Abstract
The millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, we develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles. The formulation of RIA in the atomic ionization induced by millicharged particles is derived, and the numerical calculations are obtained and compared with those from free electron approximation and equivalent photon approximation. Concretely, the atomic ionizations induced by mllicharged dark matter particles and millicharged neutrinos in high-purity germanium (HPGe) and liquid xenon (LXe) detectors are carefully studied in this work. The differential cross sections, reaction event rates in HPGe and LXe detectors, and detecting sensitivities on dark matter particle and neutrino millicharge in next-generation HPGe and LXe based experiments are estimated and calculated to give a comprehensive study. Our results suggested that the next-generation experiments would improve 2-3 orders of magnitude on dark matter particle millicharge δχ than the current best experimental bounds in direct detection experiments. Furthermore, the next-generation experiments would also improve 2-3 times on neutrino millicharge δν than the current experimental bounds.
Keywords: Beyond Standard Model, Neutrino Physics, Solar and Atmospheric Neutrinos, Cosmology of Theories beyond the SM
Footnotes
ArXiv ePrint: 2009.14320
The order of authors is arranged according to the contributions, rather than using the conventional alphabetical order.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Chen-Kai Qiao, Email: chenkaiqiao@cqut.edu.cn.
Shin-Ted Lin, Email: stlin@scu.edu.cn.
Hsin-Chang Chi, Email: hsinchang@mail.ndhu.edu.tw.
Hai-Tao Jia, Email: jiahaitao@stu.scu.edu.cn.
References
- [1].Georgi H, Glashow SL. Unity of All Elementary Particle Forces . Phys. Rev. Lett. 1974;32:438. doi: 10.1103/PhysRevLett.32.438. [DOI] [Google Scholar]
- [2].Dirac PAM. Quantised singularities in the electromagnetic field . Proc. R. Soc. Lond. A. 1931;133:60. doi: 10.1098/rspa.1931.0130. [DOI] [Google Scholar]
- [3].Deans W. Quantum Field Theory of Dirac Monopoles and the Charge Quantization Condition . Nucl. Phys. B. 1982;197:307. doi: 10.1016/0550-3213(82)90294-2. [DOI] [Google Scholar]
- [4].Klein O. The Atomicity of Electricity as a Quantum Theory Law . Nature. 1926;118:516. doi: 10.1038/118516a0. [DOI] [Google Scholar]
- [5].Gross DJ, Perry MJ. Magnetic Monopoles in Kaluza-Klein Theories . Nucl. Phys. B. 1983;226:29. doi: 10.1016/0550-3213(83)90462-5. [DOI] [Google Scholar]
- [6].Dobroliubov MI, Ignatiev AY. Millicharged particles . Phys. Rev. Lett. 1990;65:679. doi: 10.1103/PhysRevLett.65.679. [DOI] [PubMed] [Google Scholar]
- [7].Davidson S, Campbell B, Bailey DC. Limits on particles of small electric charge . Phys. Rev. D. 1991;43:2314. doi: 10.1103/PhysRevD.43.2314. [DOI] [PubMed] [Google Scholar]
- [8].Vinyoles N, Vogel H. Minicharged Particles from the Sun: A Cutting-Edge Bound . JCAP. 2016;03:002. doi: 10.1088/1475-7516/2016/03/002. [DOI] [Google Scholar]
- [9].TEXONO collaboration, Constraints on millicharged particles with low threshold germanium detectors at Kuo-Sheng Reactor Neutrino Laboratory, Phys. Rev. D99 (2019) 032009 [arXiv:1808.02719] [INSPIRE].
- [10].A. Badertscher et al., An Improved Limit on Invisible Decays of Positronium, Phys. Rev. D75 (2007) 032004 [hep-ex/0609059] [INSPIRE].
- [11].Dolgov AD, Dubovsky SL, Rubtsov GI, Tkachev II. Constraints on millicharged particles from Planck data . Phys. Rev. D. 2013;88:117701. doi: 10.1103/PhysRevD.88.117701. [DOI] [Google Scholar]
- [12].Vogel H, Redondo J. Dark Radiation constraints on minicharged particles in models with a hidden photon . JCAP. 2014;02:029. doi: 10.1088/1475-7516/2014/02/029. [DOI] [Google Scholar]
- [13].Liu H, Outmezguine NJ, Redigolo D, Volansky T. Reviving Millicharged Dark Matter for 21-cm Cosmology . Phys. Rev. D. 2019;100:123011. doi: 10.1103/PhysRevD.100.123011. [DOI] [Google Scholar]
- [14].Jaeckel J, Jankowiak M, Spannowsky M. LHC probes the hidden sector . Phys. Dark Univ. 2013;2:111. doi: 10.1016/j.dark.2013.06.001. [DOI] [Google Scholar]
- [15].Liu Z, Xu Y-H, Zhang Y. Probing dark matter particles at CEPC . JHEP. 2019;06:009. doi: 10.1007/JHEP06(2019)009. [DOI] [Google Scholar]
- [16].J. Liang, Z. Liu, Y. Ma and Y. Zhang, Millicharged particles at electron colliders, Phys. Rev. D102 (2020) 015002 [arXiv:1909.06847] [INSPIRE].
- [17].CDEX collaboration, Limits on Light Weakly Interacting Massive Particles from the First 102.8 kg × day Data of the CDEX-10 Experiment, Phys. Rev. Lett.120 (2018) 241301 [arXiv:1802.09016] [INSPIRE]. [DOI] [PubMed]
- [18].J.-W. Chen et al., Constraints on millicharged neutrinos via analysis of data from atomic ionizations with germanium detectors at sub-keV sensitivities, Phys. Rev. D90 (2014) 011301 [arXiv:1405.7168] [INSPIRE].
- [19].J.-W. Chen et al., Constraining neutrino electromagnetic properties by germanium detectors, Phys. Rev. D91 (2015) 013005 [arXiv:1411.0574] [INSPIRE].
- [20].Chen J-W, Chi H-C, Liu CP, Wu C-P. Low-energy electronic recoil in xenon detectors by solar neutrinos . Phys. Lett. B. 2017;774:656. doi: 10.1016/j.physletb.2017.10.029. [DOI] [Google Scholar]
- [21].C.-C. Hsieh et al., Discovery potential of multiton xenon detectors in neutrino electromagnetic properties, Phys. Rev. D100 (2019) 073001 [arXiv:1903.06085] [INSPIRE].
- [22].Private conversation with L. Singh in 2019 at Sichuan University.
- [23].Eisenberger P, Platzman PM. Compton Scattering of X Rays from Bound Electrons . Phys. Rev. A. 1970;2:415. doi: 10.1103/PhysRevA.2.415. [DOI] [Google Scholar]
- [24].Ribberfors R. Relationship of the relativistic Compton cross section to the momentum distribution of bound electron states . Phys. Rev. B. 1975;12:2067. doi: 10.1103/PhysRevB.12.2067. [DOI] [Google Scholar]
- [25].Ribberfors R, Berggren K-F. Incoherent-x-ray-scattering functions and cross sections (dσ/dΩ)incoh by means of a pocket calculator. Phys. Rev. A. 1982;26:3325. doi: 10.1103/PhysRevA.26.3325. [DOI] [Google Scholar]
- [26].Bell F. Double and triple differential cross sections for K-shell ionisation by relativistic electron impact . J. Phys. B. 1989;22:287. doi: 10.1088/0953-4075/22/2/016. [DOI] [Google Scholar]
- [27].Brandt D. Resonant transfer and excitation in ion-atom collisions . Phys. Rev. A. 1983;27:1314. doi: 10.1103/PhysRevA.27.1314. [DOI] [Google Scholar]
- [28].Lee DH, Richard P, Zouros TJM, Sanders JM, Shinpaugh JL, Hidmi H. Binary-encounter electrons observed at 0 o in collisions of 1-2-MeV/amu H+, C6+, N7+, O8+, and F9+ ions with H2 and He targets. Phys. Rev. A. 1990;41:4816. doi: 10.1103/PhysRevA.41.4816. [DOI] [PubMed] [Google Scholar]
- [29].Toth G, Grabbe S, Richard P, Bhalla CP. Inelastic scattering of quasifree electrons on O 7+ projectiles. Phys. Rev. A. 1996;54:R4613. doi: 10.1103/PhysRevA.54.R4613. [DOI] [PubMed] [Google Scholar]
- [30].Bergstrom PM, Pratt RH. An overview of the theories used in Compton Scattering Calculations . Radiat. Phys. Chem. 1997;50:3. doi: 10.1016/S0969-806X(97)00022-4. [DOI] [Google Scholar]
- [31].Pratt RH, LaJohn LA, Florescu V, Surić T, Chatterjee BK, Roy SC. Compton scattering revisited . Radiat. Phys. Chem. 2010;79:124. doi: 10.1016/j.radphyschem.2009.04.035. [DOI] [Google Scholar]
- [32].Cooper MJ. Compton scattering and the study of electron momentum density distributions . Radiat. Phys. Chem. 1997;50:63. doi: 10.1016/S0969-806X(97)00024-8. [DOI] [Google Scholar]
- [33].Kubo Y. Electron correlation effects on Compton profiles of copper in the GW approximation . J. Phys. Chem. Solids. 2005;66:2202. doi: 10.1016/j.jpcs.2005.09.043. [DOI] [Google Scholar]
- [34].Brusa D, Stutz G, Riveros JA, Fernández-Varea JM, Salvat F. Fast sampling algorithm for the simulation of photon Compton scattering . Nucl. Insrum. Meth. A. 1996;379:167. doi: 10.1016/0168-9002(96)00652-3. [DOI] [Google Scholar]
- [35].Salvat F, Fernández-Varea JM. Overview of physical interaction models for photon and electron transport used in Monte Carlo codes . Metrologia. 2009;46:S112. doi: 10.1088/0026-1394/46/2/S08. [DOI] [Google Scholar]
- [36].K. Ramanathan et al., Measurement of Low Energy Ionization Signals from Compton Scattering in a Charge-Coupled Device Dark Matter Detector, Phys. Rev. D96 (2017) 042002 [arXiv:1706.06053] [INSPIRE].
- [37].J. Allison et al., Recent developments in Geant4, Nucl. Instrum. Meth. A835 (2016) 186 [INSPIRE].
- [38].GEANT Collaboration, GEANT4 Physics Reference Manual, version 10.3 (2016), https://geant4.web.cern.ch/.
- [39].Cullen DE. A simple model of photon transport . Nucl. Instrum. Meth. B. 1995;101:499. doi: 10.1016/0168-583X(95)00480-7. [DOI] [Google Scholar]
- [40].Brown JMC, Dimmock MR, Gillam JE, Paganin DM. A low energy bound atomic electron Compton scattering model for Geant4 . Nucl. Instrum. Meth. B. 2014;338:77. doi: 10.1016/j.nimb.2014.07.042. [DOI] [Google Scholar]
- [41].T. Marrodán Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys. G43 (2016) 013001 [arXiv:1509.08767] [INSPIRE].
- [42].Rodejohann W. Neutrinoless double beta decay and neutrino physics . J. Phys. G. 2012;39:124008. doi: 10.1088/0954-3899/39/12/124008. [DOI] [Google Scholar]
- [43].SuperCDMS collaboration, Results from the Super Cryogenic Dark Matter Search Experiment at Soudan, Phys. Rev. Lett.120 (2018) 061802 [arXiv:1708.08869] [INSPIRE]. [DOI] [PubMed]
- [44].GERDA collaboration, Improved Limit on Neutrinoless Double-β Decay of76Ge from GERDA Phase II, Phys. Rev. Lett.120 (2018) 132503 [arXiv:1803.11100] [INSPIRE]. [DOI] [PubMed]
- [45].PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett.119 (2017) 181302 [arXiv:1708.06917] [INSPIRE]. [DOI] [PubMed]
- [46].XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE]. [DOI] [PubMed]
- [47].XENON collaboration, Excess electronic recoil events in XENON1T, Phys. Rev. D102 (2020) 072004 [arXiv:2006.09721] [INSPIRE].
- [48].EXO-200 collaboration, Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset, Phys. Rev. Lett.123 (2019) 161802 [arXiv:1906.02723] [INSPIRE]. [DOI] [PubMed]
- [49].KamLAND-Zen collaboration, Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett.117 (2016) 082503 [Addendum ibid.117 (2016) 109903] [arXiv:1605.02889] [INSPIRE]. [DOI] [PubMed]
- [50].Zwicky F. Die Rotverschiebung von extragalaktischen Nebeln . Helv. Phys. Acta. 1933;6:110. [Google Scholar]
- [51].Rubin VC, Ford WK., Jr Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions . Astrophys. J. 1970;159:379. doi: 10.1086/150317. [DOI] [Google Scholar]
- [52].E. Corbelli and P. Salucci, The Extended Rotation Curve and the Dark Matter Halo of M33, Mon. Not. Roy. Astron. Soc.311 (2000) 441 [astro-ph/9909252] [INSPIRE].
- [53].D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. Lett.648 (2006) L109 [astro-ph/0608407] [INSPIRE].
- [54].Blumenthal GR, Faber SM, Primack JR, Rees MJ. Formation of Galaxies and Large Scale Structure with Cold Dark Matter . Nature. 1984;311:517. doi: 10.1038/311517a0. [DOI] [Google Scholar]
- [55].Davis M, Efstathiou G, Frenk CS, White SDM. The Evolution of Large Scale Structure in a Universe Dominated by Cold Dark Matter . Astrophys. J. 1985;292:371. doi: 10.1086/163168. [DOI] [Google Scholar]
- [56].WMAP collaboration, Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl.192 (2011) 18 [arXiv:1001.4538] [INSPIRE].
- [57].Planck collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys.571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
- [58].G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept.405 (2005) 279 [hep-ph/0404175] [INSPIRE].
- [59].Feng JL. Dark Matter Candidates from Particle Physics and Methods of Detection . Ann. Rev. Astron. Astrophys. 2010;48:495. doi: 10.1146/annurev-astro-082708-101659. [DOI] [Google Scholar]
- [60].Preskill J, Wise MB, Wilczek F. Cosmology of the Invisible Axion . Phys. Lett. B. 1983;120:127. doi: 10.1016/0370-2693(83)90637-8. [DOI] [Google Scholar]
- [61].Fileviez Pérez P, Murgui C, Plascencia AD. Axion Dark Matter, Proton Decay and Unification . JHEP. 2020;01:091. doi: 10.1007/JHEP01(2020)091. [DOI] [Google Scholar]
- [62].Boyarsky A, Drewes M, Lasserre T, Mertens S, Ruchayskiy O. Sterile neutrino Dark Matter . Prog. Part. Nucl. Phys. 2019;104:1. doi: 10.1016/j.ppnp.2018.07.004. [DOI] [Google Scholar]
- [63].Foot R. Mirror dark matter: Cosmology, galaxy structure and direct detection . Int. J. Mod. Phys. A. 2014;29:1430013. doi: 10.1142/S0217751X14300130. [DOI] [Google Scholar]
- [64].Cline JM, Liu Z, Xue W. Millicharged Atomic Dark Matter . Phys. Rev. D. 2012;85:101302. doi: 10.1103/PhysRevD.85.101302. [DOI] [Google Scholar]
- [65].Petraki K, Pearce L, Kusenko A. Self-interacting asymmetric dark matter coupled to a light massive dark photon . JCAP. 2014;07:039. doi: 10.1088/1475-7516/2014/07/039. [DOI] [Google Scholar]
- [66].Foot R, Vagnozzi S. Solving the small-scale structure puzzles with dissipative dark matter . JCAP. 2016;07:013. doi: 10.1088/1475-7516/2016/07/013. [DOI] [Google Scholar]
- [67].Vergados JD. The Neutrino Mass and Family, Lepton and Baryon Nonconservation in Gauge Theories . Phys. Rept. 1986;133:1. doi: 10.1016/0370-1573(86)90088-8. [DOI] [Google Scholar]
- [68].M. Dine and A. Kusenko, The Origin of the matter - antimatter asymmetry, Rev. Mod. Phys.76 (2003) 1 [hep-ph/0303065] [INSPIRE]. [DOI] [PubMed]
- [69].W. Buchmüller, P. Di Bari and M. Plümacher, Cosmic microwave background, matter - antimatter asymmetry and neutrino masses, Nucl. Phys. B643 (2002) 367 [Erratum ibid.793 (2008) 362] [hep-ph/0205349] [INSPIRE].
- [70].Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett.81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
- [71].S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys.76 (2013) 056201 [arXiv:1301.1340] [INSPIRE]. [DOI] [PubMed]
- [72].R.N. Mohapatra and A.Y. Smirnov, Neutrino Mass and New Physics, Ann. Rev. Nucl. Part. Sci.56 (2006) 569 [hep-ph/0603118] [INSPIRE].
- [73].Bilenky SM, Giunti C. Neutrinoless Double-Beta Decay: a Probe of Physics Beyond the Standard Model . Int. J. Mod. Phys. A. 2015;30:1530001. doi: 10.1142/S0217751X1530001X. [DOI] [Google Scholar]
- [74].Giunti C, Studenikin A. Neutrino electromagnetic properties . Phys. Atom. Nucl. 2009;72:2089. doi: 10.1134/S1063778809120126. [DOI] [Google Scholar]
- [75].Giunti C, Studenikin A. Neutrino electromagnetic interactions: a window to new physics . Rev. Mod. Phys. 2015;87:531. doi: 10.1103/RevModPhys.87.531. [DOI] [Google Scholar]
- [76].Friedrich H. Theoretical Atomic Physics. Berlin Heidelberg: Springer-Verlag; 2006. [Google Scholar]
- [77].Amusia M, Chernysheva L, Yarzhemsky V. Handbook of Theoretical Atomic Physics. Berlin Heidelberg: Springer-Verlag; 2012. [Google Scholar]
- [78].B.M. Roberts, V.V. Flambaum and G.F. Gribakin, Ionization of atoms by slow heavy particles, including dark matter, Phys. Rev. Lett.116 (2016) 023201 [arXiv:1509.09044] [INSPIRE]. [DOI] [PubMed]
- [79].Roberts BM, Dzuba VA, Flambaum VV, Pospelov M, Stadnik YV. Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA signal . Phys. Rev. D. 2016;93:115037. doi: 10.1103/PhysRevD.93.115037. [DOI] [Google Scholar]
- [80].B.M. Roberts and V.V. Flambaum, Electron-interacting dark matter: Implications from DAMA/LIBRA-phase2 and prospects for liquid xenon detectors and NaI detectors, Phys. Rev. D100 (2019) 063017 [arXiv:1904.07127] [INSPIRE].
- [81].Grant IP. Relativistic self-consistent fields . Proc. R. Soc. London A. 1961;262:555. doi: 10.1098/rspa.1961.0139. [DOI] [Google Scholar]
- [82].Desclaux JP, Mayersi DF. F. O’Brien, Relativistic atomic wave functions. J. Phys. B. 1971;4:631. doi: 10.1088/0022-3700/4/5/004. [DOI] [Google Scholar]
- [83].Desclaux JP. A multiconfiguration relativistic Dirac-Fock program . Comput. Phys. Commun. 1975;9:31. doi: 10.1016/0010-4655(75)90054-5. [DOI] [Google Scholar]
- [84].Dyall KG, Grant IP, Johnson CT, Parpia FA, Plummer EP. GRASP: A general-purpose relativistic atomic structure program . Comput. Phys. Commun. 1989;55:425. doi: 10.1016/0010-4655(89)90136-7. [DOI] [Google Scholar]
- [85].Jönsson P, et al. Multiconfiguration Dirac-Hartree-Fock Calculations with Spectroscopic Accuracy: Applications to Astrophysics . Atoms. 2017;5:16. doi: 10.3390/atoms5020016. [DOI] [Google Scholar]
- [86].Holdom B. Two U(1)’s and Epsilon Charge Shifts . Phys. Lett. B. 1986;166:196. doi: 10.1016/0370-2693(86)91377-8. [DOI] [Google Scholar]
- [87].B. Körs and P. Nath, A Stueckelberg extension of the standard model, Phys. Lett. B586 (2004) 366 [hep-ph/0402047] [INSPIRE].
- [88].D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z-prime Extension with Kinetic Mixing and Milli-Charged Dark Matter From the Hidden Sector, Phys. Rev. D75 (2007) 115001 [hep-ph/0702123] [INSPIRE].
- [89].An H, Pospelov M, Pradler J, Ritz A. Direct Detection Constraints on Dark Photon Dark Matter . Phys. Lett. B. 2015;747:331. doi: 10.1016/j.physletb.2015.06.018. [DOI] [Google Scholar]
- [90].Raggi M, Kozhuharov V. Results and perspectives in dark photon physics . Riv. Nuovo Cim. 2015;38:449. [Google Scholar]
- [91].Dutra M, Lindner M, Profumo S, Queiroz FS, Rodejohann W, Siqueira C. MeV Dark Matter Complementarity and the Dark Photon Portal . JCAP. 2018;03:037. doi: 10.1088/1475-7516/2018/03/037. [DOI] [Google Scholar]
- [92].S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP05 (2000) 003 [hep-ph/0001179] [INSPIRE].
- [93].Mohapatra RN, Rothstein IZ. Astrophysical constraints on minicharged particles . Phys. Lett. B. 1990;247:593. doi: 10.1016/0370-2693(90)91907-S. [DOI] [Google Scholar]
- [94].S.L. Dubovsky, D.S. Gorbunov and G.I. Rubtsov, Narrowing the window for millicharged particles by CMB anisotropy, JETP Lett.79 (2004) 1 [hep-ph/0311189] [INSPIRE].
- [95].H. An, M. Pospelov and J. Pradler, Dark Matter Detectors as Dark Photon Helioscopes, Phys. Rev. Lett.111 (2013) 041302 [arXiv:1304.3461] [INSPIRE]. [DOI] [PubMed]
- [96].Hu P-K, Kusenko A, Takhistov V. Dark Cosmic Rays . Phys. Lett. B. 2017;768:18. doi: 10.1016/j.physletb.2017.02.035. [DOI] [Google Scholar]
- [97].S.N. Gninenko, N.V. Krasnikov and A. Rubbia, Search for millicharged particles in reactor neutrino experiments: A Probe of the PVLAS anomaly, Phys. Rev. D75 (2007) 075014 [hep-ph/0612203] [INSPIRE].
- [98].A.A. Prinz et al., Search for millicharged particles at SLAC, Phys. Rev. Lett.81 (1998) 1175 [hep-ex/9804008] [INSPIRE].
- [99].Soper DE, Spannowsky M, Wallace CJ, Tait TMP. Scattering of Dark Particles with Light Mediators . Phys. Rev. D. 2014;90:115005. doi: 10.1103/PhysRevD.90.115005. [DOI] [Google Scholar]
- [100].G. Magill, R. Plestid, M. Pospelov and Y.-D. Tsai, Millicharged particles in neutrino experiments, Phys. Rev. Lett.122 (2019) 071801 [arXiv:1806.03310] [INSPIRE]. [DOI] [PubMed]
- [101].ArgoNeuT collaboration, Improved Limits on Millicharged Particles Using the ArgoNeuT Experiment at Fermilab, Phys. Rev. Lett.124 (2020) 131801 [arXiv:1911.07996] [INSPIRE]. [DOI] [PubMed]
- [102].Eisenberger P, Reed WA. Relationship of the relativistic Compton cross section to the electron’s velocity distribution . Phys. Rev. B. 1974;9:3237. doi: 10.1103/PhysRevB.9.3237. [DOI] [Google Scholar]
- [103].Ribberfors R. Relationship of the relativistic Compton cross section to the momentum distribution of bound electron states. II. Effects of anisotropy and polarization . Phys. Rev. B. 1975;12:3136. doi: 10.1103/PhysRevB.12.3136. [DOI] [Google Scholar]
- [104].R. Ribberfors, X-ray incoherent scattering total cross sections and energy-absorption cross sections by means of simple calculation routines, Phys. Rev. A27 (1983) 3061 [Erratum ibid.28 (1983) 2551].
- [105].C.-K. Qiao, H.-C. Chi, L. Zhang, P. Gu, C.-P. Liu, C.-J. Tang et al., Relativistic Impulse Approximation in Compton Scattering, J. Phys. B53 (2020) 075002 [arXiv:1902.02301] [INSPIRE].
- [106].Biggs F, Mendelsohn LB, Mann JB. Hartree-Fock Compton Profiles for the Elements . At. Data and Nucl. Data Table. 1975;16:201. doi: 10.1016/0092-640X(75)90030-3. [DOI] [Google Scholar]
- [107].J. Sahariya and B.L. Ahuja, Compton profiles and electronic properties of Nd, Phys. Scr.84 (2011) 065702.
- [108].Gillet J-M, Fluteaux C, Becker PJ. Analytical reconstruction of momentum density from directional Compton profiles . Phys. Rev. B. 1999;60:2345. doi: 10.1103/PhysRevB.60.2345. [DOI] [Google Scholar]
- [109].Aguiar JC, Mitnik D, Di Rocco HO. Electron momentum density and Compton profile by a semi-empirical approach . J. Phys. Chem. Solids. 2015;83:64. doi: 10.1016/j.jpcs.2015.03.023. [DOI] [Google Scholar]
- [110].Pisani C, Itou M, Sakurai Y, Yamaki R, Ito M, Erba A, Maschio L. Evidence of instantaneous electron correlation from Compton profiles of crystalline silicon . Phys. Chem. Chem. Phys. 2011;13:933. doi: 10.1039/C0CP01604G. [DOI] [PubMed] [Google Scholar]
- [111].Rathor A, Sharma V, Heda NL, Sharma Y, Ahuja BL. Compton profiles and band structure calculations of IV-VI layered compounds GeS and GeSe . Radiat. Phys. Chem. 2008;77:391. doi: 10.1016/j.radphyschem.2007.12.011. [DOI] [Google Scholar]
- [112].Y.J. Wang et al., Proposal to determine the Fermi-surface topology of a doped iron-based superconductor using bulk-sensitive Fourier-transform Compton scattering, Phys. Rev. B81 (2010) 092501 [arXiv:1002.1483].
- [113].Schwartz MD. Quantum Field Theory and the Standard Model. Cambridge, U.K.: Cambridge University Press; 2013. [Google Scholar]
- [114].Johnson WR, Cheng KT. Relaxed relativistic random-phase-approximation calculations of photoionization amplitudes and phases for the 4d subshell of xenon. Phys. Rev. A. 1992;46:2952. doi: 10.1103/PhysRevA.46.2952. [DOI] [PubMed] [Google Scholar]
- [115].Andersen P, Andersen T, Folkmann F, Ivanov VK, Kjeldsen H, West JB. Absolute cross sections for the photoionization of 4d electrons in Xe + and Xe2+ ions. J. Phys. B. 2001;34:2009. doi: 10.1088/0953-4075/34/10/314. [DOI] [Google Scholar]
- [116].Toffoli D, Stener M, Decleva P. Application of the relativistic time-dependent density functional theory to the photoionization of xenon . J. Phys. B. 2002;35:1275. [Google Scholar]
- [117].S.S. Kumar, T. Banerjee, P.C. Deshmukh and S.T. Manson, Spin-orbit-interaction activated interchannel coupling in dipole and quadrupole photoionization, Phys. Rev. A79 (2009) 043401.
- [118].C.-K. Qiao et al., Photoionization of Xe and Rn from the relativistic random-phase theory, J. Phys. B52 (2019) 075001 [arXiv:1805.00073] [INSPIRE].
- [119].M.Y. Amusia, L.V. Chernysheva, S.T. Manson, A.M. Msezane and V. Radojević, Strong Electron Correlation in Photoionization of Spin-Orbit Doublets, Phys. Rev. Lett.88 (2002) 093002. [DOI] [PubMed]
- [120].Blandford R, Eichler D. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin . Phys. Rep. 1987;154:1. doi: 10.1016/0370-1573(87)90134-7. [DOI] [Google Scholar]
- [121].Perkins DH. Particle Astrophysics. Oxford: Oxford University Press; 2003. [Google Scholar]
- [122].Gaisser TK. Cosmic Rays and Particle Physics. Cambridge: Cambridge University Press; 1990. [Google Scholar]
- [123].Giunti C, Kouzakov KA, Li Y-F, Lokhov AV, Studenikin AI, Zhou S. Electromagnetic neutrinos in laboratory experiments and astrophysics . Annalen Phys. 2016;528:198. doi: 10.1002/andp.201500211. [DOI] [Google Scholar]
- [124].J.-W. Chen, C.P. Liu, C.-F. Liu and C.-L. Wu, Ionization of hydrogen by neutrino magnetic moment, relativistic muon, and WIMP, Phys. Rev. D88 (2013) 033006 [arXiv:1307.2857] [INSPIRE].
- [125].J.-W. Chen et al., Atomic ionization of germanium by neutrinos from an ab initio approach, Phys. Lett. B731 (2014) 159 [arXiv:1311.5294] [INSPIRE].
- [126].Katz UF, Spiering C. High-Energy Neutrino Astrophysics: Status and Perspectives . Prog. Part. Nucl. Phys. 2012;67:651. doi: 10.1016/j.ppnp.2011.12.001. [DOI] [Google Scholar]
- [127].Vitagliano E, Tamborra I, Raffelt G. Grand Unified Neutrino Spectrum at Earth: Sources and Spectral Components . Rev. Mod. Phys. 2020;92:45006. doi: 10.1103/RevModPhys.92.045006. [DOI] [Google Scholar]
- [128].Haxton WC, Hamish Robertson RG, Serenelli AM. Solar Neutrinos: Status and Prospects . Ann. Rev. Astron. Astrophys. 2013;51:21. doi: 10.1146/annurev-astro-081811-125539. [DOI] [Google Scholar]
- [129].J.N. Bahcall, M.H. Pinsonneault and S. Basu, Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties, Astrophys. J.555 (2001) 990 [astro-ph/0010346] [INSPIRE].
- [130].A.M. Serenelli, W.C. Haxton and C. Pena-Garay, Solar models with accretion. I. Application to the solar abundance problem, Astrophys. J.743 (2011) 24 [arXiv:1104.1639] [INSPIRE].
- [131].J.N. Bahcall, Gallium solar neutrino experiments: Absorption cross-sections, neutrino spectra, and predicted event rates, Phys. Rev. C56 (1997) 3391 [hep-ph/9710491] [INSPIRE].
- [132].J.N. Bahcall and M.H. Pinsonneault, What do we (not) know theoretically about solar neutrino fluxes?, Phys. Rev. Lett.92 (2004) 121301 [astro-ph/0402114] [INSPIRE]. [DOI] [PubMed]
- [133].J.N. Bahcall, A.M. Serenelli and S. Basu, New solar opacities, abundances, helioseismology, and neutrino fluxes, Astrophys. J. Lett.621 (2005) L85 [astro-ph/0412440] [INSPIRE].
- [134].Solar neutrino online databases: http://www.sns.ias.edu/ jnb/SNdata/Export/BS2005/bs2005agsopflux.dat,
- [135].Solar neutrino online databases: http://www.sns.ias.edu/ jnb/SNdata/Export/BS2005/bs2005opflux.dat,
- [136].Solar neutrino online databases: http://www.sns.ias.edu/ jnb/SNdata/Export/BP2004/bp2004flux.dat.
- [137].A. Studenikin, New bounds on neutrino electric millicharge from limits on neutrino magnetic moment, EPL107 (2014) 21001 [Erratum ibid.107 (2014) 39901] [arXiv:1302.1168] [INSPIRE].
- [138].PandaX collaboration, Limits on Axion Couplings from the First 80 Days of Data of the PandaX-II Experiment, Phys. Rev. Lett.119 (2017) 181806 [arXiv:1707.07921] [INSPIRE]. [DOI] [PubMed]
- [139].Baudis L, Ferella A, Kish A, Manalaysay A, Marrodan Undagoitia T, Schumann M. Neutrino physics with multi-ton scale liquid xenon detectors . JCAP. 2014;01:044. doi: 10.1088/1475-7516/2014/01/044. [DOI] [Google Scholar]
- [140].LUX-ZEPLIN collaboration, Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment, Phys. Rev. D101 (2020) 052002 [arXiv:1802.06039] [INSPIRE].
- [141].Khan AN. Can Nonstandard Neutrino Interactions explain the XENON1T spectral excess? . Phys. Lett. B. 2020;809:135782. doi: 10.1016/j.physletb.2020.135782. [DOI] [Google Scholar]
- [142].B. Bhattacherjee and R. Sengupta, XENON1T Excess: Some Possible Backgrounds, arXiv:2006.16172 [INSPIRE].
- [143].Y. Shitov and E. Yakushev, Carbon14C and Tritium as possible background sources in XENON1T, 2020 JINST15 P12013 [arXiv:2008.10414] [INSPIRE].
- [144].Peskin ME, Schroeder DV. An Introduction to Quantum Field Theory. Chicago, U.S.A.: Westview Press; 1995. [Google Scholar]
- [145].Greiner W, Reinhardt J. Quantum Electrodynamics. New York, U.S.A.: Springer; 2009. [Google Scholar]
- [146].Visscher L, Dyall KG. Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions . At. Data Nucl. Data Tables. 1996;67:207. doi: 10.1006/adnd.1997.0751. [DOI] [Google Scholar]
- [147].Grant IP. Relativistic Quantum Theory of Atoms and Molecules. New York, U.S.A.: Springer; 2007. [Google Scholar]
- [148].Jönsson P, Gaigalas G, Bieroń J, Froese Fischer C, Grant IP. New Version: grasp2K relativistic atomic structure package . Comput. Phys. Commun. 2013;184:2197. doi: 10.1016/j.cpc.2013.02.016. [DOI] [Google Scholar]
- [149].Mann JB, Johnson WR. Breit Interaction in Multielectron Atoms . Phys. Rev. A. 1971;4:41. doi: 10.1103/PhysRevA.4.41. [DOI] [Google Scholar]
- [150].C.T. Chantler, T.V.B. Nguyen, J.A. Lowe and I.P. Grant, Convergence of the Breit interaction in self-consistent and configuration-interaction approaches, Phys. Rev. A90 (2014) 062504.
- [151].K.-N. Huang, Theory of angular distribution and spin polarization of photoelectrons, Phys. Rev. A22 (1980) 223 [Erratum ibid.26 (1982) 3676].
- [152].Kahane S. Relativistic Dirac-Hartree-Fock Photon Incoherent Scattering Functions . At. Data Nucl. Data Tables. 1998;68:323. doi: 10.1006/adnd.1998.0770. [DOI] [Google Scholar]
