Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2021 Mar 30;11:7176. doi: 10.1038/s41598-021-86542-2

Underrated primary biogenic origin and lifetime of atmospheric formic and acetic acid

Xinqing Lee 1,, Daikuan Huang 1,4, Qi Liu 2, Xueyan Liu 3, Hui Zhou 1, Qian Wang 1, Yuena Ma 1
PMCID: PMC8009910  PMID: 33785820

Abstract

Formic and acetic acids are ubiquitous in the troposphere, playing an important role in the atmospheric chemistry. Recent model studies ended up with substantial low bias on their tropospheric budgets presumably due to a large missing biogenic source derived most likely from photochemical oxidation of long-lived volatile organic compound(s), i.e., a secondary biogenic emission. Here, by studying the stable carbon isotope composition of formic and acetic acid in couple in the troposphere and relevant sources, we find the gap relates to primary biogenic emission and atmospheric lifetime of the acids. We show the primary biogenic emission is only second to the secondary biogenic emission as a strong source. Marine emission is the least one yet present in all the tropospheric environments except some local air. Long-distance transport of this origin indicates the lifetime over 5 days for both acids. Our results indicate that recent simulations underrated both primary biogenic emission and the lifetime. These underestimations would inevitably bias low the modeled results, especially in the low and free troposphere where primary biogenic emission and lifetime has the most pronounced influence, respectively.

Subject terms: Carbon cycle, Atmospheric chemistry

Introduction

As organic acids, formic and acetic acid originate primarily from biosphere13, forest in particular47. Being the major component of the biosphere, forest produces formic and acetic acid directly in plant growth810, dominating the source of primary biogenic emission11. It also generates a variety of non-methane volatile organic compounds(VOCs), mostly isoprene12, a short-lived and most abundant13 VOC emitted primarily by trees during day time14,15. These VOCs give rise to formic and acetic acid in subsequent photochemical oxidation1618, constituting the most of secondary biogenic emission19,20. Other sources observed include fossil fuel combustion21,22, biomass burning23,24, soil respiration25, marine release2,26,27, ant emission28, and plastic and food production29. These sources, however, are generally weaker than the biogenic ones30,31. Based on the dominance of the biogenic origins, budgets of the organic acids in the troposphere were simulated recently to infer their biogeochemical cycles, as well as the interaction between biosphere and atmosphere3237. The results, however, are substantially lower than observations with significant bias occurring in the low troposphere35, the boundary layer in particular35,38, as well as in the free troposphere38, the mid-latitude of northern hemisphere and the northern polar region35. The gap was presumably caused by a missing biogenic source5,38, particularly in the form of photochemical oxidation of long-lived VOC precursor(s)35, i.e., a secondary biogenic emission. Such a large source, however, was not found despite a number of subsequent researches20,3944. By studying the stable carbon isotope ratio (13C/12C ) of formic and acetic acid in couple in the troposphere and relevant sources, we find the primary biogenic emission is much more important and the atmospheric lifetime of the acids much longer in comparison to the model studies. Their underestimations would inevitably lead to the low bias on the acids’ tropospheric budgets.

Brief description of the methods

We report the 13C/12C as δ13C, which is per mille deviation to the value of international standard Vienna Pee Dee Bolemnite (VPDB), following the equation:

δ13C=13C/12Csample/13C/12Cstandard-11000

To determine δ13C of formic and acetic acid in the troposphere, we analyzed both air and precipitation (Table 1). The air samples were collected at two kinds of environments in Guiyang, the capital city of Guizhou province in inland southwest China. One is over a traffic cross in the downtown street valley (sample C), the other above the canopy of a small forest within the metropolis (sample D). The latter is also the site for collection of precipitation samples (sample 1–6). We also used data published in literatures that analyzed both formic and acetic acid. These analyses involve air from urban to rural environments, as well as precipitation in semi-remote region45.

Table 1.

Tropospheric environments and sources analyzed in this study.

Air Precipitation
Sample Date Environ. or source N Sample Date Rain(mm) N
A Aug. 20 Fossil fuel combustion 3 1 Aug. 25–26 42.7 6
B Aug. 30 Suburban forest 4 2 Sep. 02–03 52.9 6
C Aug. 28 Downtown street valley 6 3 Sep. 13–14 17.5 6
D Aug. 27 Urban forest 6 4 Sep. 24–25 1.4 6
Aug. 31 Urban forest 7 5 Oct. 03–04 49.7 6
Sep. 01 Urban forest 3 6 Oct. 08–13 9.0 6

Sample A and B stand for the source of anthropogenic air pollution and primary biogenic emission, respectively, all the rest samples for the tropospheric environments. N indicates the number of samples collected and measured.

The sources we studied include the primary biogenic emission, secondary biogenic emission, fossil fuel combustion and marine release. These sources are continuous in the emission and thus most likely to have a broad atmospheric influence. Biomass burning, soil respiration, industrial productions and ant release were not taken into account because they are either sporadic in occurrence, or trivial in importance, or local in influence, or producing only a single acid.

We obtained the δ13C of fossil fuel combustion by analyzing pipe exhaust of an idle Toyota Land Cruiser (sample A), and the δ13C of primary biogenic emission by analyzing air on the ground level in the suburban forest zone of Guiyang (sample B). We estimated the δ13C of secondary biogenic emission based on the average δ13C of C3 plants, which dominate forests worldwide46, and the reported isotope fractionation in producing isoprene, as well as on the intermolecular isotope fractionation between formic and acetic acid, which we measured experimentally on isoprene photochemical oxidation. Other VOCs, such as aldehydes and other alkenes, also generate the acids in the oxidation, their production is nevertheless relatively small and uncertain29,47. The detailed sampling methods and analytical procedures as well as the estimation of the δ13C are presented in the section of “Detailed methods” at the end of this paper.

Besides the sources measured experimentally in this study, we also inferred the δ13C of marine origin from the reported data of precipitation in Los Angeles, USA48, where the rainfall developed primarily from the moisture of the Eastern Pacific49,50.

Results

We show the sources of fossil fuel combustion, primary biogenic emission and marine release are separated distinctively in the form of a triangle in the isotope system of formic and acetic acid (Fig. 1), and the former two sources has the same δ13CFormic13CAcetic as 0.94. The tropospheric environments we measured in Guiyang as well as those reported by others in Switzerland51, Norway and Denmark45 all display a δ13CFormic13CAcetic above the line of 0.94 except the air in the street valley and over the urban forest in Guiyang, which are right on the line. The δ13C of the troposphere distribute only partly within the triangle of the three sources, those outside the enclosure demand one more source that is supposedly more depleted in 13C in both formic and acetic acid. This source is proved to be the secondary biogenic emission. As indicated by our experimental results on isoprene photochemical oxidation, the fractionation factor between formic and acetic acid averages 1.002 (Table S1), and the estimated δ13C is − 29.4‰ and − 31.4‰ for the secondary formic and acetic acid, respectively, with δ13CFormic13CAcetic about 0.94 as well. These results locate the source of the secondary biogenic emission in line with fossil fuel combustion and primary biogenic emission in terms of δ13CFormic13CAcetic but to their lower left in the isotopic compositions. The photochemical experiments further showed that the δ13Cisoprene calculated from the measured δ13CFormic and δ13CAcetic differs to the true δ13Cisoprene by only 0.1‰ (Table S1), the little difference confirms that the carbon in isoprene is transferred almost completely into the organic acids.

Figure. 1.

Figure. 1

Mean δ13C of formic and acetic acid in the tropospheric environments and the sources of fossil fuel combustion, marine release and primary biogenic emission. The yellow-colored squares indicate the sources. A: fossil fuel combustion; B (covered mostly by D): primary biogenic emission; O: marine emission as averaged from the δ13C of precipitation at Westwood, Los Angeles, California, USA48; C: air in the street valley of downtown Guiyang; D: air over the urban forest in Guiyang; M and N: urban air during March and August–September, respectively, in Zurich, Switzerland51; U: urban air at Oslo, Norway; V: rural air at Tommerup, Denmark; W and X: air at semi-remote Ulfborg and Anholt, Denmark, respectively; Y: precipitation at semi-remote Anholt, Denmark45; digits 1–6: precipitation events in Guiyang as specified in Table 1. Error bars are 2σ standard deviation. The dash-dot lines link the source, the dash line indicates δ13CFormic13CAcetic of 0.94.

Addition of the source of secondary biogenic emission makes all the δ13C of the tropospheric environments well within enclosure of the sources (Fig. 2), indicating that we captured the major sources of the tropospheric acids in this study. The precipitation at semi-remote Anholt, Denmark, was noted with anthropogenic pollution45, it is closest to the fossil fuel combustion in the isotopic system, confirming the high contribution of anthropogenic source. Anholt and Tommerup, Denmark, as well as Oslo, Norway, are all situated in the lee of continent in relation to the prevailing wind, i.e., the westerly that blows eastwards from the North Atlantic, despite their difference in such environment as the semi-remote, rural and urban, respectively45. The air was subject to terrestrial (biogenic and anthropogenic) influence before reaching to these places. Ulfborg, Denmark, on the other hand, is located at the west coast of the country, facing the North Sea and the prevailing wind thus with minimum terrestrial influence. As a result, Ulfborg is much closer to the marine source than Anholt, Tommerup and Oslo in the isotopic system, manifesting its higher proportion of the marine acids. In fact, it is also the closest or highest among all the tropospheric environments in question thanks to its geographic and atmospheric situations. The air in Zurich, Switzerland, was affected by stronger photo-oxidation in August–September than in March51, the former is closer to the source of secondary biogenic emission than the latter in the isotope compositions, corroborating that the air of summer season has higher acids of secondary biogenic origin. These consistencies indicate that the isotopic compositions of the double acids point to their origins very well in the troposphere.

Figure. 2.

Figure. 2

Mean δ13C of all the sources and tropospheric environments studied. P: the source of secondary biogenic emission. The rest dots and lines are the same as in Fig. 1. The gray triangle indicates the range of the δ13C in the troposphere.

The δ13C of troposphere varies substantially between samplings even at the same site as indicated by the large standard deviation of the means. This is consistent with the volatile nature of atmosphere. Nevertheless, all the data are concentrated in an area that fits well a triangle as grayed in the isotopic system (Fig. 2). The distribution is away from the marine source while inclining toward the secondary biogenic emission. It indicates that the oceanic contribution is the least, especially in terms of acetic acid, while the secondary biogenic one most important to the tropospheric acids. This is in agreement with recent model studies31,35,52 and also confirmed by the model of Stable Isotope Analysis in R (SIAR) (Table S2), which predicts contribution of each source to the mixture based on probability distribution53. It shows that, on average, the marine origin accounts for 16% while the secondary biogenic emission 34% of acetic acid in the troposphere. The vehicle exhaust contributes 21% following the marine release as the second least source. The primary biogenic emission is located near the mid-point in the bottom of the gray triangle, close to most tropospheric environments, indicating its high contribution to the acids in these environments. As proved by SIAR, the average contribution is 29% in case of acetic acid, only second to the secondary biogenic emission. The air over the urban forest in Guiyang is supposedly subject to higher anthropogenic pollution than the suburban forest. Nevertheless, their δ13C differ only by 0.04‰ and 0.24‰ in formic and acetic acid, respectively. These minute differences suggest that the primary biogenic emission is so strong that it overwhelms the influence of anthropogenic pollution. The δ13C in both forests are distinct from those of secondary biogenic emission, ruling out the possibility of the secondary emission as the major source in/over the forest.

All the precipitation at Guiyang has the acids of marine origin despite the long distance to the oceans. Back trajectory analyses on the large precipitation events, i.e., 1, 2, 3 and 5, which formed by marine airmass meeting the continental one54, show that both formic and acetic acid survived the 120 h of transportation (Fig. S2). This indicates that the tropospheric lifetime of both acids is 5 days at least. The air over the urban forest as well as in the downtown street valley of Guiyang is free of the oceanic acids, suggesting that both environments have been closed from outside exchange for longer-than-the-lifetime period.

Discussion

The contribution of the primary biogenic emission projected by SIAR is 10 times as high as that predicted in recent simulation studies35. Although the SIAR prediction is only a statistical probability, the substantial difference still makes us believe that the simulations significantly undervalued the source of primary biogenic emission. Should this be true, significant low bias of the modeled budget would occur in situations with strong primary biogenic emission. This is exactly the case with the modeled results, which biased lowest in the low troposphere35,38 due to its proximity to the primary biogenic source, especially in the mid-latitude of the northern hemisphere, where terrestrial area amounts the largest on the globe and thus the primary biogenic emission has the strongest influence.

The lifetime of atmospheric formic acid is reported as 3.2 days or even as long as 4.5 days in recent model studies5,35. Compared to the lifetime revealed by the long-distance transport in this study, these were underestimated it by 56% and 11% at least. The modeled lifetime of acetic acid is 2.3 days35, which is undervalued by 117% at least. These underestimations certainly bias low the modeled tropospheric budget of the acids, thus demanding even larger emission flux of sources to reconcile the modeled budgets with observations. In places like the free troposphere and polar region, however, it is still unable to fill the gap even after substantially increasing the strength of the major sources including the primary biogenic emission35,38. The extended tropospheric lifetime of the acids provides an insight into this enigma.

Conclusions

Our results show that the primary biogenic emission is the second largest source of formic and acetic acid in the troposphere following the secondary biogenic emission, i.e., the photo-oxidation of VOC precursors. Therefore, the simulation studies underestimated the importance of this source. We also show that the lifetime of the acids in the troposphere exceeds 5 days, which is also longer than those in recent model studies. Based on these findings, we propose that these underestimations are relevant to the low bias of the simulated tropospheric budget of the acids. These results were obtained independently of the previous approaches used, thus shedding new light into the critical issues on the biogeochemical cycle of the acids.

Detailed methods

Sampling sites in field observations

Guiyang is a mountainous city in the subtropical southwest China (N26.57, E106.71). It is home to 2.5 million people with small forested hills dotting the downtown area. As one of the hills, Guanfeng Hill is 42 m high and occupies an area about 1000 m2. 10 km to the east of the metropolis, there lies a zone of suburban forest about 3 km wide and 30 km long, extending roughly in the south-north direction.

Sampling in the field

We sampled air on the ground level in the center of the suburban forest (Sample D in Table 1) and over the forest canopy by the edge of Guanfeng Hill (Sample B), as well as on a 5 m-tall pedestrian bridge over a downtown street-cross with heavy traffics at the center of the metropolis (Sample C). We also collected precipitation samples over the forest canopy at Guanfeng Hill (Sample 1–6). These samples were collected on the event basis using an auto-sampler (APS-2B, Changsha Company, China). After the collection, we stored the precipitation samples at − 18 °C if not processed immediately55. We sampled the air of fossil fuel combustion in front of the exhaust pipe of an idle Toyota Land Cruiser with an odometer about 100 thousand kilometers (Sample A).

Extraction of formic and acetic acid

Formic and acetic acids in the air were sampled by a dynamic solid-phase micro-extraction device, the NeedlEx, the type of fatty acids (Shinwa Chemical Industries, Ltd, Japan). It is a needle filled by adsorbent with affinity to fatty acids. To prevent possible clog of the needle, we attached a glass fiber filter (1.2 μm) on the head during the extraction. Due to the usually low concentration of the organic acids in the air, 3L of the air were drawn through the NeedlEx by a sucking pump. The organic acids were trapped by the adsorbent as the air passes through.

To sample the acids in precipitation, we concentrated the acids prior to the extraction due to the low concentrations in most of the samples (usually about a few μmol/L). To do this, we first neutralized 1L of the sample to pH 7 using 6 mol/L of NaOH solution, and then loaded it into 5 Supelclean LC-SAX SPE cartridges (Supelco, 500 mg/3 mL) hyphenated one after another by Teflon tubes. The cartridges retained the organic acids with other anions such as SO42−, NO3 and Cl in the samples. We eluted the anions out by 20 mL of 2 mol/L HCl and adjusted the pH of the eluted solution to 2.3 using 4 mol/L of H3PO4. After the preconcentration, we extracted the organic acids by the NeedlEx in a purge-and-trap way. Briefly, we transferred the eluent into a 40 mL vial and purged the solution with 1L Helium gas (99.999% purity) assisted by magnetic stirring at 2000 rpm. The headspace gas was sucking through the NeedlEx for extraction of the organic acids. The detailed setup of the purge-and-trap system is available in our previous publication56.

Measurement of the isotope ratio

We introduced the loaded NeedlEx directly into the injection port of a HP6890N Gas Chromatography (GC), which was installed with a Stabilwax-DA fused-silica capillary column (30 m long, 0.32 mm i.d., 0.25 lm df, Restek, Bellefonte, PA, USA), and hyphenated via a combustion interface with an Isotope Ratio Mass Spectrometry (IRMS) (Micromass Isoprime). By thermo-desorption assisted with flush of 1μL Helium gas, the organic acids trapped in the NeedlEx were delivered into the instrument for subsequent separation, oxidation and determination of 13C/12C. The entire processes incurred no isotope fractionation and the analytical precision is better than 0.9‰ for both acids at concentrations above 1 mg/L56.

Experiment on isoprene photo-oxidation

Our experiment is analogous to that of Paulot et al. (2009)19. We used Teflon FEP gas bags (GSBTeco, FEP31C-2PP-15L) as the reaction chamber. We first filled it with 14L of N2 gas (Local supplier, 99.99%), then added by a micro-syringe with 7μL of NO gas (Summit, 99.9%), 1.5μL of the headspace gas of isoprene (Sigma-Aldrich, 99%) and 30μL of the headspace gas of H2O2 (Sigma-Aldrich, 34.5–36.5%). We exposed the filled gas bag to sunlight from 9 AM to 7 PM for photochemical reactions while blowing it with ambient air to drop the temperature. After 16 h of reaction, we extracted the produced formic and acetic acid for the isotopic analysis following the procedures of air extraction described above. The results were used to calculate the intermolecular isotope fractionation factor (α) following the equation:

αformic-acetic=(δ13Cformic+1000)/(δ13Cacetic+1000)

Estimation of δ13C of secondary biogenic emission

δ13C of the plant in C3 photosynthetic pathway ranges from − 32 to − 22‰ with a mean value − 27‰57. The plant synthesizes isoprene discriminating against 13C by 2.8‰ on average58,59. Accordingly, we estimated the average δ13C of the biogenic isoprene as − 29.8‰. Photo-oxidation of isoprene generates more formic than acetic acid19 with an average ratio of formic/acetic as 3.9 (Fig. S1). Assuming that the final products of the photo-oxidation are primarily formic and acetic acid, which is justified by experimental data (Table S1), we are able to establish the following equations:

x+y=1 1
x/y=3.9 2
x·δ13CFormic+y·δ13CAcetic=δ13CIsoprene 3
δ13CFormic-δ13CAcetic=103·Ln(αformic-acetic) 4

where x and y denote the percent productivity of formic and acetic acid, respectively.

Solving the group of equations, we obtained δ13C of formic and acetic acid originated from photochemical oxidation of the biogenic isoprene.

Back trajectory analysis

We analyzed the back trajectory of the airmass movements by the protocol of Draxler and Rolph60.

Calculation of the sources contribution to tropospheric acetic acid

We assume that acetic acid in the atmosphere was derived from the four major sources: marine release (S1), fossil fuel combustion (S2), primary biogenic emission (S3), and secondary biogenic emission (S4). Based on stable isotope mass-balance theory, δ13C signatures of the mixture are determined by δ13C values and fractional contributions of each source to the mixture. Accordingly, we have the equations as following:

δ13CAcetic=FS1×δ13CS1+FS2×δ13CS2+FS3×δ13CS3+FS4×δ13CS4

where δ13CAcetic is δ13C values of acetic acid in the troposphere. FS1, FS2, FS3, and FS4 the fractional contributions of the sources S1, S2, S3 and S4 to the mixed acetic acid in the troposphere, respectively. FS1 + FS2 + FS3 + FS4 = 1. δ13CS1, δ13CS2, δ13CS3, and δ13CS4 denote δ13C values of acetic acid from S1, S2, S3, and S4, respectively.

FS1, FS2, FS3, and FS4 were calculated using the Stable Isotope Analysis in R (the SIAR model: http://cran-project.org/web/packages/siar/index.html). The SD values of each F value in each run were calculated SD values of the 10,000 contribution data output from the SIAR model. Uncertainties of mean F values can be propagated by the Monte Carlo method (MCM) as the SD values of corresponding F values of different sample replicates.

Supplementary Information

Acknowledgements

We thank the two anonymous reviewers for their instructive comments and Dr. Weigang Wang of the Editorial Board for his time and effort in processing the peer review. We also thank the NOAA Air Resources Laboratory (ARL) for the access to their READY website (http://www.ready.noaa.gov) for our back-trajectory analysis. This work was financially supported by the National Natural Science Foundation of China (No. 41021062, 40573048, 41203020, 41473026).

Author contributions

X. L. designed the experiments, analyzed the data, drew the figures and wrote the manuscript with assistance of all coauthors. D. H., H. Z., Q. W. and Y. M. performed the experiments. Q. L. calculated the isotopic fractionation. X. Liu. calculated the contribution of the sources to the mixture.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

The online version contains supplementary material available at 10.1038/s41598-021-86542-2.

References

  • 1.Keene WC, Galloway JN. Considerations regarding sources for formic and acetic acids in the troposphere. J. Geophys. Res. Atmos. 1986;91:14466–14474. doi: 10.1029/JD091iD13p14466. [DOI] [Google Scholar]
  • 2.Keene WC, Galloway JN. The biogeochemical cycling of formic and acetic acids through the troposphere—an overview of current understanding. Tellus B-Chem. Phys. Meteorol. 1988;40:322–334. doi: 10.3402/tellusb.v40i5.15994. [DOI] [Google Scholar]
  • 3.Oderbolz DC, et al. A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover. Atmos. Chem. Phys. 2013;13:1689–1712. doi: 10.5194/acp-13-1689-2013. [DOI] [Google Scholar]
  • 4.Andreae MO, Talbot RW, Andreae TW, Harriss RC. Formic and acetic acid over the central Amazon Region, Brazil 1, dry season. J. Geophys. Res. Atmos. 1988;92:1616–1624. doi: 10.1029/JD093iD02p01616. [DOI] [Google Scholar]
  • 5.Stavrakou T, et al. Satellite evidence for a large source of formic acid from boreal and tropical forests. Nat. Geosci. 2012;5:26–30. doi: 10.1038/ngeo1354. [DOI] [Google Scholar]
  • 6.Kesselmeier J. Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: a compilation of field and laboratory studies. J. Atmos. Chem. 2001;39:219–233. doi: 10.1023/A:1010632302076. [DOI] [Google Scholar]
  • 7.Fulgham SR, et al. Seasonal flux measurements over a colorado Pine forest demonstrate a persistent source of organic acids. ACS Earth Space Chem. 2019;3:2017–2032. doi: 10.1021/acsearthspacechem.9b00182. [DOI] [Google Scholar]
  • 8.Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999;33:23–88. doi: 10.1023/A:1006127516791. [DOI] [Google Scholar]
  • 9.de Souza SR, de Carvalho LRF. Origin and implication of carboxylic acids in the atmosphere. Quim Nova. 2001;24:60–67. [Google Scholar]
  • 10.Gabriel R, Schafer L, Gerlach C, Rausch T, Kesselmeier J. Factors controlling the emissions of volatile organic acids from leaves of Quercus ilex L. (Holm oak) Atmos. Environ. 1999;33:1347–1355. doi: 10.1016/S1352-2310(98)00369-0. [DOI] [Google Scholar]
  • 11.Talbot RW, Andreae MO, Berresheim H, Jacob DJ, Beecher KM. Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia 2 wet season. J. Geophys. Res.-Atmos. 1990;95:16799–16811. doi: 10.1029/JD095iD10p16799. [DOI] [Google Scholar]
  • 12.Sanadze GA. Biogenic isoprene—(a review) Russ. J. Plant Phys. 2004;51:729–741. doi: 10.1023/B:RUPP.0000047821.63354.a4. [DOI] [Google Scholar]
  • 13.Guenther A, et al. Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature) Atmos. Chem. Phys. 2006;6:3181–3210. doi: 10.5194/acpd-6-107-2006. [DOI] [Google Scholar]
  • 14.Sharkey TD, Yeh SS. Isoprene emission from plants. Annu. Rev. Plant Phys. 2001;52:407–436. doi: 10.1146/annurev.arplant.52.1.407. [DOI] [PubMed] [Google Scholar]
  • 15.Sharkey TD, Wiberley AE, Donohue AR. Isoprene emission from plants: Why and how. Ann. Bot.-london. 2008;101:5–18. doi: 10.1093/aob/mcm240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Madronich S, et al. A photochemical origin of acetic-acid in the troposphere. Geophys. Res. Lett. 1990;17:2361–2364. doi: 10.1029/GL017i013p02361. [DOI] [Google Scholar]
  • 17.Orzechowska GE, Paulson SE. Photochemical sources of organic acids. 1. Reaction of ozone with isoprene, propene, and 2-butenes under dry and humid conditions using SPME. J. Phys. Chem. A. 2005;109:5358–5365. doi: 10.1021/jp050166s. [DOI] [PubMed] [Google Scholar]
  • 18.Kuhn U, et al. Exchange of short-chain monocarboxylic acids by vegetation at a remote tropical forest site in Amazonia. J. Gerontol. Ser. A Biol. Med. Sci. 2002;107:18. [Google Scholar]
  • 19.Paulot F, et al. Isoprene photooxidation: new insights into the production of acids and organic nitrates. Atmos. Chem. Phys. 2009;9:1479–1501. doi: 10.5194/acp-9-1479-2009. [DOI] [Google Scholar]
  • 20.Alwe HD, et al. Oxidation of volatile organic compounds as the major source of formic acid in a mixed forest canopy. Geophys. Res. Lett. 2019;46:2940–2948. doi: 10.1029/2018gl081526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kawamura K, Ng LL, Kaplan IR. Determination of organic acids (C1–C10) in the atmosphere, motor exhausts, and engine oils. Environ. Sci. Technol. 1985;19:1082–1086. doi: 10.1021/es00141a010. [DOI] [PubMed] [Google Scholar]
  • 22.Talbot RW, Beecher KM, Harriss RC, Cofer WR. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site. J. Geophys. Res. 1988;93:1638–1652. doi: 10.1029/JD093iD02p01638. [DOI] [Google Scholar]
  • 23.Andreae MO, Merlet P. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycle. 2001;15:955–966. doi: 10.1029/2000GB001382. [DOI] [Google Scholar]
  • 24.Chaliyakunnel S, Millet DB, Wells KC, Cady-Pereira KE, Shephard MW. A large underestimate of formic acid from tropical fires: constraints from space–borne measurements. Environ. Sci. Technol. 2016;50:5631–5640. doi: 10.1021/acs.est.5b06385. [DOI] [PubMed] [Google Scholar]
  • 25.Sanhueza E, Andreae MO. Emission of formic and acetic acids from tropical savanna soils. Geophys. Res. Lett. 1991;18:1707–1710. doi: 10.1029/91GL01565. [DOI] [Google Scholar]
  • 26.Avery GB, Willey JD, Wilson CA. Formic and acetic acids in coastal North Carolina rainwater. Environ. Sci. Technol. 1991;25:1875–1880. doi: 10.1021/es00023a005. [DOI] [Google Scholar]
  • 27.Arlander DW, Coronn DR, Farmer JC, Menzia FA, Westberg HH. Gaseous oxygenated hydrocarbons in the remote marine troposphere. J. Geophys. Res. 1990;95:16391–16403. doi: 10.1029/JD095iD10p16391. [DOI] [Google Scholar]
  • 28.Graedel TE, Eisner T. Atmospheric formic acid from formicine ants: a preliminary assessment. Tellus B. 1988;40:335–339. doi: 10.3402/tellusb.v40i5.15995. [DOI] [Google Scholar]
  • 29.Chebbi A, Carlier P. Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos. Environ. 1996;30:4233–4249. doi: 10.1016/1352-2310(96)00102-1. [DOI] [Google Scholar]
  • 30.Makarov VN. Ions of organic carboxylic acids (formic, acetic, and oxalic) in the snow cover of permafrost landscapes of Boreal Eastern Siberia. Geochem. Int. 2018;56:608–615. doi: 10.1134/s0016702918060083. [DOI] [Google Scholar]
  • 31.Alwe, H. D. et al.AGU Fall Meeting Abstract A43M-3288 (Walter E Washington Convention Center, 2018).
  • 32.Poisson N, Kanakidou M, Crutzen PJ. Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. J. Atmos. Chem. 2000;36:157–230. doi: 10.1023/A:1006300616544. [DOI] [Google Scholar]
  • 33.von Kuhlmann R, Lawrence MG, Crutzen PJ, Rasch PJ. A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model evaluation of ozone-related species. J. Gerontol. Ser. A Biol. Med. Sci. 2003;108:4729. doi: 10.1029/2002jd003348. [DOI] [Google Scholar]
  • 34.Ito A, Sillman S, Penner JE. Effects of additional nonmethane volatile organic compounds, organic nitrates, and direct emissions of oxygenated organic species on global tropospheric chemistry. J. Gerontol. Ser. A Biol. Med. Sci. 2007;112:D06309. doi: 10.1029/2005jd006556. [DOI] [Google Scholar]
  • 35.Paulot F, et al. Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmos. Chem. Phys. 2011;11:1989–2013. doi: 10.5194/acp-11-1989-2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Yuan B, et al. Investigation of secondary formation of formic acid: urban environment vs oil and gas producing region. Atmos. Chem. Phys. 2015;15:1975–1993. doi: 10.5194/acp-15-1975-2015. [DOI] [Google Scholar]
  • 37.Pommier M, et al. HCOOH distributions from IASI for 2008–2014: comparison with ground-based FTIR measurements and a global chemistry-transport model. Atmos. Chem. Phys. 2016;16:8963–8981. doi: 10.5194/acp-16-8963-2016. [DOI] [Google Scholar]
  • 38.Millet DB, et al. A large and ubiquitous source of atmospheric formic acid. Atmos. Chem. Phys. 2015;15:6283–6304. doi: 10.5194/acp-15-6283-2015. [DOI] [Google Scholar]
  • 39.Bannan TJ, et al. Importance of direct anthropogenic emissions of formic acid measured by a chemical ionisation mass spectrometer (CIMS) during the Winter ClearfLo Campaign in London, January 2012. Atmos. Environ. 2014;83:301–310. doi: 10.1016/j.atmosenv.2013.10.029. [DOI] [Google Scholar]
  • 40.Bannan TJ, et al. Seasonality of formic acid (HCOOH) in London during the ClearfLo campaign. J. Gerontol. Ser. A Biol. Med. Sci. 2017;122:12488–12498. doi: 10.1002/2017jd027064. [DOI] [Google Scholar]
  • 41.Mattila JM, et al. Tropospheric sources and sinks of gas-phase acids in the Colorado front range. Atmos. Chem. Phys. 2018;18:12315–12327. doi: 10.5194/acp-18-12315-2018. [DOI] [Google Scholar]
  • 42.Mungall EL, et al. High gas-phase mixing ratios of formic and acetic acid in the High Arctic. Atmos. Chem. Phys. 2018;18:10237–10254. doi: 10.5194/acp-18-10237-2018. [DOI] [Google Scholar]
  • 43.Xu J, et al. First continuous measurement of gaseous and particulate formic acid in a suburban area of East China: seasonality and gas-particle partitioning. Acs Earth Space Chem. 2020;4:157–167. doi: 10.1021/acsearthspacechem.9b00210. [DOI] [Google Scholar]
  • 44.Mochizuki T, Kawamura K, Aoki K, Sugimoto N. Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan. Atmos. Chem. Phys. 2016;16:14621–14633. doi: 10.5194/acp-16-14621-2016. [DOI] [Google Scholar]
  • 45.Glasius M, et al. Relative contribution of biogenic and anthropogenic sources to formic and acetic acids in the atmospheric boundary layer. J. Geophys. Res. Atmos. 2001;106:7415–7426. doi: 10.1029/2000jd900676. [DOI] [Google Scholar]
  • 46.Boutton T. Carbon isotope techniques. In: Coleman DC, Fry B, editors. Ch. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. Academic Press Limited; 1991. pp. 173–185. [Google Scholar]
  • 47.Khare P, Kumar N, Kumari KM, Srivastava SS. Atmospheric formic and acetic acids: an overview. Rev. Geophys. 1999;37:227–248. doi: 10.1029/1998RG900005. [DOI] [Google Scholar]
  • 48.Sakugawa H, Kaplan IR. Stable carbon isotope measurements of atmospheric organic acids in Los Angeles, California. Geophys. Res. Lett. 1995;22:1509–1512. doi: 10.1029/95GL01359. [DOI] [Google Scholar]
  • 49.Center, T. P. E. California Climate Zones and Bioclimatic Design. 68 (2006).
  • 50.Lydolph P. The Climate of the Earth. Rowman Allanheld; 1985. [Google Scholar]
  • 51.Fisseha R, et al. Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes. Atmos. Environ. 2009;43:431–437. doi: 10.1016/j.atmosenv.2008.08.041. [DOI] [Google Scholar]
  • 52.Millet DB. Natural atmospheric acidity. Nat. Geosci. 2012;5:8–9. doi: 10.1038/ngeo1361. [DOI] [Google Scholar]
  • 53.Parnell, A. SIAR: Stable isotope analysis in Rhttp://cran.r-project.org/web/packages/siar/index.html (2008).
  • 54.Fu, C., Jiang, Z., Guan, Z., He, J. & Xu, Z. Regional Climate Studies of China (eds Congbin Fu et al.) Ch. 1, 1–48 (Springer, 2008).
  • 55.Karlsson S, Wolrath H, Dahlen J. Influence of filtration, preservation and storing on the analysis of low molecular weight organic acids in natural waters. Water Res. 1999;33:2569–2578. doi: 10.1016/s0043-1354(98)00485-0. [DOI] [Google Scholar]
  • 56.Lee X, et al. Analysis of the stable carbon isotope composition of formic and acetic acid. Anal. Biochem. 2013;436:178–186. doi: 10.1016/j.ab.2013.01.029. [DOI] [PubMed] [Google Scholar]
  • 57.Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Phys. 1989;40:503–537. doi: 10.1146/annurev.pp.40.060189.002443. [DOI] [Google Scholar]
  • 58.Rudolph J, et al. The stable carbon isotope ratio of biogenic emissions of isoprene and the potential use of stable isotope ratio measurements to study photochemical processing of isoprene in the atmosphere. J. Atmos. Chem. 2003;44:39–55. doi: 10.1023/A:1022116304550. [DOI] [Google Scholar]
  • 59.Sharkey TD, Loreto F, Delwiche CF, Treichel IW. Fractionation of carbon isotopes during biogenesis of atmospheric isoprene. Plant Physiol. 1991;97:463–466. doi: 10.1104/pp.97.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Draxler, R. R. & Rolph, G. D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory)http://ready.arl.noaa.gov/HYSPLIT.php (2012).

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES