Skip to main content
Entropy logoLink to Entropy
. 2021 Mar 19;23(3):367. doi: 10.3390/e23030367

Robust Estimation for Bivariate Poisson INGARCH Models

Byungsoo Kim 1,*, Sangyeol Lee 2, Dongwon Kim 2
Editor: Christian H Weiss
PMCID: PMC8003669  PMID: 33808839

Abstract

In the integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models, parameter estimation is conventionally based on the conditional maximum likelihood estimator (CMLE). However, because the CMLE is sensitive to outliers, we consider a robust estimation method for bivariate Poisson INGARCH models while using the minimum density power divergence estimator. We demonstrate the proposed estimator is consistent and asymptotically normal under certain regularity conditions. Monte Carlo simulations are conducted to evaluate the performance of the estimator in the presence of outliers. Finally, a real data analysis using monthly count series of crimes in New South Wales and an artificial data example are provided as an illustration.

Keywords: integer-valued time series, bivariate Poisson INGARCH model, outliers, robust estimation, minimum density power divergence estimator

1. Introduction

Integer-valued time series models have received widespread attention from researchers and practitioners, due to their versatile applications in many scientific areas, including finance, insurance, marketing, and quality control. Numerous studies focus on integer-valued autoregressive (INAR) models to analyze the time series of counts, see Weiß [1] and Scotto et al. [2] for general reviews. Taking a different approach, Ferland et al. [3] proposed using Poisson integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models and Fokianos et al. [4] developed Poisson AR models to generalize the linear assumption on INGARCH models. The Poisson assumption on INGARCH models has been extended to negative binomial INGARCH models (Davis and Wu [5] and Christou and Fokianos [6]), zero-inflated generalized Poisson INGARCH models (Zhu [7,8] and Lee et al. [9]), and one-parameter exponential family AR models (Davis and Liu [10]). We refer to the review papers by Fokianos [11,12] and Tjøstheim [13,14] for more details.

Researchers invested considerable efforts to extend the univariate integer-valued time series models to bivariate (multivariate) models. For INAR type models, Quoreshi [15] proposed bivariate integer-valued moving average models and Pedeli and Karlis [16] introduced bivariate INAR models with Poisson and negative binomial innovations. Liu [17] proposed bivariate Poisson INGARCH models with a bivariate Poisson distribution that was constructed via the trivariate reduction method and established the stationarity and ergodicity of the model. Andreassen [18] later verified the consistency of the conditional maximum likelihood estimator (CMLE) and Lee et al. [19] studied the asymptotic normality of the CMLE and developed the CMLE- and residual-based change point tests. However, this model has the drawback that it can only accommodate positive correlation between two time series of counts. To cope with this issue, Cui and Zhu [20] recently introduced a new bivariate Poisson INGARCH model based on Lakshminarayana et al.’s [21] bivariate Poisson distribution. Their model can deal with positive or negative correlation, depending on the multiplicative factor parameter. They employed the CMLE for parameter estimation. However, because the CMLE is unduly influenced by outliers, the robust estimation in bivariate Poisson INGARCH models is crucial and deserves thorough investigation.

As such, here we develop a robust estimator for Cui and Zhu’s [20] bivariate Poisson INGARCH models. Among the robust estimation methods, we employ the minimum density power divergence estimator (MDPDE) approach that was originally proposed by Basu et al. [22], because it is well known to consistently provide robust estimators in various situations. For previous works in the context of time series of counts, see Kang and Lee [23], Kim and Lee [24,25], Diop and Kengne [26], Kim and Lee [27], and Lee and Kim [28], who studied the MDPDE for Poisson AR models, zero-inflated Poisson AR models, one-parameter exponential family AR models, and change point tests. For another robust estimation approach in INGARCH models, see Xiong and Zhu [29] and Li et al. [30], who studied Mallows’ quasi-likelihood method. To the best of our knowledge, the robust estimation method for bivariate Poisson INGARCH models has not been previously studied. In earlier studies, the MDPDE was proven to possess strong robust properties against outliers with little loss in asymptotic efficiency relative to the CMLE. This study confirms the same conclusion for bivariate Poisson INGARCH models.

The rest of this paper is organized, as follows. Section 2 constructs the MDPDE for bivariate Poisson INGARCH models. Section 3 shows the asymptotic properties of the MDPDE. Section 4 conducts empirical studies to evaluate the performance of the MDPDE. Section 5 provides concluding remarks. Appendix A provides the proof.

2. MDPDE for Bivariate Poisson Ingarch Models

Basu et al. [22] defined the density power divergence dα between two densities f and g, with a tuning parameter α, as

dα(g,f)={f1+α(y)(1+1α)g(y)fα(y)+1αg1+α(y)}dy,α>0,g(y)(logg(y)logf(y))dy,α=0.

For a parametric family {Fθ;θΘ} having densities {fθ} and a distribution G with density g, they defined the minimum density power divergence functional Tα(G) by dα(g,fTα(G))=minθΘdα(g,fθ). If G belongs to {Fθ}, which is, G=Fθ0 for some θ0Θ, then Tα(Fθ0)=θ0. Let g be the density function of a random sample Y1,,Yn. Using the empirical distribution Gn to approximate G, Basu et al. [22] defined the MDPDE by

θ^α,n=argminθΘHα,n(θ),

where Hα,n(θ)=1nt=1nhα,t(θ) and

hα,t(θ)=fθ1+α(y)dy1+1αfθα(Yt),α>0,logfθ(Yt),α=0.

The tuning parameter α controls the trade-off between the robustness and asymptotic efficiency of the MDPDE. Namely, relatively large α values improve the robustness but the estimator’s efficiency decreases. The MDPDE with α=0 and 1 leads to the MLE and L2-distance estimator, respectively. Basu et al. [22] showed the consistency and asymptotic normality of the MDPDE and demonstrated that the estimator is robust against outliers, but it still retains high efficiency when the true distribution belongs to a parametric family {Fθ} and α is close to zero.

We need to define the conditional version of the MDPDE in order to apply the above procedure to bivariate Poisson INGARCH models. Let {fθ(·|Ft1)} denote the parametric family of autoregressive models, being indexed by the parameter θ, and let fθ0(·|Ft1) be the true conditional density of the time series Yt given Ft1, where Ft1 is a σ-field generated by Yt1,Yt2,. Subsequently, the MDPDE of θ0 is given by

θ^α,n=argminθΘHα,n(θ),

where Hα,n(θ)=1nt=1nhα,t(θ) and

hα,t(θ)=fθ1+α(y|Ft1)dy1+1αfθα(Yt|Ft1),α>0,logfθ(Yt|Ft1),α=0 (1)

(cf. Section 2 of Kang and Lee [23]).

Let Yt=(Yt,1,Yt,2)T be a two-dimensional vector of counts at time t, namely, {Yt,1,t1} and {Yt,2,t1} are the two time series of counts under consideration. Liu [17] proposed the bivariate Poisson INGARCH model, as follows

Yt|Ft1BP*(λt,1,λt,2,ϕ),λt=(λt,1,λt,2)T=ω+Aλt1+BYt1,

where Ft is the σ-field generated by Yt,Yt1,, ϕ0, ω=(ω1,ω2)TR+2, A={aij}i,j=1,2 and B={bij}i,j=1,2 are 2×2 matrices with non-negative entries. BP*(λt,1,λt,2,ϕ) denotes the bivariate Poisson distribution constructed via the trivariate reduction method, whose probability mass function (PMF) is

P(Yt,1=y1,Yt,2=y2|Ft1)=e(λt,1+λt,2ϕ)(λt,1ϕ)y1y1!(λt,2ϕ)y2y2!s=0min(y1,y2)y1sy2ss!ϕ(λt,1ϕ)(λt,2ϕ)s.

In this model, Cov(Yt,1,Yt,2|Ft1)=ϕ[0,min(λt,1,λt,2)), so that the model has a drawback that it can only deal with positive correlation between two components.

To overcome this defect, Cui and Zhu [20] proposed a new bivariate Poisson INGARCH model using the distribution that was proposed by Lakshminarayana et al. [21]. They considered the model:

Yt|Ft1BP(λt,1,λt,2,δ),λt=(λt,1,λt,2)T=ω+Aλt1+BYt1 (2)

and BP(λt,1,λt,2,δ) is the bivariate Poisson distribution constructed as a product of Poisson marginals with a multiplicative factor, whose PMF is given by

P(Yt,1=y1,Yt,2=y2|Ft1)=λt,1y1λt,2y2y1!y2!e(λt,1+λt,2)1+δ(ey1ecλt,1)(ey2ecλt,2), (3)

where c=1e1. The marginal conditional distribution of Yt,1 and Yt,2 are Poisson with parameters λt,1 and λt,2, respectively, and Cov(Yt,1,Yt,2|Ft1)=δc2λt,1λt,2ec(λt,1+λt,2). Hence, this model supports positive or negative correlation, depending on the multiplicative factor parameter δ. Cui and Zhu [20] established the stationarity and ergodicity of the model under certain conditions and showed the consistency and asymptotic normality of the CMLE.

In this study, we apply the MDPDE to the model (2). We focus on the case that A is a diagonal matrix, because this simplification can reduce the number of model parameters and makes it easy to use in practice, as Heinen and Rengifo [31] suggested. Further, the diagonal setup of A eases the verification of the asymptotic properties of the MDPDE. Similar approaches can be found in Liu [17], Lee et al. [19], and Cui et al. [32]. Let A=diag(a1,a2). Subsequently, we set θ=(θ1T,θ2T,δ)T, where θ1=(ω1,a1,b11,b12)T and θ2=(ω2,a2,b21,b22)T, and write the true parameter as θ0=(θ10T,θ20T,δ0)T, where θ10=(ω10,a10,b110,b120)T and θ20=(ω20,a20,b210,b220)T.

Given Y1,,Yn that is generated from (2), from (1), we obtain the MDPDE of θ0 by

θ^α,n=argminθΘH˜α,n(θ)=argminθΘ1nt=1nh˜α,t(θ),

where

h˜α,t(θ)=y1=0y2=0fθ1+α(y|λ˜t)1+1αfθα(Yt|λ˜t),α>0,logfθ(Yt|λ˜t),α=0, (4)

fθ(y|λt) for y=(y1,y2)T is the conditional PMF in (3), and λ˜t is recursively defined by

λ˜t=(λ˜t,1,λ˜t,2)T=ω+Aλ˜t1+BYt1,t2

with an arbitrarily chosen initial value λ˜1. We also use notations λt(θ) and λ˜t(θ) to denote λt and λ˜t, respectively, in order to emphasize the role of θ.

3. Asymptotic Properties of the MDPDE

In this section, we establish the consistency and asymptotic normality of the MDPDE. Throughout this study, Ap denotes the p-induced norm of matrix A for 1p and xp is the p-norm of vector x. When p=1 and ∞, A1=max1jni=1m|aij| and A=max1imj=1n|aij| for A={aij}1im,1jn, respectively. E(·) is taken under θ0. We assume that the following conditions hold in order to verify the asymptotic properties of the MDPDE.

  • (A1) 
    θ10,θ20, and δ0 are interior points in the compact parameter spaces Θ1, Θ2, and Θ3, respectively, and Θ=Θ1×Θ2×Θ3. In addition, there exist positive constants ωL, ωU, aL, aU, bL, bU, and δU, such that for i,j=1,2,
    0<ωLωiωU,0<aLaiaU,0<bLbijbU,and|δ|δU.
  • (A2) 
    There exist positive constants φL and φU such that for y=(y1,y2)TN02,λ=(λ1,λ2)T(0,)2, and δΘ3,
    0<φLφ(y,λ,δ)φU,whereφ(y,λ,δ)=1+δ(ey1ecλ1)(ey2ecλ2).
  • (A3) 

    There exists a p[1,] such that Ap+2(11/p)Bp<1.

Remark 1.

These conditions can be found in Cui and Zhu [20]. According to Theorem 1 in their study, {(Yt,λt)} is stationary and ergodic under (A1) and (A3).

Subsequently, we obtain the following results; the proofs are provided in the Appendix A.

Theorem 1.

Under the conditions (A1) (A3) ,

θ^α,na.s.θ0asn.

Theorem 2.

Under the conditions (A1) (A3) ,

n(θ^α,nθ0)dN(0,Jα1KαJα1)asn,

where

Jα=E2hα,t(θ0)θθT,Kα=Ehα,t(θ0)θhα,t(θ0)θT,

and hα,t(θ) is defined by replacing λ˜t(θ) with λt(θ) in (4).

Remark 2.

Because the tuning parameter α controls the trade-off between the robustness and asymptotic efficiency, choosing the optimal α is an important issue in practice. Several researchers investigated the selection criterion of optimal α; see Fujisawa and Eguchi [33], Durio and Isaia [34], and Toma and Broniatowski [35]. Among them, we adopt the method of Warwick [36] to choose α that minimizes the trace of the estimated asymptotic mean squared error (AMSE^) defined by

AMSE^=(θ^α,nθ^1,n)(θ^α,nθ^1,n)T+As.var^(θ^α,n),

where θ^1,n is the MDPDE with α=1 and As.var^(θ^α,n) is an estimate of the asymptotic variance of θ^α,n, which is computed as

As.var^(θ^α,n)=t=1n2h˜α,t(θ^α,n)θθT1t=1nh˜α,t(θ^α,n)θh˜α,t(θ^α,n)θTt=1n2h˜α,t(θ^α,n)θθT1.

This criterion is applied to our empirical study in Section 4.2.

4. Empirical Studies

4.1. Simulation

In this section, we report the simulation results to evaluate the performance of the MDPDE. The simulation settings are described, as follows. Using the inverse transformation sampling method (cf. Section 2.3 of Verges [37]), we generate Y1,,Yn from (2) with the initial value λ1=(0,0)T. For the estimation, λ˜1 is set to be the sample mean of the data. We first consider θ=(ω1,a1,b11,b12,ω2,a2,b21,b22,δ)T=(1,0.2,0.1,0.2,0.5,0.3,0.4,0.2,0.5)T, which satisfies (A3) with p=1. In this simulation, we compare the performance of the MDPDE with α>0 with that of the CMLE (α=0). We examine the sample mean, variance, and mean squared error (MSE) of the estimators. The sample size under consideration is n=1000 and the number of repetitions for each simulation is 1000. In Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15 and Table 16, the symbol * represents the minimal MSEs for each parameter.

Table 1.

Sample mean, variance, and mean squared error (MSE) of estimators when θ=(1,0.2,0.1,0.2,0.5,0.3,0.4,0.2,0.5)T, n=1000, and no outliers exist.

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 1.010 0.198 0.099 0.199 0.510 0.298 0.401 0.198 0.583
Var ×102 3.421 1.062 0.105 0.083 1.344 0.366 0.119 0.100 15.54
MSE ×102 3.429 * 1.061 * 0.105 * 0.083 * 1.352 * 0.366 * 0.119 * 0.100 * 16.22 *
0.1 Mean 1.012 0.198 0.099 0.199 0.510 0.297 0.401 0.199 0.577
Var ×102 3.527 1.091 0.108 0.083 1.379 0.372 0.121 0.103 15.83
MSE ×102 3.537 1.091 0.108 0.084 1.387 0.372 0.121 0.103 16.41
0.2 Mean 1.013 0.197 0.099 0.199 0.510 0.297 0.401 0.199 0.572
Var ×102 3.671 1.134 0.113 0.086 1.453 0.387 0.126 0.108 16.42
MSE ×102 3.684 1.134 0.113 0.086 1.463 0.388 0.126 0.108 16.92
0.3 Mean 1.013 0.197 0.099 0.199 0.511 0.296 0.401 0.199 0.568
Var ×102 3.870 1.195 0.120 0.090 1.555 0.410 0.133 0.114 17.22
MSE ×102 3.883 1.195 0.120 0.090 1.565 0.411 0.133 0.114 17.66
0.5 Mean 1.012 0.197 0.100 0.199 0.511 0.294 0.402 0.200 0.559
Var ×102 4.336 1.340 0.137 0.101 1.817 0.469 0.151 0.130 19.51
MSE ×102 4.347 1.340 0.137 0.101 1.828 0.472 0.152 0.130 19.84
1 Mean 1.007 0.198 0.101 0.200 0.513 0.289 0.405 0.203 0.544
Var ×102 6.094 1.864 0.198 0.148 2.805 0.690 0.222 0.189 29.18
MSE ×102 6.094 1.863 0.198 0.148 2.818 0.701 0.224 0.190 29.35

Table 2.

Sample mean, variance, and MSE of estimators when θ=(1,0.2,0.1,0.2,0.5,0.3,0.4,0.2,0.5)T, n=1000, and (p,γ)=(0.03,5).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 1.073 0.266 0.077 0.167 0.650 0.339 0.325 0.176 0.728
Var ×102 6.363 1.707 0.109 0.105 2.333 0.553 0.168 0.115 17.16
MSE ×102 6.897 2.140 0.160 0.213 4.577 0.704 0.736 0.170 22.36
0.1 Mean 1.028 0.264 0.080 0.170 0.607 0.335 0.331 0.179 0.697
Var ×102 5.299 1.510 0.098 0.097 2.040 0.512 0.160 0.108 17.23
MSE ×102 5.375 1.915 0.139 0.188 3.185 0.635 0.636 0.151 21.09
0.2 Mean 1.008 0.261 0.081 0.171 0.587 0.331 0.335 0.181 0.679
Var ×102 5.114 1.491 0.098 0.097 2.031 0.526 0.165 0.110 17.70
MSE ×102 5.116 * 1.855 0.133 0.179 2.789 0.621 * 0.583 0.147 * 20.87 *
0.3 Mean 1.000 0.257 0.083 0.172 0.578 0.327 0.339 0.182 0.662
Var ×102 5.182 1.526 0.101 0.100 2.099 0.558 0.177 0.115 18.34
MSE ×102 5.177 1.846 * 0.131 * 0.177 * 2.701 * 0.628 0.548 0.148 20.95
0.5 Mean 0.997 0.248 0.086 0.174 0.572 0.317 0.346 0.184 0.633
Var ×102 5.729 1.682 0.114 0.116 2.381 0.658 0.220 0.136 20.02
MSE ×102 5.724 1.910 0.134 0.183 2.899 0.686 0.516 0.162 21.77
1 Mean 1.007 0.230 0.094 0.179 0.578 0.296 0.363 0.191 0.587
Var ×102 7.297 2.213 0.166 0.168 3.435 0.965 0.315 0.205 29.90
MSE ×102 7.294 2.301 0.170 0.210 4.039 0.966 0.449 * 0.214 30.62

Table 3.

Sample mean, variance, and MSE of estimators when θ=(1,0.2,0.1,0.2,0.5,0.3,0.4,0.2,0.5)T, n=1000, and (p,γ)=(0.03,10).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 1.141 0.349 0.052 0.123 0.846 0.398 0.230 0.141 1.113
Var ×102 16.43 3.478 0.101 0.140 5.886 1.087 0.265 0.138 21.91
MSE ×102 18.39 5.702 0.335 0.736 17.88 2.051 3.138 0.487 59.51
0.1 Mean 1.015 0.329 0.057 0.131 0.706 0.382 0.248 0.150 0.865
Var ×102 7.844 2.031 0.069 0.095 3.087 0.672 0.224 0.100 19.42
MSE ×102 7.860 3.703 0.250 0.566 7.329 1.348 2.523 0.355 32.72
0.2 Mean 0.995 0.314 0.060 0.134 0.680 0.365 0.259 0.153 0.802
Var ×102 7.073 1.948 0.068 0.095 2.912 0.677 0.244 0.104 19.42
MSE ×102 7.068 3.252 0.225 0.529 6.156 * 1.105 2.245 0.321 28.54
0.3 Mean 1.002 0.298 0.064 0.137 0.681 0.349 0.269 0.157 0.765
Var ×102 6.995 1.972 0.075 0.102 3.030 0.742 0.280 0.114 19.94
MSE ×102 6.989 * 2.936 0.207 0.499 6.287 0.977 2.005 0.301 26.92
0.5 Mean 1.034 0.264 0.072 0.145 0.695 0.314 0.293 0.165 0.706
Var ×102 7.365 2.137 0.097 0.125 3.415 0.913 0.382 0.146 21.81
MSE ×102 7.475 2.545 0.176 0.430 7.223 0.932 * 1.536 0.266 * 26.01 *
1 Mean 1.088 0.198 0.095 0.167 0.719 0.242 0.353 0.191 0.604
Var ×102 7.825 2.377 0.171 0.203 4.553 1.273 0.601 0.258 30.55
MSE ×102 8.592 2.375 * 0.173 * 0.309 * 9.328 1.611 0.818* 0.267 31.61

Table 4.

Sample mean, variance, and MSE of estimators when θ=(1,0.2,0.1,0.2,0.5,0.3,0.4,0.2,0.5)T, n=1000, and (p,γ)=(0.05,10).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 1.223 0.404 0.040 0.093 0.990 0.449 0.167 0.114 1.635
Var ×102 28.47 4.763 0.086 0.128 11.74 1.691 0.229 0.131 29.21
MSE ×102 33.40 8.909 0.442 1.281 35.70 3.897 5.645 0.867 158.1
0.1 Mean 1.012 0.390 0.046 0.103 0.772 0.437 0.185 0.125 1.057
Var ×102 11.78 2.695 0.056 0.083 4.883 0.952 0.188 0.095 21.44
MSE ×102 11.78 6.291 0.349 1.031 12.27 2.820 4.823 0.661 52.48
0.2 Mean 0.967 0.377 0.048 0.105 0.724 0.421 0.192 0.128 0.935
Var ×102 9.531 2.414 0.052 0.080 4.163 0.896 0.203 0.093 20.74
MSE ×102 9.633 5.529 0.324 0.986 9.168 2.359 4.525 0.608 39.63
0.3 Mean 0.971 0.361 0.050 0.107 0.720 0.405 0.199 0.131 0.879
Var ×102 9.450 2.465 0.055 0.086 4.189 0.962 0.236 0.101 20.90
MSE ×102 9.526 * 5.040 0.308 0.953 9.029 * 2.068 4.296 0.578 35.21
0.5 Mean 1.004 0.327 0.056 0.113 0.741 0.369 0.217 0.138 0.801
Var ×102 9.878 2.724 0.071 0.112 4.689 1.209 0.363 0.132 22.32
MSE ×102 9.870 4.336 0.269 0.861 10.51 1.687 * 3.700 0.511 31.33 *
1 Mean 1.102 0.229 0.084 0.142 0.807 0.257 0.300 0.170 0.651
Var ×102 10.28 3.134 0.183 0.238 5.959 1.804 0.946 0.304 30.79
MSE ×102 11.32 3.214 * 0.208 * 0.574 * 15.35 1.990 1.936 * 0.392 * 33.03

Table 5.

Sample mean, variance, and MSE of estimators when θ=(1,0.2,0.1,0.2,0.5,0.3,0.4,0.2,0.5)T, n=200, and no outliers exist.

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 1.005 0.208 0.089 0.199 0.541 0.281 0.411 0.195 0.893
Var ×102 12.41 3.866 0.426 0.394 7.816 2.078 0.651 0.553 71.23
MSE ×102 12.40 * 3.869 * 0.437 * 0.394 * 7.973 * 2.112 * 0.663 * 0.555 * 86.57
0.1 Mean 0.975 0.203 0.087 0.193 0.529 0.271 0.400 0.191 0.786
Var ×102 14.98 3.919 0.439 0.498 8.317 2.212 1.097 0.649 59.99
MSE ×102 15.03 3.916 0.455 0.502 8.392 2.296 1.096 0.658 68.12
0.2 Mean 0.970 0.203 0.087 0.192 0.527 0.267 0.400 0.191 0.756
Var ×102 15.48 3.965 0.458 0.520 8.672 2.292 1.176 0.687 60.78
MSE ×102 15.55 3.962 0.473 0.526 8.734 2.396 1.174 0.695 67.27 *
0.3 Mean 0.962 0.204 0.088 0.191 0.525 0.263 0.400 0.191 0.730
Var ×102 16.41 4.166 0.477 0.555 9.040 2.366 1.274 0.734 63.50
MSE ×102 16.54 4.163 0.492 0.563 9.096 2.497 1.273 0.741 68.71
0.5 Mean 0.945 0.202 0.088 0.188 0.521 0.254 0.398 0.192 0.685
Var ×102 18.64 4.513 0.527 0.653 10.34 2.653 1.561 0.873 70.39
MSE ×102 18.93 4.509 0.540 0.666 10.38 2.863 1.560 0.879 73.75
1 Mean 0.968 0.209 0.102 0.204 0.537 0.249 0.433 0.213 0.684
Var ×102 18.37 5.307 0.757 0.817 11.99 3.117 1.327 1.159 135.3
MSE ×102 18.45 5.310 0.757 0.817 12.12 3.374 1.437 1.175 138.5

Table 6.

Sample mean, variance and MSE of estimators when θ=(1,0.2,0.1,0.2,0.5,0.3,0.4,0.2,0.5)T, n=200, and (p,γ)=(0.03,5).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 1.056 0.276 0.077 0.164 0.662 0.324 0.339 0.173 1.054
Var ×102 20.83 5.501 0.419 0.489 12.34 2.785 0.918 0.619 80.49
MSE ×102 21.13 6.078 0.471 0.616 * 14.94 2.839 1.292 * 0.690 * 111.2
0.1 Mean 0.992 0.262 0.077 0.163 0.605 0.311 0.334 0.171 0.925
Var ×102 20.38 5.118 0.411 0.510 11.65 2.801 1.153 0.641 67.19
MSE ×102 20.37 5.496 0.463 * 0.648 12.75 2.810 * 1.581 0.724 85.15
0.2 Mean 0.973 0.253 0.079 0.165 0.585 0.305 0.338 0.172 0.882
Var ×102 19.71 4.993 0.422 0.525 11.55 2.817 1.207 0.652 68.88
MSE ×102 19.76 5.265 0.465 0.645 12.26 * 2.816 1.594 0.730 83.37
0.3 Mean 0.958 0.247 0.081 0.165 0.577 0.296 0.340 0.172 0.840
Var ×102 19.93 5.028 0.445 0.563 12.33 2.962 1.321 0.690 70.67
MSE ×102 20.09 5.244 0.483 0.682 12.90 2.961 1.681 0.766 82.17 *
0.5 Mean 0.944 0.234 0.084 0.167 0.572 0.281 0.344 0.174 0.774
Var ×102 20.94 5.080 0.503 0.647 13.53 3.241 1.574 0.806 78.15
MSE ×102 21.23 5.193 * 0.528 0.756 14.04 3.273 1.885 0.873 85.55
1 Mean 0.960 0.236 0.101 0.187 0.592 0.266 0.388 0.198 0.770
Var ×102 19.00 5.571 0.755 0.859 15.57 3.851 1.689 1.119 147.0
MSE ×102 19.14 * 5.696 0.754 0.876 16.40 3.962 1.702 1.119 154.2

Table 7.

Sample mean, variance, and MSE of estimators when θ=(1,0.2,0.1,0.2,0.5,0.3,0.4,0.2,0.5)T, n=200, and (p,γ)=(0.03,10).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 1.128 0.349 0.052 0.126 0.860 0.388 0.241 0.135 1.365
Var ×102 38.79 8.126 0.345 0.618 26.05 4.690 1.145 0.746 96.45
MSE ×102 40.38 10.33 0.574 1.161 38.95 5.467 3.659 1.174 171.2
0.1 Mean 1.003 0.314 0.054 0.128 0.715 0.355 0.250 0.141 1.050
Var ×102 28.42 6.643 0.269 0.507 16.99 3.644 1.158 0.616 69.06
MSE ×102 28.39 7.925 0.480 1.021 21.59 3.938 3.403 0.961 99.19
0.2 Mean 0.980 0.296 0.057 0.130 0.679 0.337 0.258 0.146 0.953
Var ×102 26.04 6.348 0.270 0.505 15.82 3.612 1.262 0.628 67.71
MSE ×102 26.05 7.268 0.455 * 0.991 19.02 3.749 3.268 0.914 88.19
0.3 Mean 0.972 0.289 0.060 0.133 0.678 0.320 0.270 0.151 0.893
Var ×102 25.20 6.357 0.299 0.535 15.69 3.649 1.407 0.660 69.05
MSE ×102 25.26 7.142 0.457 0.987 * 18.84 * 3.683 * 3.096 0.894 * 84.43
0.5 Mean 0.974 0.264 0.070 0.139 0.673 0.287 0.294 0.160 0.783
Var ×102 24.72 6.143 0.399 0.643 16.00 3.836 1.847 0.794 75.64
MSE ×102 24.76 6.548 0.490 1.019 18.96 3.848 2.963 0.953 83.56 *
1 Mean 1.007 0.232 0.100 0.171 0.677 0.235 0.374 0.200 0.657
Var ×102 21.91 6.221 0.778 1.007 16.89 3.717 2.460 1.238 130.0
MSE ×102 21.89 * 6.319 * 0.777 1.088 20.01 4.133 2.526 * 1.237 132.3

Table 8.

Sample mean, variance, and MSE of estimators when θ=(1,0.2,0.1,0.2,0.5,0.3,0.4,0.2,0.5)T, n=200, and (p,γ)=(0.05,10).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 1.171 0.406 0.046 0.097 1.041 0.420 0.183 0.108 1.814
Var ×102 53.26 9.255 0.326 0.521 45.18 6.131 1.054 0.654 133.0
MSE ×102 56.14 13.48 0.619 1.572 74.38 7.569 5.761 1.504 305.4
0.1 Mean 1.037 0.347 0.047 0.102 0.821 0.389 0.192 0.117 1.203
Var ×102 36.17 7.578 0.227 0.430 26.89 4.810 1.034 0.549 80.49
MSE ×102 36.28 9.719 0.509 1.388 37.17 5.600 5.372 1.244 129.8
0.2 Mean 0.989 0.334 0.049 0.104 0.772 0.370 0.199 0.122 1.064
Var ×102 31.43 7.373 0.218 0.421 23.29 4.607 1.106 0.554 77.26
MSE ×102 31.41 9.171 0.477 1.344 30.69 5.097 5.144 1.156 108.9
0.3 Mean 0.989 0.320 0.051 0.106 0.762 0.355 0.207 0.126 0.984
Var ×102 30.35 7.338 0.234 0.443 22.64 4.685 1.247 0.602 76.99
MSE ×102 30.33 8.773 0.472 * 1.327 29.47 4.985 4.985 1.149 * 100.4
0.5 Mean 0.984 0.293 0.058 0.112 0.764 0.314 0.229 0.135 0.855
Var ×102 30.12 7.263 0.332 0.558 22.81 4.884 1.791 0.781 80.40
MSE ×102 30.12 8.122 0.505 1.331 29.73 4.897 4.726 1.206 92.95 *
1 Mean 1.046 0.239 0.097 0.151 0.774 0.243 0.333 0.178 0.696
Var ×102 23.99 6.497 0.805 1.059 21.95 4.517 3.261 1.366 136.2
MSE ×102 24.17 * 6.645 * 0.805 1.302 * 29.46 * 4.839 * 3.708 * 1.413 139.9

Table 9.

Sample mean, variance, and MSE of estimators when θ=(0.5,0.1,0.2,0.4,0.3,0.3,0.2,0.1,0.4)T, n=1000, and no outliers exist.

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 0.501 0.103 0.199 0.397 0.306 0.296 0.200 0.098 −0.385
Var ×102 0.570 0.508 0.105 0.159 0.518 1.029 0.080 0.108 6.231
MSE ×102 0.569 * 0.508 * 0.105 * 0.160 * 0.522 * 1.030 * 0.080 * 0.109 * 6.247 *
0.1 Mean 0.501 0.103 0.199 0.397 0.306 0.295 0.200 0.098 −0.384
Var ×102 0.578 0.515 0.107 0.160 0.530 1.040 0.082 0.111 6.347
MSE ×102 0.578 0.515 0.108 0.161 0.534 1.041 0.082 0.112 6.367
0.2 Mean 0.501 0.103 0.199 0.397 0.307 0.295 0.200 0.098 −0.383
Var ×102 0.600 0.532 0.113 0.166 0.556 1.082 0.086 0.117 6.564
MSE ×102 0.600 0.533 0.113 0.167 0.560 1.083 0.086 0.117 6.588
0.3 Mean 0.501 0.104 0.199 0.397 0.307 0.294 0.200 0.098 −0.381
Var ×102 0.627 0.554 0.119 0.175 0.591 1.145 0.092 0.124 6.848
MSE ×102 0.627 0.555 0.119 0.176 0.595 1.147 0.092 0.125 6.876
0.5 Mean 0.500 0.105 0.198 0.398 0.308 0.292 0.201 0.099 −0.380
Var ×102 0.702 0.615 0.137 0.199 0.685 1.320 0.106 0.142 7.577
MSE ×102 0.701 0.617 0.137 0.200 0.690 1.325 0.106 0.142 7.610
1 Mean 0.495 0.110 0.198 0.399 0.310 0.287 0.203 0.100 −0.382
Var ×102 0.972 0.839 0.201 0.290 0.942 1.864 0.155 0.195 10.09
MSE ×102 0.974 0.848 0.201 0.290 0.951 1.878 0.156 0.194 10.12

Table 10.

Sample mean, variance, and MSE of estimators when θ=(0.5,0.1,0.2,0.4,0.3,0.3,0.2,0.1,0.4)T, n=1000, and (p,γ)=(0.03,5).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 0.633 0.194 0.143 0.269 0.399 0.368 0.147 0.064 −0.097
Var ×102 1.794 1.343 0.152 0.263 1.741 2.315 0.125 0.123 5.603
MSE ×102 3.560 2.219 0.474 1.974 2.728 2.769 0.409 0.255 14.79
0.1 Mean 0.572 0.186 0.149 0.280 0.350 0.360 0.153 0.067 −0.143
Var ×102 1.191 1.013 0.126 0.235 1.047 1.659 0.100 0.094 5.787
MSE ×102 1.711 1.743 0.390 1.676 1.297 2.016 0.325 0.205 12.38
0.2 Mean 0.550 0.177 0.151 0.286 0.335 0.350 0.155 0.068 −0.169
Var ×102 1.082 0.958 0.124 0.240 0.950 1.608 0.100 0.090 6.076
MSE ×102 1.335 1.543 0.361 1.536 1.074 * 1.861 * 0.305 0.191 11.43
0.3 Mean 0.543 0.167 0.154 0.292 0.333 0.340 0.156 0.070 −0.187
Var ×102 1.055 0.950 0.129 0.254 0.976 1.706 0.107 0.095 6.375
MSE ×102 1.241 1.401 0.344 1.427 1.083 1.868 0.297 0.184 10.89
0.5 Mean 0.542 0.148 0.159 0.304 0.339 0.318 0.161 0.075 −0.214
Var ×102 1.050 0.951 0.147 0.290 1.118 2.017 0.125 0.113 7.038
MSE ×102 1.229 * 1.185 0.315 1.203 1.270 2.049 0.279 0.175 * 10.49 *
1 Mean 0.548 0.112 0.176 0.340 0.360 0.268 0.176 0.090 −0.247
Var ×102 1.136 0.953 0.214 0.399 1.425 2.636 0.188 0.184 9.324
MSE ×102 1.363 0.966 * 0.271 * 0.756 * 1.783 2.733 0.244 * 0.194 11.64

Table 11.

Sample mean, variance, and MSE of estimators when θ=(0.5,0.1,0.2,0.4,0.3,0.3,0.2,0.1,0.4)T, n=1000, and (p,γ)=(0.03,10).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 0.774 0.295 0.087 0.149 0.525 0.415 0.094 0.037 0.336
Var ×102 7.976 4.279 0.176 0.346 7.305 6.070 0.187 0.103 7.338
MSE ×102 15.50 8.069 1.442 6.644 12.37 7.392 1.303 0.501 61.46
0.1 Mean 0.612 0.254 0.100 0.173 0.373 0.399 0.106 0.040 0.019
Var ×102 2.368 2.008 0.104 0.287 1.694 2.548 0.105 0.049 6.426
MSE ×102 3.628 4.369 1.109 5.441 2.231 3.521 0.982 0.406 23.94
0.2 Mean 0.596 0.227 0.103 0.182 0.364 0.378 0.108 0.042 −0.035
Var ×102 2.029 1.866 0.106 0.336 1.567 2.548 0.107 0.050 6.677
MSE ×102 2.944 3.490 1.048 5.081 1.971 * 3.160 0.949 0.384 20.01
0.3 Mean 0.600 0.203 0.108 0.195 0.372 0.355 0.112 0.046 −0.069
Var ×102 1.894 1.823 0.122 0.425 1.601 2.697 0.123 0.060 6.909
MSE ×102 2.884 2.873 0.973 4.637 2.111 2.997 0.889 0.353 17.86
0.5 Mean 0.611 0.145 0.125 0.240 0.401 0.287 0.130 0.061 −0.135
Var ×102 1.518 1.521 0.177 0.691 1.608 2.883 0.181 0.107 7.489
MSE ×102 2.744 1.725 0.742 3.259 2.619 2.898 * 0.674 0.259 14.50
1 Mean 0.594 0.059 0.178 0.360 0.440 0.155 0.185 0.107 −0.249
Var ×102 0.941 0.570 0.268 0.634 1.291 2.214 0.278 0.216 9.962
MSE ×102 1.828 * 0.737 * 0.316 * 0.794 * 3.262 4.327 0.301 * 0.220 * 12.22 *

Table 12.

Sample mean, variance, and MSE of estimators when θ=(0.5,0.1,0.2,0.4,0.3,0.3,0.2,0.1,0.4)T, n=1000, and (p,γ)=(0.05,10).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 0.870 0.382 0.059 0.086 0.645 0.451 0.062 0.027 0.829
Var ×102 17.32 6.408 0.129 0.206 14.69 8.150 0.135 0.073 8.777
MSE ×102 30.96 14.37 2.130 10.09 26.58 10.41 2.026 0.604 159.9
0.1 Mean 0.621 0.346 0.070 0.103 0.396 0.446 0.074 0.029 0.170
Var ×102 4.575 3.255 0.073 0.158 2.948 3.708 0.076 0.036 6.635
MSE ×102 6.034 9.327 1.762 8.971 3.862 5.837 1.659 0.545 39.12
0.2 Mean 0.585 0.327 0.070 0.104 0.370 0.431 0.073 0.029 0.089
Var ×102 3.641 2.988 0.065 0.164 2.294 3.311 0.068 0.031 6.911
MSE ×102 4.360 8.156 1.749 8.898 2.788 * 5.022 1.670 0.540 30.79
0.3 Mean 0.586 0.311 0.071 0.107 0.374 0.417 0.074 0.029 0.058
Var ×102 3.517 3.054 0.072 0.193 2.353 3.531 0.074 0.033 7.089
MSE ×102 4.249 7.500 1.727 8.805 2.893 4.895 1.661 0.532 28.06
0.5 Mean 0.608 0.265 0.080 0.124 0.399 0.371 0.083 0.035 0.016
Var ×102 3.465 3.335 0.114 0.398 2.559 4.119 0.120 0.055 7.515
MSE ×102 4.628 6.044 1.555 8.030 3.537 4.613 * 1.492 0.482 24.83
1 Mean 0.637 0.087 0.148 0.296 0.481 0.161 0.153 0.096 −0.144
Var ×102 1.536 1.591 0.410 1.613 1.732 3.105 0.408 0.306 9.724
MSE ×102 3.424 * 1.606 * 0.682 * 2.695 * 4.999 5.042 0.626 * 0.308 * 16.28 *

Table 13.

Sample mean, variance, and MSE of estimators when θ=(0.5,0.1,0.2,0.4,0.3,0.3,0.2,0.1,0.4)T, n=200, and no outliers exist.

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 0.487 0.131 0.182 0.394 0.316 0.287 0.203 0.092 −0.313
Var ×102 2.173 2.095 0.526 0.806 2.213 4.245 0.411 0.475 33.35
MSE ×102 2.187 * 2.186 * 0.558 * 0.809 * 2.237 * 4.257 * 0.412 * 0.481 * 34.07
0.1 Mean 0.483 0.129 0.181 0.390 0.314 0.284 0.202 0.091 −0.294
Var ×102 2.391 2.104 0.571 0.958 2.337 4.358 0.452 0.487 31.43
MSE ×102 2.416 2.188 0.609 0.967 2.353 4.379 0.452 0.495 32.53 *
0.2 Mean 0.481 0.131 0.180 0.388 0.312 0.283 0.202 0.090 −0.285
Var ×102 2.542 2.158 0.608 1.040 2.427 4.490 0.484 0.512 31.25
MSE ×102 2.577 2.250 0.649 1.054 2.439 4.513 0.483 0.520 32.55
0.3 Mean 0.479 0.134 0.180 0.388 0.311 0.284 0.202 0.091 −0.284
Var ×102 2.612 2.225 0.636 1.069 2.531 4.657 0.503 0.537 32.24
MSE ×102 2.653 2.337 0.677 1.082 2.541 4.679 0.503 0.545 33.55
0.5 Mean 0.477 0.137 0.180 0.389 0.313 0.280 0.204 0.092 −0.285
Var ×102 2.860 2.423 0.726 1.183 2.681 4.733 0.554 0.601 35.16
MSE ×102 2.909 2.555 0.766 1.194 2.695 4.769 0.555 0.606 36.43
1 Mean 0.473 0.145 0.185 0.399 0.314 0.276 0.212 0.100 −0.324
Var ×102 3.364 3.057 1.016 1.549 3.003 5.321 0.746 0.858 48.77
MSE ×102 3.434 3.252 1.038 1.548 3.021 5.375 0.760 0.857 49.31

Table 14.

Sample mean, variance, and MSE of estimators when θ=(0.5,0.1,0.2,0.4,0.3,0.3,0.2,0.1,0.4)T, n=200, and (p,γ)=(0.03,5).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 0.611 0.215 0.138 0.270 0.396 0.349 0.157 0.068 −0.056
Var ×102 6.324 4.595 0.661 1.242 5.415 6.896 0.600 0.472 28.97
MSE ×102 7.555 5.916 1.050 2.927 6.330 7.124 0.786 0.574 40.76
0.1 Mean 0.561 0.202 0.141 0.278 0.348 0.345 0.160 0.068 −0.086
Var ×102 4.635 3.815 0.593 1.110 3.799 5.860 0.497 0.380 28.62
MSE ×102 5.004 4.853 0.942 2.597 4.023 6.053 0.653 0.483 38.44
0.2 Mean 0.537 0.192 0.142 0.282 0.329 0.338 0.161 0.068 −0.099
Var ×102 4.374 3.640 0.598 1.175 3.512 5.797 0.497 0.367 28.89
MSE ×102 4.504 4.487 0.930 * 2.562 3.592 5.933 * 0.649 * 0.468 * 37.90 *
0.3 Mean 0.526 0.187 0.144 0.287 0.325 0.330 0.162 0.070 −0.115
Var ×102 4.313 3.636 0.619 1.264 3.494 5.913 0.517 0.383 29.94
MSE ×102 4.377 4.383 0.932 2.529 * 3.553 * 5.998 0.660 0.472 38.02
0.5 Mean 0.516 0.177 0.149 0.300 0.329 0.312 0.166 0.075 −0.141
Var ×102 4.305 3.602 0.689 1.529 3.657 6.121 0.572 0.454 33.05
MSE ×102 4.327 * 4.188 0.950 2.532 3.739 6.128 0.689 0.514 39.75
1 Mean 0.503 0.162 0.167 0.340 0.346 0.272 0.183 0.092 −0.194
Var ×102 4.432 3.750 0.989 2.266 3.911 6.436 0.772 0.726 47.97
MSE ×102 4.428 4.130 * 1.100 2.619 4.119 6.507 0.799 0.731 52.14

Table 15.

Sample mean, variance, and MSE of estimators when θ=(0.5,0.1,0.2,0.4,0.3,0.3,0.2,0.1,0.4)T, n=200, and (p,γ)=(0.03,10).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 0.736 0.312 0.084 0.165 0.497 0.416 0.103 0.047 0.291
Var ×102 16.70 8.406 0.635 1.549 12.16 10.20 0.674 0.401 33.37
MSE ×102 22.23 12.91 1.971 7.078 16.04 11.54 1.610 0.680 81.11
0.1 Mean 0.600 0.264 0.092 0.181 0.381 0.368 0.110 0.047 0.032
Var ×102 8.133 5.973 0.445 1.314 5.185 7.196 0.442 0.233 27.95
MSE ×102 9.120 8.669 1.613 6.104 5.843 7.657 1.255 0.515 46.63
0.2 Mean 0.570 0.252 0.095 0.188 0.367 0.353 0.110 0.050 −0.012
Var ×102 7.112 5.817 0.451 1.441 4.576 6.859 0.446 0.244 28.91
MSE ×102 7.592 8.112 1.544 5.920 5.016 7.136 1.250 0.495 * 43.96
0.3 Mean 0.563 0.235 0.100 0.200 0.366 0.338 0.113 0.054 −0.046
Var ×102 6.572 5.489 0.513 1.736 4.477 6.853 0.502 0.294 29.07
MSE ×102 6.965 7.299 1.513 5.748 4.910 6.988 1.263 0.503 41.58
0.5 Mean 0.553 0.193 0.113 0.235 0.369 0.294 0.124 0.066 −0.101
Var ×102 6.273 4.985 0.736 2.594 4.586 7.030 0.689 0.441 29.86
MSE ×102 6.548 5.840 1.484 5.318 5.061 7.027 1.263 0.555 38.79 *
1 Mean 0.552 0.126 0.166 0.340 0.383 0.227 0.176 0.104 −0.262
Var ×102 4.097 3.239 1.193 3.141 3.787 6.138 1.084 0.816 46.47
MSE ×102 4.360 * 3.304 * 1.307 * 3.502 * 4.479 * 6.658 * 1.141 * 0.817 48.32

Table 16.

Sample mean, variance, and MSE of estimators when θ=(0.5,0.1,0.2,0.4,0.3,0.3,0.2,0.1,0.4)T, n=200, and (p,γ)=(0.05,10).

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^
0(CMLE) Mean 0.829 0.378 0.064 0.102 0.613 0.435 0.081 0.037 0.749
Var ×102 27.18 10.13 0.521 0.889 18.60 10.72 0.611 0.307 39.05
MSE ×102 37.97 17.82 2.375 9.795 28.35 12.52 2.018 0.702 171.0
0.1 Mean 0.652 0.313 0.070 0.114 0.441 0.374 0.082 0.034 0.172
Var ×102 12.51 7.707 0.348 0.815 7.550 8.532 0.365 0.162 29.09
MSE ×102 14.81 12.21 2.040 9.010 9.521 9.078 1.748 0.592 61.80
0.2 Mean 0.612 0.294 0.071 0.117 0.417 0.354 0.080 0.035 0.097
Var ×102 9.876 7.005 0.317 0.871 6.395 8.221 0.332 0.147 30.13
MSE ×102 11.13 10.74 1.979 8.885 7.751 8.510 1.768 0.571 54.75
0.3 Mean 0.604 0.283 0.073 0.121 0.414 0.343 0.081 0.037 0.063
Var ×102 9.469 7.048 0.348 1.031 6.125 8.167 0.358 0.167 30.74
MSE ×102 10.54 10.38 1.970 8.819 7.414 8.347 1.771 0.567 * 52.11
0.5 Mean 0.607 0.241 0.085 0.151 0.420 0.310 0.091 0.048 −0.006
Var ×102 8.559 6.604 0.565 1.957 5.915 8.036 0.536 0.337 32.13
MSE ×102 9.688 8.590 1.881 8.142 7.350 8.038 1.713 0.608 47.63 *
1 Mean 0.600 0.135 0.146 0.292 0.425 0.220 0.152 0.097 −0.195
Var ×102 5.457 4.147 1.395 4.172 4.697 6.676 1.279 0.911 46.82
MSE ×102 6.453 * 4.268 * 1.690 * 5.343 * 6.263 * 7.302 * 1.508 * 0.910 50.98

Table 1 indicates that, when the data are not contaminated by outliers, the CMLE exhibits minimal MSEs for all parameters, and the MSEs of the MDPDE with small α are close to those of the CMLE. The MSE of the MDPDE shows an increasing tendency as α increases. Hence, we can conclude that the CMLE outperforms the MDPDE in the absence of outliers.

Now, we consider the situation that the data are contaminated by outliers. To this end, we generate contaminated data Yc,t=(Yc,t,1,Yc,t,2)T when considering

Yc,t,i=Yt,i+Pt,iYo,t,i,i=1,2,

where Yt,i are generated from (2), Pt,i are i.i.d. Bernoulli random variables with success probability p, and Yo,t,i are i.i.d. Poisson random variables with mean γ. We consider three cases: (p,γ)=(0.03,5),(0.03,10), and (0.05,10). Table 2, Table 3 and Table 4 report the results. In the tables, the MDPDE appears to have smaller MSEs than the CMLE for all cases, except for the case of α=1 when (p,γ)=(0.03,5). As p or γ increases, the MSEs of the CMLE increase faster than those of the MDPDE, which indicates that the MDPDE outperforms the CMLE, as the data are more contaminated by outliers. Moreover, as p or γ increases, the symbol * tends to move downward. This indicates that, when the data are severely contaminated by outliers, the MDPDE with large α performs better.

We also consider smaller sample size n=200. The results are presented in Table 5, Table 6, Table 7 and Table 8 and they show results similar to those in Table 1, Table 2, Table 3 and Table 4. The variances and MSEs of both the CMLE and MDPDE are larger than those in Table 1, Table 2, Table 3 and Table 4.

In order to evaluate the performance of the MDPDE for negatively cross-correlated data, we consider θ=(ω1,a1,b11,b12,ω2,a2,b21,b22,δ)T=(0.5,0.1,0.2,0.4,0.3,0.3,0.2,0.1,0.4)T with the same p and γ, as above. The results are reported in Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15 and Table 16 for n=1000 and 200, respectively. These tables exhibit results that are similar to those in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8. Overall, our findings strongly support the assertion that the MDPDE is a functional tool for yielding a robust estimator for bivariate Poisson INGARCH models in the presence of outliers.

4.2. Illustrative Examples

First, we illustrate the proposed method by examining the monthly count series of crimes provided by the New South Wales Police Force in Australia. The data set is classified by local government area and offence type. This data set has been studied in many literatures, including Lee et al. [9], Chen and Lee [38,39], Kim and Lee [24], and Lee et al. [40]. To investigate the behavior of the MDPDE in the presence of outliers, we consider the data series of liquor offences (LO) and transport regulatory offences (TRO) in Botany Bay from January 1995 to December 2012, which has 216 observations in each series. Figure 1 plots the monthly count series of LO and TRO and it shows the presence of some deviant observations in each series. The sample mean and variance are 1.912 and 13.14 for LO, and 2.463 and 20.41 for TRO. A large value of the variance of each series is expected to be influenced by outliers. The autocorrelation function (ACF) and partial autocorrelation function (PACF) of LO and TRO, as well as cross-correlation function (CCF) between two series, are given in Figure 2, indicating that the data are both serially and crossly correlated. The cross-correlation coefficient between two series is 0.141.

Figure 1.

Figure 1

Monthly count series of liquor offences (LO) (left) and transport regulatory offences (TRO) (right) in Botany Bay.

Figure 2.

Figure 2

Autocorrelation function (ACF) and partial autocorrelation function (PACF) of LO (top) and TRO (middle), and cross-correlation function (CCF) (bottom) between two series.

We fit the model (2) to the data using both the CMLE and the MDPDE. λ˜1 is set to be the sample mean of the data. Table 17 reports the estimated parameters with various α. The standard errors are given in parentheses and the symbol represents the minimal AMSE^ provided in Remark 2. In the table, we can observe that the MDPDE has smaller AMSE^ than the CMLE and the optimal α is chosen to be 0.1. The MDPDE with optimal α is quite different from the CMLE, in particular, δ^ is about half of the CMLE. This result indicates that outliers can seriously affect the parameter estimation and, thus, the robust estimation method is required when the data are contaminated by outliers.

Table 17.

Parameter estimates for bivariate Poisson integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model for crime data; the symbol represents the minimal AMSE^.

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^ AMSE^
0(CMLE) 0.019 0.779 0.125 0.073 0.032 0.865 0.090 0.057 1.312 1.578
(0.054) (0.290) (0.166) (0.075) (0.028) (0.090) (0.032) (0.086) (1.096)
0.1 0.034 0.609 0.172 0.094 0.097 0.654 0.095 0.156 0.685 0.699
(0.034) (0.149) (0.104) (0.026) (0.047) (0.091) (0.043) (0.069) (0.678)
0.2 0.026 0.643 0.134 0.087 0.117 0.575 0.124 0.159 0.509 0.858
(0.032) (0.163) (0.109) (0.026) (0.060) (0.121) (0.052) (0.069) (0.692)
0.3 0.021 0.666 0.113 0.085 0.129 0.523 0.154 0.155 0.401 0.991
(0.029) (0.149) (0.096) (0.027) (0.067) (0.133) (0.053) (0.068) (0.710)
0.4 0.019 0.673 0.107 0.085 0.130 0.508 0.176 0.145 0.356 1.081
(0.029) (0.143) (0.093) (0.029) (0.067) (0.135) (0.055) (0.069) (0.736)
0.5 0.018 0.675 0.105 0.086 0.125 0.514 0.196 0.131 0.365 1.108
(0.029) (0.138) (0.093) (0.032) (0.065) (0.136) (0.059) (0.071) (0.768)
0.6 0.017 0.676 0.104 0.088 0.119 0.527 0.216 0.115 0.418 1.094
(0.029) (0.133) (0.091) (0.036) (0.062) (0.135) (0.065) (0.073) (0.807)
0.7 0.017 0.675 0.104 0.089 0.114 0.540 0.238 0.100 0.509 1.073
(0.029) (0.130) (0.092) (0.041) (0.059) (0.133) (0.075) (0.075) (0.859)
0.8 0.018 0.674 0.104 0.090 0.111 0.551 0.261 0.087 0.638 1.079
(0.031) (0.130) (0.094) (0.045) (0.057) (0.133) (0.089) (0.076) (0.929)
0.9 0.018 0.672 0.104 0.091 0.109 0.560 0.285 0.076 0.808 1.158
(0.033) (0.133) (0.098) (0.050) (0.056) (0.134) (0.105) (0.077) (1.021)
1 0.019 0.668 0.104 0.092 0.108 0.568 0.312 0.066 1.025 1.383
(0.035) (0.138) (0.103) (0.054) (0.057) (0.136) (0.122) (0.079) (1.143)

We clean the data by using the approach that was introduced by Fokianos and Fried [41] and apply the CMLE and the MDPDE to this data in order to illustrate the behavior of the estimators in the absence of outliers. Table 18 reports the results. The standard errors and AMSE^ tend to decrease compared to Table 17. The CMLE has minimal AMSE^ and the MDPDE with small α appears to be similar to the CMLE.

Table 18.

Parameter estimates for bivariate Poisson INGARCH model for cleaned data; the symbol represents the minimal AMSE^.

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^ AMSE^
0(CMLE) 0.0018 0.943 0.025 0.021 0.092 0.682 0.067 0.184 0.118 0.430
(0.007) (0.118) (0.084) (0.017) (0.050) (0.115) (0.069) (0.069) (0.609)
0.1 0.0002 0.942 0.026 0.022 0.074 0.680 0.066 0.183 0.159 0.445
(0.006) (0.097) (0.076) (0.013) (0.035) (0.084) (0.063) (0.053) (0.626)
0.2 0.0001 0.940 0.025 0.023 0.066 0.679 0.066 0.182 0.199 0.497
(0.009) (0.100) (0.079) (0.011) (0.032) (0.075) (0.063) (0.049) (0.657)
0.3 0.0001 0.939 0.024 0.023 0.060 0.678 0.066 0.182 0.220 0.549
(0.010) (0.102) (0.082) (0.011) (0.032) (0.073) (0.064) (0.049) (0.688)
0.4 0.0001 0.939 0.024 0.023 0.057 0.678 0.066 0.182 0.228 0.591
(0.010) (0.104) (0.086) (0.011) (0.032) (0.074) (0.066) (0.049) (0.715)
0.5 0.0001 0.938 0.025 0.023 0.056 0.676 0.066 0.182 0.293 0.665
(0.010) (0.104) (0.087) (0.011) (0.034) (0.076) (0.068) (0.051) (0.742)
0.6 0.0001 0.938 0.024 0.023 0.054 0.677 0.066 0.182 0.263 0.688
(0.009) (0.102) (0.088) (0.011) (0.035) (0.077) (0.071) (0.053) (0.769)
0.7 0.0002 0.939 0.024 0.023 0.051 0.678 0.066 0.182 0.237 0.719
(0.008) (0.106) (0.093) (0.012) (0.035) (0.078) (0.074) (0.055) (0.795)
0.8 0.0002 0.940 0.015 0.027 0.053 0.678 0.067 0.179 0.100 0.812
(0.011) (0.126) (0.093) (0.013) (0.038) (0.081) (0.076) (0.057) (0.873)
0.9 0.0001 0.944 0.011 0.028 0.050 0.679 0.068 0.176 −0.029 0.924
(0.012) (0.150) (0.108) (0.015) (0.039) (0.083) (0.080) (0.058) (0.933)
1 0.0002 0.944 0.010 0.028 0.054 0.677 0.070 0.173 0.010 1.079
(0.012) (0.151) (0.107) (0.015) (0.044) (0.087) (0.084) (0.061) (1.012)

Now, we consider an artificial example that has negative cross-correlation coefficient. Following Cui and Zhu [20], we generate 1000 samples from univariate Poisson INGARCH model, i.e.,

Xt|Ft1P(λt),λt=1+0.35λt1+0.45Xt1,

where P(λt) denotes the Poisson distribution with mean λt. Further, we observe the contaminated data Xc,t as follows

Xc,t=Xt+PtXo,t,

where Pt are i.i.d. Bernoulli random variables with a success probability of 0.03 and Xo,t are i.i.d. Poisson random variables with mean 5. Let Yt=(Yt,1,Yt,2)T, where Yt,1=Xc,t and Yt,2=Xc,t+500 for t=1,,500. The sample mean and variance are 5.196 and 7.380 for Yt,1, and 4.538 and 8.129 for Yt,2. The cross-correlation coefficient between Yt,1 and Yt,2 is −0.161. We fit the model (2) to Yt and the results are presented in Table 19. Similar to Table 17, the MDPDE has smaller AMSE^ than the CMLE. The optimal α is chosen to be 0.3 and the corresponding δ^ is −0.329, whereas the CMLE is 0.772.

Table 19.

Parameter estimates for bivariate Poisson INGARCH model for artificial data; the symbol represents the minimal AMSE^.

α ω^1 a^1 b^11 b^12 ω^2 a^2 b^21 b^22 δ^ AMSE^
0(CMLE) 1.507 0.274 0.438 0.000 0.976 0.410 0.000 0.375 0.772 9.468
(0.442) (0.102) (0.053) (0.031) (0.241) (0.069) (0.029) (0.048) (2.939)
0.1 1.442 0.274 0.449 0.000 0.952 0.412 0.000 0.372 0.308 7.647
(0.432) (0.100) (0.053) (0.031) (0.236) (0.066) (0.030) (0.048) (2.688)
0.2 1.402 0.273 0.457 0.000 0.918 0.417 0.000 0.371 −0.064 6.611
(0.443) (0.102) (0.054) (0.033) (0.237) (0.065) (0.031) (0.049) (2.487)
0.3 1.373 0.271 0.464 0.000 0.883 0.422 0.000 0.372 −0.329 6.216
(0.465) (0.105) (0.056) (0.034) (0.242) (0.065) (0.033) (0.050) (2.367)
0.4 1.349 0.269 0.471 0.000 0.849 0.425 0.000 0.375 −0.485 6.276
(0.494) (0.111) (0.058) (0.036) (0.250) (0.064) (0.034) (0.052) (2.339)
0.5 1.326 0.268 0.476 0.000 0.817 0.427 0.000 0.380 −0.540 6.607
(0.528) (0.118) (0.060) (0.039) (0.259) (0.064) (0.037) (0.054) (2.388)
0.6 1.302 0.267 0.482 0.000 0.786 0.428 0.000 0.386 −0.509 7.031
(0.567) (0.126) (0.063) (0.041) (0.271) (0.064) (0.039) (0.056) (2.476)
0.7 1.277 0.267 0.487 0.000 0.758 0.428 0.000 0.394 −0.407 7.412
(0.610) (0.135) (0.066) (0.044) (0.285) (0.064) (0.042) (0.058) (2.566)
0.8 1.250 0.267 0.491 0.000 0.732 0.427 0.000 0.401 −0.250 7.698
(0.657) (0.145) (0.069) (0.047) (0.299) (0.064) (0.045) (0.060) (2.639)
0.9 1.223 0.267 0.496 0.000 0.708 0.425 0.000 0.410 −0.055 7.916
(0.707) (0.156) (0.072) (0.050) (0.314) (0.065) (0.048) (0.062) (2.688)
1 1.196 0.268 0.500 0.000 0.686 0.423 0.000 0.418 0.165 8.131
(0.761) (0.168) (0.076) (0.053) (0.330) (0.065) (0.051) (0.064) (2.719)

5. Concluding Remarks

In this study, we developed the robust estimator for bivariate Poisson INGARCH models based on the MDPDE. In practice, this is important, because outliers can strongly affect the CMLE, which is commonly employed for parameter estimation in INGARCH models. We proved that the MDPDE is consistent and asymptotically normal under regularity conditions. Our simulation study compared the performances of the MDPDE and the CMLE, and confirmed the superiority of the proposed estimator in the presence of outliers. The real data analysis also confirmed the validity of our method as a robust estimator in practice. Although we focused on Cui and Zhu’s [20] bivariate Poisson INGARCH models here, the MDPDE method can be extended to other bivariate INGARCH models. For example, one can consider the copula-based bivariate INGARCH models that were studied by Heinen and Rengifo [42], Andreassen [18], and Fokianos et al. [43]. We leave this issue of extension as our future research.

Appendix A

In this Appendix, we provide the proofs for Theorems 1 and 2 in Section 3 when α>0. We refer to Cui and Zhu [20] for the case of α=0. In what follows, we denote V and ρ(0,1) as a generic positive integrable random variable and a generic constant, respectively, and Hα,n(θ)=n1t=1nhα,t(θ). Furthermore, we employ the notation λt=λt(θ), λ˜t=λ˜t(θ), λt0=λt(θ0), λt,i=λt,i(θi), λ˜t,i=λ˜t,i(θi), λt,i0=λt,i(θi0) for i=1,2, and u(y,λ)=eyecλ for brevity.

Lemma A1.

Under (A1) (A3) , we have for i=1,2,

  • (i) 

    E(supθiΘiλt,i)<.

  • (ii) 

    λt,i=λt,i0 a.s. implies θi=θi0.

  • (iii) 
    λt,i is twice continuously differentiable with respect to θi and satisfies
    EsupθiΘiλt,iθi14<andEsupθiΘi2λt,iθiθiT12<.
  • (iv) 

    supθiΘiλt,iθiλ˜t,iθi1Vρta.s.

  • (v) 

    νTλt,i0θi=0 a.s. implies ν=0.

  • (vi) 

    supθiΘi|λt,iλ˜t,i|Vρt a.s.

Proof. 

By recursion of (2), we have

λt=(I2A)1ω+k=0AkBYtk1,λ˜t=(I2+A++At2)ω+At1λ˜1+k=0t2AkBYtk1

and thus, for i=1,2,

λt,i=ωi1ai+k=0aik(bi1Ytk1,1+bi2Ytk1,2),λ˜t,i=ωi1ai+k=0t2aik(bi1Ytk1,1+bi2Ytk1,2),

where I2 denotes 2×2 identity matrix and the initial value λ˜1,i is taken as ωi/(1ai) for simplicity. Subsequently, (i)(v) can be shown following the arguments in the proof of Theorem 3 in Kang and Lee [44]. For (vi), let ρ=supθiΘiai<1. Afterwards, from (2), it holds that

supθiΘi|λt,iλ˜t,i|=supθiΘi|ai(λt1,iλ˜t1,i)|==supθiΘi|ait1(λ1,iλ˜1,i)|Vρt

with V=supθiΘi|λ1,iλ˜1,i|/ρ. Therefore, the lemma is established. □

Lemma A2.

Under (A1) (A3) , we have

supθΘ|Hα,n(θ)H˜α,n(θ)|a.s.0asn.

Proof. 

It is sufficient to show that

supθΘ|hα,t(θ)h˜α,t(θ)|a.s.0ast.

We write

|hα,t(θ)h˜α,t(θ)|y1=0y2=0fθ1+α(y|λt)fθ1+α(y|λ˜t)+1+1αfθα(Yt|λt)fθα(Yt|λ˜t):=It(θ)+IIt(θ).

From (A1), (A2), and the mean value theorem (MVT), we have

It(θ)=(1+α)y1=0y2=0fθ1+α(y|λt*)y1λt,1*1+cδecλt,1*u(y2,λt,2*)φ(y,λt*,δ)(λt,1λ˜t,1)+y1=0y2=0fθ1+α(y|λt*)y2λt,2*1+cδecλt,2*u(y1,λt,1*)φ(y,λt*,δ)(λt,2λ˜t,2)(1+α)y1=0y2=0fθ(y|λt*)y1λt,1*+1+c|δ|ecλt,1*|u(y2,λt,2*)|φ(y,λt*,δ)|λt,1λ˜t,1|+y1=0y2=0fθ(y|λt*)y2λt,2*+1+c|δ|ecλt,2*|u(y1,λt,1*)|φ(y,λt*,δ)|λt,2λ˜t,2|(1+α)1+1+2cδUφL|λt,1λ˜t,1|+1+1+2cδUφL|λt,2λ˜t,2|=2(1+α)1+cδUφL(|λt,1λ˜t,1|+|λt,2λ˜t,2|),

where λt*=(λt,1*,λt,2*)T and λt,i* is an intermediate point between λt,i and λ˜t,i for i=1,2. Hence, supθΘIt(θ) converges to 0 a.s. as t by (vi) of Lemma A1.

Because λt,i*=mλt,i+(1m)λ˜t,i for some m(0,1), it holds that (λt,i*)1(mλt,i)1(mωL)1. Thus, we obtain

IIt(θ)=(1+α)fθα(Yt|λt*)Yt,1λt,1*1+cδecλt,1*u(Yt,2,λt,2*)φ(Yt,λt*,δ)(λt,1λ˜t,1)+fθα(Yt|λt*)Yt,2λt,2*1+cδecλt,2*u(Yt,1,λt,1*)φ(Yt,λt*,δ)(λt,2λ˜t,2)(1+α)Yt,1mωL+1+2cδUφL|λt,1λ˜t,1|+Yt,2mωL+1+2cδUφL|λt,2λ˜t,2|.

According to Lemma 2.1 in Straumann and Mikosch [45], together with (vi) of Lemma A1, supθΘIIt(θ) converges to 0 a.s. as t. Therefore, the lemma is verified. □

Lemma A3.

Under (A1) (A3) , we have

EsupθΘ|hα,t(θ)|<and ifθθ0,thenE(hα,t(θ))>E(hα,t(θ0)).

Proof. 

Because

|hα,t(θ)|y1=0y2=0fθ1+α(y|λt)+1+1αfθα(Yt|λt)2+1α,

the first part of the lemma is validated. Note that

E(hα,t(θ))E(hα,t(θ0))=EEhα,t(θ)hα,t(θ0)|Ft1=Ey1=0y2=0fθ1+α(y|λt)1+1αfθα(y|λt)fθ0(y|λt)+1αfθ01+α(y|λt)0,

where the equality holds if and only if δ=δ0 and λt=λt0 a.s. Therefore, the second part of the lemma is established by (ii) of Lemma A1. □

Proof of Theorem 1. 

We can write

supθΘ1nt=1nh˜α,t(θ)E(hα,t(θ))supθΘ1nt=1nh˜α,t(θ)1nt=1nhα,t(θ)+supθΘ1nt=1nhα,t(θ)E(hα,t(θ)).

The first term on the RHS of the inequality converges to 0 a.s. from Lemma A2. Moreover, because hα,t(θ) is stationary and ergodic with E(supθΘ|hα,t(θ)|)< by Lemma A3, the second term also converges to 0 a.s. Finally, as E(hα,t(θ)) has a unique minimum at θ0 from Lemma A3, the theorem is established. □

Now, we derive the first and second derivatives of hα,t(θ). The first derivatives are obtained as

hα,t(θ)θ=(1+α)Dt,1(θ)st,1(θ1)T,Dt,2(θ)st,2(θ2)T,Dt,3(θ)T=(1+α)Dt,1(θ)I404×404×104×4Dt,2(θ)I404×101×401×4Dt,3(θ)st,1(θ1)st,2(θ2)1:=(1+α)Dt(θ)Λt(θ),

where I4 denotes the 4×4 identity matrix, 0m×n means the m×n matrix with zero elements, and

st,i(θi)=λt,iθifori=1,2,Dt,i(θ)=y1=0y2=0fθ1+α(y|λt)yiλt,i1+cδecλt,iu(yj,λt,j)φ(y,λt,δ)fθα(Yt|λt)Yt,iλt,i1+cδecλt,iu(Yt,j,λt,j)φ(Yt,λt,δ)for(i,j)=(1,2),(2,1),Dt,3(θ)=y1=0y2=0fθ1+α(y|λt)u(y1,λt,1)u(y2,λt,2)φ(y,λt,δ)fθα(Yt|λt)u(Yt,1,λt,1)u(Yt,2,λt,2)φ(Yt,λt,δ).

The second derivatives are expressed as

2hα,t(θ)θθT=(1+α)Ft,11(θ)st,1(θ1)st,1(θ1)TFt,12(θ)st,1(θ1)st,2(θ2)TFt,13(θ)st,1(θ1)Ft,21(θ)st,2(θ2)st,1(θ1)TFt,22(θ)st,2(θ2)st,2(θ2)TFt,23(θ)st,2(θ2)Ft,31(θ)st,1(θ1)TFt,32(θ)st,2(θ2)TFt,33(θ)+(1+α)Dt,1(θ)st,11(θ1)04×404×104×4Dt,2(θ)st,22(θ2)04×101×401×40:=(1+α)Ft(θ)+Dt(θ)Λt(θ)θT,

where

st,ii(θi)=2λt,iθiθiTfori=1,2,Ft,ii(θ)=y1=0y2=0fθ1+α(y|λt)(1+α)yiλt,i1+cδecλt,iu(yj,λt,j)φ(y,λt,δ)2yiλt,i2c2δecλt,iu(yj,λt,j)1+δeyiu(yj,λt,j)φ(y,λt,δ)2fθα(Yt|λt)αYt,iλt,i1+cδecλt,iu(Yt,j,λt,j)φ(Yt,λt,δ)2Yt,iλt,i2c2δecλt,iu(Yt,j,λt,j)1+δeYt,iu(Yt,j,λt,j)φ(Yt,λt,δ)2for(i,j)=(1,2),(2,1),Ft,33(θ)=αy1=0y2=0fθ1+α(y|λt)u(y1,λt,1)u(y2,λt,2)φ(y,λt,δ)2(α1)fθα(Yt|λt)u(Yt,1,λt,1)u(Yt,2,λt,2)φ(Yt,λt,δ)2,Ft,12(θ)=y1=0y2=0fθ1+α(y|λt)(1+α)y1λt,11+cδecλt,1u(y2,λt,2)φ(y,λt,δ)×y2λt,21+cδecλt,2u(y1,λt,1)φ(y,λt,δ)+c2δec(λt,1+λt,2)φ(y,λt,δ)2fθα(Yt|λt)αYt,1λt,11+cδecλt,1u(Yt,2,λt,2)φ(Yt,λt,δ)×Yt,2λt,21+cδecλt,2u(Yt,1,λt,1)φ(Yt,λt,δ)+c2δec(λt,1+λt,2)φ(Yt,λt,δ)2,Ft,i3(θ)=y1=0y2=0fθ1+α(y|λt)(1+α)yiλt,i1+cδecλt,iu(yj,λt,j)φ(y,λt,δ)×u(y1,λt,1)u(y2,λt,2)φ(y,λt,δ)+cecλt,iu(yj,λt,j)φ(y,λt,δ)2fθα(Yt|λt)αYt,iλt,i1+cδecλt,iu(Yt,j,λt,j)φ(Yt,λt,δ)u(Yt,1,λt,1)u(Yt,2,λt,2)φ(Yt,λt,δ)+cecλt,iu(Yt,j,λt,j)φ(Yt,λt,δ)2for(i,j)=(1,2),(2,1).

The following four lemmas are helpful for proving Theorem 2.

Lemma A4.

Let D˜t,i(θ) denote the counterpart of Dt,i(θ) by substituting λt with λ˜t for i=1,2,3. Subsequently, under (A1) (A3) , we have that for i=1,2,

|Dt,i(θ)|C(Yt,i+1),|D˜t,i(θ)|C(Yt,i+1),|Dt,3(θ)|C,|D˜t,3(θ)|C,|Ft,ii(θ)|C(Yt,i2+Yt,i+1),|Ft,33(θ)|C,|Ft,12(θ)|C(Yt,1Yt,2+Yt,1+Yt,2+1),|Ft,i3(θ)|C(Yt,i+1),

and for (i,j)=(1,2),(2,1),

|Dt,i(θ)D˜t,i(θ)|C(Yt,i2+Yt,i+1)|λt,iλ˜t,i|+C(Yt,1Yt,2+Yt,1+Yt,2+1)|λt,jλ˜t,j|,|Dt,3(θ)D˜t,3(θ)|C(Yt,1+1)|λt,1λ˜t,1|+C(Yt,2+1)|λt,2λ˜t,2|,

where C is some positive constant.

Proof. 

From (A1)(A3) and the fact that λt,i1ωL1, we obtain

|Dt,i(θ)|y1=0y2=0fθ(y|λt)yiλt,i+1+c|δ|ecλt,i|u(yj,λt,j)|φ(y,λt,δ)+Yt,iλt,i+1+c|δ|ecλt,i|u(Yt,j,λt,j)|φ(Yt,λt,δ)1+1+2cδUφL+Yt,iωL+1+2cδUφL=Yt,iωL+3+4cδUφL

for (i,j)=(1,2),(2,1) and

|Dt,3(θ)|y1=0y2=0fθ(y|λt)|u(y1,λt,1)||u(y2,λt,2)|φ(y,λt,δ)+|u(Yt,1,λt,1)||u(Yt,2,λt,2)|φ(Yt,λt,δ)=8φL.

The second and fourth parts of the lemma also hold in the same manner. Furthermore, we can show that

|Ft,ii(θ)|y1=0y2=0fθ(y|λt)2(1+α)yiλt,iλt,i2+cδecλt,iu(yj,λt,j)φ(y,λt,δ)2+yiλt,i2+c2|δ|ecλt,i|u(yj,λt,j)|1+|δ|eyi|u(yj,λt,j)|φ(y,λt,δ)2+2αYt,iλt,i12+cδecλt,iu(Yt,j,λt,j)φ(Yt,λt,δ)2Yt,iλt,i2c2|δ|ecλt,i|u(Yt,j,λt,j)|1+|δ|eYt,i|u(Yt,j,λt,j)|φ(Yt,λt,δ)22(1+α)1ωL+2(1+α)4c2δU2φL2+1ωL+2c2δU(1+2δU)φL2+4αYt,i2ωL2+4α+2α4c2δU2φL2+Yt,iωL2+2c2δU(1+2δU)φL2=4αωL2Yt,i2+1ωL2Yt,i+3+2αωL+4c2δU4(1+α)δU+1φL2+4α

for (i,j)=(1,2),(2,1),

|Ft,33(θ)|αy1=0y2=0fθ(y|λt)u(y1,λt,1)u(y2,λt,2)φ(y,λt,δ)2+(1+α)u(Yt,1,λt,1)u(Yt,2,λt,2)φ(Yt,λt,δ)216αφL2+16(1+α)φL2=16(1+2α)φL2,
|Ft,12(θ)|y1=0y2=0fθ(y|λt)(1+α)y1λt,1+1+c|δ|ecλt,1|u(y2,λt,2)|φ(y,λt,δ)×y2λt,2+1+c|δ|ecλt,2|u(y1,λt,1)|φ(y,λt,δ)+c2|δ|ec(λt,1+λt,2)φ(y,λt,δ)2+αYt,1λt,1+1+c|δ|ecλt,1|u(Yt,2,λt,2)|φ(Yt,λt,δ)×Yt,2λt,2+1+c|δ|ecλt,2|u(Yt,1,λt,1)|φ(Yt,λt,δ)+c2|δ|ec(λt,1+λt,2)φ(Yt,λt,δ)2(1+α)c2δU+1+1+2cδUφL+1+2cδUφL+4c2δU2φL2+4cδUφL+1+c2δUφL2+αYt,1Yt,2ωL2+1ωL1+2cδUφL(Yt,1+Yt,2)+4c2δU2φL2+4cδUφL+1+c2δUφL2=αωL2Yt,1Yt,2+αωL1+2cδUφL(Yt,1+Yt,2)+4(1+2α)c2δU2φL2+2c2δUφL2+4(2+3α)cδUφL+(1+α)c2δU+4+5α,

and

|Ft,i3(θ)|y1=0y2=0fθ(y|λt)(1+α)yiλt,i+1+c|δ|ecλt,i|u(yj,λt,j)|φ(y,λt,δ)×|u(y1,λt,1)||u(y2,λt,2)|φ(y,λt,δ)+cecλt,i|u(yj,λt,j)|φ(y,λt,δ)2+αYt,iλt,i+1+c|δ|ecλt,i|u(Yt,j,λt,j)|φ(Yt,λt,δ)|u(Yt,1,λt,1)||u(Yt,2,λt,2)|φ(Yt,λt,δ)+cecλt,i|u(Yt,j,λt,j)|φ(Yt,λt,δ)24(1+α)φL1+1+2cδUφL+2cφL2+4αφLYt,iωL+1+2cδUφL+2cφL2=4αφLωLYt,i+4c{1+2(1+2α)δU}φL2+4(2+3α)φL

for (i,j)=(1,2),(2,1).

Now, we prove the last two parts of the lemma. Because Ft,ij(θ)=Dt,i(θ)/λt,j for i=1,2,3,j=1,2, owing to MVT, it holds that for i=1,2,3,

|Dt,i(θ)D˜t,i(θ)|Dt,i(θ)λt,1|λt=λt*|λt,1λ˜t,1|+Dt,i(θ)λt,2|λt=λt*|λt,2λ˜t,2|=Ft,i1(θ)|λt=λt*|λt,1λ˜t,1|+Ft,i2(θ)|λt=λt*|λt,2λ˜t,2|,

where Ft,ij(θ)|λt=λt* is the same as Ft,ij(θ) with λt replaced by λt* for j=1,2. Because (λt,i*)1ωL1, it can be easily shown that Ft,ij(θ)|λt=λt* has the same upper bound as Ft,ij(θ) by following the aforementioned arguments. Therefore, the lemma is established. □

Lemma A5.

Under (A1) (A3) , we have

EsupθΘ2hα,t(θ)θθT1<andEsupθΘhα,t(θ)θhα,t(θ)θT1<.

Proof. 

We can write

EsupθΘ2hα,t(θ)θθT1(1+α)EsupθΘFt(θ)1+EsupθΘDt(θ)Λt(θ)θT1.

Hence, to show the first part of the lemma, it is sufficient to show that, for i,j=1,2,

EsupθΘFt,ij(θ)λt,iθiλt,jθjT1<,EsupθΘFt,i3(θ)λt,iθi1<,EsupθΘ|Ft,33(θ)|<,andEsupθΘDt,i(θ)2λt,iθiθiT1<,

which can be directly obtained from (iii) of Lemma A1, Lemma A4, and Cauchy–Schwarz inequality. For example,

EsupθΘFt,12(θ)λt,1θ1λt,2θ2T1EsupθΘ|Ft,12(θ)|21/2EsupθΘλt,1θ1λt,2θ2T121/2EC(Yt,1Yt,2+Yt,1+Yt,2+1)21/2×Esupθ1Θ1λt,1θ1141/4Esupθ2Θ2λt,2θ2141/4<

and

EsupθΘDt,1(θ)2λt,1θ1θ1T1EsupθΘ|Dt,1(θ)|21/2Esupθ1Θ12λt,1θ1θ1T121/2EC(Yt,1+1)21/2Esupθ1Θ12λt,1θ1θ1T121/2<.

The second part of the lemma can be shown in the same manner. □

Lemma A6.

Under (A1) (A3) , we have

1nt=1nsupθΘhα,t(θ)θh˜α,t(θ)θ1a.s.0asn.

Proof. 

Owing to (iv) and (vi) of Lemma A1 and Lemma A4, we obtain a.s.,

11+αsupθΘhα,t(θ)θh˜α,t(θ)θ1supθΘD˜t(θ)1supθΘΛt(θ)Λ˜t(θ)1+supθΘΛt(θ)1supθΘDt(θ)D˜t(θ)1i=13supθΘ|D˜t,i(θ)|i=12supθiΘiλt,iθiλ˜t,iθi1+i=12supθiΘiλt,iθi1+1i=13supθΘ|Dt,i(θ)D˜t,i(θ)|2C(Yt,1+Yt,2+3)Vρt+i=12supθiΘiλt,iθi1+1×CYt,12+Yt,22+2Yt,1Yt,2+4(Yt,1+Yt,2)+6Vρt,

where D˜t(θ) and Λ˜t(θ) are the same as Dt(θ) and Λt(θ) with λt replaced by λ˜t. Therefore, from Lemma 2.1 in Straumann and Mikosch [45], together with (iii) of Lemma A1, the RHS of the last inequality converges to 0 exponentially fast a.s. and, thus, the lemma is validated. We refer the reader to Straumann and Mikosch [45] and Cui and Zheng [46] for more details on exponentially fast a.s. convergence. □

Lemma A7.

Let θ^α,nH=argminθΘHα,n(θ). Subsequently, under (A1) (A3) , we have

θ^α,nHa.s.θ0andn(θ^α,nHθ0)dN(0,Jα1KαJα1)asn.

Proof. 

As seen in the proof of Theorem 1, supθΘn1t=1nhα,t(θ)E(hα,t(θ)) converges to 0 a.s. and E(hα,t(θ)) has a unique minimum at θ0. Hence, the first part of the lemma is verified.

Next, we handle the second part. Let θ(i), i=1,,9 be the i-th element of θ. Using MVT, we have

0=1nt=1nhα,t(θ0)θ(i)+n(θ^α,nHθ0)T1nt=1n2hα,t(θα,n,i*)θθ(i)

for some vector θα,n,i* between θ0 and θ^α,nH, so that, eventually, we can write

0=1nt=1nhα,t(θ0)θ+n(θ^α,nHθ0)T1nt=1n2hα,t(θα,n*)θθT,

where the term 2hα,t(θα,n*)/θθT actually represents a 9×9 matrix whose (i,j)-th entry is 2hα,t(θα,n,ij*)/θ(i)θ(j) for some vector θα,n,ij* between θ0 and θ^α,nH. We first show that

1nt=1nhα,t(θ0)θdN(0,Kα). (A1)

For ν=(ν1T,ν2T,ν3)TR4×R4×R, we obtain

EνThα,t(θ0)θ|Ft1=(1+α)ν1Tλt,10θ1EDt,1(θ0)|Ft1+ν2Tλt,20θ2EDt,2(θ0)|Ft1+ν3EDt,3(θ0)|Ft1=0

and

EνThα,t(θ0)θ2=νTEhα,t(θ0)θhα,t(θ0)θTν<

by Lemma A5. Hence, it follows from the central limit theorem in Billingsley [47] that

1nt=1nνThα,t(θ0)θdN(0,νTKαν),

which implies (A1).

Now, we claim that

1nt=1n2hα,t(θα,n,ij*)θ(i)θ(j)a.s.Jαij, (A2)

where Jαij denotes the (i,j)-th entry of Jα. From Lemma A5, Jα is finite. Further, after some algebras, we have

νT(Jα)ν=(1+α)Ey1=0y2=0fθ01+α(y|λt)ν1Tλt,10θ1y1λt,101+cδ0ecλt,10u(y2,λt,20)φ(y,λt0,δ0)+ν2Tλt,20θ2y2λt,201+cδ0ecλt,20u(y1,λt,10)φ(y,λt0,δ0)+ν3u(y1,λt,10)u(y2,λt,20)φ(y,λt0,δ0)2>0

by (v) of Lemma A1, which implies that Jα is non-singular. Note that we can write

1nt=1n2hα,t(θα,n,ij*)θ(i)θ(j)E2hα,t(θ0)θ(i)θ(j)supθΘ1nt=1n2hα,t(θ)θ(i)θ(j)E2hα,t(θ)θ(i)θ(j)+E2hα,t(θα,n,ij*)θ(i)θ(j)E2hα,t(θ0)θ(i)θ(j).

Because 2hα,t(θ)/θ(i)θ(j) is stationary and ergodic, from Lemma A5, the first term on the RHS of the inequality converges to 0 a.s. Moreover, the second term converges to 0 by the dominated convergence theorem. Hence, (A2) is asserted. Therefore, from (A1) and (A2), the second part of the lemma is established. □

Proof of Theorem 2. 

From MVT, we get

1nt=1nhα,t(θ^α,nH)θ(i)1nt=1nhα,t(θ^α,n)θ(i)=(θ^α,nHθ^α,n)T1nt=1n2hα,t(ζα,n,i)θθ(i)

for some vector ζα,n,i between θ^α,nH and θ^α,n. Thus, we can write

1nt=1nhα,t(θ^α,nH)θ1nt=1nhα,t(θ^α,n)θ=(θ^α,nHθ^α,n)T1nt=1n2hα,t(ζα,n)θθT,

where the (i,j)-th entry of 2hα,t(ζα,n)/θθT is 2hα,t(ζα,n,ij)/θ(i)θ(j) for some vector ζα,n,ij between θ^α,nH and θ^α,n. Since n1t=1nhα,t(θ^α,nH)/θ=0 and n1t=1nh˜α,t(θ^α,n)/θ=0, we have

1nt=1nh˜α,t(θ^α,n)θ1nt=1nhα,t(θ^α,n)θ=n(θ^α,nHθ^α,n)T1nt=1n2hα,t(ζα,n)θθT.

The LHS of the above equation converges to 0 a.s. by Lemma A6, and n1t=1n2hα,t(ζα,n)/θθT converges to Jα a.s. in a similar way as in the proof of Lemma A7. Therefore, the theorem is established due to Lemma A7. □

Author Contributions

Conceptualization, B.K. and S.L.; methodology, B.K., S.L. and D.K.; software, B.K. and D.K.; formal analysis, B.K., S.L. and D.K.; data curation, B.K.; writing—original draft preparation, B.K. and S.L.; writing—review and editing, B.K. and S.L.; funding acquisition, B.K. and S.L. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), grant no. NRF-2019R1C1C1004662 (B.K.) and 2021R1A2C1004009 (S.L.).

Data Availability Statement

Publicly available datasets were analyzed in this study. This data can be found here: data.gov.au (accessed on 19 March 2021).

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Weiß C.H. Thinning operations for modeling time series of counts-a survey. AStA Adv. Stat. Anal. 2008;92:319–341. doi: 10.1007/s10182-008-0072-3. [DOI] [Google Scholar]
  • 2.Scotto M.G., Weiß C.H., Gouveia S. Thinning-based models in the analysis of integer-valued time series: A review. Stat. Model. 2015;15:590–618. doi: 10.1177/1471082X15584701. [DOI] [Google Scholar]
  • 3.Ferl R., Latour A., Oraichi D. Integer-valued GARCH processes. J. Time Ser. Anal. 2006;27:923–942. doi: 10.1111/j.1467-9892.2006.00496.x. [DOI] [Google Scholar]
  • 4.Fokianos K., Rahbek A., Tjøstheim D. Poisson autoregression. J. Am. Stat. Assoc. 2009;104:1430–1439. doi: 10.1198/jasa.2009.tm08270. [DOI] [Google Scholar]
  • 5.Davis R.A., Wu R. A negative binomial model for time series of counts. Biometrika. 2009;96:735–749. doi: 10.1093/biomet/asp029. [DOI] [Google Scholar]
  • 6.Christou V., Fokianos K. Quasi-likelihood inference for negative binomial time series models. J. Time Ser. Anal. 2014;35:55–78. doi: 10.1111/jtsa.12050. [DOI] [Google Scholar]
  • 7.Zhu F. Modeling overdispersed or underdispersed count data with generalized poisson integer-valued garch models. J. Math. Anal. Appl. 2012;389:58–71. doi: 10.1016/j.jmaa.2011.11.042. [DOI] [Google Scholar]
  • 8.Zhu F. Zero-inflated Poisson and negative binomial integer-valued GARCH models. J. Stat. Plan. Infer. 2012;142:826–839. doi: 10.1016/j.jspi.2011.10.002. [DOI] [Google Scholar]
  • 9.Lee S., Lee Y., Chen C.W.S. Parameter change test for zero-inflated generalized Poisson autoregressive models. Statistics. 2016;50:540–557. doi: 10.1080/02331888.2015.1083020. [DOI] [Google Scholar]
  • 10.Davis R.A., Liu H. Theory and inference for a class of observation-driven models with application to time series of counts. Stat. Sin. 2016;26:1673–1707. [Google Scholar]
  • 11.Fokianos K. Count time series models. In: Rao T.S., Rao S.S., Rao C.R., editors. Handbook of Statistics: Time Series Analysis-Methods and Applications. Volume 30. Elsevier; Amsterdam, The Netherlands: 2012. pp. 315–347. [Google Scholar]
  • 12.Fokianos K. Statistical analysis of count time series models: A GLM perspective. In: Davis R.A., Holan S.H., Lund R., Ravishanker N., editors. Handbook of Discrete-Valued Time Series. Chapman and Hall/CRC; Boca Raton, FL, USA: 2016. pp. 3–27. [Google Scholar]
  • 13.Tjøstheim D. Some recent theory for autoregressive count time series (with discussions) Test. 2012;21:413–476. doi: 10.1007/s11749-012-0296-0. [DOI] [Google Scholar]
  • 14.Tjøstheim D. Count time series with observation-driven autoregressive parameter dynamics. In: Davis R.A., Holan S.H., Lund R., Ravishanker N., editors. Handbook of Discrete-Valued Time Series. Chapman and Hall/CRC; Boca Raton, FL, USA: 2016. pp. 77–100. [Google Scholar]
  • 15.Quoreshi A.S. Bivariate time series modeling of financial count data. Commun. Stat. Theory Methods. 2006;35:1343–1358. doi: 10.1080/03610920600692649. [DOI] [Google Scholar]
  • 16.Pedeli X., Karlis D. A bivariate INAR(1) process with application. Stat. Model. 2011;11:325–349. doi: 10.1177/1471082X1001100403. [DOI] [Google Scholar]
  • 17.Liu H. Ph.D. Thesis. Columbia University; New York, NY, USA: 2012. Some Models for Time Series of Counts. [Google Scholar]
  • 18.Andreassen C.M. Ph.D. Thesis. Aarhus University; Aarhus, Denmark: 2013. Models and Inference for Correlated Count Data. [Google Scholar]
  • 19.Lee Y., Lee S., Tjøstheim D. Asymptotic normality and parameter change test for bivariate Poisson INGARCH models. Test. 2018;27:52–69. doi: 10.1007/s11749-016-0510-6. [DOI] [Google Scholar]
  • 20.Cui Y., Zhu F. A new bivariate integer-valued GARCH model allowing for negative cross-correlation. Test. 2018;27:428–452. doi: 10.1007/s11749-017-0552-4. [DOI] [Google Scholar]
  • 21.Lakshminarayana J., Pandit S.N.N., Rao K.S. On a bivariate Poisson distribution. Commun. Stat. Theory Methods. 1999;28:267–276. doi: 10.1080/03610929908832297. [DOI] [Google Scholar]
  • 22.Basu A., Harris I.R., Hjort N.L., Jones M.C. Robust and efficient estimation by minimizing a density power divergence. Biometrika. 1998;85:549–559. doi: 10.1093/biomet/85.3.549. [DOI] [Google Scholar]
  • 23.Kang J., Lee S. Minimum density power divergence estimator for Poisson autoregressive models. Comput. Stat. Data Anal. 2014;80:44–56. doi: 10.1016/j.csda.2014.06.009. [DOI] [Google Scholar]
  • 24.Kim B., Lee S. Robust estimation for zero-inflated Poisson autoregressive models based on density power divergence. J. Stat. Comput. Simul. 2017;87:2981–2996. doi: 10.1080/00949655.2017.1351563. [DOI] [Google Scholar]
  • 25.Kim B., Lee S. Robust estimation for general integer-valued time series models. Ann. Inst. Stat. Math. 2020;72:1371–1396. doi: 10.1007/s10463-019-00728-0. [DOI] [Google Scholar]
  • 26.Diop M.L., Kengne W. Density power divergence for general integer-valued time series with multivariate exogenous covariate. arXiv. 20202006.11948 [Google Scholar]
  • 27.Kim B., Lee S. Robust change point test for general integer-valued time series models based on density power divergence. Entropy. 2020;22:493. doi: 10.3390/e22040493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Lee S., Kim D. Monitoring parameter change for time series models of counts based on minimum density power divergence estimator. Entropy. 2020;22:1304. doi: 10.3390/e22111304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Xiong L., Zhu F. Robust quasi-likelihood estimation for the negative binomial integer-valued GARCH(1,1) model with an application to transaction counts. J. Stat. Plan. Infer. 2019;203:178–198. doi: 10.1016/j.jspi.2019.03.010. [DOI] [Google Scholar]
  • 30.Li Q., Chen H., Zhu F. Robust estimation for Poisson integer-valued GARCH models using a new hybrid loss. J. Syst. Sci. Complex. 2021 doi: 10.1007/s11424-020-9344-0. in press. [DOI] [Google Scholar]
  • 31.Heinen A., Rengifo E. CORE Discussion Paper. Université Catholique de Louvain, Center for Operations Research and Econometrics (CORE); Ottignies-Louvain-la-Neuve, Belgium: 2003. Multivariate modeling of time series count data: An AR conditional Poisson model. [Google Scholar]
  • 32.Cui Y., Li Q., Zhu F. Flexible bivariate Poisson integer-valued GARCH model. Ann. Inst. Stat. Math. 2020;72:1449–1477. doi: 10.1007/s10463-019-00732-4. [DOI] [Google Scholar]
  • 33.Fujisawa H., Eguchi S. Robust estimation in the normal mixture model. J. Stat. Plan. Infer. 2006;136:3989–4011. doi: 10.1016/j.jspi.2005.03.008. [DOI] [Google Scholar]
  • 34.Durio A., Isaia E.D. The minimum density power divergence approach in building robust regression models. Informatica. 2011;22:43–56. doi: 10.15388/Informatica.2011.313. [DOI] [Google Scholar]
  • 35.Toma A., Broniatowski M. Dual divergenceestimators and tests: Robustness results. J. Multivar. Anal. 2011;102:20–36. doi: 10.1016/j.jmva.2010.07.010. [DOI] [Google Scholar]
  • 36.Warwick J. A data-based method for selecting tuning parameters in minimum distance estimators. Comput. Stat. Data Anal. 2005;48:571–585. doi: 10.1016/j.csda.2004.03.006. [DOI] [Google Scholar]
  • 37.Verges Y. Master’s Thesis. University of São Paulo; São Paulo, Brazil: 2019. The Bivariate Integer-Valued GARCH Model: A Bayesian Estimation Framework. [Google Scholar]
  • 38.Chen C.W.S., Lee S. Generalized Poisson autoregressive models for time series of counts. Comput. Stat. Data Anal. 2016;99:51–67. doi: 10.1016/j.csda.2016.01.009. [DOI] [Google Scholar]
  • 39.Chen C.W.S., Lee S. Bayesian causality test for integer-valued time series models with applications to climate and crime data. J. R. Stat. Soc. Ser. C Appl. Stat. 2017;66:797–814. doi: 10.1111/rssc.12200. [DOI] [Google Scholar]
  • 40.Lee S., Park S., Chen C.W.S. On Fisher’s dispersion test for integer-valued autoregressive Poisson models with applications. Commun. Stat. Theory Methods. 2017;46:9985–9994. doi: 10.1080/03610926.2016.1228970. [DOI] [Google Scholar]
  • 41.Fokianos K., Fried R. Interventions in INGARCH processes. J. Time Ser. Anal. 2010;31:210–225. doi: 10.1111/j.1467-9892.2010.00657.x. [DOI] [Google Scholar]
  • 42.Heinen A., Rengifo E. Multivariate autoregressive modeling of time series count data using copulas. J. Empir. Financ. 2007;14:564–583. doi: 10.1016/j.jempfin.2006.07.004. [DOI] [Google Scholar]
  • 43.Fokianos K., Støve B., Tjøstheim D., Doukhan P. Multivariate count autoregression. Bernoulli. 2020;26:471–499. doi: 10.3150/19-BEJ1132. [DOI] [Google Scholar]
  • 44.Kang J., Lee S. Parameter change test for Poisson autoregressive models. Scand. J. Stat. 2014;41:1136–1152. doi: 10.1111/sjos.12088. [DOI] [Google Scholar]
  • 45.Straumann D., Mikosch T. Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach. Ann. Stat. 2006;34:2449–2495. doi: 10.1214/009053606000000803. [DOI] [Google Scholar]
  • 46.Cui Y., Zheng Q. Conditional maximum likelihood estimation for a class of observation-driven time series models for count data. Stat. Probab. Lett. 2017;123:193–201. doi: 10.1016/j.spl.2016.11.002. [DOI] [Google Scholar]
  • 47.Billingsley P. The Lindeberg-Lévy theorem for martingales. Proc. Am. Math. Soc. 1961;12:788–792. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Publicly available datasets were analyzed in this study. This data can be found here: data.gov.au (accessed on 19 March 2021).


Articles from Entropy are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES