Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

medRxiv logoLink to medRxiv
[Preprint]. 2021 Mar 12:2021.03.11.21253287. [Version 1] doi: 10.1101/2021.03.11.21253287

Magnesium Treatment on Methylation Changes of Transmembrane Serine Protease 2 (TMPRSS2)

Lei Fan, Xiangzhu Zhu, Yinan Zheng, Wei Zhang, Douglas L Seidner, Reid Ness, Harvey J Murff, Chang Yu, Xiang Huang, Martha J Shrubsole, Lifang Hou, Qi Dai
PMCID: PMC7987044  PMID: 33758885

Abstract

Background

The viral entry of SARS-CoV-2 requires host-expressed TMPRSS2 to facilitate the viral spike (S) protein priming.

Objectives

To test the hypothesis that Mg treatment leads to DNA methylation changes in TMPRSS2 .

Methods

This study is nested within the Personalized Prevention of Colorectal Cancer Trial (PPCCT), a double-blind 2×2 factorial randomized controlled trial, which enrolled 250 participants from Vanderbilt University Medical Center. Target doses for both Mg and placebo arms were personalized.

Results

We found that 12-week of personalized Mg treatment significantly increased 5-mC methylation at cg16371860 (TSS1500, promoter) by 7.2% compared to placebo arm (decreased by 0.1%) in those aged < 65 years old. The difference remained statistically significant after adjusting for age, sex and baseline methylation as well as FDR correction (FDR-adjusted P =0.014). Additionally, Mg treatment significantly reduced 5-hmC level at cg26337277 (close proximity to TSS200 and 5’UTR, promoter) by 2.3% compared to increases by 7.1% in the placebo arm after adjusting for covariates in those aged < 65 years old ( P =0.003). The effect remained significant at FDR of 0.10 (adjusted P value=0.088).

Conclusion

Among individuals aged younger than 65 years with the Ca:Mg intake ratios equal to or over 2.6, reducing Ca:Mg ratios to around 2.3 increased 5-mC modifications (i.e. cg16371860) and reduced 5-hmC modifications (i.e. cg26337277) in the TMPRSS2 gene. These findings, if confirmed, provide another mechanism for the role of Mg intervention for the prevention of COVID-19 and treatment of early and mild disease by modifying the phenotype of the TMPRSS2 genotype.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from medRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES