Skip to main content
Cells logoLink to Cells
. 2021 Mar 5;10(3):576. doi: 10.3390/cells10030576

A New Epigenetic Model to Stratify Glioma Patients According to Their Immunosuppressive State

Maurizio Polano 1,*, Emanuele Fabbiani 2, Eva Adreuzzi 3, Federica Di Cintio 1,4, Luca Bedon 1,5, Davide Gentilini 6,7, Maurizio Mongiat 3, Tamara Ius 8, Mauro Arcicasa 9, Miran Skrap 8, Michele Dal Bo 1, Giuseppe Toffoli 1
Editor: Fabrizio Mattei
PMCID: PMC8001235  PMID: 33807997

Abstract

Gliomas are the most common primary neoplasm of the central nervous system. A promising frontier in the definition of glioma prognosis and treatment is represented by epigenetics. Furthermore, in this study, we developed a machine learning classification model based on epigenetic data (CpG probes) to separate patients according to their state of immunosuppression. We considered 573 cases of low-grade glioma (LGG) and glioblastoma (GBM) from The Cancer Genome Atlas (TCGA). First, from gene expression data, we derived a novel binary indicator to flag patients with a favorable immune state. Then, based on previous studies, we selected the genes related to the immune state of tumor microenvironment. After, we improved the selection with a data-driven procedure, based on Boruta. Finally, we tuned, trained, and evaluated both random forest and neural network classifiers on the resulting dataset. We found that a multi-layer perceptron network fed by the 338 probes selected by applying both expert choice and Boruta results in the best performance, achieving an out-of-sample accuracy of 82.8%, a Matthews correlation coefficient of 0.657, and an area under the ROC curve of 0.9. Based on the proposed model, we provided a method to stratify glioma patients according to their epigenomic state.

Keywords: immunosuppression, tumor microenviroment, neural network, genome-wide methylation model, glioma, extracellular matrix

1. Introduction

Gliomas are brain tumors that arise from glial precursor cells. According to their pathological features, gliomas are subdivided in glioblastomas (GBMs), which have the highest grade (IV), and low-grade gliomas (LGGs), a heterogeneous group composed by various tumor types, such as astrocytic, oligodendroglial and ependymal tumors. Gliomas have a heterogeneous clinical outcome with the worse course happening in the GBM group, whereas LGGs are generally less severe. Several biomarkers have been proposed to predict the clinical outcome and response to treatments of gliomas, including genetic and epigenetic ones such as IDH mutation and methylation of the MGMT promoter. A detailed characterization of glioma-associated molecular signatures has made possible the development of novel therapies, including the use of tyrosine kinase inhibitors. On the other hand, based on the results obtained in the context of other tumors, the use of immune checkpoint inhibitors (ICIs) has been proposed for gliomas, including GBMs. However, despite the recently proposed novel targeted therapy and immunotherapy treatment approaches, treatment strategies for gliomas are in the majority of cases still conventional. In particular, for GBMs, the current standard of care still consists of surgical resection, followed by radiotherapy and chemotherapy [1]. Moreover, so far no immunotherapeutic approach against GBM has demonstrated efficacy in a controlled clinical trial [2,3,4].

The clinical outcome of gliomas is strictly related with the composition and cell cross-talk of tumor microenvironment (TME), in particular with the immune texture in terms of the distinct immune cell types as well as the different immunosuppressive cell populations, such as T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), dendritic cells and antigen-presenting cells specific to the brain such as microglia [5,6,7]. A significant infiltration of Tregs can be detected in a large fraction of gliomas, in particular in the GBM group. In this context, the activity of IDO can contribute to the immunosuppressive state of the TME by creating a tryptophan shortage, which contributes to the suppression of T cell activation and proliferation [8]. Within glioma tumors, microglia and macrophages can represent up to the 12% of the tumor mass [9,10,11,12].

With respect to the macrophages displaying the M1 phenotype, M2 macrophages are more strongly involved in the maintenance of an immunosuppressive state in the TME. Notably, M2 macrophages are generally characterized by the peculiar expression of several cell surface markers including CD163 [13,14,15,16]. The extracellular matrix (ECM) components such as glycosaminoglycans, glycoproteins, proteoglycans, play a crucial role in the invasion mechanisms of gliomas, mainly through promoting angiogenesis and tumor cell migration. Hypervascularity is a characteristic of gliomas with an increment in angiogenesis compared to healthy brain tissue. This tumor-associated vasculature is not completely formed with leaky vessels and associated with an increase in the interstitial fluid pressure [17].

The degree of immunosuppression of the glioma TME can be associated with a peculiar immunosuppressive signature, with the most accentued immunosuppressive state happening in the case of GBMs [18]. Moreover, specific immunosuppressive features such as depletion of tumor infiltrating lymphocytes (TIL), high PD-L1 expression, and a reduced IIFN signature have been associated with recurrent genomic mutations, such as IDH1, TP53, NF1, PTEN EGFR and MAPK pathway mutations. Epigenetic modifications including alteration of histone patterns, chromatin structure, changes in microRNA expression levels and DNA methylation status at specific promoters are involved in the modulation of the TME by allowing cells to grow and to escape from immune surveillance. Thus, the immunosuppressive state can be recapitulated by epigenetic regulation, in particular by DNA methylation influencing the expression of transcription factors and regulatory genes related to the immune cell transcriptome. Since DNA methylation plays an important role in cancers, many studies have utilized DNA methylated sequences as biomarkers for cancer detection, including CpG markers and promoter markers. In particular, DNA methylation has been demonstrated to resolve cell of origin of peripheral blood cells [19] and cell-free DNA [20,21,22], and was introduced as a complementary approach to classify central nervous system (CNS) tumors [23]. Moreover, irregular methylations in promoters of cancer-related genes could serve as biomarkers for early cancer diagnosis and prognosis. An example of this is MGMT promoter methylation that was demonstrated to be a predictive biomarker for cancer prognosis in GBMs and response to chemotherapy with temozolomide [24,25]. In this context, DNA methylation can be useful to more adequately understand the distribution of the different immune cell subtypes in the context of the TME [26,27,28]. In this study, we fed DNA methylation data into a machine learning model to classify gliomas over their immunosuppression state. We used methylation data as features for our dataset. The target is a novel binary indicator of the immunosuppression state. Due to the limited number of cases available in public datasets, we resorted to both expert and data-driven selection to shrink the number of features and decrease the noise. Given the large number of features and the possibly non-linear nature of the problem, we adopted properly tuned random forest (RF) and deep neural network as classifiers.

We found that the multi-layer perceptron deep outperforms the RF and that a proper feature selection is capable of improving the accuracy of the model. In light of the result of the study, a proper discussion of the biological implications of our study was provided. This classification model could be useful to predict the responsiveness of glioma-affected patients to novel immunotherapeutic approaches, such as the use of ICIs.

2. Materials and Methods

2.1. Data

The complete workflow, from raw data to the predictive model, is presented in Figure A2.

Our dataset is derived from The Cancer Genome Atlas (TCGA) data hub, available on Xena https://xenabrowser.net (accessed on 12 March 2020). From this source, we extracted the count (FPKM-UQ) of RNA sequencing (RNA-seq) and DNA methylation data for LGG and GBM. The clinical and pathological information of the patients was also gathered from TCGA and the Consortium publication on glioma [29]. The selection of the cases was based on the following criteria: (i) presence of a diagnosed GBM or LGG, (ii) availability of the DNA methylation and RNA sequencing data. A total of 573 cases of brain tumors were enrolled (Table 1).

Table 1.

Cases included in the study from The Cancer Genome Atlas (TCGA) cohorts for Glioma cancer types.

Cohort Cancer Type Cases Cases Flagged as EDISON Positive
LGG Brain lower grade glioma 506 271
GBM Glioblastoma multiforme 47 10

The input to our machine learning model was made only of methylation data, while the RNA-seq data and the information about the patients were only used in the construction of the target or in ancillary analysis. The methylation at each 5′—C—phosphate—G—3′ (CpG) site is described by the β value, defined as the ratio between the intensity of the methylated probe and the intensity of the total probe. A total of 482,421 CpG sites throughout the genome were assessed and filtered using the procedure described by Bourgon et al. [30], resulting in an initial dataset containing 355,314 CpG probes. We called this dataset AllCpGs.

Taking into account the relevance of M2 macrophages and TReg populations in the modulation of immunosuppression in the context of the TME, cases were labeled for their putative capability of escaping an immunosuppressive state. To do this, we evaluated the immune cells in the TME using immunedecov [31]. First, the data relative to RNA-seq were log-transformed and standardized to zero mean and unit variance. We then defined three different criteria based on RNA-seq: (i) expression of the CD163 gene, (ii) expression of M2 macrophage signature (Macropage M2), and (iii) expression of Tregs signature (T cell regulatory Tregs). The two latter signatures were evaluated using quantiseq [32] and xCell [33]. The three parameters, (i) to (iii), were used to label cases based on their putative capability of escaping an immunosuppressive state. A case was labelled EvaDe Immune SuppressiON (EDISON) positive if it had more than two out of the three parameters, (i) to (iii), below the first quartile of expression. For the evaluation of the interactions between the immune system and the TME, we leveraged the signatures published on the “Immune-Subtype-Clustering” GitHub repository [34], as proposed in our previous study [35]. The EDISON label was used as a target for our classification models.

2.2. Feature Selection

Due to the high number of variables in the DNA methylation data compared to the number of cases, before applying any classification model, we opted to reduce the dimensionality of the input via feature selection. At first, we applied expert selection.

We included in the dataset the CpGs related to the genes which were shown to play crucial roles in gliomas. Specifically, we chose:

  1. The genes linked to the putative response of immune suppression in the study by Thorston et al. [18];

  2. The genes with the angiomatrix signatures [36];

  3. The genes associated with the putative response for ICIs in GBMs [37];

  4. The genes reported as with prognostic value for gliomas by Mesrati et al. [38];

  5. The genes related to the extracellular matrix (ECM) recently linked to the glioma by Zhao et al. [39].

In order to evaluate the predictive power of different sets of genes, two different datasets were obtained. We called ImmuneAngioICIs the one containing the genes described in points 1, 2, and 3, while we called ImmuneAngioICIsMesECM the dataset containing the genes described in points 1, 2, 3, 4, and 5.

In order to assess the soundness and effectiveness of our expert selection, we also considered a dataset containing all the CpG probes without any filtering. Our results will show that including all the probes does not result in a better modelling: conversely, the additional features bring noise and worsen the predictive power of our models.

The expert selection reduces the number of CpG in the dataset by a factor of 50. Still, many uninformative features might be present. Given the limited number of available cases, the inclusion of uninformative features results in an increase in the noise and may have detrimental effects on the accuracy of the machine learning model. Therefore, we opted to adopt also a data-driven selection procedure. On each dataset, we applied the Boruta algorithm to detect the set of most relevant features [40]. A scheme with a 10-fold cross-validation and 100 repetitions was adopted. We called AllCpGs + BORUTA the dataset resulting after the application of Boruta to AllCpGs, ImmuneAngioICIs + BORUTA the dataset resulting after the application of Boruta to ImmuneAngioICIs, and ImmuneAngioICIsMesECM + BORUTA the dataset resulting after the application of Boruta to ImmuneAngioICIsMesECM. A summary of the datasets is presented in Table 2.

Table 2.

Summary of the datasets, with the number of CpGs included in each one.

Dataset CpG Count
AllCpGs 355,314
ImmuneAngioICIs 6368
ImmuneAngioICIsMesECM 6754
AllCpGs + BORUTA 3554
ImmuneAngioICIs + BORUTA 512
ImmuneAngioICIsMesECM + BORUTA 338

2.3. Modelling

To allow a proper evaluation of the machine learning models, each of the the available datasets, d, d {AllCpGs, ImmuneAngioICIs, ImmuneAngioICIsMesECM, AllCpGs + BORUTA, ImmuneAngioICIs + BORUTA, ImmuneAngioICIsMesECM + BORUTA}, was split into a training set Td, containing 80% of the samples, and a test set Vd, including the remaining 20%. The feature selection and the tuning of model hyperparameters were allowed to only take advantage of the training set Td, while samples in Vd were left apart for the final evaluation. It is important to note that the training sets Td only differ in the inputs, while the target variable and the target sample are the same irrespective of d. The same holds for the test sets Vd. This point is critical to allow for a sound comparison among the performance of the models.

On each dataset, the classification models were then tuned and trained. At first, we considered a RF model. We optimized the hyperparameters, such as the number of trees in the forest, the maximum depth of a tree and the minimum number of samples in a leaf, using a grid-search cross-validation. The tuning procedure followed the one described in Vadalas et al. [41].

On the dataset leading to the best performance metrics, namely ImmuneAngioICIsMes ECM + BORUTA, two more models were trained. We selected two architectures of deep neural networks: a multi-layer perceptron (MLP) and a convolutional neural network (CNN). For both models, the hyperparameters such as number of hidden layers, neurons in each layer, and learning rate, were optimized using a grid-search cross-validation.

To further evaluate the complex regulation of methylation effect in different genomic localization, we investigated if the EDISON classification model could be improved by dividing ImmuneAngioICIsMesECM and ImmuneAngioICIs by regional sites and by applying the RF model.

2.4. Evaluation

In addition to the standard accuracy (ACC), we considered the Matthews Correlation Coefficient (MCC), and the area under the receiver operating characteristic (AUC) as performance metrics. First introduced by B.W. Matthews to assess the performance of the prediction of protein secondary structure [42], the MCC has become a widely used measure in biomedical research [43,44]. Due to their large popularity and simple interpretation, MCC and AUC were selected in the US FDA-led initiative MAQC-II, aimed at reaching a consensus on the best practices for the development and validation of predictive models for personalized medicine [43].

The evaluation metrics were computed both in cross-validation, on samples belonging to the train sets Td, and on the samples of the test set Vd. For the cross-validation metrics, the 95% confidence intervals (CIs) were also computed. In order to substantiate the results, the McNemar test was used to assess the significance in performance difference among classifiers [45].

2.5. Evaluation of the 338 CpG Probes Used for the Model as Survival Prognosticator

We evaluated the prognostic role of the CpG probes used by the best performing model, i.e., the ones included in ImmuneAngioICIsMesECM + BORUTA with survival analysis. In particular, we adopted a random survival forest, an ensemble tree method for the analysis of censored survival data, described by Wang et al. [46]. The hyperparameters of the model were chosen with a randomized search and the feature importance was extracted from the best model using permutation importance.

2.6. Definition of a Possible CpG Signature Useful for Liquid Biopsy

The CpG probes used by the best performing model (ImmuneAngioICIsMesECM + BORUTA) were also analyzed using the Blood–Brain Epigenetic Concordance (BECon) to assess their possible use in liquid biopsy (https://redgar598.shinyapps.io/BECon/ (accessed on 12 March 2020)). We first chose the CpGs that presented a percentile rank of CpG Change Beta over 75. Then, we applied the least absolute shrinkage and selection operator (LASSO) Cox regression to develop an optimal risk signature with the minimum number of CpGs [47,48]. The correlation of the CpGs with gene expression was also evaluated.

2.7. Correlation Analysis between CpGs and Genes

To examine the impact of DNA methylation on the local regulation of gene expression, the Pearson correlation between the β values of the CpGs and the normalized expression of the corresponding genes was calculated. Moreover, in order to investigate the distant regulation of gene expression, we computed the correlation between the β values of CpGs of differentially methylated and expressed genes and the normalized expression of differentially expressed genes.

2.8. PPI Network Analysis of DNA Methylation-Driven Genes

The 338 CpG probes used by the best performing model (ImmuneAngioICIsMesECM + BORUTA) were mapped by Search Tool for the Retrieval of Interacting Genes (STRING) database (version 10.5 [49] ) by using Cytoscape (3.8.2) [50]. The PPI network was generated based on the medium confidence score of 0.40.

2.9. Computational Details

The classification pipeline was built on top of the Scikit Learn library, version 0.20.3 [51] and Python 3.6. All the experiments were run on a 32-core Intel Core i7 workstation with 128GB of RAM running CentOS 7.5. Cox regression and Kaplan–Meier survival curves were computed using R (version 3.6.1) with the survival and survminer packages. The Wilcoxon rank-sum test was used to compare the difference between the groups, while Kruskal–Wallis (K-W) test was adopted to evaluate the differences in risk scores across three or more groups.

3. Results

3.1. Definition of the EDISON Classification Flag

We analyzed publicly available datasets of primary glioma samples for which transcriptomic and epigenomic molecular profiles were available. We collected a total of 573 cases, of which 47 cases were GBMs and 506 cases were LGGs. This series of 573 glioma cases was used to develop the model irrespective of being GBMs or LGGs. Figure A2 represents the adopted workflow. Considering the transcriptomics to explore the immune environments landscape (Figure 1), we observed how the different subpopulations of gliomas based on the grade can be described by the the differential expression of some genes, capable of segregating GBMs from LGGs. The LGG group is enriched in IDH mutated cases. This is in keeping with previous published results showing that IDH mutations are associated with favorable immune composition within the TME and decreased leukocyte chemotaxis, leading to fewer tumor-associated immune cells and better outcome [52]. On the other hand, the GBM group is characterized by a high number of MGMT unmetylated cases [24]. Moreover, we evaluated all the cohort for the immune subtype classification, as described in Thorston et al. [18]. With this approach we found that the set of glioma cases employed in the present study is enriched in cases belonging to the subtype 4 (lymphocyte Depleted) and 5 (Immunologically Quiet). These results were in agreement with what previously described showing that the gliomas included in cluster subtype 4 are characterized by a more prominent macrophage signature, with a high M2 response and suppression of the Th1 T cell population, as well as that the glioma cases included in the cluster subtype 5 exhibit the lowest lymphocyte population and the highest macrophage response dominated by M2 macrophages [18,53,54,55].

Figure 1.

Figure 1

Transcriptomics landscape of patients with either glioblastoma (GBM) or low-grade glioma (LGG). The 2365 genes shown were used to develop the immune cluster subtype by Thorston et al. [18].

Based on these characteristics, peculiar of an immune suppressive TME, we chose to assess the immune-related signatures of the 573 sample RNA-seq data by using immunedecov (xCell tools) to comprehensively evaluate the transcriptome-based cell-type quantification [31].

Figure 2 shows the immune-cell-related gene expression signatures for the glioma cases included in the study. In this context, increasing evidence indicates that TME plays a critical role in supporting the progression of gliomas. In fact, the majority of immune-related cells within brain tumors are macrophages, often comprising up to 30% of the tumor mass [10]. Most TAMs are considered to have M2 phenotype. Increased infiltration of TAMs correlated with improved glioma progression and tumor grade, and predicts poor prognosis in GBM patients. This raises the intriguing possibility that targeting TAMs may be a successful therapeutic strategy for intractable gliomas and GBMs [21]. On the other hand, the capacity to evade the anti-tumoral immune response is associated to the subset of T cells termed CD4+ CD25+ regulatory T cells (Treg), that have been shown to inhibit the actions of the effector T lymphocytes [5,56]. Thus, we considered the possible influence of two different cell populations, i.e., Tregs and M2 TAMs by evaluating RNA-seq data for gene expression signatures associated with the immunosuppressive role of these two populations. Moreover, we also evaluated the expression of CD163 itself, being CD163 one of the most important surface markers of M2 TAMs, that has been recently associated to a prognostic role [14]. We labeled cases as Evade Immune SuppressiON (EDISON) positive with a low immunosuppression state if at least two among these three parameters—CD163, M2 TAMs and Tregs—were below the first quartile. The resulting classification describes the possibility that a patient evades the immuno-suppression state and for this reason we called the flag EDISON (EvaDe Immune SuppressiON) positive. Consistently, as reported in Figure 2, EDISON positive cases showed less immunesuppressive phenotypes with both low values of the stromal signature score and the microenviroment signature score, as well as low endothelial signature score [57]. GBM was shown to be characterized by extensive endothelial hyperplasia [58] and the related signatures reported in Figure 2 confirmed this peculiar state.

Figure 2.

Figure 2

Immune landscape of glioma patients. (A) Heatmap of immune signature computed on glioma cohorts from the TCGA study. The signature was calculated using immunodeconv (xCell) and the expression of gene CD163. The mutational status and immuno subtype are reported. (B) Kaplan–Meier survival curves showing OS interval based on the previously calculated flag on TCGA glioma patients. Time is reported in days. (C) Kaplan–Meier survival curves showed progression-free survival (PFS) intervals based on the previously calculated flag on TCGA glioma patients. Time is reported in days.

We also evaluated the capability of the EDISON classification by Kaplan–Meyer for assessing a prognostic significance using both overall survival (OS) and progression-free survival (PFS) intervals. We found that the EDISON positive cases showed significantly longer OS and PFS intervals than EDISON negative cases, thus confirming the importance of the immuno-suppressive-related parameters included in the EDISON flag (Figure 2B,C and Table 3). Figure A1 shows the EDISON classification in the context of IDH mutatant or IDH wildtype cases taken separately for both OS and PFI intervals.

Table 3.

Univariate Cox regression analysis of OS and PFS in the entire cohort included in the study using classification derived from RNA-seq data.

Endpoint Status Number of Samples HR 95% CI for HR p Value
OS EDISON+ n = 553 0.55 0.39–0.77 <0.01
PFI EDISON+ n = 553 0.57 0.43–0.75 <0.01

Abbreviations: OS, overall survival; PFI, progression-free survival; HR, hazard ratio; CI, confidence interval.

3.2. From RNA Genes to the Classification Model

The procedure adopted to process the epigenetic data, that includes the creation the EDISON label for the immunosuppressive state, the development of the classification models and their evaluation, is summarized in Figure A2, while a focus on the machine learning models is provided in Figure A3. As described in Section 2.1, we considered a dataset where the input features are β values from CpG probes and the target is a binary label corresponding to the EDISON flag. Starting from the genes used in Thorston et al. [18], we extracted the more informative genes to classify the immunosuppressive state [54,55,59,60,61]. We included also genes associated with the angiogenic signature, according to the prominent role of macrophages in tumor growth and angiogenesis [62], by including the angiomatrix signature reported by Langlois et al. [36]. Moreover, based on the fact that the response of ICIs has been shown to be relevant in both GBM and LGG [63], we evaluated a series of genes putatively related to responsiveness to ICIs, according to the GBM-associated signature reported in Zhao et al. [37]. More precisely, we compared the gene expression of the six GBM cases reported as Responsive against six GBM cases reported as Not Responsive and we obtained that 490 genes were differentially expressed, with adjusted p-values lower than 0.01.

The CpG beta values from 450 k Human DNA methylation microarray analysis consisted of 485,577 CpG methylation probes that were pre-processed by applying different basic filters to remove the useless probes, resulting in a final series of 355,314 CpG probes. A total of 6387 CpG probes were included in the overall signature we created and we labeled this set ImmuneAngioICIs. On such 6387 CpG probes, a first RF was created (Figure A3), and an out-of-sample MCC of 523 was obtained on the test set V (see Table 4).

Table 4.

Metrics obtained for the random forest model on different datasets. The metrics were computed both in cross-validation (CV) on the train set T (mean with 95% confidence intervals) and in out-of-sample evaluation on the test set V. In bold, the best performer.

Dataset ACC CV (CI) ACC Test MCC CV (CI) MCC Test
AllCpGs 0.713 (0.676–0.747) 0.756 0.435 (0.359–0.502) 0.538
ImmuneAngioICIs 0.7155 (0.679–0.754) 0.716 0.436 (0.368–0.512) 0.523
ImmuneAngioICIsMesECM 0.710 (0.674–0.748) 0.739 0.429 (0.354–0.504) 0.490
AllCpGs + BORUTA 0.736 (0.699–0.770) 0.755 0.478 (0.404–0.547) 0.532
ImmuneAngioICIs + BORUTA 0.717 (0.681–0.752) 0.729 0.443 (0.373–0.511) 0.469
ImmuneAngioICIsMesECM + BORUTA 0.747 (0.713–0.780) 0.793 0.498 (0.432–0.563) 0.589

Based on a recent review evaluating prognostic genes for GBM [38], we evaluated the possibility of including a second model called ImmuneAngioICIsMesECM as described in Section 2.2 [17,39,48]. This procedure created a new set of 6754 CpG probes that were evaluated to classify EDISON positive cases. This second model resulted in an out-of-sample MCC of 0.490.

Figure 3 shows the expression of genes included in the model (left panel), and average mean β value for each gene (right panel). While a clearly different expression can be explained for the EDISON classification, the average value for methylation seemed not to be sufficient to capture the methylation status. This result is in agreement with the complex modulation operated by the epigenetic regulation on gene expression. The resulting performance metrics are reported in Table 4. The model trained on ImmuneAngioICIsMesECM achieved a better out-of-sample accuracy, but a worse MCC.

Figure 3.

Figure 3

Genome-wide mean methylation status and matched transciptomic landscape from glioma cohort used in this study.

The application of a further step of feature selection, with the adoption of Boruta, resulted in an improvement of the metrics achieved by the RF classifiers, with the best results achieved with the dataset ImmuneAngioICIsMesECM + BORUTA. The 338 CpGs are listed in Table A2. As reported in Table 4, by using these features selected by Boruta in the datasets ImmuneAngioICIs + BORUTA and ImmuneAngioICIsMesECM + BORUTA, we obtained an out-of-sample MCC on VImmuneAngioICIs+BORUTA and VImmuneAngioICIsMesECM+BORUTA of 0.469 and 0.589, respectively.

Moreover, we evaluated the model fed by all the CpGs, either with or without the adoption of Boruta, and we observed a deterioration in the metrics with respect to our best performing model, trained on ImmuneAngioICIsMesECM + BORUTA (Table 4). This evidence substantiates the validity and the effectiveness of the expert selection.

To further improve the model, we also considered the regional studies of the principal genomic localization such as CpG islands, shores, shelves and open sea. However, by this approach, no improvement in performance was obtained (Table A1). However, shore regions showed a better predictive power with respect to the other regions. This is consistent with previous studies which showed that these regions are more correlated with the regulation of gene expression. Figure 4 shows the genome-wide methylation landscape based on the selected 338 CpG probes, divided by the EDISON flag. Several differences in methylation can be appreciated between EDISON negative and EDISON positive cases. Moreover, in both EDISON positive and EDISON negative categories, GBM and LGG show different behaviours.

Figure 4.

Figure 4

Genomic landscape of the 338 CpG probe selected for the classification model according to the EDISON classification flag.

3.3. Deep Learning for the EDISON Classification

We evaluated the adoption of a deep learning model in place of the RF. Fixing the dataset to ImmuneAngioICIsMesECM + BORUTA, we tested both a feed-forward multilayer perceptron (MLP) and a 1D convolutional architecture. We observed better results with an MLP consisting of the input layer (338 neurons), two hidden layers (128 neuron each) and the output layer (1 neuron). Such MLP achieved an out-of-sample MCC of 0.658 and an accuracy of 0.828 on the test set VImmuneAngioICIsMesECM+BORUTA (Table 5), outperforming the RF model.

Table 5.

Metrics obtained for the random forest and the MLP model on dataset ImmuneAngioICIsMesECM + BORUTA. The metrics were computed both in cross-validation (CV) on the train set T (mean with 95% confidence intervals) and in out-of-sample evaluation on the test set V. In bold, the best performer.

Model ACC CV (CI) ACC Test MCC CV (CI) MCC Test
RF 0.747 (0.713–0.780) 0.793 0.498 (0.432–0.563) 0.589
MLP 0.807 (0.795–0.819) 0.828 0.625 (0.601–0.647) 0.657

To assess the significance of the difference, we applied the McNemar test. We found that the difference in performance is significant, with a p value of 0.00952. This fact can also be visually appreciated by comparing the ROC curves (Figure 5).

Figure 5.

Figure 5

ROC curves of 3 models for EDISON classification using multilayer perceptron (MLP), convolutional neural network (CNN) and random forest (RF). All the models were trained on the dataset ImmuneAngioICIsMesECM + BORUTA. The out-of-sample AUC calculated on the test is also reported.

3.4. Biological Significance of the Selected CpG Probes

To gain insight into the biological significance of the model, we verified if the selected CpGs in ImmuneAngioICIsMesECM + BORUTA were correlated with the phenotype we tried to predict by our models. To do so, we applied the g-profile tool [64] to search for an enrichment in GO terms associated with the 338 CpG probes translated in genes. As expected, the selected go-terms were mainly associated with ECM organization, immune response, and regulation of cell adhesion (see Table 6 and Figure A5).

Table 6.

Top 30 terms’ signatures from enrichment analysis using gProfile on 338 CpG probe from the best model [64].

#Term ID Term Description Observed Gene Count Background Gene Count Strength False Discovery Rate
GO:0030198 extracellular matrix organization 31 296 1.14 1.01×1021
GO:0006955 immune response 43 1560 0.56 1.14×1010
GO:0002376 immune system process 49 2370 0.43 3.46×108
GO:0030155 regulation of cell adhesion 23 623 0.68 4.40×107
GO:0048514 blood vessel morphogenesis 18 381 0.79 7.85×107
GO:0001568 blood vessel development 19 464 0.73 2.19×106
GO:0007155 cell adhesion 25 843 0.59 3.49×106
GO:0009653 anatomical structure morphogenesis 40 1992 0.42 3.56×106
GO:0001525 angiogenesis 15 297 0.82 3.73×106
GO:0035239 tube morphogenesis 21 615 0.65 3.73×106
GO:0048583 regulation of response to stimulus 59 3882 0.3 7.44×106
GO:0010033 response to organic substance 48 2815 0.35 8.17×106
GO:0035295 tube development 23 793 0.58 1.03×105
GO:0002684 positive regulation of immune system process 24 882 0.55 1.54×105
GO:0071310 cellular response to organic substance 40 2219 0.37 3.37×105
GO:2000026 regulation of multicellular organismal development 36 1876 0.4 3.54×105
GO:0007492 endoderm development 8 76 1.14 3.63×105
GO:0050896 response to stimulus 91 7824 0.18 3.99×105
GO:0050776 regulation of immune response 23 873 0.54 4.03×105
GO:0045765 regulation of angiogenesis 13 277 0.79 4.46×105
GO:0045321 leukocyte activation 23 894 0.53 5.56×105
GO:0002443 leukocyte mediated immunity 19 632 0.59 6.19×105
GO:0070887 cellular response to chemical stimulus 44 2672 0.33 6.19×105
GO:0002274 myeloid leukocyte activation 18 574 0.61 6.69×105
GO:0010757 negative regulation of plasminogen activation 4 6 1.94 6.84×105
GO:0051239 regulation of multicellular organismal process 45 2788 0.32 6.84×105
GO:0002682 regulation of immune system process 29 1391 0.43 8.66×105
GO:0006027 glycosaminoglycan catabolic process 7 62 1.17 8.66×105
GO:0050778 positive regulation of immune response 18 589 0.6 8.66×105

Moreover, we performed an analysis of the genes related to the 338 CpG probes of ImmuneAngioICIsMesECM + BORUTA using STRING in the Cytoscape app (Figure A6). We found that the genes resulted in a linked network of protein–protein interaction (PPI) of 165 nodes and 4058 edges (Figure A5). We also evaluated the involvement of CpG methylation genes in the modulation of the gene expression of gliomas. In Table A8, the CpG probes highly correlated with gene expression are reported. Among these CpGs, we found correlation with genes belonging to angiogenesys pathway, ECM organization, immune response and checkpoint molecules. In Figure A7, several examples of positive and negative correlation are shown.

To perform a further selection of the most important CpG among the 338 in ImmuneAngioICIsMesECM + BORUTA, we applied random survival forest. The importance values obtained by the permutation analysis are depicted in Figure 6, while overall survival and progression free intervals are reported in Table A3 and Table A4, respectively.

Figure 6.

Figure 6

Variable importance of random survival forest model. (A) Top 20 CpG probes are reported with positive value influencing the OS interval, (B) Top 20 CpG probes are reported with negative influence OS interval, (C) Top 20 CpG probes are reported with positive value influencing the progression free survival, (D) Top 5 probes are reported with positive value influencing the progression-free survival.

3.5. Evaluation of the Transferability of the CpG Methylation Signature in Liquid Biopsy Samples

The methylation signature discussed in this study was obtained from primary glioma samples. However, although DNA methylation is tissue-specific, surrogate tissues such as blood are necessary due to the inaccessibility of human brain samples. Thus, we evaluated the possibility to obtain the genome-wide methylation using the blood to implement a liquid biopsy approach.

BECon (Blood–Brain Epigenetic Concordance; https://redgar598.shinyapps.io/BECon/ (accessed on 12 March 2020) is a tool that allows one to evaluate the concordance of CpGs between blood and brain, and to estimate how strongly a CpG is affected by the cell composition in both blood and brain. To perform such analyses, we imported the 338 CpGs of ImmuneAngioICIsMesECM + BORUTA on the BECon software tool and we selected the CpGs which varied in the most consistent way in the blood and in the brain. BECon select 113 CpG probes among 338. A LASSO Coxnet feature selection was then performed to detect the CpGs that can best explained both the overall survival (Figure A8, panel A) and the progression-free interval (Figure A8, panel B). Eighteen CpG probes were selected for the OS interval and eight for PFS (Table A6). The coefficients obtained from LASSO Coxnet were reported in Table A6. Positive values of coefficients were considered risk-associated in contrast to negative values which considered protective-associated. The GO terms analysis performed in positive and negative CpG associated probes is reported in Table A5.

4. Discussion

Gliomas are among the most common and aggressive primary tumors in adults [65]. Despite improved insight into the underlying molecular mechanisms, they are still hard to be treated and the prognosis of patients remains poor due to fast progress and scarcity of effective treatment strategies. The highly heterogeneous TME plays a substantial role in tumor malignancy and treatment responses. It is also related to the resistance of glioma cells to chemotherapy [10,59,66,67]. The glioma TME exerts a key role in tumor progression, in particular by providing an immunosuppressive state, with low number of TILs and of other immune effectors cell types as well as a high number of M2 macrophages, that contribute to tumor proliferation and growth [68]. Among the different processes regulating immune escape, TME-associated soluble factors, and/or cell surface-bound molecules are mostly responsible for dysfunctional activity of tumor-specific CD8+T cells. This TME immunosuppression could be involved in the capability of gliomas to respond to ICI treatment. A good understanding of TME and its mutual effects with tumor is important to reveal the treatment resistance mechanisms but also provide new strategies to improve the efficacy of these treatments including immunotherapies [61,69,70,71]. In this study, we systematically evaluated the possibility of creating an epigenetic model to stratify patients according to their capability to evade the immunosuppressive state peculiar of gliomas. We proposed the novel EDISON (EvaDe Immune SuppressiON) flag to summarize the contribution of macrophage M2 and Tregs in the immune suppressive state of gliomas. By comparing a random forest and two different neural network classifiers we showed the superiority of a multi-layer perceptron composed by two hidden layers. Such result is in agreement with that reported by other recent studies [72]. For most of the considered datasets and the models, we recorded higher metrics in the out-of-sample evaluation on the test set with respect to the cross-validation on the train set. This is a symptom of underfitting in the models. The most obvious and effective way to solve the issue, would be to include more samples in the dataset. Unfortunately, we were not able to find larger datasets to integrate our analysis. This could be considered as a limitation even if in an attempt to address the lack of an independent validation set, we followed the recommendations described in Shi et al. [43]. Moreover, further experiments are needed.

The proposed model could be used to predict the capability of the glioma patients to respond to immunotherapy such as ICIs. In this context, the employment of DNA methylation in place of RNA-seq data seems to provide a faster and more cost-effective approach.

Based on the results of the modelling, we defined a set of CpGs to be used as features: we proposed a final series of 338 CpGs related to genes belonging to ECM organization, immune response, angiogenesis and regulation of cell adhesion. Notably, the model trained on the 338 CpGs of ImmuneAngioICIsMesECM + BORUTA achieved better out-of-sample metrics than the ones trained on AllCpGs and AllCpGs + BORUTA. This evidence substantiates the validity and the effectiveness of the expert selection. Finally, we proposed a methylation signature that could be useful in the prediction of the clinical outcome of gliomas when liquid biopsy samples are used. Liquid biopsy represents a minimally invasive procedure that can provide similar information to what is usually obtained from a tissue biopsy samples. We found a small set of CpG (18 CpGs belong OS C and 8 CpGs PFS) that could be easily transferable to the laboratory routine for the classification of glioma patient by using BECon, a tool for interpreting DNA methylation features from blood. This could be useful in the management of glioma patients during the treatments. Moreover, several further suggestions could be highlighted regarding the involvement of the epigenetic modulation of the genes defined by the proposed model in key processes and mechanisms affecting the glioma pathogenesis and progression, such as ECM organization, immune response, angiogenesis and regulation of cell adhesion.

5. Conclusions

Despite the advances of molecular understanding and therapies that can be used for glioma treatment, clinical benefits have remained limited. A revelant role in treatment response is exerted by the TME in which the number of TILs and M2 macrophages is responsible for the degree of immunosuppression. In the present study, we proposed an epigenetic model to stratify patients according to their capability to evade the immune suppressive state called EDISON (EvaDe Immune SuppressiON) peculiar of gliomas. We demonstrated the superiority of the neural network composed by two hidden layers to classify the immunosuppressive state with respect to the random forest and convolutional approach. We also proposed a methylation signature that could be useful in the prediction of the clinical outcome of gliomas when liquid biopsy samples are used.

Acknowledgments

All the results here showed are based on data generated by the TCGA Research Network: https:/cancer.gov/tcga (accessed on 12 March 2020). For the processing of the data, tools provided by the Garr consortium were used as part of the agreement with the Ministry of Health for IRCCS, through the Garr Cloud Platform, a GDPR-compliant private-cloud system certified ISO 27001, ISO 27017 and ISO 27018 for information protection.

Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three-letter acronym
LD Linear dichroism
TME Tumor microenvironment
EDISON Evade immunosuppresion
TCGA The Cancer Genome Atlas
GBM Glioblastoma
LGG Low-grade glioma
CI Confidence interval
MLP Multi-layer percerptron
RF Random Forest
CNN Convolutional neural network
ECM Extracellular matrix
ICIs Immune checkpoint inhibitors
BECon Blood–Brain Epigenetic Concordance
MCC Matthew correlation coefficient
ACC Accuracy
Tregs T regulatory cells
MDSCs Myeloid-derived suppressor cells
TAMs Tumor-associated macrophages

Appendix A

Figure A1.

Figure A1

Figure A1

(A) Kaplan–Meier survival curves showing OS interval based on the previously calculated flag on TCGA glioma patients with IDH wild-type status. Time is reported in days. (B) Kaplan–Meier survival curves showing OS intervals based on the previously calculated flag on TCGA glioma patients with IDH mutated. Time is reported in days. (C) Kaplan–Meier survival curves showing PFI interval based on the previously calculated flag on TCGA glioma patients. with IDH wild-type status. Time is reported in days. (D) Kaplan–Meier survival curves showing PFS intervals based on the previously calculated flag on TCGA glioma patients with IDH mutated. Time is reported in days.

Figure A2.

Figure A2

Workflow for the development of a methylation-based machine learning model to predict the immune suppressive state responsiveness of glioma patients. (A) Development of the EDISON classification flag using transcriptomic data; (B) model construction on methylation dataset (Complete description present in Materials and Methods (Section 2.2).

Figure A3.

Figure A3

Machine learning workflow for developing the classification model starting by glioma dataset composed by Human Methylation data (450 k) composed by brain low-grade glioma (LGG) patients and glioblastoma (GBM).

Figure A4.

Figure A4

ROC curves of some models for EDISON classification with the indication of dataset used and the machine learning model used. The out-of-sample AUC calculated on the test is also reported. Random Forest (RF); multi-layer perceptron (MLP); convolutional neural network (CNN).

Table A1.

Model metrics in cross-validation (mean with confidence intervals) and on the test set using CpG probes derived from RNA. ACC: accuracy; MCC: Matthews Correlation, prec: Precision, recal: Recall Coefficient; CI: 95% studentized bootstrap confidence interval; RF: Random Forest.

Model Regions ACC (CI) ACC Test MCC (CI) MCC Test
RF IImmuneAngioICIsMesECM-ISLAND 0.724 (0.688–0.769) 0.747 0.460 (0.389–0.549) 0.522
RF ImmuneAngioICIsMesECM-OPENSEA 0.725 (0.689–0.762) 0.691 0.456 (0.386–0.533) 0.469
RF ImmuneAngioICIsMesECM-SHORE 0.749 (0.705–0.790) 0.774 0.501 (0.417–0.583) 0.553
RF ImmuneAngioICIsMesECM-SHELF 0.758 (0.722–0.789) 0.747 0.529 (0.459–0.593) 0.510
RF ImmuneAngioICIs-ISLAND 0.756 (0.716–0.792) 0.758 0.514 (0.439–0.587) 0.518
RF ImmuneAngioICIs-SHORE 0.753 (0.710–0.798) 0.734 0.509 (0.422–0.598) 0.536
RF ImmuneAngioICIs- OPENSEA 0.729 (0.757–0.700) 0.738 0.463 (0.406–0.520) 0.490
RF ImmuneAngioICIs-SHELF 0.725 (0.685–0.763) 0.720 0.457 (0.373–0.537) 0.543

Table A2.

338 CpG probes included in best model to classify patient according to the EDISON flag.

CpG Gene
cg01681098 SENCR, FLI1
cg24457026 GRN
cg13909178 RP11-744N12.3 FLI1
cg03531211 XXbac-BPG181M17.5, HLA-DMA
cg04917472 CTSZ
cg21012874 MMRN2, SNCG
cg13662634 RALGPS1, ANGPTL2
cg17054708 FBLN2
cg10453850 AL645941.1, HLA-DMB, XXbac-BPG181M17.5
cg23008352 COL4A1
cg24421410 XXbac-BPG181M17.5, HLA-DMA
cg07852825 GHSR
cg04499514 C3AR1
cg16436782 RP11-212E4.1, COL4A1
cg03677069 MMRN2, SNCG
cg00215182 C1QB
cg13353679 AFF3, AC092667.2
cg14082886 CD44
cg09552892 MMRN2, SNCG
cg04275881 SLAMF8
cg02072495 ANXA2
cg00338116 EPSTI1
cg10762214 INPP5A
cg10070185 SERPINA1
cg13810673 GPR65
cg07857225 PLXND1
cg11037750 TGFB1
cg07450037 HOTAIRM1, HOXA1, HOTAIRM1_1
cg22568423 MYO1F
cg01436254 CD86
cg17451419 CYR61
cg18273417 S100A4
cg18837947 CCNG2
cg27565899 AMPD2
cg07625783 SLAMF8
cg13371976 PRELP
cg24815934 ITGB2
cg17599241 VCAN-AS1, VCAN
cg10518264 HLA-DMB, XXbac-BPG181M17.5
cg11800635 DOK1, LOXL3
cg26357596 GZMA
cg09456094 SP100
cg11827097 SP100
cg04131610 CCR5, RP11-24F11.2
cg00609834 SPON1
cg08076018 RALGPS1, ANGPTL2
cg06746774 KIAA1522
cg13700051 TTC33
cg17928895 CTSZ
cg15550100 ATG4B
cg07251141 ADAM12
cg26969179 ADAM12
cg18245281 CTSZ
cg00539174 CTSZ
cg17571335 FLI1
cg25428929 ATG4B
cg01536987 EPSTI1
cg20694619 TRAF3IP3
cg03970350 PES1, TCN2
cg13765206 EMILIN2
cg04217515 ITGB2
cg14994258 PXDN
cg11029367 HEG1
cg00765737 COL4A2
cg07464217 CTSZ
cg03075156 PRKCE
cg08655071 TRAF3IP3
cg00295382 MYCL
cg14903689 COL18A1
cg19408145 CD48
cg17420036 HSPG2
cg18274749 HSPG2
cg07436701 MMRN2, SNCG
cg02744249 CTSZ
cg22116670 CTB-113P19.1, SPARC
cg24192663 HSPA6, RP11-25K21.6, FCGR2A
cg13785221 ANXA2
cg17801352 PXDN
cg05887821 INPP5A
cg18411043 LAPTM5
cg03478249 EPSTI1
cg21936552 BAHCC1
cg05200628 CD48
cg01930947 C1orf111, RP11-565P22.6, C1orf226
cg10330169 DIS3L2
cg10587741 LGALS1
cg24539923 SERPINE1
cg10768321 CTC-301O7.4, CD37
cg09538921 IL27RA, CTB-55O6.4
cg18968623 INPP5A
cg08064683 FAT1
cg06330722 PCOLCE, PCOLCE-AS1
cg10307548 SOD3
cg09707038 CALM2, RP11-761B3.1
cg16024530 FLI1
cg13790288 CD28
cg08139855 CSF1
cg19919590 LAPTM5
cg20600379 HLA-DMB, XXbac-BPG181M17.5
cg24375627 S100A6
cg12339920 TGFBI
cg27617132 INPP5A
cg03682712 LOXL1, LOXL1-AS1
cg21746573 PRKCE
cg19506628 CEP72
cg17319576 CYR61
cg17911539 C3orf22, CHST13
cg04232128 TMEM173
cg05360958 C12orf60, MGP
cg04755674 IL27RA, CTB-55O6.4
cg03013554 ITGB2
cg04297819 HSPG2
cg00799121 ADAMTS2
cg08321366 MMP14
cg19722814 SERPINE1
cg14943796 BAHCC1
cg04771838 COL4A2
cg11581627 CD33
cg14991595 MB21D2
cg15347156 MMRN2
cg04153551 FBLN5
cg06222012 AC078941.1, AC023115.2
cg04244970 SLAMF7
cg22704788 PRELP
cg21043746 ADAMTS2
cg26532826 PES1, TCN2
cg13962321 HIST2H2BB, RP5-998N21.7, RP5-998N21.10
cg11702456 SP100
cg09076123 NCF2, SMG7
cg08825225 FLI1
cg17713010 LAIR1
cg15522984 LAMC1
cg08682341 INPP5A
cg03813885 CFAP97, SNX25
cg10845380 SLC7A7
cg12613839 ADAMTS2
cg02588309 TTC33
cg02189760 CTC-301O7.4, CD37
cg16925003 PXDN
cg07947930 PRELP
cg06410158 INPP5A
cg24644113 TADA1
cg27547543 POU5F1
cg21860679 DUSP6, RP11-823E8.3
cg27329371 ALDH3A1
cg00771084 ATG4B
cg11594010 INPP5A
cg11301254 TTC33
cg09926389 TGFB1
cg03982087 RAB31
cg02286081 HLA-DPA1, HLA-DPB1
cg26025068 PPP1R8
cg00078334 MMP2
cg23638686 INPP5A
cg19755435 GPR65
cg08530414 RP4-607I7.1, CD44
cg15999547 TMEM54, HPCA
cg26214645 SECTM1
cg25206536 MIR572
cg20502977 COL6A3
cg23659056 FOXD2, FOXD2-AS1
cg23986671 ADAMTS5
cg26138144 LGALS1
cg07855465 BAHCC1
cg03196766 THBS1
cg17859552 INPP5A
cg18900669 RP11-186B7.4, CD68
cg19915711 EPSTI1
cg10974980 LOXL1
cg08612539 CTA-833B7.2, NCF4
cg18397405 GPC6
cg00450164 TRAF3IP3
cg26650846 ADAMTS2
cg04098585 CD28
cg16826739 INPP5A
cg24767336 TGFB1, CTC-435M10.3, TMEM91
cg03006477 CD109
cg16713274 COL18A1, LL21NC02-21A1.1
cg25450450 CTB-118N6.2, SEMA6A
cg09277376 FOXD2-AS1
cg03440588 FOXD2, FOXD2-AS1
cg24129356 XXbac-BPG181M17.5, HLA-DMA
cg16121744 COL18A1
cg14139008 DNM1
cg24226528 TMEM37
cg11875119 PES1, TCN2
cg01508380 MMP14
cg09280946 CTSC
cg02543462 IL1RN
cg00142150 LGALS1
cg21005525 ARF1
cg07697770 TGFBI
cg03930369 COL4A2
cg06671298 BAHCC1
cg15254671 MYO1F
cg00292662 LGALS1
cg21236655 TNC
cg07724259 EMILIN2
cg23865240 HOTAIRM1, HOXA1
cg09321817 HLA-DPA1
cg18595867 FOXD2-AS1
cg22158252 BMP8A
cg27438456 INPP5A
cg07085815 SERPINE2
cg18644834 ANKRA2, UTP15
cg24287218 HLA-DPA1
cg24707889 ITGB2, ITGB2-AS1
cg09269866 FOXD2, FOXD2-AS1
cg03753191 EPSTI1
cg22716262 MPP7
cg22595235 SUMF1, LRRN1
cg19575208 HLA-DRB1
cg06507307 INPP5A
cg13939271 DNM1
cg23225572 RP11-565P22.6, NOS1AP, C1orf226
cg11197101 KIAA1522
cg21869219 ARHGAP31
cg10954654 CTSS
cg20481110 SECTM1
cg11804789 CST7
cg25214684 AKIRIN1
cg15114672 VCAN
cg00516966 ALDH3A1
cg14791054 RP11-66B24.4, ALDH1A3
cg00816609 FBLN2
cg03055440 MS4A6A
cg21218883 PRKCE
cg02458945 MMP2
cg22118297 ADAMTS9, ADAMTS9-AS1
cg20640433 LAMA2
cg12689670 LAMC1
cg03573861 BAHCC1
cg07438421 SERPINF1
cg05822532 ELN
cg15849060 ALDH3A1
cg02784696 C2orf44, MFSD2B
cg26399819 MIER3
cg18832223 CEP72
cg09777237 ELN
cg15504747 PLXND1
cg01338658 LAMC1
cg00894134 DNM1
cg25306579 INPP5A
cg00532319 RPN1
cg07906179 BAHCC1
cg24493834 LAMA2, MESTP1
cg22136020 CSPG4
cg01320433 XXyac-YX65C7_A.2, THBS2
cg10989879 CFAP97, SNX25
cg15459165 LAPTM5
cg01623438 CTSZ
cg12253414 ITGB5
cg00777079 SERPINF1
cg08638320 FOXD2, FOXD2-AS1
cg05831823 CR2
cg12630520 SPARCL1
cg23446438 MYO1F
cg06728055 WWTR1
cg05492532 INPP5A
cg09545579 BAHCC1
cg26204079 RP11-400N9.1, DGKD
cg14291900 SLC7A7
cg21475610 CCNG2
cg07575373 CTC-301O7.4, CD37
cg05658236 FOXD2-AS1
cg15046675 CTC-301O7.4, CD37
cg22216491 CASP6
cg05091653 SP100
cg11076970 HLA-DOA
cg26262232 XXbac-BPG181M17.5, HLA-DMA
cg25645491 HLA-DRA
cg23173573 DUSP10
cg14880894 CNOT6L
cg02316283 MMP14
cg05041061 BAHCC1
cg12937501 AC106875.1, LPIN1
cg26034531 LPPR5, RP5-896L10.1
cg06390079 ALDH3A1
cg01120369 PLXND1
cg18764513 SLC7A7
cg05830842 COL14A1
cg11728145 PXDN
cg07659054 HOTAIRM1, HOXA1
cg13802966 CASP1
cg13865810 COL15A1, RP11-92C4.6
cg07623567 HLA-DMB, XXbac-BPG181M17.5
cg11912272 SPATS2L
cg17016011 INPP5A
cg00416645 AC007563.5, IGFBP5
cg01997629 TRAF3IP3
cg10928302 RBM6, RBM5
cg02957057 NID1
cg17081489 RP4-798P15.3, SEC16B
cg10001720 LAPTM5
cg20407868 INPP5A
cg24769499 TMEM37
cg26350754 HLA-DPA1, HLA-DPB1
cg10949632 GPC6
cg22905097 EPSTI1
cg26066361 CLEC7A
cg09099927 RP11-333E13.4
cg17611512 COL18A1, COL18A1-AS1
cg13477614 BAHCC1
cg25913233 CTB-113P19.1, SPARC
cg07616471 CCR5, RP11-24F11.2
cg04654716 CTD-2377O17.1, FAM169A
cg08471739 PLXND1
cg27297192 INPP5A
cg04851268 GHSR
cg24931346 C1QB
cg21784272 FAT1
cg22987448 MYO1F
cg22164238 AMPD2, GNAT2
cg08288016 FAT1
cg21398469 CCNG2
cg22384395 RP11-66B24.9, ALDH1A3
cg05710142 KIAA1522
cg21904489 ARHGAP31
cg01975495 SERPINE1
cg12917072 ADAMTS12
cg03393607 AFF3, AC092667.2
cg01821226 PXDN
cg05955301 PRELP
cg27470554 FCGR2A
cg06238491 LAIR1
cg22695532 RP11-475O6.1
cg00742851 SUMF1, LRRN1
cg27553626 PPP1R8
cg25394505 INPP5A
cg08735211 XXbacBPG181M17.5, HLA-DMA
cg09983885 TRIM21
cg26514080 KIAA1522
cg05886789 PLXDC2
cg05826823 CIZ1, DNM1
cg20367923 XXyac-YX65C7_A.2, THBS2
cg24023498 NR4A2
cg16239257 LTBP2
cg17331738 NES

Table A3.

Top features detected by permutation analysis from Random Survival Forest using PFS selected by 338 CpG probes.

Feature Weight std Gene Direction
cg02458945 0.00167149 0.0004095 MMP2 Positive
cg03478249 0.00245778 0.00088256 EPSTI1 Positive
cg04131610 0.00323843 0.00146985 CCR5, RP11-24F11.2 Positive
cg04217515 0.00200311 0.00073152 ITGB2 Positive
cg04244970 0.00166519 0.00067762 SLAMF7 Positive
cg05091653 0.00216262 0.00032063 SP100 Positive
cg05887821 0.00216972 0.00032553 INPP5A Positive
cg07623567 0.00210498 0.00037064 HLA-DMB, XXbac-BPG181M17.5 Positive
cg08612539 0.00185325 0.00028535 CTA-833B7.2, NCF4 Positive
cg09076123 0.00165326 0.0007419 NCF2, SMG7 Positive
cg10307548 0.00294971 0.00098171 SOD3 Positive
cg10330169 0.00418932 0.00097532 DIS3L2 Positive
cg11197101 0.00227763 0.00036055 KIAA1522 Positive
cg13865810 0.00176505 0.00045972 COL15A1, RP11-92C4.6 Positive
cg16436782 0.00390891 0.00123599 RP11-212E4.1, COL4A1 Positive
cg17331738 0.00264999 0.00031466 NES Positive
cg19722814 0.00184012 0.00034522 SERPINE1 Positive
cg21475610 0.00337569 0.00100237 CCNG2 Positive
cg24192663 0.00203206 0.00052522 HSPA6, RP11-25K21.6, FCGR2A Positive
cg24815934 0.00283711 0.00098436 ITGB2 Positive
cg00450164 −2.33 ×105 0.00011302 TRAF3IP3 Negative
cg00532319 −5.25 ×105 9.97 ×105 RPN1 Negative
cg00539174 −1.10 ×105 0.0001254 CTSZ Negative
cg01623438 −0.0001147 0.00016634 CTSZ Negative
cg23008352 −6.65 ×105 0.00011621 COL4A1 Negative

Table A4.

Top features detected by permutation analysis from Random Survival Forest using OS interval selected by 338 CpG probes.

Feature Weight std Gene Direction
cg01436254 −0.0003291 0.00023658 CD86 Negative
cg03006477 −0.000143 0.00015906 CD109 Negative
cg03970350 −0.0002618 0.0001385 PES1, TCN2 Negative
cg04098585 −0.0002341 8.09 ×105 CD28 Negative
cg04131610 −0.0001756 0.00013193 CCR5, RP11-24F11.2 Negative
cg04217515 −0.0003524 0.00027475 ITGB2 Negative
cg05200628 −0.0003555 0.00013671 CD48 Negative
cg06728055 −0.0002169 0.00021168 WWTR1 Negative
cg07625783 −0.0002587 8.14 ×105 SLAMF8 Negative
cg08321366 −0.0002504 0.0001037 MMP14 Negative
cg08471739 −0.0002763 0.00018392 PLXND1 Negative
cg11800635 −0.0001998 0.00016978 DOK1, LOXL3 Negative
cg13939271 −0.0002059 0.00018542 DNM1 Negative
cg14903689 −0.0001355 0.00015751 COL18A1 Negative
cg16121744 −0.0001452 0.00012391 COL18A1 Negative
cg17859552 −0.0003278 0.00012804 INPP5A Negative
cg19755435 −0.0001786 0.00014323 GPR65 Negative
cg22384395 −0.0002037 0.00018963 RP11-66B24.9, ALDH1A3 Negative
cg24421410 −0.0001716 6.39 ×105 XXbac-BPG181M17.5, HLA-DMA Negative
cg26066361 −0.0001566 0.00031627 CLEC7A Negative
cg00295382 0.00069785 0.00031361 MYCL Positive
cg00777079 0.00194878 0.00093506 SERPINF1 Positive
cg01930947 0.00214195 0.00092059 C1orf111, RP11-565P22.6, C1orf226 Positive
cg02957057 0.00074669 0.00018464 NID1 Positive
cg03196766 0.00218507 0.00059328 THBS1 Positive
cg04297819 0.00081885 0.00047748 HSPG2 Positive
cg04499514 0.00142254 0.00078907 C3AR1 Positive
cg05091653 0.00080697 0.00048847 SP100 Positive
cg06222012 0.00135962 0.00059195 AC078941.1, AC023115.2 Positive
cg11702456 0.0028937 0.00103411 SP100 Positive
cg11827097 0.00201346 0.00095397 SP100 Positive
cg13765206 0.00158138 0.00079435 EMILIN2 Positive
cg14082886 0.00079245 0.00050107 CD44 Positive
cg14291900 0.00181238 0.00080766 SLC7A7 Positive
cg16713274 0.00066793 0.00025659 COL18A1, LL21NC02-21A1.1 Positive
cg18411043 0.0019083 0.00079707 LAPTM5 Positive
cg20640433 0.00088705 0.00032218 LAMA2 Positive
cg21218883 0.00094513 0.00049267 PRKCE Positive
cg23986671 0.00069697 0.00025722 ADAMTS5 Positive
cg24769499 0.00116293 0.00021175 TMEM37 Positive

Table A5.

Gene ontology (GO) that define biological function. The GO annotations, accompanied by evidence-based statements describe specific gene product and specific ontology term (biological function). g-profile enrichment terms obtained from positive and negative values of 18 CpGs selected from BECon on overal survival by LASSO procedure. All the data have p value low than 0.05. MF: molecular function, CC: cellular component, BP: biological process.

Source Term_NAME Term_id Adjusted_p_Value Negative_log10_of _Adjusted_p_Value Direction Coefficient
GO:MF glycosaminoglycan binding GO:0005539 0.008788287085578 2.05609576449095 Negative
GO:CC collagen-containing extracellular matrix GO:0062023 0.048474322092945 1.31448825575832 Negative
KEGG ECM-receptor interaction KEGG:04512 0.037233188408127 1.42906977203396 Negative
CORUM CD44-LRP1 complex CORUM:7535 0.049698019554143 1.30366091738024 Negative
GO:MF growth hormone secretagogue receptor activity GO:0001616 0.049775611543161 1.3029833955258 Positive
GO:BP regulation of neurotransmitter receptor localization to postsynaptic specialization membrane GO:0098696 0.000167004924934 3.77727072142761 Positive
GO:BP regulation of receptor localization to synapse GO:1902683 0.001168645063196 2.93231737121765 Positive
GO:BP protein localization to postsynaptic specialization membrane GO:0099633 0.001335544908879 2.8743415038609 Positive
GO:BP neurotransmitter receptor localization to postsynaptic specialization membrane GO:0099645 0.001335544908879 2.8743415038609 Positive
GO:BP regulation of protein localization to synapse GO:1902473 0.003070843427737 2.51274232624767 Positive
GO:BP protein localization to postsynaptic membrane GO:1903539 0.007006418620425 2.15450391795907 Positive
GO:BP protein localization to postsynapse GO:0062237 0.009117775996435 2.04011108165666 Positive
GO:BP response to dexamethasone GO:0071548 0.009117775996435 2.04011108165666 Positive
GO:BP regulation of postsynaptic membrane neurotransmitter receptor levels GO:0099072 0.013616524667261 1.86593372285098 Positive
GO:BP receptor localization to synapse GO:0097120 0.013616524667261 1.86593372285098 Positive
GO:BP protein localization to synapse GO:0035418 0.033345288657273 1.47696551870962 Positive

Figure A5.

Figure A5

Enrichment of GO terms from 338 CpG probes obtained from the best model. GO terms are plotted according to adjusted p-values (BH). Bar sizes represent the number of CpGs translated as genes that fall within a GO category; DE and colour represent the adjusted p-values (BH).

Figure A6.

Figure A6

Protein–protein interaction (PPI) network of the genes from 338 CpG probes of ImmuneAngioICIsMesECM + BORUTA using STRING in the Cytoscape app [50].

Figure A7.

Figure A7

Figure A7

Correlation between CpG probes selected among 338 CpGs with gene expression of some revelant genes. On the x-axis, the methylation status is reported, on the y-axis, RNA expression values are reported. Correlation values by Pearson and p-value are reported for each panel.

Figure A8.

Figure A8

Figure A8

Feature selection using LASSO COXNET of the 113 CpGs selected by BECon. The 18 CpGs selected for OS (A) and 8 for PFS interval (B) are reported.

Table A6.

Feature selection with the coefficient value and gene name of CpG probe selected by LASSO COXNET in the context of the developed signature for liquid biopsy based on BECon.

CpG COEFFICIENT GENE INTERVAL
cg01320433 −0.1592041 XXyac-YX65C7_A.2, THBS2 PFS
cg01508380 −0.33756425 MMP14 PFS
cg06222012 −0.5359208 AC078941.1, AC023115.2 PFS
cg06728055 −0.07162224 WWTR1 PFS
cg11029367 −0.30043008 HEG1 PFS
cg13371976 −1.39825624 PRELP PFS
cg22716262 −0.04181589 MPP7 PFS
cg26066361 −0.17464321 CLEC7A PFS
cg01320433 −0.37578276 XXyac-YX65C7_A.2, THBS2 OS
cg02744249 −0.5024627 CTSZ OS
cg04244970 −0.11253157 SLAMF7 OS
cg04851268 0.96144542 GHSR OS
cg06222012 −1.06780331 AC078941.1, AC023115.2 OS
cg07438421 0.31295409 SERPINF1 OS
cg08612539 −0.90719367 CTA-833B7.2, NCF4 OS
cg08655071 −0.10973404 TRAF3IP3 OS
cg10949632 0.5123932 GPC6 OS
cg13371976 −1.01620416 PRELP OS
cg14082886 −1.13578356 CD44 OS
cg14943796 0.65287911 BAHCC1 OS
cg18595867 0.93613126 FOXD2-AS1 OS
cg20367923 −0.03248293 XXyac-YX65C7_A.2, THBS2 OS
cg22116670 −0.75216037 CTB-113P19.1, SPARC OS
cg22695532 −0.67502749 RP11-475O6.1 OS
cg26066361 −1.14858784 CLEC7A OS
cg26350754 0.88852671 HLA-DPA1, HLA-DPB1 OS

Table A7.

Correlation of CpG probes with genes that have high correlation values from 338 CpGs used to create the model.

CpG geneCpG Gene rho p Value Correlation Strength
cg13353679 AFF3, AC092667.2 HAVCR2 0.67520241 2.65 ×107 high
cg13353679 AFF3, AC092667.2 CCR4 0.62698564 3.13 ×106 high
cg13353679 AFF3, AC092667.2 TGFB1 0.72533605 1.19 ×108 high
cg13353679 AFF3, AC092667.2 IL10 0.75708106 1.14 ×109 high
cg22568423 MYO1F HAVCR2 0.6391164 1.75 ×106 high
cg22568423 MYO1F TGFB1 0.61936567 4.45 ×106 high
cg22568423 MYO1F IL10 0.65815888 6.66 ×107 high
cg17599241 VCAN-AS1, VCAN HAVCR2 0.6225838 3.84 ×106 high
cg17599241 VCAN-AS1, VCAN TGFB1 0.66056385 5.87 ×107 high
cg17599241 VCAN-AS1, VCAN IL10 0.71015235 3.25 ×108 high
cg08064683 FAT1 CCR4 0.60946563 6.94 ×106 high
cg08064683 FAT1 TGFB1 0.7482646 2.26 ×109 high
cg08064683 FAT1 IL10 0.66059345 5.86 ×107 high
cg00799121 ADAMTS2 HAVCR2 0.6833261 1.67 ×107 high
cg00799121 ADAMTS2 TGFB1 0.69708683 7.37 ×108 high
cg00799121 ADAMTS2 IL10 0.71008968 3.26 ×108 high
cg04153551 FBLN5 HAVCR2 0.6642975 4.81 ×107 high
cg04153551 FBLN5 CCR4 0.63922606 1.74 ×106 high
cg04153551 FBLN5 TGFB1 0.64462765 1.33 ×106 high
cg04153551 FBLN5 IL10 0.75654189 1.19 ×109 high
cg22704788 PRELP HAVCR2 0.66998995 3.53 ×107 high
cg22704788 PRELP TGFB1 0.64874971 1.08 ×106 high
cg22704788 PRELP IL10 0.71501411 2.37 ×108 high
cg12613839 ADAMTS2 HAVCR2 0.70546862 4.38 ×108 high
cg12613839 ADAMTS2 TGFB1 0.70966683 3.35 ×108 high
cg12613839 ADAMTS2 PDCD1LG2 0.60313469 9.15 ×106 high
cg12613839 ADAMTS2 IL10 0.7323874 7.25 ×109 high
cg02189760 CTC-301O7.4, CD37 HAVCR2 0.64276143 1.46 ×106 high
cg02189760 CTC-301O7.4, CD37 TGFB1 0.65060293 9.85 ×107 high
cg02189760 CTC-301O7.4, CD37 IL10 0.68557785 1.46 ×107 high
cg07947930 PRELP HAVCR2 0.66424332 4.82 ×107 high
cg07947930 PRELP TGFB1 0.68739449 1.32 ×107 high
cg07947930 PRELP PDCD1LG2 0.62213951 3.92 ×106 high
cg07947930 PRELP IL10 0.6692665 3.68 ×107 high
cg27329371 ALDH3A1 HAVCR2 0.63023007 2.68 ×106 high
cg27329371 ALDH3A1 TGFB1 0.666298 4.32 ×107 high
cg27329371 ALDH3A1 PDCD1LG2 0.6318309 2.49 ×106 high
cg27329371 ALDH3A1 IL10 0.69220582 9.90 ×108 high
cg25206536 MIR572 HAVCR2 0.65967075 6.15 ×107 high
cg25206536 MIR572 TGFB1 0.65401204 8.27 ×107 high
cg25206536 MIR572 IL10 0.71059003 3.16 ×108 high
cg20502977 COL6A3 IL10 0.66111585 5.70 ×107 high
cg18397405 GPC6 CTLA4 0.62938967 2.79 ×106 high
cg18397405 GPC6 HAVCR2 0.64510535 1.30 ×106 high
cg18397405 GPC6 CCR4 0.65623064 7.37 ×107 high
cg18397405 GPC6 TGFB1 0.75578234 1.26 ×109 high
cg18397405 GPC6 IL10 0.76613612 5.48 ×1010 high
cg16121744 COL18A1 HAVCR2 0.76562289 5.72 ×1010 high
cg16121744 COL18A1 TGFB1 0.72925722 9.04 ×109 high
cg16121744 COL18A1 IL10 0.77214535 3.31 ×1010 high
cg15254671 MYO1F HAVCR2 0.73827055 4.76 ×109 high
cg15254671 MYO1F IL10 0.70599224 4.24 ×108 high
cg22595235 SUMF1, LRRN1 CTLA4 0.61078204 6.55 ×106 high
cg09777237 ELN HAVCR2 0.67250205 3.08 ×107 high
cg09777237 ELN TGFB1 0.61588628 5.21 ×106 high
cg09777237 ELN IL10 0.68055003 1.96 ×107 high
cg21475610 CCNG2 TGFB1 0.68792815 1.28 ×107 high
cg21475610 CCNG2 IL10 0.6470373 1.18 ×106 high
cg11076970 HLA-DOA CCL22 0.68567625 1.46 ×107 high
cg17611512 COL18A1, COL18A1-AS1 HAVCR2 0.67446387 2.76 ×107 high
cg17611512 COL18A1, COL18A1-AS1 TGFB1 0.75562488 1.28 ×109 high
cg17611512 COL18A1, COL18A1-AS1 IL10 0.76622066 5.44 ×1010 high
cg22987448 MYO1F HAVCR2 0.70835256 3.65 ×108 high
cg22987448 MYO1F TGFB1 0.63248797 2.41 ×106 high
cg22987448 MYO1F IL10 0.70835142 3.65 ×108 high
cg21398469 CCNG2 TGFB1 0.61126793 6.41 ×106 high
cg05955301 PRELP HAVCR2 0.64915158 1.06 ×106 high
cg05955301 PRELP TGFB1 0.658497 6.55 ×107 high
cg05955301 PRELP IL10 0.69042987 1.10 ×107 high
cg00742851 SUMF1, LRRN1 HAVCR2 0.64108721 1.59 ×106 high
cg00742851 SUMF1, LRRN1 CCR4 0.65102622 9.64 ×107 high
cg00742851 SUMF1, LRRN1 TGFB1 0.73293612 6.98 ×109 high
cg00742851 SUMF1, LRRN1 IL10 0.75167928 1.74 ×109 high

Table A8.

Correlation among 338 CpG probes with gene expression of paired sample that present a high correlation value and significant p value.

CpG Gene rho p Value CpGgene Magnitude
cg02957057 DEFB126 0.99984824 4.85×1079 NID1 high
cg20640433 LRRIQ4 −0.8429582 2.00×1013 LAMA2 high
cg02957057 ZDHHC8P1 −0.8399142 2.96×1013 NID1 high
cg23986671 KRTAP6-3 0.83840023 3.58×1013 ADAMTS5 high
cg20640433 TXK −0.8184023 3.75×1012 LAMA2 high
cg20640433 NLRP14 −0.8100527 9.19×1012 LAMA2 high
cg20640433 DEFB126 0.80488085 1.57×1011 LAMA2 high
cg16713274 OR56A5 0.79052422 6.38×1011 COL18A1 high
cg02957057 RFESD −0.7883283 7.83×1011 NID1 high
cg02957057 MMACHC −0.7871875 8.70×1011 NID1 high
cg20640433 GRP −0.7852917 1.04×1010 LAMA2 high
cg02957057 ISPD −0.7804697 1.60×1010 NID1 high
cg02957057 OSBPL9 −0.7789042 1.84×1010 NID1 high
cg20640433 FBXO17 −0.7746792 2.66×1010 LAMA2 high
cg16121744 IL10 0.77214535 3.31×1010 COL18A1 high
cg18397405 CCR5 0.76767048 4.82×1010 GPC6 high
cg18397405 CD96 0.7668386 5.17×1010 GPC6 high
cg17611512 IL10 0.76622066 5.44×1010 COL18A1 high
cg18397405 IL10 0.76613612 5.48×1010 GPC6 high
cg16121744 HAVCR2 0.76562289 5.72×1010 COL18A1 high
cg02957057 PCGEM1 0.76170335 7.88×1010 NID1 high
cg02957057 ANKRD7 −0.7606609 8.57×1010 NID1 high
cg13353679 IL10 0.75708106 1.14×109 AFF3, AC092667.2 high
cg04153551 IL10 0.75654189 1.19×109 FBLN5 high
cg18397405 TGFB1 0.75578234 1.26×109 GPC6 high
cg17611512 TGFB1 0.75562488 1.28×109 COL18A1, COL18A1-AS1 high
cg18397405 ITGB2 0.75480536 1.37×109 GPC6 high
cg20640433 FAHD2B −0.7544591 1.40×109 LAMA2 high
cg00742851 IL10 0.75167928 1.74×109 SUMF1, LRRN1 high
cg23986671 TAF1L −0.7511669 1.81×109 ADAMTS5 high
cg08064683 TGFB1 0.7482646 2.26×109 FAT1 high
cg20640433 IL22RA1 −0.7447273 2.96×109 LAMA2 high
cg18411043 GIMAP5 0.74431857 3.05×109 LAPTM5 high
cg02957057 FRMPD2 −0.7389076 4.54×109 NID1 high
cg02957057 FAHD2B −0.7387551 4.59×109 NID1 high
cg15254671 HAVCR2 0.73827055 4.76×109 MYO1F high
cg18397405 CD163 0.73748155 5.04×109 GPC6 high
cg16713274 C6orf132 −0.7366047 5.37×109 COL18A1 high
cg20640433 ZDHHC8P1 −0.7353041 5.89×109 LAMA2 high
cg02957057 MAP1LC3A −0.7341328 6.41×109 NID1 high
cg00742851 TGFB1 0.73293612 6.98×109 SUMF1, LRRN1 high
cg12613839 IL10 0.7323874 7.25×109 ADAMTS2 high
cg18411043 WDR76 −0.7298891 8.65×109 LAPTM5 high
cg16121744 TGFB1 0.72925722 9.04×109 COL18A1 high
cg18411043 SALL3 −0.7280974 9.80×109 LAPTM5 high
cg20640433 GUCY2D −0.7279513 9.90×109 LAMA2 high
cg20640433 ALDH7A1 −0.7273038 1.04×108 LAMA2 high
cg13353679 TGFB1 0.72533605 1.19×108 AFF3, AC092667.2 high
cg18397405 CD74 0.72520583 1.20×108 GPC6 high
cg14291900 SFMBT2 0.72226357 1.46×108 SLC7A7 high
cg22704788 IL10 0.71501411 2.37×108 PRELP high
cg02957057 DPEP3 −0.7149296 2.38×108 NID1 high
cg20640433 C17orf82 −0.7134266 2.63×108 LAMA2 high
cg18411043 KCNK6 0.71200028 2.89×108 LAPTM5 high
cg02957057 N6AMT2 −0.7119956 2.89×108 NID1 high
cg02957057 SLC25A20 −0.7113793 3.00×108 NID1 high
cg18397405 CD14 0.71124306 3.03×108 GPC6 high
cg25206536 IL10 0.71059003 3.16×108 MIR572 high
cg02957057 ITPRIPL1 −0.7102111 3.24×108 NID1 high
cg17599241 IL10 0.71015235 3.25×108 VCAN-AS1, VCAN high
cg00799121 IL10 0.71008968 3.26×108 ADAMTS2 high
cg20640433 SVOPL −0.7100842 3.27×108 LAMA2 high
cg12613839 TGFB1 0.70966683 0.35×108 ADAMTS2 high
cg22987448 HAVCR2 0.70835256 3.65×108 MYO1F high
cg22987448 IL10 0.70835142 3.65×108 MYO1F high
cg18397405 CD68 0.70783649 3.77×108 GPC6 high
cg18411043 TGFBR2 0.70621641 4.18×108 LAPTM5 high
cg15254671 IL10 0.70599224 4.24×108 MYO1F high
cg12613839 HAVCR2 0.70546862 4.38×108 ADAMTS2 high
cg04499514 PDIA6 −0.7048045 4.57×108 C3AR1 high
cg20640433 C9orf64 −0.7042363 4.74×108 LAMA2 high
cg02957057 SLC35F3 −0.7035707 4.94×108 NID1 high
cg02957057 POTEA 0.70296616 5.13×108 NID1 high
cg18411043 IGFBP6 0.70161792 5.58×108 LAPTM5 high
cg23986671 TWIST2 −0.7011775 5.73×108 ADAMTS5 high
cg02957057 OR10G7 0.70091288 5.83×108 NID1 high
cg14291900 FGD3 0.70047149 5.99×108 SLC7A7 high
cg18397405 GPR65 0.70013203 6.11×108 GPC6 high
cg23986671 MYOZ2 −0.6993028 6.43×108 ADAMTS5 high
cg23986671 PDE6C −0.6980551 6.95×108 ADAMTS5 high
cg00799121 TGFB1 0.69708683 7.37×108 ADAMTS2 high
cg20640433 AREG −0.6964744 7.65×108 LAMA2 high
cg20640433 NMNAT3 −0.6951494 8.29×108 LAMA2 high
cg20640433 XKR8 −0.6950749 8.33×108 LAMA2 high
cg20640433 SLC25A44 0.69436599 8.69×108 LAMA2 high
cg02957057 ANKK1 −0.6934215 9.20×108 NID1 high
cg18397405 GRN 0.69317267 9.34×108 GPC6 high
cg18411043 TNFRSF10D 0.6931024 9.38×108 LAPTM5 high
cg18411043 KIF22 −0.6926606 9.63×108 LAPTM5 high
cg20640433 HDHD3 −0.6922066 9.90×108 LAMA2 high
cg27329371 IL10 0.69220582 9.90×108 ALDH3A1 high
cg18411043 C19orf57 −0.6912927 1.05×107 LAPTM5 high
cg18411043 SERPINB9 0.69077738 1.08×107 LAPTM5 high
cg05955301 IL10 0.69042987 1.10×107 PRELP high
cg18411043 CACNA2D4 0.6878496 1.28×107 LAPTM5 high
cg21475610 TGFB1 0.68792815 1.28×107 CCNG2 high
cg20640433 SSH3 −0.6876975 1.29×107 LAMA2 high
cg07947930 TGFB1 0.68739449 1.32×107 PRELP high
cg18411043 CLDN23 0.68678752 1.36×107 LAPTM5 high
cg02957057 ZNF683 −0.6867046 1.37×107 NID1 high
cg02189760 IL10 0.68557785 1.46×107 CTC-301O7.4, CD37 high
cg11076970 CCL22 0.68567625 1.46×107 HLA-DOA high
cg13765206 AMN −0.6852093 1.50×107 EMILIN2 high
cg02957057 ISG20L2 0.68458461 1.55×107 NID1 high
cg20640433 MAP1LC3A −0.683593 1.64×107 LAMA2 high
cg18397405 CCL5 0.68360635 1.64×107 GPC6 high
cg00799121 HAVCR2 0.6833261 1.67×107 ADAMTS2 high
cg18411043 MKS1 −0.6816571 1.84×107 LAPTM5 high
cg18411043 IL4R 0.68111791 1.89×107 LAPTM5 high
cg09777237 IL10 0.68055003 1.96×107 ELN high
cg18411043 GIMAP6 0.68005964 2.01×107 LAPTM5 high
cg02957057 STK33 −0.6799005 2.03×107 NID1 high
cg02957057 PYDC2 0.67988313 2.03×107 NID1 high
cg20640433 MYD88 −0.6798431 2.04×107 LAMA2 high
cg14291900 PIK3IP1 0.6795888 2.07×107 SLC7A7 high
cg18411043 NUSAP1 −0.6794355 2.08×107 LAPTM5 high
cg23986671 RFPL3S −0.6794146 2.09×107 ADAMTS5 high
cg20640433 HEBP1 −0.6789805 2.14×107 LAMA2 high
cg04499514 RUNX1 −0.6782038 2.23×107 C3AR1 high
cg18397405 GZMA 0.67785253 2.28×107 GPC6 high
cg02957057 FAM19A1 −0.6772002 2.37×107 NID1 high
cg02957057 SPRR1A 0.67668058 2.44×107 NID1 high
cg20640433 MSN −0.6761721 2.51×107 LAMA2 high
cg11827097 PTK6 0.67530072 2.63×107 SP100 high
cg13353679 HAVCR2 0.67520241 2.65×107 AFF3, AC092667.2 high
cg20640433 SH3RF2 −0.6749581 2.68×107 LAMA2 high
cg17611512 HAVCR2 0.67446387 2.76×107 COL18A1, COL18A1-AS1 high
cg20640433 PACSIN3 −0.6738627 2.85×107 LAMA2 high
cg02957057 CMBL −0.673238 2.95×107 NID1 high
cg18411043 MCTP2 0.67300302 2.99×107 LAPTM5 high
cg07436701 CD74 −0.6729908 2.99×107 MMRN2, SNCG high
cg14082886 PPP1R15A −0.6727144 3.04×107 CD44 high
cg18411043 NCAPD3 −0.6726225 3.06×107 LAPTM5 high
cg09777237 HAVCR2 0.67250205 3.08×107 ELN high
cg02957057 TYSND1 −0.6716086 3.23×107 NID1 high
cg04499514 TSPO −0.6709273 3.35×107 C3AR1 high
cg18411043 TMEM87B 0.67084118 3.37×107 LAPTM5 high
cg23986671 ZBTB32 −0.6707326 3.39×107 ADAMTS5 high
cg14291900 ZNF71 −0.669991 3.53×107 SLC7A7 high
cg22704788 HAVCR2 0.66998995 3.53×107 PRELP high
cg18411043 B3GNT2 0.66993926 3.54×107 LAPTM5 high
cg07947930 IL10 0.6692665 3.68×107 PRELP high
cg18411043 MAPK13 0.66886709 3.76×107 LAPTM5 high
cg20640433 SHROOM1 −0.6687824 3.77×107 LAMA2 high
cg14291900 ZNF134 −0.6665228 4.27×107 SLC7A7 high
cg27329371 TGFB1 0.666298 4.32×107 ALDH3A1 high
cg07436701 CCR5 −0.6662434 4.33×107 MMRN2, SNCG high
cg18411043 CYP1B1 0.66507974 4.61×107 LAPTM5 high
cg18411043 EMB 0.66449718 4.76×107 LAPTM5 high
cg04153551 HAVCR2 0.6642975 4.81×107 FBLN5 high
cg07947930 HAVCR2 0.66424332 4.82×107 PRELP high
cg04499514 MAPT 0.66400429 4.89×107 C3AR1 high
cg13765206 ITCH 0.66292628 5.18×107 EMILIN2 high
cg20640433 RFESD −0.6627852 5.22×107 LAMA2 high
cg14082886 CLVS2 0.66221087 5.38×107 CD44 high
cg18411043 CHEK1 −0.6614723 5.59×107 LAPTM5 high
cg11702456 TAGLN2 −0.6614648 5.60×107 SP100 high
cg18397405 CD244 0.66144045 5.60×107 GPC6 high
cg20502977 IL10 0.66111585 5.70×107 COL6A3 high
cg18411043 PAPSS2 0.66103523 5.73×107 LAPTM5 high
cg00295382 MKRN3 −0.6607885 5.80×107 MYCL high
cg08064683 IL10 0.66059345 5.86×107 FAT1 high
cg17599241 TGFB1 0.66056385 5.87×107 VCAN-AS1, VCAN high
cg23986671 GCOM1 −0.660442 5.91×107 ADAMTS5 high
cg18411043 LYVE1 0.6597996 6.11×107 LAPTM5 high
cg25206536 HAVCR2 0.65967075 6.15×107 MIR572 high
cg14082886 RGS9 0.65942308 6.24×107 CD44 high
cg14082886 NEK6 −0.6591273 6.33×107 CD44 high
cg18411043 NUMB 0.65897549 6.38×107 LAPTM5 high
cg20640433 SLC43A3 −0.6588459 6.43×107 LAMA2 high
cg23986671 VTCN1 −0.6588003 6.44×107 ADAMTS5 high
cg20640433 RFPL2 −0.6584724 6.55×107 LAMA2 high
cg05955301 TGFB1 0.658497 6.55×107 PRELP high
cg22568423 IL10 0.65815888 6.66×107 MYO1F high
cg18397405 CCR4 0.65623064 7.37×107 GPC6 high
cg18397405 CCR4 0.65623064 7.37×107 GPC6 high
cg14291900 YPEL2 0.65585997 7.51×107 SLC7A7 high
cg20640433 ZDHHC1 −0.6557248 7.57×107 LAMA2 high
cg18411043 MAP3K8 0.6551703 7.79×107 LAPTM5 high
cg02957057 HSD17B7 −0.6541632 8.21×107 NID1 high
cg25206536 TGFB1 0.65401204 8.27×107 MIR572 high
cg18411043 GAB1 −0.6539384 8.30×107 LAPTM5 high
cg18411043 OIP5 −0.6532665 8.59×107 LAPTM5 high
cg04499514 LGALS1 −0.6531144 8.66×107 C3AR1 high
cg23986671 HYALP1 0.65295592 8.73×107 ADAMTS5 high
cg02957057 SCAMP3 0.65296148 8.73×107 NID1 high
cg20640433 DYNLT3 −0.6527851 8.81×107 LAMA2 high
cg04499514 CD63 −0.6526897 8.85×107 C3AR1 high
cg04499514 CD63 −0.6526897 8.85×107 C3AR1 high
cg18411043 HIST1H4A −0.652456 8.96×107 LAPTM5 high
cg18397405 IGF1 0.65236854 9.00×107 GPC6 high
cg14291900 ZNF787 −0.6523244 9.02×107 SLC7A7 high
cg20640433 SH2D4A −0.6513244 9.50×107 LAMA2 high
cg23986671 MMP1 −0.6510743 9.62×107 ADAMTS5 high
cg07436701 ITGB2 −0.6510564 9.63×107 MMRN2, SNCG high
cg00742851 CCR4 0.65102622 9.64×107 SUMF1, LRRN1 high
cg04499514 RPS6KA5 0.65061879 9.84×107 C3AR1 high
cg02189760 TGFB1 0.65060293 9.85×107 CTC-301O7.4, CD37 high
cg18411043 CD59 0.65051987 9.89×107 LAPTM5 high
cg18411043 ST3GAL1 0.64986187 1.02×106 LAPTM5 high
cg18411043 ZNF620 −0.6492829 1.05×106 LAPTM5 high
cg04499514 CRELD2 −0.6492545 1.06×106 C3AR1 high
cg05955301 HAVCR2 0.64915158 1.06×106 PRELP high
cg20640433 ACSF2 −0.6487996 1.08×106 LAMA2 high
cg02957057 PARVA −0.6487478 1.08×106 NID1 high
cg22704788 TGFB1 0.64874971 1.08×106 PRELP high
cg16713274 BCL2L10 −0.6485899 1.09×106 COL18A1 high
cg20640433 SLC35F3 −0.6482366 1.11×106 LAMA2 high
cg14291900 KLHL32 0.6481981 1.11×106 SLC7A7 high
cg11702456 RIPK1 −0.6478933 1.13×106 SP100 high
cg11702456 PTK6 0.64795892 1.13×106 SP100 high
cg14291900 ZNF473 −0.6477937 1.14×106 SLC7A7 high
cg13765206 CRNKL1 0.64734872 1.16×106 EMILIN2 high
cg14291900 AKAP8 −0.6473027 1.16×106 SLC7A7 high
cg18411043 PSTPIP2 0.64723289 1.17×106 LAPTM5 high
cg21475610 IL10 0.6470373 1.18×106 CCNG2 high
cg11702456 RAB34 −0.6468892 1.19×106 SP100 high
cg02957057 XKR8 −0.6468834 1.19×106 NID1 high
cg18411043 LTBP2 0.64651112 1.21×106 LAPTM5 high
cg18411043 WHSC1 −0.6464405 1.22×106 LAPTM5 high
cg04499514 SMAGP −0.6459406 1.25×106 C3AR1 high
cg11827097 RIPK1 −0.6456769 1.26×106 SP100 high
cg18411043 B4GALT1 0.64554786 1.27×106 LAPTM5 high
cg02957057 UCHL1 −0.6451568 1.30×106 NID1 high
cg18397405 HAVCR2 0.64510535 1.30×106 GPC6 high
cg11702456 EMP3 −0.6447434 1.32×106 SP100 high
cg18411043 LILRB2 0.64470941 1.33×106 LAPTM5 high
cg04153551 TGFB1 0.64462765 1.33×106 FBLN5 high
cg18411043 PLK4 −0.6445754 1.34×106 LAPTM5 high
cg18411043 TNFRSF10A 0.64435812 1.35×106 LAPTM5 high
cg13765206 HPS1 −0.6438577 1.38×106 EMILIN2 high
cg02957057 PPP1R3C −0.6439269 1.38×106 NID1 high
cg13765206 KLHDC7B −0.643828 1.39×106 EMILIN2 high
cg18411043 GPSM2 −0.6430751 1.44×106 LAPTM5 high
cg18411043 POLA2 −0.6428379 1.46×106 LAPTM5 high
cg02189760 HAVCR2 0.64276143 1.46×106 CTC-301O7.4, CD37 high
cg18411043 MCM2 −0.6424966 1.48×106 LAPTM5 high
cg04499514 HSP90B1 −0.6419106 1.52×106 C3AR1 high
cg14291900 HPN 0.64190596 1.53×106 SLC7A7 high
cg04499514 EMILIN2 −0.6416321 1.55×106 C3AR1 high
cg04499514 EMILIN2 −0.6416321 1.55×106 C3AR1 high
cg14082886 HSPA5 −0.6412986 1.57×106 CD44 high
cg18411043 ASGR2 0.6412585 1.57×106 LAPTM5 high
cg18411043 PRKCD 0.64119535 1.58×106 LAPTM5 high
cg00742851 HAVCR2 0.64108721 1.59×106 SUMF1, LRRN1 high
cg18411043 FAM181B −0.6409853 1.60×106 LAPTM5 high
cg00295382 ZNF292 −0.6404944 1.63×106 MYCL high
cg11702456 TSEN34 −0.6397343 1.70×106 SP100 high
cg04153551 CCR4 0.63922606 1.74×106 FBLN5 high
cg22568423 HAVCR2 0.6391164 1.75×106 MYO1F high
cg04499514 SPRR2A 0.63900466 1.76×106 C3AR1 high
cg20640433 CRHR2 −0.6389645 1.76×106 LAMA2 high
cg14291900 ERMN 0.63877586 1.78×106 SLC7A7 high
cg16713274 VWDE −0.6386629 1.79×106 COL18A1 high
cg20640433 SCAMP3 0.63863905 1.79×106 LAMA2 high
cg02957057 SMG5 0.63832232 1.82×106 NID1 high
cg18411043 CDCA5 −0.637901 1.86×106 LAPTM5 high
cg18411043 SMC2 −0.6376489 1.88×106 LAPTM5 high
cg23986671 GPS1 0.63753383 1.89×106 ADAMTS5 high
cg20640433 OR10G7 0.63739025 1.90×106 LAMA2 high
cg20640433 VNN3 −0.6368153 1.96×106 LAMA2 high
cg18411043 RNF144B 0.63671956 1.97×106 LAPTM5 high
cg02957057 NMNAT3 −0.6360154 2.03×106 NID1 high
cg18411043 FANCC −0.6359325 2.04×106 LAPTM5 high
cg14291900 SLC46A3 0.63593824 2.04×106 SLC7A7 high
cg04499514 TSEN34 −0.6356583 2.07×106 C3AR1 high
cg14082886 PCYT1A −0.6351289 2.12×106 CD44 high
cg18411043 ARPC1B 0.63501952 2.13×106 LAPTM5 high
cg18411043 GPR132 0.63497935 2.14×106 LAPTM5 high
cg02957057 ELOVL3 −0.6344793 2.19×106 NID1 high
cg13765206 C2CD4D −0.6344131 2.20×106 EMILIN2 high
cg14291900 SEMA4A 0.63440849 2.20×106 SLC7A7 high
cg18411043 KIF15 −0.6340036 2.24×106 LAPTM5 high
cg18411043 NCF4 0.63389721 2.25×106 LAPTM5 high
cg23986671 DCST1 −0.6335087 2.30×106 ADAMTS5 high
cg00777079 N4BP2 −0.6335114 2.30×106 SERPINF1 high
cg23986671 CLEC4F −0.6330094 2.35×106 ADAMTS5 high
cg04499514 DUSP4 −0.632834 2.37×106 C3AR1 high
cg14291900 TCF3 −0.6328327 2.37×106 SLC7A7 high
cg14291900 ZNF416 −0.6328258 2.37×106 SLC7A7 high
cg18411043 CD1D 0.63278019 2.38×106 LAPTM5 high
cg22987448 TGFB1 0.63248797 2.41×106 MYO1F high
cg20640433 GLIS3 −0.6319628 2.47×106 LAMA2 high
cg04499514 SEC24D −0.631827 2.49×106 C3AR1 high
cg02957057 NLRX1 −0.6317766 2.49×106 NID1 high
cg27329371 PDCD1LG2 0.6318309 2.49×106 ALDH3A1 high
cg18411043 PSMC3IP −0.631709 2.50×106 LAPTM5 high
cg23986671 GOLGA4 −0.6315958 2.52×106 ADAMTS5 high
cg14291900 U2AF2 −0.6314722 2.53×106 SLC7A7 high
cg18411043 CEP72 −0.6310813 2.58×106 LAPTM5 high
cg18411043 NCAPH −0.6308592 2.61×106 LAPTM5 high
cg18411043 TRIM38 0.63055942 2.64×106 LAPTM5 high
cg27329371 HAVCR2 0.63023007 2.68×106 ALDH3A1 high
cg04499514 S100A11 −0.6301523 2.69×106 C3AR1 high
cg18411043 GIMAP8 0.63012277 2.70×106 LAPTM5 high
cg18411043 LMNB1 −0.6298277 2.74×106 LAPTM5 high
cg04499514 SEMA3D 0.62956973 2.77×106 C3AR1 high
cg18397405 CTLA4 0.62938967 2.79×106 GPC6 high
cg14291900 DOCK5 0.62929209 2.81×106 SLC7A7 high
cg14291900 ACSM5 0.62920997 2.82×106 SLC7A7 high
cg04499514 TWF2 −0.6290565 2.84×106 C3AR1 high
cg18411043 MRC1 0.62895863 2.85×106 LAPTM5 high
cg18411043 TNFRSF1B 0.62892778 2.86×106 LAPTM5 high
cg18411043 MEN1 −0.6288512 2.87×106 LAPTM5 high
cg18411043 RAB11FIP1 0.62865829 2.89×106 LAPTM5 high
cg18411043 F13A1 0.62865476 2.89×106 LAPTM5 high
cg18411043 TESC 0.62858843 2.90×106 LAPTM5 high
cg14291900 LGALS9C 0.62857927 2.90×106 SLC7A7 high
cg18411043 GIPC2 0.62849757 2.91×106 LAPTM5 high
cg02957057 LRRIQ4 −0.6285485 2.91×106 NID1 high
cg14291900 NKAIN2 0.6284529 2.92×106 SLC7A7 high
cg01930947 TACR1 0.62834753 2.93×106 C1orf111 high
cg14082886 COL4A3 0.62833753 2.94×106 CD44 high
cg04499514 RPS6KA3 −0.6282354 2.95×106 C3AR1 high
cg14291900 LHPP 0.62822146 2.95×106 SLC7A7 high
cg11702456 GALNS −0.6280356 2.98×106 SP100 high
cg18411043 AMICA1 0.6278709 3.00×106 LAPTM5 high
cg20640433 ISG20L2 0.62790094 3.00×106 LAMA2 high
cg13765206 PLEKHG6 −0.6278379 3.01×106 EMILIN2 high
cg04499514 TTC38 −0.6274235 3.06×106 C3AR1 high
cg20640433 RAB36 −0.627427 3.06×106 LAMA2 high
cg20640433 CST3 −0.6274226 3.06×106 LAMA2 high
cg18411043 MLKL 0.62716867 3.10×106 LAPTM5 high
cg02957057 C9orf64 −0.627194 3.10×106 NID1 high
cg11702456 S100A13 −0.626989 3.13×106 SP100 high
cg01930947 TMEFF2 0.62681323 3.15×106 C1orf111 high
cg18411043 MAN1A1 0.62676193 3.16×106 LAPTM5 high
cg02957057 FBXO17 −0.6267928 3.16×106 NID1 high
cg02957057 SH3BP2 −0.6266051 3.18×106 NID1 high
cg05091653 SERPINF2 −0.6263606 3.22×106 SP100 high
cg18411043 TRPM2 0.62624593 3.24×106 LAPTM5 high
cg18411043 CD33 0.62613919 3.25×106 LAPTM5 high
cg18411043 CD46 0.62591061 3.29×106 LAPTM5 high
cg14291900 NR2C2AP −0.6258545 3.30×106 SLC7A7 high
cg20640433 PALM2 −0.6257442 3.32×106 LAMA2 high
cg18411043 P2RY6 0.62560017 3.34×106 LAPTM5 high
cg24769499 FGF6 0.62560159 3.34×106 TMEM37 high
cg00295382 UBE4A −0.6253707 3.37×106 MYCL high
cg04499514 FBLIM1 −0.6251549 3.41×106 C3AR1 high
cg00777079 RFWD3 −0.6250366 3.43×106 SERPINF1 high
cg18411043 CTSB 0.62483558 3.46×106 LAPTM5 high
cg16713274 NXPH2 −0.624851 3.46×106 COL18A1 high
cg18411043 INCENP −0.6247948 3.47×106 LAPTM5 high
cg14291900 CDK6 −0.624404 3.53×106 SLC7A7 high
cg02957057 DEFB125 0.62421976 3.56×106 NID1 high
cg18411043 CSF1R 0.62400537 3.60×106 LAPTM5 high
cg18411043 TIGD3 −0.6238521 3.62×106 LAPTM5 high
cg23986671 ATP6V0D2 −0.6237079 3.65×106 ADAMTS5 high
cg20640433 RIT1 0.62363135 3.66×106 LAMA2 high
cg14082886 SLCO1A2 0.62356807 3.67×106 CD44 high
cg18411043 ALOX5 0.62349813 3.68×106 LAPTM5 high
cg18411043 MSI1 −0.6234219 3.69×106 LAPTM5 high
cg23986671 DBH −0.6231996 3.73×106 ADAMTS5 high
cg00295382 NDUFB2 0.62314436 3.74×106 MYCL high
cg20640433 EVC2 −0.6228847 3.79×106 LAMA2 high
cg17599241 HAVCR2 0.6225838 3.84×106 VCAN-AS1, VCAN high
cg18411043 RUNX2 0.62236407 3.88×106 LAPTM5 high
cg13765206 TCHH −0.6221834 3.91×106 EMILIN2 high
cg07947930 PDCD1LG2 0.62213951 3.92×106 PRELP high
cg18411043 POLD3 −0.6218415 3.97×106 LAPTM5 high
cg04499514 MFSD5 −0.621664 4.01×106 C3AR1 high
cg18411043 MPP1 0.62163839 4.01×106 LAPTM5 high
cg18411043 HRH2 0.62163838 4.01×106 LAPTM5 high
cg18411043 TOP2A −0.621607 4.02×106 LAPTM5 high
cg18411043 IRAK3 0.62139951 4.06×106 LAPTM5 high
cg18397405 GPC2 −0.6210758 4.12×106 GPC6 high
cg18411043 OAF 0.62104659 4.12×106 LAPTM5 high
cg04499514 SPRY4 −0.6209967 4.13×106 C3AR1 high
cg18411043 C1S 0.6209673 4.14×106 LAPTM5 high
cg02957057 ALDH7A1 −0.6209514 4.14×106 NID1 high
cg14291900 CNOT3 −0.6209149 4.15×106 SLC7A7 high
cg02957057 TXK −0.6207198 4.18×106 NID1 high
cg07436701 IGF1 −0.6206649 4.19×106 MMRN2, SNCG high
cg18411043 KIF18B −0.6205685 4.21×106 LAPTM5 high
cg18411043 ARHGAP30 0.6203351 4.26×106 LAPTM5 high
cg18411043 AIF1 0.62025359 4.27×106 LAPTM5 high
cg00295382 TGM2 0.62016995 4.29×106 MYCL high
cg14291900 SLC26A9 0.62000399 4.32×106 SLC7A7 high
cg23986671 TMEM52 −0.6197762 4.37×106 ADAMTS5 high
cg18411043 LHFPL2 0.61974103 4.38×106 LAPTM5 high
cg14291900 SLC1A7 0.6196898 4.39×106 SLC7A7 high
cg04499514 DUSP6 −0.619504 4.42×106 C3AR1 high
cg11702456 APOBEC3F −0.6195267 4.42×106 SP100 high
cg22568423 TGFB1 0.61936567 4.45×106 MYO1F high
cg14082886 ADAM22 0.61922422 4.48×106 CD44 high
cg11827097 TAGLN2 −0.6185018 4.63×106 SP100 high
cg02957057 CSRP1 −0.6184356 4.64×106 NID1 high
cg21218883 HSPBP1 −0.618324 4.67×106 PRKCE high
cg00295382 HGFAC −0.618239 4.69×106 MYCL high
cg14291900 GRWD1 −0.6179975 4.74×106 SLC7A7 high
cg18411043 CMKLR1 0.61781132 4.78×106 LAPTM5 high
cg18411043 CYTH4 0.61755945 4.83×106 LAPTM5 high
cg02957057 ACADS −0.6173054 4.89×106 NID1 high
cg18411043 FANCI −0.6170511 4.95×106 LAPTM5 high
cg20640433 LGALS8 −0.616979 4.96×106 LAMA2 high
cg04499514 CD276 −0.6168248 5.00×106 C3AR1 high
cg18411043 TNFSF10 0.61660766 5.05×106 LAPTM5 high
cg18411043 VENTX 0.61649043 5.07×106 LAPTM5 high
cg04499514 CASC3 0.61596213 5.20×106 C3AR1 high
cg09777237 TGFB1 0.61588628 5.21×106 ELN high
cg18411043 SIGLEC10 0.61564503 5.27×106 LAPTM5 high
cg14291900 FAM124A 0.61534899 5.34×106 SLC7A7 high
cg11702456 APOBEC3C −0.6153217 5.35×106 SP100 high
cg20640433 KHNYN −0.6151494 5.39×106 LAMA2 high
cg14291900 RAB40B 0.61510576 5.40×106 SLC7A7 high
cg04499514 TAGLN2 −0.6149763 5.43×106 C3AR1 high
cg18411043 RAC3 −0.6149957 5.43×106 LAPTM5 high
cg14082886 EMP1 −0.6149246 5.44×106 CD44 high
cg14291900 MRVI1 0.61493337 5.44×106 SLC7A7 high
cg14082886 TAGLN2 −0.614913 5.45×106 CD44 high
cg18411043 FGD2 0.61480269 5.47×106 LAPTM5 high
cg18411043 DSE 0.6147844 5.48×106 LAPTM5 high
cg23986671 UBP1 −0.6147229 5.49×106 ADAMTS5 high
cg23986671 XKR5 −0.6145796 5.53×106 ADAMTS5 high
cg18411043 POLD4 0.61428878 5.60×106 LAPTM5 high
cg18411043 FMNL1 0.61431112 5.60×106 LAPTM5 high
cg04499514 SPAG9 0.61418162 5.63×106 C3AR1 high
cg18411043 EZH2 −0.6141715 5.63×106 LAPTM5 high
cg14291900 EFHD1 0.61415875 5.63×106 SLC7A7 high
cg18411043 TPX2 −0.6140728 5.66×106 LAPTM5 high
cg11702456 EFEMP2 −0.6138811 5.70×106 SP100 high
cg04499514 APBA1 0.61375515 5.74×106 C3AR1 high
cg01930947 DNM3 0.61362978 5.77×106 C1orf111 high
cg14082886 DAAM2 0.61357396 5.78×106 CD44 high
cg04499514 SDF2L1 −0.6132695 5.86×106 C3AR1 high
cg02957057 ACSF2 −0.6130867 5.91×106 NID1 high
cg18411043 TMEM97 −0.6127385 6.00×106 LAPTM5 high
cg18411043 CDC25A −0.6126424 6.03×106 LAPTM5 high
cg18411043 GIMAP7 0.61247867 6.07×106 LAPTM5 high
cg14291900 ZNF45 −0.6125104 6.07×106 SLC7A7 high
cg02957057 SH2D4A −0.6123811 6.10×106 NID1 high
cg04499514 ATP1A4 0.61222663 6.14×106 C3AR1 high
cg18411043 KIF2C −0.6121091 6.17×106 LAPTM5 high
cg18411043 SLC20A1 0.61194867 6.22×106 LAPTM5 high
cg20640433 MMACHC −0.6119354 6.22×106 LAMA2 high
cg18411043 ECM1 0.61187776 6.24×106 LAPTM5 high
cg00295382 C5orf51 −0.6118449 6.25×106 MYCL high
cg18411043 CMTM7 0.61176944 6.27×106 LAPTM5 high
cg04499514 EHD4 −0.611663 6.30×106 C3AR1 high
cg18411043 CRISPLD2 0.61159373 6.32×106 LAPTM5 high
cg00295382 ATF7IP −0.6113318 6.39×106 MYCL high
cg07436701 CD163 −0.6113281 6.39×106 MMRN2, SNCG high
cg21398469 TGFB1 0.61126793 6.41×106 CCNG2 high
cg07436701 CD244 −0.6112525 6.41×106 MMRN2, SNCG high
cg14291900 ABCG1 0.61123795 6.42×106 SLC7A7 high
cg14291900 ZNF761 −0.6110213 6.48×106 SLC7A7 high
cg18411043 HHEX 0.61088519 6.52×106 LAPTM5 high
cg22595235 CTLA4 0.61078204 6.55×106 SUMF1, LRRN1 high
cg24769499 IL22 0.61065046 6.59×106 TMEM37 high
cg18411043 MNDA 0.61034153 6.68×106 LAPTM5 high
cg18411043 FAH 0.61025131 6.71×106 LAPTM5 high
cg11702456 SP100 −0.6102275 6.71×106 SP100 high
cg23986671 DUOXA1 −0.6102538 6.71×106 ADAMTS5 high
cg00295382 PANK3 −0.6101989 6.72×106 MYCL high
cg18411043 CLEC10A 0.61013964 6.74×106 LAPTM5 high
cg18411043 TRAF3IP3 0.61007507 6.76×106 LAPTM5 high
cg13765206 CAPN8 −0.6097062 6.87×106 EMILIN2 high
cg14291900 PAQR8 0.60959693 6.90×106 SLC7A7 high
cg02957057 SDC4 −0.609594 6.90×106 NID1 high
cg20640433 ISPD −0.6095796 6.91×106 LAMA2 high
cg08064683 CCR4 0.60946563 6.94×106 FAT1 high
cg04499514 AP2S1 −0.6092851 7.00×106 C3AR1 high
cg04499514 ITPRIP −0.60917 7.03×106 C3AR1 high
cg04499514 ADHFE1 0.60916978 7.03×106 C3AR1 high
cg00295382 ARPC1B 0.60912481 7.05×106 MYCL high
cg18411043 ZNF90 −0.6090191 7.08×106 LAPTM5 high
cg00295382 CREBZF −0.6089524 7.10×106 MYCL high
cg14291900 DPEP2 0.60894355 7.10×106 SLC7A7 high
cg02957057 CCDC163P −0.608834 7.14×106 NID1 high
cg04499514 AKAP1 0.60866034 7.19×106 C3AR1 high
cg20640433 SLC2A10 −0.6085969 7.21×106 LAMA2 high
cg14291900 TPD52L1 0.60852744 7.24×106 SLC7A7 high
cg11827097 PRMT2 −0.6081478 7.36×106 SP100 high
cg23986671 PRPH2 −0.6081063 7.37×106 ADAMTS5 high
cg18397405 ITGB1 0.60795654 7.42×106 GPC6 high
cg02957057 RRP12 0.60790296 7.44×106 NID1 high
cg18411043 ADAP2 0.60781942 7.46×106 LAPTM5 high
cg18411043 CCR1 0.60783567 7.46×106 LAPTM5 high
cg18411043 IL15RA 0.60780418 7.47×106 LAPTM5 high
cg11702456 CMTM3 −0.6077214 7.50×106 SP100 high
cg04499514 FBXW12 0.60765521 7.52×106 C3AR1 high
cg14291900 ADRBK2 0.60758355 7.54×106 SLC7A7 high
cg18411043 WDR34 −0.6072402 7.66×106 LAPTM5 high
cg18411043 LAIR1 0.60714771 7.69×106 LAPTM5 high
cg00295382 ZBTB44 −0.6070874 7.71×106 MYCL high
cg13765206 NRAP −0.6067666 7.82×106 EMILIN2 high
cg14291900 SLCO1A2 0.60635008 7.96×106 SLC7A7 high
cg16713274 OLFM3 −0.6062793 7.99×106 COL18A1 high
cg00295382 FAM166A −0.6061765 8.02×106 MYCL high
cg02957057 RAB36 −0.6061395 8.03×106 NID1 high
cg14291900 TMEM86A 0.60607985 8.05×106 SLC7A7 high
cg14291900 EVI2A 0.60605156 8.06×106 SLC7A7 high
cg18411043 CTSZ 0.60597807 8.09×106 LAPTM5 high
cg13765206 NCR3 −0.6057964 8.16×106 EMILIN2 high
cg13765206 KRTAP5-9 −0.605737 8.18×106 EMILIN2 high
cg18411043 HES5 −0.6056663 8.20×106 LAPTM5 high
cg11702456 ARSI −0.6056573 8.20×106 SP100 high
cg18411043 MFSD1 0.60562112 8.22×106 LAPTM5 high
cg00295382 ZG16 −0.6055812 8.23×106 MYCL high
cg20640433 DPEP3 −0.6054516 8.28×106 LAMA2 high
cg18411043 MAP2 −0.6053901 8.30×106 LAPTM5 high
cg18411043 ADAMTS14 0.60538276 8.30×106 LAPTM5 high
cg04499514 KDELR1 −0.605255 8.35×106 C3AR1 high
cg04499514 RALGPS1 0.60522199 8.36×106 C3AR1 high
cg18411043 BRIP1 −0.6052277 8.36×106 LAPTM5 high
cg14291900 DLEU7 0.60520069 8.37×106 SLC7A7 high
cg18411043 RNF149 0.60510698 8.40×106 LAPTM5 high
cg18411043 LEPROT 0.60482116 8.51×106 LAPTM5 high
cg18411043 GIMAP4 0.60467954 8.56×106 LAPTM5 high
cg00295382 RGS19 0.60458767 8.60×106 MYCL high
cg18411043 IL10RA 0.60450736 8.63×106 LAPTM5 high
cg18411043 SLCO2B1 0.60445283 8.65×106 LAPTM5 high
cg00295382 TTC38 0.60437946 8.67×106 MYCL high
cg14291900 PTBP1 −0.6043814 8.67×106 SLC7A7 high
cg18411043 IL16 0.60434727 8.69×106 LAPTM5 high
cg04499514 PPIB −0.6040378 8.80×106 C3AR1 high
cg18411043 MAPKAPK2 0.60396534 8.83×106 LAPTM5 high
cg04499514 TGFBI −0.6038334 8.88×106 C3AR1 high
cg04499514 IGFBP2 −0.6037505 8.91×106 C3AR1 high
cg11702456 SLC2A4 0.60343179 9.04×106 SP100 high
cg04499514 IKBIP −0.603409 9.05×106 C3AR1 high
cg04499514 ETV5 −0.603302 9.09×106 C3AR1 high
cg12613839 PDCD1LG2 0.60313469 9.15×106 ADAMTS2 high
cg04499514 KIAA1324L 0.60307321 9.18×106 C3AR1 high
cg18411043 FMN1 0.60306718 9.18×106 LAPTM5 high
cg18411043 SH3TC1 0.6029736 9.22×106 LAPTM5 high
cg02957057 LEKR1 −0.6029529 9.23×106 NID1 high
cg18411043 GRB2 0.60266775 9.34×106 LAPTM5 high
cg04499514 PSD2 0.60262221 9.36×106 C3AR1 high
cg11702456 CASP8 −0.6025684 9.38×106 SP100 high
cg04499514 IFNGR2 −0.6025283 9.40×106 C3AR1 high
cg14082886 DCAF8 0.60237965 9.46×106 CD44 high
cg02957057 C10orf107 −0.6023697 9.46×106 NID1 high
cg04499514 CKAP4 -0.6023102 9.49×106 C3AR1 high
cg02957057 RTP2 0.60230352 9.49×106 NID1 high
cg18411043 RFC5 −0.6022106 9.53×106 LAPTM5 high
cg11827097 TSEN34 −0.6020259 9.60×106 SP100 high
cg18411043 YWHAZ 0.60194076 9.64×106 LAPTM5 high
cg02957057 TMIE −0.6019364 9.64×106 NID1 high
cg02957057 GLIS3 −0.6017402 9.72×106 NID1 high
cg00295382 TRO −0.60165 9.76×106 MYCL high
cg20640433 FAM19A1 −0.6014471 9.84×106 LAMA2 high
cg18411043 LCORL −0.6013862 9.87×106 LAPTM5 high
cg20640433 PAOX −0.6011955 9.95×106 LAMA2 high
cg14291900 SAE1 −0.6011065 9.99×106 SLC7A7 high
cg18411043 DENND1C 0.60107737 1.00×105 LAPTM5 high
cg00295382 ZNF510 −0.6009576 1.01×105 MYCL high
cg18411043 MED24 −0.6008814 1.01×105 LAPTM5 high
cg14082886 ATP8A1 0.60058342 1.02×105 CD44 high
cg18411043 RAD54L −0.600678 1.02×105 LAPTM5 high
cg18411043 SP4 −0.6005993 1.02×105 LAPTM5 high
cg04499514 TIMP1 −0.6001084 1.04×105 C3AR1 high
cg14291900 RASGEF1B 0.60012159 1.04×105 SLC7A7 high
cg02957057 ZDHHC1 −0.6000678 1.04×105 NID1 high
cg02957057 HRASLS5 −0.6000243 1.05×105 NID1 high
cg07436701 CD96 −0.5993043 1.08×105 MMRN2, SNCG high
cg07436701 CCR4 −0.5972957 1.18×105 MMRN2, SNCG high
cg18397405 ITGA4 0.59418147 1.34×105 GPC6 high
cg03677069 CD74 0.59295197 1.41×105 MMRN2, SNCG high
cg07436701 GPR65 −0.5925407 1.43×105 MMRN2, SNCG high
cg18397405 CDC34 −0.590695 1.55×105 GPC6 high
cg07436701 FLT3 −0.5827163 2.15×105 MMRN2, SNCG high
cg07436701 GPC2 0.5754121 2.87×105 MMRN2, SNCG high
cg07436701 E2F2 0.5728996 3.17×105 MMRN2, SNCG high
cg07436701 CD14 −0.568245 3.80×105 MMRN2, SNCG high
cg18397405 EZH2 −0.5582639 5.54×105 GPC6 high
cg18397405 CDKN1B −0.5581881 5.56×105 GPC6 high
cg07436701 CDC34 0.55769852 5.66×105 MMRN2, SNCG high
cg07436701 CD68 −0.5556475 6.11×105 MMRN2, SNCG high
cg26350754 EMILIN2 −0.554466 6.38×105 HLA-DPA1, HLA-DPB1 high
cg14082886 MRC2 −0.5539332 6.51×105 CD44 high
cg18397405 E2F2 −0.5518593 7.02×105 GPC6 high
cg18397405 FLT3 0.54987539 7.55×105 GPC6 high
cg10949632 GPC6 0.54286496 9.70×105 GPC6 high
cg03677069 GPR65 0.54188941 0.00010045 MMRN2, SNCG high
cg14082886 FGFR2 0.5340032 0.00013232 CD44 high
cg16713274 GPC6 −0.5317779 0.00014285 COL18A1, LL21NC02-21A1.1 high
cg03677069 CD163 0.52832557 0.00016069 MMRN2, SNCG high
cg21012874 CD74 0.52760147 0.00016467 MMRN2, SNCG high
cg09552892 CD74 0.52237375 0.00019625 MMRN2, SNCG high
cg04499514 EZH1 0.5201497 0.00021127 C3AR1 high
cg07436701 EZH2 0.51876207 0.00022116 MMRN2, SNCG high
cg14082886 CD63 −0.5173898 0.00023136 CD44 high
cg04098585 EMILIN2 −0.5123153 0.00027286 CD28 high
cg07436701 GZMA −0.5121674 0.00027417 MMRN2, SNCG high
cg03677069 ITGB2 0.5110316 0.00028438 MMRN2, SNCG high
cg07436701 CCL5 −0.5105968 0.00028837 MMRN2, SNCG high
cg03677069 E2F2 −0.5095174 0.00029852 MMRN2, SNCG high
cg03677069 CD14 0.50607605 0.00033306 MMRN2, SNCG high
cg04499514 FGFR1 −0.5048488 0.00034622 C3AR1 high
cg07436701 GRN −0.5045134 0.0003499 MMRN2, SNCG high
cg18397405 CD63 0.50108656 0.00038956 GPC6 high

Author Contributions

Conceptualization: M.P.; methodology and formal analysis: M.P., E.F.; writing—original draft preparation, M.P., E.A., M.D.B., E.F., D.G., G.T.; writing—review and editing, M.P., L.B., F.D.C., M.M., M.S., M.A., T.I., G.T., E.A., M.D.B., M.A., M.S., G.T.; funding acquisition G.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All the results here showed are based on data generated by the TCGA Research Network: https:/cancer.gov/tcga (accessed on 12 March 2020).

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J., Belanger K., Brandes A.A., Marosi C., Bogdahn U., et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005;352:987–996. doi: 10.1056/NEJMoa043330. [DOI] [PubMed] [Google Scholar]
  • 2.Cloughesy T.F., Mochizuki A.Y., Orpilla J.R., Hugo W., Lee A.H., Davidson T.B., Wang A.C., Ellingson B.M., Rytlewski J.A., Sanders C.M., et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 2019;25:477–486. doi: 10.1038/s41591-018-0337-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Bagley S.J., Desai A.S., Nasrallah M.P., O’Rourke D.M. Immunotherapy and Response Assessment in Malignant Glioma: Neuro-oncology Perspective. Top. Magnetic Resonance Imag. TMRI. 2020;29:95–102. doi: 10.1097/RMR.0000000000000233. [DOI] [PubMed] [Google Scholar]
  • 4.Schalper K.A., Rodriguez-Ruiz M.E., Diez-Valle R., López-Janeiro A., Porciuncula A., Idoate M.A., Inogés S., de Andrea C., López-Diaz de Cerio A., Tejada S., et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 2019;25:470–476. doi: 10.1038/s41591-018-0339-5. [DOI] [PubMed] [Google Scholar]
  • 5.Gieryng A., Pszczolkowska D., Walentynowicz K.A., Rajan W.D., Kaminska B. Immune microenvironment of gliomas. Lab. Investig. 2017;97:498–518. doi: 10.1038/labinvest.2017.19. [DOI] [PubMed] [Google Scholar]
  • 6.Glass R., Synowitz M. CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathol. 2014;128:347–362. doi: 10.1007/s00401-014-1274-2. [DOI] [PubMed] [Google Scholar]
  • 7.Zhao B., Wang Y., Wang Y., Chen W., Liu P.H., Kong Z., Dai C., Wang Y., Ma W. Systematic identification, development, and validation of prognostic biomarkers involving the tumor-immune microenvironment for glioblastoma. J. Cell. Physiol. 2020 doi: 10.1002/jcp.29878. [DOI] [PubMed] [Google Scholar]
  • 8.Wainwright D.A., Dey M., Chang A., Lesniak M.S. Targeting Tregs in Malignant Brain Cancer: Overcoming IDO. Front. Immunol. 2013;4 doi: 10.3389/fimmu.2013.00116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Ye X.Z., Xu S.L., Xin Y.H., Yu S.C., Ping Y.F., Chen L., Xiao H.L., Wang B., Yi L., Wang Q.L., et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGFBETA1 signaling pathway. J. Immunol. 2012;189:444–453. doi: 10.4049/jimmunol.1103248. [DOI] [PubMed] [Google Scholar]
  • 10.Graeber M.B., Scheithauer B.W., Kreutzberg G.W. Microglia in brain tumors. Glia. 2002;40:252–259. doi: 10.1002/glia.10147. [DOI] [PubMed] [Google Scholar]
  • 11.Grabowski M.M., Sankey E.W., Ryan K.J., Chongsathidkiet P., Lorrey S.J., Wilkinson D.S., Fecci P.E. Immune suppression in gliomas. J. Neuro-Oncol. 2020 doi: 10.1007/s11060-020-03483-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Hambardzumyan D., Gutmann D.H., Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci. 2016;19:20–27. doi: 10.1038/nn.4185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Skytthe M.K., Graversen J.H., Moestrup S.K. Targeting of CD163+ Macrophages in Inflammatory and Malignant Diseases. Int. J. Mol. Sci. 2020;21:5497. doi: 10.3390/ijms21155497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Liu S., Zhang C., Maimela N.R., Yang L., Zhang Z., Ping Y., Huang L., Zhang Y. Molecular and clinical characterization of CD163 expression via large-scale analysis in glioma. Oncoimmunology. 2019;8 doi: 10.1080/2162402X.2019.1601478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Ostuni R., Kratochvill F., Murray P.J., Natoli G. Macrophages and cancer: From mechanisms to therapeutic implications. Trends Immunol. 2015;36:229–239. doi: 10.1016/j.it.2015.02.004. [DOI] [PubMed] [Google Scholar]
  • 16.Yang L., Zhang Y. Tumor-associated macrophages: From basic research to clinical application. J. Hematol. Oncol. 2017;10:58. doi: 10.1186/s13045-017-0430-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Ferrer V.P., Moura Neto V., Mentlein R. Glioma infiltration and extracellular matrix: Key players and modulators. Glia. 2018;66:1542–1565. doi: 10.1002/glia.23309. [DOI] [PubMed] [Google Scholar]
  • 18.Thorsson V., Gibbs D.L., Brown S.D., Wolf D., Bortone D.S., Ou Yang T.H., Porta-Pardo E., Gao G.F., Plaisier C.L., Eddy J.A., et al. The Immune Landscape of Cancer. Immunity. 2018;48:812–830.e14. doi: 10.1016/j.immuni.2018.03.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Houseman E.A., Accomando W.P., Koestler D.C., Christensen B.C., Marsit C.J., Nelson H.H., Wiencke J.K., Kelsey K.T. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinf. 2012;13:86. doi: 10.1186/1471-2105-13-86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Moss J., Magenheim J., Neiman D., Zemmour H., Loyfer N., Korach A., Samet Y., Maoz M., Druid H., Arner P., et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 2018;9:5068. doi: 10.1038/s41467-018-07466-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Liu B., Liu Y., Pan X., Li M., Yang S., Li S.C. DNA Methylation Markers for Pan-Cancer Prediction by Deep Learning. Genes. 2019;10:778. doi: 10.3390/genes10100778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Noushmehr H., Sabedot T.S., Malta T.M., Nelson K., Snyder J., Wells M., deCarvalho A., Mukherjee A., Chitale D., Mosella M., et al. Detection of glioma and prognostic subtypes by non-invasive circulating cell-free DNA methylation markers. bioRxiv. 2019:601245. doi: 10.1093/neuonc/noz126.018. [DOI] [Google Scholar]
  • 23.Capper D., Jones D.T.W., Sill M., Hovestadt V., Schrimpf D., Sturm D., Koelsche C., Sahm F., Chavez L., Reuss D.E., et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–474. doi: 10.1038/nature26000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Rivera A.L., Pelloski C.E., Gilbert M.R., Colman H., De La Cruz C., Sulman E.P., Bekele B.N., Aldape K.D. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro-Oncology. 2010;12:116–121. doi: 10.1093/neuonc/nop020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Oldrini B., Vaquero-Siguero N., Mu Q., Kroon P., Zhang Y., Galán-Ganga M., Bao Z., Wang Z., Liu H., Sa J.K., et al. MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas. Nat. Commun. 2020;11:3883. doi: 10.1038/s41467-020-17717-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Zhang M.W., Fujiwara K., Che X., Zheng S., Zheng L. DNA methylation in the tumor microenvironment. J. Zhejiang Univ. Sci. B. 2017;18:365–372. doi: 10.1631/jzus.B1600579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Cui X., Ma C., Vasudevaraja V., Serrano J., Tong J., Peng Y., Delorenzo M., Shen G., Frenster J., Morales R.T.T., et al. Dissecting the immunosuppressive tumor microenvironments in Glioblastoma-on-a-Chip for optimized PD-1 immunotherapy. eLife. 2020;9 doi: 10.7554/eLife.52253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Dejaegher J., Solie L., Hunin Z., Sciot R., Capper D., Siewert C., Van Cauter S., Wilms G., van Loon J., Ectors N., et al. DNA methylation based glioblastoma subclassification is related to tumoral T-cell infiltration and patient survival. Neuro-Oncology. 2020 doi: 10.1093/neuonc/noaa247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.D’Angelo F., Ceccarelli M., Tala N., Garofano L., Zhang J., Frattini V., Caruso F.P., Lewis G., Alfaro K.D., Bauchet L., et al. The molecular landscape of glioma in patients with Neurofibromatosis 1. Nat. Med. 2019;25:176–187. doi: 10.1038/s41591-018-0263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Bourgon R., Gentleman R., Huber W. Independent filtering increases detection power for high-throughput experiments. Proc. Natl. Acad. Sci. USA. 2010;107:9546–9551. doi: 10.1073/pnas.0914005107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Sturm G., Finotello F., Petitprez F., Zhang J.D., Baumbach J., Fridman W.H., List M., Aneichyk T. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics (Oxford, England) 2019;35:i436–i445. doi: 10.1093/bioinformatics/btz363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Finotello F., Mayer C., Plattner C., Laschober G., Rieder D., Hackl H., Krogsdam A., Loncova Z., Posch W., Wilflingseder D., et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 2019;11:34. doi: 10.1186/s13073-019-0638-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Aran D., Hu Z., Butte A.J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:1–14. doi: 10.1186/s13059-017-1349-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.ImmuneSubtypeClassifier. [(accessed on 27 July 2020)]; Available online: https://github.com/CRI-iAtlas/ImmuneSubtypeClassifier.
  • 35.Polano M., Chierici M., Dal Bo M., Gentilini D., Di Cintio F., Baboci L., Gibbs D.L., Furlanello C., Toffoli G. A Pan-Cancer Approach to Predict Responsiveness to Immune Checkpoint Inhibitors by Machine Learning. Cancers. 2019;11:1562. doi: 10.3390/cancers11101562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Langlois B., Saupe F., Rupp T., Arnold C., van der Heyden M., Orend G., Hussenet T. AngioMatrix, a signature of the tumor angiogenic switch-specific matrisome, correlates with poor prognosis for glioma and colorectal cancer patients. Oncotarget. 2014;5:10529–10545. doi: 10.18632/oncotarget.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Zhao J., Chen A.X., Gartrell R.D., Silverman A.M., Aparicio L., Chu T., Bordbar D., Shan D., Samanamud J., Mahajan A., et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 2019;25:462–469. doi: 10.1038/s41591-019-0349-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Hassn Mesrati M., Behrooz A.B., Y Abuhamad A., Syahir A. Understanding Glioblastoma Biomarkers: Knocking a Mountain with a Hammer. Cells. 2020;9:1236. doi: 10.3390/cells9051236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Zhao Y., Zhang X., Yao J., Jin Z., Liu C. Expression patterns and the prognostic value of the EMILIN/Multimerin family members in low-grade glioma. PeerJ. 2020;8 doi: 10.7717/peerj.8696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Degenhardt F., Seifert S., Szymczak S. Evaluation of variable selection methods for random forests and omics data sets. Brief. Bioinf. 2017;20:492–503. doi: 10.1093/bib/bbx124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Vabalas A., Gowen E., Poliakoff E., Casson A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE. 2019;14:e0224365. doi: 10.1371/journal.pone.0224365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Matthews B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Bioch. Biophys. Acta. 1975;405:442–451. doi: 10.1016/0005-2795(75)90109-9. [DOI] [PubMed] [Google Scholar]
  • 43.Shi L., Campbell G., Jones W.D., Campagne F., Wen Z., Walker S.J., Su Z., Chu T.M., Goodsaid F.M., Pusztai L., et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat. Biotechnol. 2010;28:827–838. doi: 10.1038/nbt.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Boughorbel S., Jarray F., El-Anbari M. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS ONE. 2017;12:e0177678. doi: 10.1371/journal.pone.0177678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Sundjaja J.H., Shrestha R., Krishan K. StatPearls. Treasure Island; London, UK: 2020. McNemar And Mann-Whitney U Tests. [PubMed] [Google Scholar]
  • 46.Wang H., Li G. A Selective Review on Random Survival Forests for High Dimensional Data. Quant. Bio-Sci. 2017;36:85–96. doi: 10.22283/qbs.2017.36.2.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Chai R.C., Zhang K.N., Chang Y.Z., Wu F., Liu Y.Q., Zhao Z., Wang K.Y., Chang Y.H., Jiang T., Wang Y.Z. Systematically characterize the clinical and biological significances of 1p19q genes in 1p/19q non-codeletion glioma. Carcinogenesis. 2019;40:1229–1239. doi: 10.1093/carcin/bgz102. [DOI] [PubMed] [Google Scholar]
  • 48.Chai R.C., Chang Y.Z., Wang Q.W., Zhang K.N., Li J.J., Huang H., Wu F., Liu Y.Q., Wang Y.Z. A Novel DNA Methylation-Based Signature Can Predict the Responses of MGMT Promoter Unmethylated Glioblastomas to Temozolomide. Front. Genet. 2019;10 doi: 10.3389/fgene.2019.00910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:1362–4962. doi: 10.1093/nar/gku1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830. [Google Scholar]
  • 52.Amankulor N.M., Kim Y., Arora S., Kargl J., Szulzewsky F., Hanke M., Margineantu D.H., Rao A., Bolouri H., Delrow J., et al. Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Devel. 2017;31:774–786. doi: 10.1101/gad.294991.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Jin M.Z., Jin W.L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transd. Target. Ther. 2020;5:1–16. doi: 10.1038/s41392-020-00280-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Vidyarthi A., Agnihotri T., Khan N., Singh S., Tewari M.K., Radotra B.D., Chatterjee D., Agrewala J.N. Predominance of M2 macrophages in gliomas leads to the suppression of local and systemic immunity. Cancer Immunol. Immunother. CII. 2019;68:1995–2004. doi: 10.1007/s00262-019-02423-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Razavi S.M., Lee K.E., Jin B.E., Aujla P.S., Gholamin S., Li G. Immune Evasion Strategies of Glioblastoma. Front. Surg. 2016;3 doi: 10.3389/fsurg.2016.00011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Sonabend A.M., Rolle C.E., Lesniak M.S. The role of regulatory T cells in malignant glioma. Anticancer Res. 2008;28:1143–1150. [PubMed] [Google Scholar]
  • 57.Pitroda S.P., Zhou T., Sweis R.F., Filippo M., Labay E., Beckett M.A., Mauceri H.J., Liang H., Darga T.E., Perakis S., et al. Tumor endothelial inflammation predicts clinical outcome in diverse human cancers. PLoS ONE. 2012;7:e46104. doi: 10.1371/journal.pone.0046104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Zhao C., Gomez G.A., Zhao Y., Yang Y., Cao D., Lu J., Yang H., Lin S. ETV2 mediates endothelial transdifferentiation of glioblastoma. Signal Transd. Target. Ther. 2018;3:4. doi: 10.1038/s41392-018-0007-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Tormoen G.W., Crittenden M.R., Gough M.J. Role of the immunosuppressive microenvironment in immunotherapy. Adv. Rad. Oncol. 2018;3:520–526. doi: 10.1016/j.adro.2018.08.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Wiencke J.K., Koestler D.C., Salas L.A., Wiemels J.L., Roy R.P., Hansen H.M., Rice T., McCoy L.S., Bracci P.M., Molinaro A.M., et al. Immunomethylomic approach to explore the blood neutrophil lymphocyte ratio (NLR) in glioma survival. Clin. Epigenetics. 2017;9:10. doi: 10.1186/s13148-017-0316-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Zou J.P., Morford L.A., Chougnet C., Dix A.R., Brooks A.G., Torres N., Shuman J.D., Coligan J.E., Brooks W.H., Roszman T.L., et al. Human Glioma-Induced Immunosuppression Involves Soluble Factor(s) That Alters Monocyte Cytokine Profile and Surface Markers. J. Immunol. 1999;162:4882–4892. [PubMed] [Google Scholar]
  • 62.Zhang L., Xu Y., Sun J., Chen W., Zhao L., Ma C., Wang Q., Sun J., Huang B., Zhang Y., et al. M2-like tumor-associated macrophages drive vasculogenic mimicry through amplification of IL-6 expression in glioma cells. Oncotarget. 2016;8:819–832. doi: 10.18632/oncotarget.13661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Hanaei S., Afshari K., Hirbod-Mobarakeh A., Mohajer B., Amir Dastmalchi D., Rezaei N. Therapeutic efficacy of specific immunotherapy for glioma: A systematic review and meta-analysis. Rev. Neurosci. 2018;29:443–461. doi: 10.1515/revneuro-2017-0057. [DOI] [PubMed] [Google Scholar]
  • 64.Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Weller M., Wick W., Aldape K., Brada M., Berger M., Pfister S.M., Nishikawa R., Rosenthal M., Wen P.Y., Stupp R., et al. Glioma. Nat. Rev. Disease Primers. 2015;1:1–18. doi: 10.1038/nrdp.2015.17. [DOI] [PubMed] [Google Scholar]
  • 66.Lombardi G., Barresi V., Castellano A., Tabouret E., Pasqualetti F., Salvalaggio A., Cerretti G., Caccese M., Padovan M., Zagonel V., et al. Clinical Management of Diffuse Low-Grade Gliomas. Cancers. 2020;12:3008. doi: 10.3390/cancers12103008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Roesch S., Rapp C., Dettling S., Herold-Mende C. When Immune Cells Turn Bad-Tumor-Associated Microglia/Macrophages in Glioma. Int. J. Mol. Sci. 2018;19:436. doi: 10.3390/ijms19020436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Quail D.F., Joyce J.A. The Microenvironmental Landscape of Brain Tumors. Cancer Cell. 2017;31:326–341. doi: 10.1016/j.ccell.2017.02.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Tang Y., Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol. Neurobiol. 2016;53:1181–1194. doi: 10.1007/s12035-014-9070-5. [DOI] [PubMed] [Google Scholar]
  • 70.Prosniak M., Harshyne L.A., Andrews D.W., Kenyon L.C., Bedelbaeva K., Apanasovich T.V., Heber-Katz E., Curtis M.T., Cotzia P., Hooper D.C. Glioma Grade Is Associated with the Accumulation and Activity of Cells Bearing M2 Monocyte Markers. Clin. Cancer Res. 2013;19:3776–3786. doi: 10.1158/1078-0432.CCR-12-1940. [DOI] [PubMed] [Google Scholar]
  • 71.Shabo I., Olsson H., Sun X.F., Svanvik J. Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. Int. J. Cancer. 2009;125:1826–1831. doi: 10.1002/ijc.24506. [DOI] [PubMed] [Google Scholar]
  • 72.Zheng C., Xu R. Predicting cancer origins with a DNA methylation-based deep neural network model. PLoS ONE. 2020;15:e0226461. doi: 10.1371/journal.pone.0226461. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All the results here showed are based on data generated by the TCGA Research Network: https:/cancer.gov/tcga (accessed on 12 March 2020).


Articles from Cells are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES