral artery. Clin Neurol Neurosurg 2014;119:110–15 10.1016/j.clineuro.2014.01.027 [DOI] [PubMed] [Google Scholar]
  • 15. Flores A, Tomasello A, Cardona P, et al. Endovascular treatment for M2 occlusions in the era of stentrievers: a descriptive multicenter experience. J Neurointerventional Surg 2015;7:234–37 10.1136/neurintsurg-2014-011100 [DOI] [PubMed] [Google Scholar]
  • 16. Ewald B. Post hoc choice of cut points introduced bias to diagnostic research. J Clin Epidemiol 2006;59:798–801 10.1016/j.jclinepi.2005.11.025 [DOI] [PubMed] [Google Scholar]
  • 17. Kivimäki M, Singh-Manoux A, Ferrie JE, et al. Post hoc decision-making in observational epidemiology–is there need for better research standards? Int J Epidemiol 2013;42:367–70 10.1093/ije/dyt036 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Post-hoc analysis in clinical trials. Research Supervisor Connect, University of Sydney, Australia. http://sydney.edu.au/research/opportunities/opportunities/2133. Accessed February 2, 2017. [Google Scholar]
  • 19. Broderick JP, Palesch YY, Demchuk AM, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med 2013;368:893–903 10.1056/NEJMoa1214300 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Premat K, Bartolini B, Di Maria F, et al. Single-center experience using the 3MAX reperfusion catheter for the treatment of acute ischemic stroke with distal arterial occlusion. In: Proceedings of the 29th European Congress of Radiology, Vienna, Austria. March 1–5, 2017 [Google Scholar]
  • 21. Fischer E. Die Lageabweichungen der vorderen Hirnarterie im Gefäßbild. Zentralbl Neurochir 1938;3:300–13 [Google Scholar]
  • 22. Gibo H, Carver CC, Rhoton AL Jr, et al. Microsurgical anatomy of the middle cerebral artery. J Neurosurg 1981;54:151–69 10.3171/jns.1981.54.2.0151 [DOI] [PubMed] [Google Scholar]
  • 23. Krayenbuhl HA. Cerebral Angiography (2nd revised edition). London: Butterworth & Co; 1968 [Google Scholar]
  • 24. Goyal M, Menon BK, Krings T, et al. What constitutes the M1 segment of the middle cerebral artery? J Neurointerv Surg 2016. January 11. [Epub ahead of print] 10.1136/neurintsurg-2015-012191 [DOI] [PubMed] [Google Scholar]

Articles from AJNR: American Journal of Neuroradiology are provided here courtesy of American Society of Neuroradiology

RESOURCES