Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Mar 27;18(2):239–263. doi: 10.1007/s42235-021-0017-z

Antifouling Technology Trends in Marine Environmental Protection

Limei Tian 1,2, Yue Yin 1, Wei Bing 1,3,, E Jin 1
PMCID: PMC7997792  PMID: 33815489

Abstract

Marine fouling is a worldwide problem, which is harmful to the global marine ecological environment and economic benefits. The traditional antifouling strategy usually uses toxic antifouling agents, which gradually exposes a serious environmental problem. Therefore, green, long-term, broad-spectrum and eco-friendly antifouling technologies have been the main target of engineers and researchers. In recent years, many eco-friendly antifouling technologies with broad application prospects have been developed based on the low toxicity and non-toxicity antifouling agents and materials. In this review, contemporary eco-friendly antifouling technologies and materials are summarized into bionic antifouling and non-bionic antifouling strategies (2000–2020). Non-bionic antifouling technologies mainly include protein resistant polymers, antifoulant releasing coatings, foul release coatings, conductive antifouling coatings and photodynamic antifouling technology. Bionic antifouling technologies mainly include the simulated shark skin, whale skin, dolphin skin, coral tentacles, lotus leaves and other biology structures. Brief future research directions and challenges are also discussed in the end, and we expect that this review would boost the development of marine antifouling technologies.

Keywords: biofouling, antifouling technologies, bionic, non-bionic, biofilm

Acknowledgment

The authors are grateful for grants received from the National Natural Science Foundation of China (Grant No. 51875240), the Jilin Provincial Science and Technology Development Plan, Young and Middle-Tech Leading Talent and Team Project (Grant No. 20200301013RQ), the Department of Science and Technology of Jilin Province (Grant No. 20190103114JH), Key Laboratory Fund of National Defense Science and Technology (Grant No. 6142005190201).

References

  • [1].Selim M S, El-safty S A, Shenashen M A. Progress in bio-mimetic leverages for marine antifouling using nanocomposite coatings. Journal of Materials Chemistry B, 2020, 3701–3732. [DOI] [PubMed]
  • [2].Zhang X, Zhang J, Yu J Q, Zhang Y, Cui Z X, Sun Y, Hou B R. Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light. Applied Catalysis B: Environmental. 2018;220:57–66. doi: 10.1016/j.apcatb.2017.07.074. [DOI] [Google Scholar]
  • [3].Clare A S. Approaches to next-generation marine antifouling control. Marine Engineering. 2018;53:297–298. doi: 10.5988/jime.53.297. [DOI] [Google Scholar]
  • [4].Amara I, Miled W, Slama B R, Ladhari N. Antifouling processes and toxicity effects of antifouling paints on marine environment. Environmental Toxicology and Pharmacology. 2018;57:115–130. doi: 10.1016/j.etap.2017.12.001. [DOI] [PubMed] [Google Scholar]
  • [5].Chambers L D, Stokes K R, Walsh F C, Wood R J K. Modern approaches to marine antifouling coatings. Surface and Coatings Technology. 2006;201:3642–3652. doi: 10.1016/j.surfcoat.2006.08.129. [DOI] [Google Scholar]
  • [6].Pradhan S, Kumar S, Mohanty S, Nayak S K. Environmentally benign fouling-resistant marine coatings: A review. Polymer-Plastics Technology and Materials. 2018;58:498–518. doi: 10.1080/03602559.2018.1482922. [DOI] [Google Scholar]
  • [7].Almeida E, Diamantino T C, Sousa O D. Marine paints: The particular case of antifouling paints. Progress in Organic Coatings. 2007;59:2–20. doi: 10.1016/j.porgcoat.2007.01.017. [DOI] [Google Scholar]
  • [8].Selim M S, Shenashen M A, El-safty S A, Higazy S A, Selim M M, Isago H, Elmarakbi A. Recent progress in marine foul-release polymeric nanocomposite coatings. Progress in Materials Science. 2017;87:1–32. doi: 10.1016/j.pmatsci.2017.02.001. [DOI] [Google Scholar]
  • [9].Abbott A, Abel P D, Arnold D W, Milne A. Cost-benefit analysis of the use of TBT: The case for a treatment approach. The Science of the Total Environment. 2000;258:5–19. doi: 10.1016/S0048-9697(00)00505-2. [DOI] [PubMed] [Google Scholar]
  • [10].Trentin I, Romairone V, Marcenaro G, Carolis D G. Quick test methods for marine antifouling paints. Progress in Organic Coatings. 2001;42:15–19. doi: 10.1016/S0300-9440(01)00150-3. [DOI] [Google Scholar]
  • [11].Callow J A, Callow M E. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Communications. 2011;2:210–244. doi: 10.1038/ncomms1251. [DOI] [PubMed] [Google Scholar]
  • [12].Beigbeder A, Degee P, Conlan S L, Mutton R J, Clare A S, Pettitt M E, Callow M E, Callow J A, Dubois P. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling. 2008;24:291–302. doi: 10.1080/08927010802162885. [DOI] [PubMed] [Google Scholar]
  • [13].Champ M A. A review of organotin regulatory strategies, pending actions, related costs and benefits. Science of the Total Environment. 2000;258:21–71. doi: 10.1016/S0048-9697(00)00506-4. [DOI] [PubMed] [Google Scholar]
  • [14].Hakim M L, Nugroho B, Nurrohman M N, Suastika I K, Utama I K A P. Investigation of fuel consumption on an operating ship due to biofouling growth and quality of antifouling coating. IOP Conference Series: Earth and Environmental Science. 2019;339:012037. [Google Scholar]
  • [15].Yang W J, Neoh K G, Kang E T, Teo L M, Rittschof D. Polymer brush coatings for combating marine biofouling. Progress in Polymer Science. 2014;39:1017–1042. doi: 10.1016/j.progpolymsci.2014.02.002. [DOI] [Google Scholar]
  • [16].Lindholdt A, Olsen S M. Effects of biofouling development on drag forces of hull coatings for ocean-going ships: A review. Journal of Coatings Technology & Research. 2015;12:415–444. doi: 10.1007/s11998-014-9651-2. [DOI] [Google Scholar]
  • [17].Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials. 2011;23:690–718. doi: 10.1002/adma.201001215. [DOI] [PubMed] [Google Scholar]
  • [18].Penca J. International maritime organization. International Journal of Marine and Coastal Law. 2009;24:713–725. doi: 10.1163/092735209X12499043518304. [DOI] [Google Scholar]
  • [19].Silva E R, Ferreira O, Ramalho P A, Azevedo N F, Bayón R, Igartua A, Bordado J C, Calhorda M J. Eco-friendly non-biocide-release coatings for marine biofouling prevention. Science of the Total Environment. 2019;650:2499–2511. doi: 10.1016/j.scitotenv.2018.10.010. [DOI] [PubMed] [Google Scholar]
  • [20].Smith T W P, Jalkanen J P, Anderson B A, Corbett J J, Faber J, Hanayama S, Keeffe E O, Parker S, Johansson L, Aldous L. Third IMO Greenhouse Gas Study, London, 2015.
  • [21].Cames M, Graichen J. Emission Reduction Targets for International Aviation and Shipping. Directorate General for Internal Policies Policy Department A: Economic and Scientific Policy, 2015.
  • [22].Xue L L, Lu X L, Wei H, Long P, Xu J N, Zheng Y F. Bio-inspired self-cleaning PAAS hydrogel released coating for marine antifouling. Journal of Colloid And Interface Science. 2014;421:178–183. doi: 10.1016/j.jcis.2013.12.063. [DOI] [PubMed] [Google Scholar]
  • [23].Wahl M. Marine epibiosis. I. Fouling and antifouling: Some basic aspects. Marine Ecology Progress Series. 1989;58:175–189. doi: 10.3354/meps058175. [DOI] [Google Scholar]
  • [24].Buskens P, Wouters M, Rentrop C, Vroon Z. A brief review of environmentally benign antifouling and foul-release coatings for marine applications. Journal of Coatings Technology and Research. 2013;10:29–36. doi: 10.1007/s11998-012-9456-0. [DOI] [Google Scholar]
  • [25].Maréchal J P, Hellio C. Challenges for the development of new non-toxic antifouling solutions. International Journal of Molecular Sciences. 2009;10:4623–4637. doi: 10.3390/ijms10114623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Fitridge I, Dempster T, Guenther J, Nys R D. The impact and control of biofouling in marine aquaculture: A review. Biofouling. 2012;28:649–669. doi: 10.1080/08927014.2012.700478. [DOI] [PubMed] [Google Scholar]
  • [27].Piola R F, Dafforn K A, Johnston E L. The influence of antifouling practices on marine invasions. Biofouling. 2009;25:633–644. doi: 10.1080/08927010903063065. [DOI] [PubMed] [Google Scholar]
  • [28].Clare A S, Rittschof D, Gerhart D J, Maki J S. Molecular approaches to nontoxic antifouling. Invertebrate Reproduction and Development. 1992;22:67–76. doi: 10.1080/07924259.1992.9672258. [DOI] [Google Scholar]
  • [29].Chambers L D, Stokes K R, Walsh F C, Wood R J K. Modern approaches to marine antifouling coatings. Surface and Coatings Technology. 2006;201:3642–3652. doi: 10.1016/j.surfcoat.2006.08.129. [DOI] [Google Scholar]
  • [30].Larsson A I, Jonsson P R, Berntsson K M. Linking larval supply to recruitment: Flow-mediated control of initial adhesion of barnacle larvae. Ecology. 2004;85:2850–2859. doi: 10.1890/03-0565. [DOI] [Google Scholar]
  • [31].Briand J F. Marine antifouling laboratory bioassays: An overview of their diversity. Biofouling. 2009;25:297–311. doi: 10.1080/08927010902745316. [DOI] [PubMed] [Google Scholar]
  • [32].Cao S, Wang J D, Chen H S, Chen D R. Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin. 2011;56:598–612. doi: 10.1007/s11434-010-4158-4. [DOI] [Google Scholar]
  • [33].Nurioglu A G, Esteves A C C, De With G. Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. Journal of Materials Chemistry B. 2015;3:6547–6570. doi: 10.1039/C5TB00232J. [DOI] [PubMed] [Google Scholar]
  • [34].Lejars M, Margaillan A, Bressy C. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings. Chemical Reviews. 2012;112:4347–4390. doi: 10.1021/cr200350v. [DOI] [PubMed] [Google Scholar]
  • [35].Magin C M, Cooper S P, Brennan A B. Non-toxic antifouling strategies. Materials Today. 2010;13:36–44. doi: 10.1016/S1369-7021(10)70058-4. [DOI] [Google Scholar]
  • [36].Carve M, Scardino A, Shimeta J. Effects of surface texture and interrelated properties on marine biofouling: A systematic review. Biofouling. 2019;35:597–617. doi: 10.1080/08927014.2019.1636036. [DOI] [PubMed] [Google Scholar]
  • [37].Readman J W. Development, occurrence and regulation of antifouling paint biocides: Historical review and future trends. Handbook of Environmental Chemistry. 2006;5:1–15. [Google Scholar]
  • [38].Holmqvist A, Eklund B, Elwing H, Ytreberg E, Lagerstr M. A novel XRF method to measure environmental release of copper and zinc from antifouling paints. Environmental Pollution. 2017;225:490–496. doi: 10.1016/j.envpol.2017.03.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Evans S M, Leksono T, McKinnell P D. Tributyltin pollution: A diminishing problem following legislation limiting the use of TBT-based anti-fouling paints. Marine Pollution Bulletin. 1995;30:14–21. doi: 10.1016/0025-326X(94)00181-8. [DOI] [Google Scholar]
  • [40].Minchin D, Oehlmann J, Duggan C B, Stroben E, Keatinge M. Marine TBT antifouling contamination in Ireland, following legislation in 1987. Marine Pollution Bulletin. 1995;30:633–639. doi: 10.1016/0025-326X(95)00016-G. [DOI] [Google Scholar]
  • [41].Champ M. The status of the treaty to ban TBT in marine antifouling paints and alternatives. Proceedings of the 24th UJNR (US/Japan) Marine Facilities Panel Meeting, Hawaii, USA, 2001, 1–7.
  • [42].Dafforn K A, Lewis J A, Johnston E L. Antifouling strategies: History and regulation, ecological impacts and mitigation. Marine Pollution Bulletin. 2011;62:453–465. doi: 10.1016/j.marpolbul.2011.01.012. [DOI] [PubMed] [Google Scholar]
  • [43].McNeil E M. Antifouling: Regulation of biocides in the UK before and after Brexit. Marine Policy. 2018;92:58–60. doi: 10.1016/j.marpol.2018.02.015. [DOI] [Google Scholar]
  • [44].Dahlbäck B, Blanck H, Nydén M. The challenge to find new sustainable antifouling approaches for shipping. Coastal Marine Science. 2010;34:212–215. [Google Scholar]
  • [45].Burgess J G, Boyd K G, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Granmo Å, Adams D R. The development of a marine natural product-based antifouling paint. Biofouling. 2003;19:197–205. doi: 10.1080/0892701031000061778. [DOI] [PubMed] [Google Scholar]
  • [46].Phillip A T. Modern trends in marine antifouling paints research. Progress in Organic Coatings. 1973;2:159–192. doi: 10.1016/0300-9440(73)80004-9. [DOI] [Google Scholar]
  • [47].Champ M A. Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems. Marine Pollution Bulletin. 2003;46:935–940. doi: 10.1016/S0025-326X(03)00106-1. [DOI] [PubMed] [Google Scholar]
  • [48].Wörz A, Berchtold B, Moosmann K, Prucker O, Rühe J. Protein-resistant polymer surfaces. Journal of Materials Chemistry. 2012;22:19547–19561. doi: 10.1039/c2jm30820g. [DOI] [Google Scholar]
  • [49].Ma W, Rajabzadeh S, Shaikh A R, Kakihana Y, Sun Y. Effect of type of poly(ethylene glycol)(PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride)(PVDF) blend membranes. Journal of Membrane Science. 2016;514:429–439. doi: 10.1016/j.memsci.2016.05.021. [DOI] [Google Scholar]
  • [50].Camo A, Olsen S M, Hvilsted S, Kiil S. Long-term stability of PEG-based antifouling surfaces in seawater. Journal of Coatings Technology and Research. 2016;13:567–575. doi: 10.1007/s11998-016-9801-9. [DOI] [Google Scholar]
  • [51].Yeon D K, Ko S, Jeong S, Hong S P, Kang S M, Cho W K. Oxidation-mediated. zwitterionic polydopamine coatings for marine antifouling applications. Langmuir. 2019;35:1227–1234. doi: 10.1021/acs.langmuir.8b03454. [DOI] [PubMed] [Google Scholar]
  • [52].Galli G, Martinelli E. Amphiphilic polymer platforms: Surface engineering of films for marine antibiofouling. Macromolecular Rapid Communications. 2017;38:8–12. doi: 10.1002/marc.201600704. [DOI] [PubMed] [Google Scholar]
  • [53].Leonardi A K, Ober C K. Polymer-based marine antifouling and fouling release surfaces: Strategies for synthesis and modification. Annual Review of Chemical and Biomolecular Engineering. 2019;10:241–264. doi: 10.1146/annurev-chembioeng-060718-030401. [DOI] [PubMed] [Google Scholar]
  • [54].Isabel J P, Leendert V D V, Rolf V B, Gijsbertus D W, Esteves A. Hydrophilic self-replenishing coatings with long-term water stability for anti-fouling applications. Coatings. 2018;8:184–198. doi: 10.3390/coatings8050184. [DOI] [Google Scholar]
  • [55].Dalsin J L, Messersmith P B. Bioinspired antifouling polymers. Materials Today. 2005;8:38–46. doi: 10.1016/S1369-7021(05)71079-8. [DOI] [Google Scholar]
  • [56].Krishnan S, Weinman C J, Ober C K. Advances in polymers for anti-biofouling surfaces. Journal of Materials Chemistry. 2008;18:3405–3413. doi: 10.1039/b801491d. [DOI] [Google Scholar]
  • [57].Ma H W, Li D J, Sheng X, Zhao B, Chilkoti A. Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization. Langmuir. 2006;22:3751–3756. doi: 10.1021/la052796r. [DOI] [PubMed] [Google Scholar]
  • [58].Gan D, Lyon L A. Synthesis and protein adsorption resistance of PEG-modified poly (N-isopropylacrylamide) core/shell microgels. Macromolecules. 2002;35:9634–9639. doi: 10.1021/ma021186k. [DOI] [Google Scholar]
  • [59].Leng C, Hung H C, Sun S, Wang D Y, Li Y T, Jiang S Y, Chen Z. Probing the surface hydration of nonfouling zwitterionic and PEG materials in contact with proteins. ACS Applied Materials and Interfaces. 2015;7:16881–16888. doi: 10.1021/acsami.5b05627. [DOI] [PubMed] [Google Scholar]
  • [60].Kim S, Gim T, Jeong Y, Ryu J H, Kang S M. Facile construction of robust multilayered PEG films on polydopamine-coated solid substrates for marine antifouling applications. ACS Applied Materials and Interfaces. 2018;10:7626–7631. doi: 10.1021/acsami.7b07199. [DOI] [PubMed] [Google Scholar]
  • [61].Calabrese D R, Wenning B, Finlay J A, Callow M E, Callow J A, Fischer D, Ober C K. Amphiphilic oligopeptides grafted to PDMS-based diblock copolymers for use in antifouling and fouling release coatings. Polymers for Advanced Technologies. 2015;7:829–836. doi: 10.1002/pat.3515. [DOI] [Google Scholar]
  • [62].Kim S, Kwak S, Lee S, Cho W K, Lee J K, Kang S M. One-step functionalization of zwitterionic poly[(3-(methacryloylamino)propyl)dimethyl(3-sulfopropyl)ammonium hydroxide] surfaces by metal-polyphenol coating. Chemical Communications. 2015;51:5340–5342. doi: 10.1039/C4CC08609K. [DOI] [PubMed] [Google Scholar]
  • [63].Bhattarai H D, Yoo K L, Kyeung H C, Hong K L, Hyun W S. The study of antagonistic interactions among pelagic bacteria: A promising way to coin environmental friendly antifouling compounds. Hydrobiologia. 2006;568:417–423. doi: 10.1007/s10750-006-0220-2. [DOI] [Google Scholar]
  • [64].Venault A, Wei T C, Chin H L, Yeh C C, Chinnathambi A, Alharbi S A, Carretier S, Aimar P, Lai J Y, Chang Y. Antifouling pseudo-zwitterionic poly(vinylidene fluoride) membranes with efficient mixed-charge surface grafting via glow dielectric barrier discharge plasma-induced copolymerization. Journal of Membrane Science. 2016;561:13–25. doi: 10.1016/j.memsci.2016.05.044. [DOI] [Google Scholar]
  • [65].Laschewsky A. Structures and synthesis of zwitterionic polymers. Polymers. 2014;6:1544–1601. doi: 10.3390/polym6051544. [DOI] [Google Scholar]
  • [66].Bodkhea R B, Shane J S, Nicholas C, Justin D, Stephanie E M T, Maureen E C, James A C. Polyurethanes with amphiphilic surfaces made using telechelic functional PDMS having orthogonal acid functional groups. Progress in Organic Coatings. 2012;75:38–48. doi: 10.1016/j.porgcoat.2012.03.006. [DOI] [Google Scholar]
  • [67].Omae I. General aspects of tin-free antifouling paints. Chemical Reviews. 2003;103:3431–3448. doi: 10.1021/cr030669z. [DOI] [PubMed] [Google Scholar]
  • [68].Wade M R. Festival books as historical literature: The reign of christian IV of denmark (1596–1648) Seventeenth Century. 1992;7:1–14. doi: 10.1080/0268117X.1992.10555331. [DOI] [Google Scholar]
  • [69].Schiff K, Diehl D, Valkirs A. Copper emissions from antifouling paint on recreational vessels. Marine Pollution Bulletin. 2004;48:371–377. doi: 10.1016/j.marpolbul.2003.08.016. [DOI] [PubMed] [Google Scholar]
  • [70].Dupraz V, Stachowski H S, Ménard D, Limon G, Akcha F, Budzinski H, Cedergreen N. Combined effects of antifouling biocides on the growth of three marine microalgal species. Chemosphere. 2018;209:801–814. doi: 10.1016/j.chemosphere.2018.06.139. [DOI] [PubMed] [Google Scholar]
  • [71].Townsin R L. The ship hull fouling penalty. Biofouling. 2003;19:9–15. doi: 10.1080/0892701031000088535. [DOI] [PubMed] [Google Scholar]
  • [72].Voulvoulis N, Scrimshaw M D, Lester J N. Alternative antifouling biocides. Applied Organometallic Chemistry. 1999;13:135–143. doi: 10.1002/(SICI)1099-0739(199903)13:3<135::AID-AOC831>3.0.CO;2-G. [DOI] [Google Scholar]
  • [73].Valkirs A O, Seligman P F, Haslbeck E, Caso J S. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: Implications for loading estimation to marine water bodies. Marine Pollution Bulletin. 2003;46:763–779. doi: 10.1016/S0025-326X(03)00044-4. [DOI] [PubMed] [Google Scholar]
  • [74].Rascio V J D, Giúdice C A, Amo B D. Research and development of soluble matrix antifouling paints for ships, offshore platforms and power stations, A review. Corrosion Reviews. 1988;8:78–154. doi: 10.1515/CORRREV.1988.8.1-2.87. [DOI] [Google Scholar]
  • [75].Marson F. Anti-fouling paints. I. Theoretical approach to leaching of soluble pigments from insoluble paint vehicles. Journal of Applied Chemistry. 2010;19:93–99. doi: 10.1002/jctb.5010190401. [DOI] [Google Scholar]
  • [76].Yebra D M, Kiil S, Dam-Johansen K. Antifouling technology — Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings. 2004;50:75–104. doi: 10.1016/j.porgcoat.2003.06.001. [DOI] [Google Scholar]
  • [77].Xie Q Y, Pan J S, Ma C F, Zhang G Z. Dynamic surface antifouling: Mechanism and systems. Soft Matter. 2019;15:1087–1107. doi: 10.1039/C8SM01853G. [DOI] [PubMed] [Google Scholar]
  • [78].Qian P Y, Li Z R, Xu Y, Li Y X, Fusetani N. Mini-review: Marine natural products and their synthetic analogs as antifouling compounds: 2009–2014. Biofouling. 2015;31:101–122. doi: 10.1080/08927014.2014.997226. [DOI] [PubMed] [Google Scholar]
  • [79].Maan A M C, Hofman A H, Vos W M D, Kamperman M. Recent developments and practical feasibility of polymer-based antifouling coatings. Advanced Functional Materials. 2020;30:1–30. doi: 10.1002/adfm.202000936. [DOI] [Google Scholar]
  • [80].Armstrong E, Boyd K G, Pisacane A, Peppiatt C J, Burgess J G. Marine microbial natural products in antifouling coatings. Biofouling. 2000;16:215–224. doi: 10.1080/08927010009378446. [DOI] [Google Scholar]
  • [81].Fusetani N. Antifouling marine natural products. Natural Product Reports. 2011;28:400–410. doi: 10.1039/C0NP00034E. [DOI] [PubMed] [Google Scholar]
  • [82].Henrikson A A, Pawlik J R. A new antifouling assay method: Results from field experiments using extracts of four marine organisms. Journal of Experimental Marine Biology and Ecology. 1995;194:157–165. doi: 10.1016/0022-0981(95)00088-7. [DOI] [Google Scholar]
  • [83].Al-Ogily S M, Knight-Jones E W. Antifouling role of antibiotics produced by marine algae and bryozoans. Nature. 1977;265:728–729. doi: 10.1038/265728a0. [DOI] [PubMed] [Google Scholar]
  • [84].Qian P Y, Xu Y, Fusetani N. Natural products as antifouling compounds: Recent progress and future perspectives. Biofouling. 2009;26:223–234. doi: 10.1080/08927010903470815. [DOI] [PubMed] [Google Scholar]
  • [85].Chen L G, Qian P Y. Review on molecular mechanisms of antifouling compounds: An update since 2012. Marine Drugs. 2017;15:1660–3397. doi: 10.3390/md15090264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [86].Bhattarai H D, Yoo K L, Kyeung H C, Hong K L, Hyun W S. The study of antagonistic interactions among pelagic bacteria: A promising way to coin environmental friendly antifouling compounds. Hydrobiologia. 2006;568:417–423. doi: 10.1007/s10750-006-0220-2. [DOI] [Google Scholar]
  • [87].Plouguerné E, Ioannou E, Georgantea P. Anti-microfouling activity of lipidic metabolites from the invasive brown Alga Sargassum muticum (Yendo) Fensholt. Marine Biotechnology. 2010;12:52–61. doi: 10.1007/s10126-009-9199-9. [DOI] [PubMed] [Google Scholar]
  • [88].Paul C, Pohnert G. Production and role of volatile halogenated compounds from marine algae. Natural Product Reports. 2011;28:186–195. doi: 10.1039/C0NP00043D. [DOI] [PubMed] [Google Scholar]
  • [89].Gama B A P D, Plouguerné E, Pereira R C. The antifouling defence mechanisms of marine macroalgae. Advances in Botanical Research. 2014;77:413–440. doi: 10.1016/B978-0-12-408062-1.00014-7. [DOI] [Google Scholar]
  • [90].Leal M C, Munro M H G, Blunt J W, Puga J, Jesus B, Calado R, Rosa R, Madeira C. Biogeography and biodiscovery hotspots of macroalgal marine natural products. Natural Product Reports. 2013;30:1380–1390. doi: 10.1039/c3np70057g. [DOI] [PubMed] [Google Scholar]
  • [91].Paul N A, Nys R D, Steinberg P D. Chemical defence against bacteria in the red alga Asparagopsis armata: Linking structure with function. Marine Ecology Progress Series. 2006;306:87–101. doi: 10.3354/meps306087. [DOI] [Google Scholar]
  • [92].Cho J Y. Antifouling chromanols isolated from brown alga Sargassum horneri. Journal of Applied Phycology. 2013;25:299–309. doi: 10.1007/s10811-012-9864-7. [DOI] [Google Scholar]
  • [93].Zisman W A. Relation of the equilibrium contact angle to liquid and solid constitution. Advances in Chemistry. 1964;53:1–51. [Google Scholar]
  • [94].Ober C. Fifty years of the baier curve: Progress in understanding of antifouling and fouling release coatings. Green Materials. 2017;5:1–3. doi: 10.1680/jgrma.17.00007. [DOI] [Google Scholar]
  • [95].Magin C M, Finlay J A, Clay G, Callow M E, Callow J A, Brennan A B. Antifouling performance of cross-linked hydrogels: Refinement of an attachment model. Biomacromolecules. 2011;12:915–922. doi: 10.1021/bm101229v. [DOI] [PubMed] [Google Scholar]
  • [96].Omae I. Organotin antifouling paints and their alternatives. Applied Organometallic Chemistry. 2003;17:81–105. doi: 10.1002/aoc.396. [DOI] [Google Scholar]
  • [97].Bressy C, Lejars M. Marine fouling: An overview. Journal of Ocean Technology. 2014;9:19–28. [Google Scholar]
  • [98].Ayyavoo J, Nguyen T P N, Jun B M, Kim I C, Kwon Y N. Protection of polymeric membranes with antifouling surfacing via surface modifications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2016;506:190–201. doi: 10.1016/j.colsurfa.2016.06.026. [DOI] [Google Scholar]
  • [99].Liu C, Ma C F, Xie Q Y, Zhang G Z. Self-repairing silicone coatings for marine anti-biofouling. Journal of Materials Chemistry A. 2017;5:15855–15861. doi: 10.1039/C7TA05241C. [DOI] [Google Scholar]
  • [100].Selim M S, El-Safty S A, El-Sockary M A, Hashem A I, Elenien O M A, EL-Saeed A M, Fatthallah N A. Data on photo-nanofiller models for self-cleaning foul release coating of ship hulls. Data in Brief. 2016;8:1357–1364. doi: 10.1016/j.dib.2016.08.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [101].Kozakiewicz J, Ofat I, Trzaskowska J. Silicone-containing aqueous polymer dispersions with hybrid particle structure. Advances in Colloid and Interface Science. 2015;223:1–39. doi: 10.1016/j.cis.2015.04.002. [DOI] [PubMed] [Google Scholar]
  • [102].Truby K, Wood C, Stein J, Cella J, Carpenter J, Kavanagh C, Swain G, Wiebe D, Lapota D, Meyer A, Holm E, Wendt D, Smith C, Montemarano J. Evaluation of the performance enhancement of silicone biofouling-release coatings by oil incorporation. Biofouling. 2000;15:141–150. doi: 10.1080/08927010009386305. [DOI] [PubMed] [Google Scholar]
  • [103].Vladkova T. Surface engineering for non-toxic biofouling control. Journal of the University of Chemical Technology and Metallurgy. 2007;42:239–256. [Google Scholar]
  • [104].Milne A. US Patent 4025693, 1977.
  • [105].Stein J, Truby K, Wood C D, Stein J, Gardner M, Swain G, Kavanagh C, Kovach B, Schultz M, Wiebe D, Holm E, Montemarano J, Wendt D, Smith C, Meyer A. Silicone foul release coatings: Effect of the interaction of oil and coating functionalities on the magnitude of macrofouling attachment strengths. Biofouling. 2003;19:71–82. doi: 10.1080/0892701031000089525. [DOI] [PubMed] [Google Scholar]
  • [106].Yan F H, Zhang X B, Liu F, Li X H, Zhang Z J. Adjusting the properties of silicone rubber filled with nanosilica by changing the surface organic groups of nanosilica. Composites Part B: Engineering. 2015;75:47–52. doi: 10.1016/j.compositesb.2015.01.030. [DOI] [Google Scholar]
  • [107].Mirabedini S M, Mohseni M, PazokiFard S, Esfandeh M. Effect of TiO2 on the mechanical and adhesion properties of RTV silicone elastomer coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2008;317:80–86. doi: 10.1016/j.colsurfa.2007.09.044. [DOI] [Google Scholar]
  • [108].Ahmed F, Lalia B S, Kochkodan V, Hilal N, Hashaikeh R. Electrically conductive polymeric membranes for fouling prevention and detection: A review. Desalination. 2016;391:1–15. doi: 10.1016/j.desal.2016.01.030. [DOI] [Google Scholar]
  • [109].Matsunaga T, Nakayama T, Wake H, Takahashi M, Okochi M, Nakamura N. Prevention of marine biofouling using a conductive paint electrode. Biotechnology and Bioengineering. 1998;59:374–378. doi: 10.1002/(SICI)1097-0290(19980805)59:3<374::AID-BIT14>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  • [110].Medalia A I. Electrical conduction in carbon black composites. Rubber Chemistry and Technology. 2011;59:432–454. doi: 10.5254/1.3538209. [DOI] [Google Scholar]
  • [111].Wang X H, Li J, Zhang J Y, Sun Z C, Yu L, Jing X B, Wang F S, Sun Z X, Ye Z J. Polyaniline as marine antifouling and corrosion-prevention agent. Synthetic Metals. 1999;102:1377–1380. doi: 10.1016/S0379-6779(98)00384-1. [DOI] [Google Scholar]
  • [112].Mostafaei A, Nasirpouri F. Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications. Journal of Coatings Technology and Research. 2013;10:679–694. doi: 10.1007/s11998-013-9487-1. [DOI] [Google Scholar]
  • [113].Fiorini B A, De M K L, Christine B, Claire M, André M, Arthur F C. Using conducting polymers as active agents for marine antifouling paints. Materials Research. 2015;18:1129–1139. doi: 10.1590/1516-1439.261414. [DOI] [Google Scholar]
  • [114].Sutherland I. The biofilm matrix — An immobilized but dynamic microbial environment. Trends in Microbiology. 2001;9:222–227. doi: 10.1016/S0966-842X(01)02012-1. [DOI] [PubMed] [Google Scholar]
  • [115].Hall-Stoodley L, Costerton J W, Stoodley P. Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology. 2004;2:95–108. doi: 10.1038/nrmicro821. [DOI] [PubMed] [Google Scholar]
  • [116].Ras M, Lefebvre D, Derlon N, Paul E, Girbal-neuhauser E, Inge U M R. Extracellular polymeric substances diversity of biofilms grown under contrasted environmental conditions. Water Research. 2010;45:1529–1538. doi: 10.1016/j.watres.2010.11.021. [DOI] [PubMed] [Google Scholar]
  • [117].Yin R, Agrawal T, Khan U, Gupta G K, Rai V, Huang Y Y, Hamblin M R. Antimicrobial photodynamic inactivation in nanomedicine: Small light strides against bad bugs. Nanomedicine. 2015;10:2379–2404. doi: 10.2217/nnm.15.67. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • [118].De Freitas L M, Lorenzón E N, Santos-filho N A, Henrique L, Zago D P, Uliana M P, De Oliveira K T, Cilli E M, Fontana C R. Antimicrobial photodynamic therapy enhanced by the peptide 1.2. Scientific Reports. 2018;8:2045–2322. doi: 10.1038/s41598-018-22687-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [119].MacKenzie A F, Maltby E A, Harper N, Bueley C, Olender D, Wyeth R C. Periodic ultraviolet-C illumination for marine sensor antifouling. Biofouling. 2019;35:483–493. doi: 10.1080/08927014.2019.1616698. [DOI] [PubMed] [Google Scholar]
  • [120].Tavares A, Carvalho C M B, Faustino M A, Neves M G P. M S. Antimicrobial photodynamic therapy: Study of bacterial recovery viability and potential development of resistance after treatment. Marine Drugs. 2010;8:91–105. doi: 10.3390/md8010091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [121].Moriarty D J W, Hayward A C. Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments. Microbial Ecology. 1982;8:1–14. doi: 10.1007/BF02011456. [DOI] [PubMed] [Google Scholar]
  • [122].Jensen P R, Fenical W. The relative abundance and sea-water requirements of gram-positive bacteria in near-shore tropical marine samples. Microbial Ecology. 1995;29:249–257. doi: 10.1007/BF00164888. [DOI] [PubMed] [Google Scholar]
  • [123].Gontang E A, Fenical W, Jensen P R. Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Applied and Environmental Microbiology. 2007;73:3272–3282. doi: 10.1128/AEM.02811-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [124].Minnock A, Vernon D I, Schofield J, Griffiths J, Parish J H, Brown S B. Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. Journal of Photochemistry and Photobiology B: Biology. 1996;32:159–164. doi: 10.1016/1011-1344(95)07148-2. [DOI] [PubMed] [Google Scholar]
  • [125].Valduga G, Bertoloni G, Reddi E, Jori G. Effect of extracellularly generated singlet oxygen on Gram-positive and Gram-negative bacteria. Journal of Photochemistry and Photobiology B: Biology. 1993;21:81–86. doi: 10.1016/1011-1344(93)80168-9. [DOI] [PubMed] [Google Scholar]
  • [126].Castro K A D F, Moura N M M, Fernandes A, Faustino M A F, Simões M M Q, Cavaleiro J A S, Nakagaki S, Almeida A, Cunha Â, Silvestre A J D, Freire C S R, Pinto R J B, Neves M D G P M S. Control of Listeria innocua biofilms by biocompatible photodynamic antifouling chitosan based materials. Dyes and Pigments. 2017;137:265–276. doi: 10.1016/j.dyepig.2016.10.020. [DOI] [Google Scholar]
  • [127].Häder D P, Häder M. Effects of solar and artificial u.v. radiation on motility and pigmentation in the marine Cryptomonas maculata. Environmental and Experimental Botany. 1991;31:33–41. doi: 10.1016/0098-8472(91)90005-9. [DOI] [Google Scholar]
  • [128].Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research — Fundamental and Molecular Mechanisms of Mutagenesis. 2005;571:3–17. doi: 10.1016/j.mrfmmm.2004.09.012. [DOI] [PubMed] [Google Scholar]
  • [129].Seki A, Auker B, Fujioka R, Ono P, Takahashi P. Ultraviolet irradiation for controlling biofouling in OTEC heat exchangers: A preliminary report. OCEANS ′85 — Ocean Engineering and the Environment, San Diego, CA, USA, 1985, 1273–1278.
  • [130].Qualls R G, Johnson J D. Bioassay and dose measurement in ultraviolet disinfecton. Applied and Environmental Microbiology. 1982;45:872–877. doi: 10.1128/aem.45.3.872-877.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [131].Salters B, Piola R. UVC light for antifouling. Marine Technology Society Journal. 2017;51:59–70. doi: 10.4031/MTSJ.51.2.10. [DOI] [Google Scholar]
  • [132].Mackenzie A F, Maltby E A, Harper N, Bueley C, Wyeth R C, Mackenzie A F, Maltby E A, Harper N, Bueley C. Periodic ultraviolet-C illumination for marine sensor antifouling. Biofouling. 2019;35:1–11. doi: 10.1080/08927014.2019.1616698. [DOI] [PubMed] [Google Scholar]
  • [133].Hunsucker K Z, Braga C, Gardner H, Jongerius M, Hietbrink R, Salters B, Swain G. Using ultraviolet light for improved antifouling performance on ship hull coatings. Biofouling. 2019;35:658–668. doi: 10.1080/08927014.2019.1642334. [DOI] [PubMed] [Google Scholar]
  • [134].Alves P, Pinto S, Kaiser J P, Bruinink A, Sousa H C D, Gil M H. Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion. Colloids and Surfaces B: Biointerfaces. 2011;82:371–377. doi: 10.1016/j.colsurfb.2010.09.021. [DOI] [PubMed] [Google Scholar]
  • [135].Yajima K, Adachi K, Tsukahara Y, Taniguchi J. Fabrication of antireflection structure with antifouling — Effect surface by ultraviolet nanoimprint lithography. Microelectronic Engineering. 2013;110:188–191. doi: 10.1016/j.mee.2013.03.104. [DOI] [Google Scholar]
  • [136].Yang Z J, Xu Z Y. Summary of bionics engineering and its applications. Proceedings of the 7th International Conference on Education, Management, Information and Mechanical Engineering (EMIM 2017), Paris, France. 2017;76:1521–1525. [Google Scholar]
  • [137].Anthony T R, Cline H E. Surface rippling induced by surface-tension gradients during laser surface melting and alloying. Journal of Applied Physics. 1977;48:3888–3894. doi: 10.1063/1.324260. [DOI] [Google Scholar]
  • [138].Baum C, Meyer W, Stelzer R, Fleischer L G, Siebers D. Average nanorough skin surface of the pilot whale (Globicephala melas, Delphinidae): Considerations on the self-cleaning abilities based on nanoroughness. Marine Biology. 2002;140:653–657. doi: 10.1007/s00227-001-0710-8. [DOI] [Google Scholar]
  • [139].Yu H B, Li R F. Preparation and properties of biomimetic superhydrophobic composite coating. Surface Engineering. 2014;32:1–6. [Google Scholar]
  • [140].Bhushan B. Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter. 2012;8:11271–11284. doi: 10.1039/c2sm26655e. [DOI] [Google Scholar]
  • [141].Kirschner C M, Brennan A B. Bio-inspired antifouling strategies. Annual Review of Materials Research. 2012;42:211–231. doi: 10.1146/annurev-matsci-070511-155012. [DOI] [Google Scholar]
  • [142].Liu Y H, Li G J. A new method for producing “Lotus Effect” on a biomimetic shark skin. Journal of Colloid and Interface Science. 2012;338:235–242. doi: 10.1016/j.jcis.2012.08.033. [DOI] [PubMed] [Google Scholar]
  • [143].Carman M L, Estes T G, Feinberg A W, Schumacher J F, Wilkerson W, Wilson L H, Callow M E, Callow J A, Brennan A B. Engineered antifouling microtopographies — Correlating wettability with cell attachment. Biofouling. 2006;22:11–21. doi: 10.1080/08927010500484854. [DOI] [PubMed] [Google Scholar]
  • [144].Schumacher J F, Aldred N, Callow M E, Finlay J A, Callow J A, Clare A S, Brennan A B. Species-specific engineered antifouling topographies: Correlations between the settlement of algal zoospores and barnacle cyprids. Biofouling. 2007;23:307–317. doi: 10.1080/08927010701393276. [DOI] [PubMed] [Google Scholar]
  • [145].Schumacher J F, Carman M L, Estes T G, Feinberg A W, Wilson L H, Callow M E, Callow J A, Finlay J A, Brennan A B. Engineered antifouling microtopographies — Effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling. 2007;23:55–62. doi: 10.1080/08927010601136957. [DOI] [PubMed] [Google Scholar]
  • [146].Sakamoto A, Terui Y, Horie C, Fukui T, Masuzawa T, Sugawara S, Shigeta K, Shigeta T, Igarashi K, Kashiwagi K. Antibacterial effects of protruding and recessed shark skin micropatterned surfaces of polyacrylate plate with a shallow groove. FEMS Microbiology Letters. 2014;361:10–16. doi: 10.1111/1574-6968.12604. [DOI] [PubMed] [Google Scholar]
  • [147].Chen H, Zhang X, Ma L, Che D, Zhang D, Sudarshan T S. Investigation on large-area fabrication of vivid shark skin with superior surface functions. Applied Surface Science. 2014;316:124–131. doi: 10.1016/j.apsusc.2014.07.145. [DOI] [Google Scholar]
  • [148].Damodaran V B, Murthy N S. Bio-inspired strategies for designing antifouling biomaterials. Biomaterials Research. 2016;20:121–131. doi: 10.1186/s40824-016-0064-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [149].Scardino A J, Nys R D. Mini review: Biomimetic models and bioinspired surfaces for fouling control. Biofouling. 2011;27:73–86. doi: 10.1080/08927014.2010.536837. [DOI] [PubMed] [Google Scholar]
  • [150].Baum C, Simon F, Meyer W, Fleischer L G, Siebers D, Kacza J, Seeger J. Surface properties of the skin of the pilot whale Globicephala melas. Biofouling. 2003;19:181–186. doi: 10.1080/0892701031000061769. [DOI] [PubMed] [Google Scholar]
  • [151].Chen Z F, Zhao W J, Xu J H, Mo M T, Peng S S, Zeng Z X, Wu X D, Xue Q J. Designing environmentally benign modified silica resin coatings with biomimetic textures for antibiofouling. RSC Advances. 2015;5:36874–36881. doi: 10.1039/C5RA04658K. [DOI] [Google Scholar]
  • [152].Yin X Y, Yu B. Antifouling self-cleaning surfaces. In: Zhou F ed., Antifouling Surfaces and Materials, Berlin, Heidelberg, 2015, 1–29.
  • [153].Cao X Y, Pettitt M E, Wode F, Sancet M P A, Fu J H, Jian J, Callow M E, Callow J A, Rosenhahn A, Grunze M. Interaction of zoospores of the green alga ulva with bioinspired micro — and nanostructured surfaces prepared by polyelectrolyte layer-by-layer self-assembly. Advanced Functional Materials. 2010;20:1984–1993. doi: 10.1002/adfm.201000242. [DOI] [Google Scholar]
  • [154].Baum C, Meyer W, Fleischer L G, Roesnner D, Siebers D. A covalently cross-linked gel derived from the epidermis of the pilot whale Glopicephala melas. Biorheology. 2002;39:703–717. [PubMed] [Google Scholar]
  • [155].Baum C, Meyer C, Roessner D, Siebers D, Fleischer L. A zymogel enhances the self-cleaning abilities of the skin of the pilot whale. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2001;130:835–847. doi: 10.1016/S1095-6433(01)00445-7. [DOI] [PubMed] [Google Scholar]
  • [156].Brown W R, Geraci J R, Hicks B D, Aubin D J S, Schroeder J P. Epidermal cell proliferation in the bottlenose dolphin (Tursiops truncatus) Canadian Journal of Zoology. 2008;61:1587–1590. doi: 10.1139/z83-213. [DOI] [Google Scholar]
  • [157].Kramer M O. Boundary layer stabilization by distributed damping. Journal of the American Society for Naval Engineers. 1903;72:25–34. doi: 10.1111/j.1559-3584.1960.tb02356.x. [DOI] [Google Scholar]
  • [158].Lu J N, Xu B C, Wei F. The development of cognition and application of bio-inspired design. International Conference on Economics and Management, Education, Humanities and Social Sciences (EMEHSS 2017) 2017;86:70–74. [Google Scholar]
  • [159].Ralston E, Swain G. Bioinspiration — The solution for biofouling control? Bioinspiration and Biomimetics. 2009;4:015007. doi: 10.1088/1748-3182/4/1/015007. [DOI] [PubMed] [Google Scholar]
  • [160].Chen Z F, Zhao W J, Mo M T, Zhou C X, Liu G, Zeng Z X, Wu X D, Xue Q J. Architecture of modified silica resin coatings with various micro/nano patterns for fouling resistance: Microstructure and antifouling performance. RSC Advances. 2015;5:97862–97873. doi: 10.1039/C5RA17179B. [DOI] [Google Scholar]
  • [161].Bandurraga M M, Fenical W. Isolation of the muricins. Tetrahedron. 2002;41:1057–1065. doi: 10.1016/S0040-4020(01)96473-7. [DOI] [Google Scholar]
  • [162].Vrolijk N H, Targett N M, Baier R E, Meyer A E. Surface characterisation of two gorgonian coral species: Implications for a natural antifouling defence. Biofouling. 1989;2:39–54. doi: 10.1080/08927019009378128. [DOI] [Google Scholar]
  • [163].Golberg K, Pavlov V, Marks R S, Kushmaro A. Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling. 2013;29:669–682. doi: 10.1080/08927014.2013.796939. [DOI] [PubMed] [Google Scholar]
  • [164].Soliman Y A A, Brahim A M, Moustafa A H, Hamed M A F. Antifouling evaluation of extracts from Red Sea soft corals against primary biofilm and biofouling. Asian Pacific Journal of Tropical Biomedicine. 2017;7:991–997. doi: 10.1016/j.apjtb.2017.09.016. [DOI] [Google Scholar]
  • [165].Wang J, Su P, Gu Q, Li W D, Guo J L, Qiao W, Feng D Q, Tang S A. Antifouling activity against bryozoan and barnacle by cembrane diterpenes from the soft coral Sinularia flexibilis. International Biodeterioration and Biodegradation. 2017;120:97–103. doi: 10.1016/j.ibiod.2017.02.013. [DOI] [Google Scholar]
  • [166].Bing W, Tian L M, Wang Y J, Jin H C, Ren L Q, Dong S Y. Bio-inspired non-bactericidal coating used for antibiofouling. Advanced Materials Technologies. 2019;4:1–9. [Google Scholar]
  • [167].Jin H C, Zhang T, Bing W, Dong S Y, Tian L M. Antifouling performance and mechanism of elastic graphene-silicone rubber composite membranes. Journal of Materials Chemistry B. 2019;7:488–497. doi: 10.1039/C8TB02648C. [DOI] [PubMed] [Google Scholar]
  • [168].Bai H, Zhang L, Gu D. Applied surface science micrometer-sized spherulites as building blocks for lotus leaf-like superhydrophobic coatings. Applied Surface Science. 2018;459:54–62. doi: 10.1016/j.apsusc.2018.07.183. [DOI] [Google Scholar]
  • [169].Cheng Z J, Zhang D J, Lv T, Lai H, Zhang E S, Kang H J, Wang Y Z, Liu P C, Liu Y Y, Du Y, Dou S X, Jiang L. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting. Advanced Functional Materials. 2018;28:1705002. doi: 10.1002/adfm.201705002. [DOI] [Google Scholar]
  • [170].Pechook S, Pokroy B. Self-assembling, bioinspired wax crystalline surfaces with time-dependent wettability. Advanced Functional Materials. 2012;22:745–750. doi: 10.1002/adfm.201101721. [DOI] [Google Scholar]
  • [171].Pechook S, Kornblum N, Pokroy B. Bio-inspired superoleophobic fluorinated wax crystalline surfaces. Advanced Functional Materials. 2013;36:4572–4576. doi: 10.1002/adfm.201203878. [DOI] [Google Scholar]
  • [172].Zheng J, Song W, Huang H, Chen H. Protein adsorption and cell adhesion on polyurethane/pluronic surface with lotus leaf-like topography. Colloids and Surfaces B: Biointerfaces. 2010;77:234–239. doi: 10.1016/j.colsurfb.2010.01.032. [DOI] [PubMed] [Google Scholar]
  • [173].Chen L W, Guo Z G, Liu W M. Biomimetic multi-functional superamphiphobic FOTS-TiO2 particles beyond lotus leaf. ACS Applied Materials and Interfaces. 2016;8:27188–27198. doi: 10.1021/acsami.6b06772. [DOI] [PubMed] [Google Scholar]
  • [174].Bixler G D, Theiss A, Bhushan B, Lee S C. Journal of colloid and interface science anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. Journal of Colloid and Interface Science. 2014;419:114–133. doi: 10.1016/j.jcis.2013.12.019. [DOI] [PubMed] [Google Scholar]
  • [175].Phillippi A L, O’Connor N J, Lewis A F, Kim Y K. Surface flocking as a possible anti-biofoulant. Aquaculture. 2001;195:225–238. doi: 10.1016/S0044-8486(00)00556-1. [DOI] [Google Scholar]
  • [176].Alm K K. US Patent 5618588, 1997.

Articles from Journal of Bionic Engineering are provided here courtesy of Nature Publishing Group

RESOURCES