Skip to main content
ACS AuthorChoice logoLink to ACS AuthorChoice
. 2020 Sep 16;11(20):8610–8615. doi: 10.1021/acs.jpclett.0c02213

Molecular Nanomagnets as Qubits with Embedded Quantum-Error Correction

A Chiesa †,, E Macaluso †,, F Petiziol †,, S Wimberger †,, P Santini †,, S Carretta †,‡,*
PMCID: PMC8011924  PMID: 32936660

Abstract

graphic file with name jz0c02213_0004.jpg

We show that molecular nanomagnets have a potential advantage in the crucial rush toward quantum computers. Indeed, the sizable number of accessible low-energy states of these systems can be exploited to define qubits with embedded quantum error correction. We derive the scheme to achieve this crucial objective and the corresponding sequence of microwave/radiofrequency pulses needed for the error correction procedure. The effectiveness of our approach is shown already with a minimal S = 3/2 unit corresponding to an existing molecule, and the scaling to larger spin systems is quantitatively analyzed.


The route toward quantum computers has seen an astonishing boost in the past few years,1,2 with noisy intermediate-scale devices3 already available to run nontrivial quantum algorithms.49 However, protecting quantum information from its intrinsic fragility via quantum error correction (QEC) is the striking roadblock that has to be circumvented to really unleash the power of quantum computers.10 While non-error-corrected algorithms are based on elementary two-level units called qubits, the idea behind QEC is to encode the quantum information into “logical qubits”, objects with more than two possible energy levels. Logical qubits are designed such that errors bring the system in a state outside the computational subspace, making errors in logical qubits detectable and correctable. In standard approaches these extra-states are obtained by encoding a logical qubit into many physical units.1118 However, this makes the practical implementation of QEC and the corresponding quantum computation extremely difficult, because nonlocal quantum gates on a large set of physically distinct objects are needed.10 A possible way to overcome this hurdle is by employing a single multilevel quantum object to encode a logical qubit.1924

In this respect, molecular nanomagnets represent the ideal platform, offering many accessible (electronic and nuclear) spin states which could be used to encode a protected qubit. Chemical engineering enabled the realization of molecular systems targeted for specific applications. For instance, careful tailoring of the ligand cage surrounding rare-earth ions enabled the synthesis of bistable single-ion magnets showing high-temperature magnetic hysteresis,2530 thus paving the way to data storage at the single-molecule level. Magnetic molecules were also largely investigated as promising platforms for quantum computation: interesting complexes were designed to meet specific schemes3139 and were chemically optimized to reach very long coherence times.4044 As far as QEC is concerned, one could think of mapping 2n molecular levels to n qubits45,48 and applying standard error-correction codes for independent qubits. However, usually this does not work because real hardware errors in these molecular systems do not typically translate into single-qubit errors, thus making standard codes ineffective.49

Conversely, here we show how to encode a single logical qubit into d levels of a molecular nanomagnet (qudit encoding), endowed with a QEC scheme to protect it against the most harmful errors occurring in molecular qubits, namely, pure dephasing. To this aim, rather than resorting to codes based on abstract generic error models,20,21,50 we derive a code which is specific for the class of systems we are considering and hence gives substantially better performance. We introduce error-protected states in such a molecular qudit and design the full sequence of magnetic pulses actually realizing the QEC for generic spin systems. Already existing monomers and dimers can be used to implement our proposal, with an electronic or nuclear spin S(34,41,44,46,47,51,52,54) representing the qudit, coupled to a spin 1/2 ancilla, used for error detection.

Design of QEC Codes for Magnetic Molecules. To facilitate the implementation of the QEC code, we consider simple molecules described by the Hamiltonian

graphic file with name jz0c02213_m001.jpg 1

where S is the qudit spin used to embed the error-protected qubit, σA = 1/2 is an electronic spin, exploited as “ancilla” for error detection, and μB is the Bohr magneton. This Hamiltonian is realized, e.g., in a complex containing a single magnetic ion with a nuclear spin S interacting with its electronic spin or in a dimer consisting of a (molecular) spin S weakly coupled to a spin 1/2. In the former case μ is the nuclear magneton (μN), while in the latter μ ≡ μB. The first two terms in eq 1 represent the Zeeman interaction with an external magnetic field B along z; the third term is the single-ion anisotropy of the qudit (making qudit transitions well energetically distinguishable), and the last term represents a weak exchange or hyperfine ancilla–qudit coupling Γ. Because Γx,y is much smaller than the difference of qudit and ancilla excitation energies, the eigenstates are simple tensor products of the eigenstates of Sz (|m⟩) and σzA (|Inline graphic⟩), with m = −S, ..., S and Inline graphic = ↑, ↓.

The most important error in molecular qubits is given by pure dephasing,41,43,54 whose effect can be described by55

graphic file with name jz0c02213_m004.jpg 2

where T2 is the dephasing time and ρ(t) is the density operator of the qudit. [An analogous term for the ancilla A makes a negligible effect, because A is practically always in the ground state (see below).] Conversely, spin relaxation is usually very slow at low temperature in these systems, with electronic relaxation times reaching ∼102 ms.53,54 Hence, our aim is finding how to use qudit states to correct for the unwanted decoherence due to eq 2. As shown in the Supporting Information, for small t/T2 it is possible to perform the perturbative expansion Inline graphic, with the error operators

graphic file with name jz0c02213_m006.jpg 3

This shows that at short t/T2 only low powers of Sz affect the dynamics. By considering the matrix elements of Szn we thus define protected qubit states (code words) and a QEC procedure to recover the effects of pure dephasing (up to a given order in (t/T2)n). Inspired by binomial codes on bosonic systems,49,56 we introduce protected code words:

graphic file with name jz0c02213_m007.jpg 4

Here, the summation for |0L⟩ (|1L⟩) includes only odd (even) k in the range [0, 2S]. Note that for correcting dephasing up to order (t/T2)n (for integer n) one needs at least 2n levels (see the Supporting Information). Hence, using an integer spin Sint is admissible, but it does not lead to a better performance as compared to Sint – 1/2. We thus focus here on half-integer spins. As we show in the Supporting Information, these code words ensure that (i) Ek errors bring |0L⟩ and |1L⟩ to distinguishable (orthogonal) states and (ii) the coefficients α and β of a generic superposition of the logical states (α|0L⟩ + β|1L⟩) are preserved. Therefore, errors are detectable, for (i), and correctable, for (ii).57 We quantify the ideal performance of this code by computing the fidelity58 of the corrected state ρC(t), Inline graphic, i.e., how much the corrected state matches the initial state |ψ0⟩ = α|0L⟩ + β|1L⟩. The final error (probability of finding the system in the wrong state) Inline graphic is reported in Figure 1 for different values (colors) of the qudit spin S. A comparison with a spin 1/2 without QEC (dashed line), shows a remarkable reduction of the error Inline graphic with our scheme, evidenced also by the gain factor Inline graphic, reported in the inset. Therefore, our QEC scheme is very effective in correcting decoherence, and the residual error decreases by using more levels, i.e., by increasing S.

Figure 1.

Figure 1

Ideal performance of spin-binomial codes on a spin S system, initialized in the pure state Inline graphic, corresponding to the most error prone qubit state.58 Colors refer to different values of S. The dashed line indicates the error for an uncorrected spin 1/2, i.e. Inline graphic. Inset: gain ratio Inline graphic.

Simple candidates to implement the scheme are molecular complexes consisting of (i) a single magnetic ion coupled to a magnetic nucleus or of (ii) pairs of electronic spins linked by exchange interactions. Several compounds belonging to class (i) exist, with nuclear spins ranging from 3/2 to 7/234,41,44,50,54,59 and remarkable electronic coherence. As far as electronic spins (ii) are concerned, Gd complexes (such as the one reported in ref (45)) can provide an S = 7/2 qudit and can also be arranged in dissymmetric, weakly interacting and individually addressable dimers.46 Additional levels of the ancilla (not strictly needed in our QEC scheme) can be exploited as an additional resource. A simpler implementation is given by a CrYb electronic spin dimer,47 where the effective Yb3+ spin doublet provides the ancilla and Cr3+ the 4-level qudit.

Pulse Sequence. The implementation of this QEC code requires translating the abstract operations above into precise experimental steps. To achieve this, we design for a generic spin S a complete sequence of resonant microwave/radiofrequency pulses inducing Δm = ±1 transitions. Figure 2a illustrates it for the minimal S = 3/2 case, while the general procedure is detailed in the Supporting Information. Starting with the qudit in a state |ψ(0)⟩ = α|−1/2⟩ + β|−3/2⟩, encoding in the protected states is achieved using the four pulses in the left part of the figure. After free evolution of the system (memory time), the error detection procedure is applied. With S = 3/2 only Sz errors can be corrected, and hence, we need to distinguish between the no-error and Szerror cases. To detect the possible error, we excite the ancilla only if no Sz error has occurred, bringing the code words |0L/1L⟩ to error words ∼Sz|0L/1L⟩. This is achieved by first applying pulses that bring the correct state |ψ(0)⟩ to α|3/2⟩ + β|−1/2⟩, and the state corresponding to an error to α|1/2⟩ + β|−3/2⟩. Then, two simultaneous π pulses are employed to excite the ancilla only if the qudit is in |m = −1/2, 3/2⟩ (thanks to the ancilla-qudit coupling Γ). A subsequent measurement of the ancilla projects either into the no error (if we find Inline graphic = ↑) or to the error (for Inline graphic = ↓) subspaces, thus allowing us to detect the error and apply the corresponding recovery procedure to restore |ψ0⟩.

Figure 2.

Figure 2

(a) Sequence of pulses implementing the QEC code on S = 3/2. Horizontal lines represent the eigenstates of the qudit Hamiltonian, labeled by the corresponding Sz eigenvalue. Time increases from left to right. Magnetic pulses resonant with Δm = ±1 transitions are depicted by Gaussian-shaped peak functions between the two involved levels with the rotation angle θ indicated. Blue (red) symbols represent |0L/1L⟩ (Sz|0L/1L⟩) states, with color intensity proportional to the modulus of the component and symbol shape changing from the code word to the error word. After encoding, the system evolves freely during the memory time. The detection pulses are applied, and then a conditional excitation of the ancilla (depending on qudit state |m⟩) allows us to detect errors by measuring the ancilla. Finally, depending on the outcome ↑/↓, a different sequence of pulses is applied to recover the encoded state. (b) Simulated final error Inline graphic (blue circles) as a function of memory time T in units of the qudit T2 and corresponding gain Inline graphic (red), for the nuclear S = 3/2 63Cu qudit in the (PPh4)2[Cu(mnt)2] complex. This is compared with the case of uncorrected spin 1/2 (dashed line).

Larger spin qudits allow us to correct more Ek errors, corresponding to larger powers of Sz. To do this, we need to distinguish different errors. This is achieved by mapping each code word and error word to a well-defined |m⟩ state. Then we perform a series of conditional excitations and measurements of the two-level ancilla until Inline graphic = ↑ is found and the corresponding error identified. The series of measurements starts from the most probable errors (corresponding to lower k and lower powers of Sz). Details on the general procedure for larger spin S are given in the Supporting Information.

Physical Implementation. General requirements to implement our scheme are the following: (i) Γx,y much smaller than the difference between excitation energies of qudit (Δm = ±1) and ancilla (for nondemolition readout); (ii) significant Γz, to enable selective excitation of the ancilla depending on the |m⟩ state of the qudit and hence error detection. These conditions can be fulfilled by applying a sizable magnetic field. The latter can lead to |m⟩|Inline graphic⟩ eigenstates also in the presence of non-negligible transverse anisotropy in eq 1. A suitable system to test the code is the (PPh4)2[Cu(mnt)2] complex reported in ref (54), consisting of a S = 3/2 nuclear qudit hyperfine-coupled to an electronic spin. This directly implements the scheme depicted in Figure 2a. To assess the performance of the QEC code, we perform numerical simulations on this existing molecular system by solving the Lindblad equation (eq 2) including continuous dephasing on both qudit and ancilla. The system is subject to pure dephasing in all the steps (including encoding, detection and correction). The molecule is characterized by Γ = (118, 118, 500) MHz, gzA = 2.09, while for the nuclear quadrupole term we assume D = 50 MHz, reasonable for 63Cu.60,61 Given the long T2 ≈ 10–1 ms shown by its electronic ancilla,54 for the nuclear qudit we conservatively assume T2 = 1 ms. In a typical X-band field of 0.3 T, ancilla-qudit states are practically factorized and Γz = 500 MHz allows us to resolve all transitions using an oscillating field of amplitude 50 G. Figure 2b shows the resulting error probability Inline graphic as a function of the memory time T in units of T2. This is only slightly affected by T2A, which is brought to a superposition only during fast (electronic) excitations used for error detection (see the Supporting Information), while it is kept in its ground state for the rest of the time. For this reason, we can neglect spin relaxation on the electronic ancilla.54

Differently from the ideal case in Figure 1, present simulations include errors due to the finite time TQEC required to implement the QEC code, making pure dephasing effective also during this step, as well as imperfect pulses (due to finite bandwidth of the Gaussian pulses) yielding gate errors. It is worth noting that our QEC scheme works well even in these realistic conditions, as shown in Figure 2. Even by using only a 4-level qudit, the performance of the code is remarkable, reducing the final error by a factor ∼2.5 at its maximum. We can define the optimal working point T̃ as the value of T corresponding to the maximum (Inline graphic) of Inline graphic, because it represents the ideal time interval before repeating the QEC procedure. In this case we find = 0.06 T2, enabling more than 102 gates between correction cycles.

Scaling. We finally extend our analysis to a generic qudit spin S. We introduce as the unit of time Inline graphic, i.e., a few times the time required for a π pulse (B1 being the peak amplitude of the Gaussian pulse). Figure 3 shows that for reasonable values of T2 and even small S, we obtain a very large /τ, roughly representing the number of operations which can be performed before we need to correct.

Figure 3.

Figure 3

Optimal working point (a) and gain Inline graphic at the optimal working point (b) as a function of T2 and of the qudit spin S (instantaneous operations of the ancilla are assumed). Times are in units of the elementary gating time τ. A cutoff is applied to exclude data with Inline graphic. Therefore, the reported results correspond to very large final fidelities. For simplicity, we neglect small gating errors (which can be further reduced by chemically tailoring the molecular spectrum and designing the pulse shape).

In particular, this value increases with S (due to improved QEC) and T2. Inline graphic shows a maximum at intermediate spin values, because the time needed to implement QEC increases approximately linearly with S (see the Supporting Information), thus marking a trade-off between the increase in the number of correctable errors (number of powers of Sz whose effect can be corrected) and the effect of dephasing during the correction procedure. Remarkably, our procedure yields large error reductions (large Inline graphic) even with very large /τ, i.e., if QEC is not frequently repeated. For instance, Figure 3 shows that even for S = 3/2 and T2/τ = 2 × 104 we get Inline graphic and /τ ≈ 200.

In summary, we have shown that molecular nanomagnets, thanks to their spectrum characterized by many accessible levels, can be used to encode robust error-corrected qubits in single molecules. The single-object nature of the logical units yields several advantages, compared to standard multiqubit platforms:24 (i) It exploits the many levels in the Hilbert space as a resource, rather than considering them as a leakage source only. (ii) It largely reduces hardware overhead when building up a processor. (iii) It makes logical operations (especially two-qubit gates) easier to realize. In addition, as compared to other multilevel codes which are based on generic error models,20,21 our scheme is targeted to the major error source in the real system. These reasons make our route promising for the realization of a scalable quantum processor.6264

We finally point out that the proposed scheme can be realized using a variety of magnetic molecules with large nuclear or electronic (effective) spin and a significant D to resolve all transitions by magnetic pulses. It could also be extended to a wider class of molecular systems, by exploiting the flexibility in the level structure to achieve stronger qubit protection. For instance, molecules with competing interactions are characterized by many low-spin low-energy multiplets,6572 thus enabling the increase of the number of levels without having large Δm between the states (thus reducing decoherence). Matrix elements between different multiplets can be chemically engineered by using ions with distinct g values, thus reducing the number of operations required by the code. As a result, more effective encodings could be found, involving potential protection against different classes of errors.

Acknowledgments

This work has received funding from the Italian Ministry of Education and Research (MIUR) through PRIN Project 2015 HYFSRT “Quantum Coherence in Nanostructures of Molecular Spin Qubits” and the European Union’s Horizon 2020 program under Grant Agreement No. 862893 (FET-OPEN project FATMOLS), the European Project “Scaling Up quantum computation with MOlecular spins” (SUMO) of the call QuantERA, cofunded by MIUR.

Supporting Information Available

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02213.

  • Details on Lindblad equation for pure dephasing, derivation of the code-words, description of the general QEC procedure and of its decomposition in terms of elementary pulses, numerical simulations, and refs (73 and 74) (PDF)

Author Contributions

§ A.C., E.M., and F.P. contributed equally to this work.

The authors declare no competing financial interest.

Supplementary Material

jz0c02213_si_001.pdf (1.2MB, pdf)

References

  1. Bruzewicz C. D.; Chiaverini J.; McConnell R.; Sage J. M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 2019, 6, 021314. 10.1063/1.5088164. [DOI] [Google Scholar]
  2. Wendin G. Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 2017, 80, 106001. 10.1088/1361-6633/aa7e1a. [DOI] [PubMed] [Google Scholar]
  3. Preskill J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. 10.22331/q-2018-08-06-79. [DOI] [Google Scholar]
  4. Kandala A.; Mezzacapo A.; Temme K.; Takita M.; Brink M.; Chow J. M.; Gambetta J. M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242–246. 10.1038/nature23879. [DOI] [PubMed] [Google Scholar]
  5. Hempel C.; Maier C.; Romero J.; McClean J.; Monz T.; Shen H.; Jurcevic P.; Lanyon B. P.; Love P.; Babbush R.; Aspuru-Guzik A.; Blatt R.; Roos C. F. Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator. Phys. Rev. X 2018, 8, 031022. 10.1103/PhysRevX.8.031022. [DOI] [Google Scholar]
  6. Tacchino F.; Chiesa A.; Carretta S.; Gerace D. Quantum computers as universal quantum simulators: state-of-art and perspectives. Adv. Quantum Technol. 2020, 3, 1900052. 10.1002/qute.201900052. [DOI] [Google Scholar]
  7. Chiesa A.; Tacchino F.; Grossi M.; Santini P.; Tavernelli I.; Gerace D.; Carretta S. Quantum hardware simulating four-dimensional inelastic neutron scattering. Nat. Phys. 2019, 15, 455–459. 10.1038/s41567-019-0437-4. [DOI] [Google Scholar]
  8. Arute F.; Arya K.; Babbush R.; Bacon D.; Bardin J. C.; Barends R.; Biswas R.; Boixo S.; Brandao F. G. L.; Buell D. A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. 10.1038/s41586-019-1666-5. [DOI] [PubMed] [Google Scholar]
  9. Kandala A.; Temme K.; Córcoles A. D.; Mezzacapo A.; Chow J. M.; Gambetta J. M. Error mitigation extends the computational reach of a noisy quantum processor. Nature 2019, 567, 491–495. 10.1038/s41586-019-1040-7. [DOI] [PubMed] [Google Scholar]
  10. Terhal B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 2015, 87, 307. 10.1103/RevModPhys.87.307. [DOI] [Google Scholar]
  11. Fowler A. G.; Mariantoni M.; Martinis J. M.; Cleland A. N. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A: At., Mol., Opt. Phys. 2012, 86, 032324. 10.1103/PhysRevA.86.032324. [DOI] [Google Scholar]
  12. Nigg D.; Müller M.; Martinez E. A.; Schindler P.; Hennrich M.; Monz T.; Martin-Delgado M. A.; Blatt R. Quantum computations on a topologically encoded qubit. Science 2014, 345, 302–305. 10.1126/science.1253742. [DOI] [PubMed] [Google Scholar]
  13. Schindler P.; Barreiro J. T.; Monz T.; Nebendahl V.; Nigg D.; Chwalla M.; Hennrich M.; Blatt R. Experimental Repetitive Quantum Error Correction. Science 2011, 332, 1059–1061. 10.1126/science.1203329. [DOI] [PubMed] [Google Scholar]
  14. Waldherr G.; Wang Y.; Zaiser S.; Jamali M.; Schulte-Herbrüggen T.; Abe H.; Ohshima T.; Isoya J.; Du J. F.; Neumann P.; Wrachtrup J. Quantum error correction in a solid-state hybrid spin register. Nature 2014, 506, 204–207. 10.1038/nature12919. [DOI] [PubMed] [Google Scholar]
  15. Kelly J.; Barends R.; Fowler A. G.; Megrant A.; Jeffrey E.; White T. C.; Sank D.; Mutus J. Y.; Campbell B.; Chen Yu; Chen Z.; Chiaro B.; Dunsworth A.; Hoi I.-C.; Neill C.; O’Malley P. J. J.; Quintana C.; Roushan P.; Vainsencher A.; Wenner J.; Cleland A. N.; Martinis J. M. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 2015, 519, 66–69. 10.1038/nature14270. [DOI] [PubMed] [Google Scholar]
  16. Chiesa A.; Santini P.; Gerace D.; Raftery J.; Houck A. A.; Carretta S. Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits. Sci. Rep. 2015, 5, 16036. 10.1038/srep16036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ristè D.; Poletto S.; Huang M.-Z.; Bruno A.; Vesterinen V.; Saira O.-P.; DiCarlo L. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat. Commun. 2015, 6, 6983. 10.1038/ncomms7983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cramer J.; Kalb N.; Rol M. A.; Hensen B.; Blok M. S.; Markham M.; Twitchen D. J.; Hanson R.; Taminiau T. H. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 2016, 7, 11526. 10.1038/ncomms11526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gottesman D.; Kitaev A.; Preskill J. Encoding a qubit in an oscillator. Phys. Rev. A: At., Mol., Opt. Phys. 2001, 64, 012310. 10.1103/PhysRevA.64.012310. [DOI] [Google Scholar]
  20. Pirandola S.; Mancini S.; Braunstein S. L.; Vitali D. Minimal qudit code for a qubit in the phase-damping channel. Phys. Rev. A: At., Mol., Opt. Phys. 2008, 77, 032309. 10.1103/PhysRevA.77.032309. [DOI] [Google Scholar]
  21. Cafaro C.; Maiolini F.; Mancini S. Quantum stabilizer codes embedding qubits into qudits. Phys. Rev. A: At., Mol., Opt. Phys. 2012, 86, 022308. 10.1103/PhysRevA.86.022308. [DOI] [Google Scholar]
  22. Albert V. V.; Covey J. P.; Preskill J. Robust encoding of a qubit in a molecule. Phys. Rev. X 2020, 031050. 10.1103/PhysRevX.10.031050. [DOI] [Google Scholar]
  23. Rosenblum S.; Gao Y. Y.; Reinhold P.; Wang C.; Axline C. J.; Frunzio L.; Girvin S. M.; Jiang L.; Mirrahimi M.; Devoret M. H.; Schoelkopf R. J. A CNOT gate between multiphoton qubits encoded in two cavities. Nat. Commun. 2018, 9, 652. 10.1038/s41467-018-03059-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hu L.; Ma Y.; Cai W.; Mu X.; Xu Y.; Wang W.; Wu Y.; Wang H.; Song Y. P.; Zou C.-L.; Girvin S. M.; Duan L.-M.; Sun L. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 2019, 15, 503–508. 10.1038/s41567-018-0414-3. [DOI] [Google Scholar]
  25. Ding Y.-S.; Chilton N. F.; Winpenny R. E. P.; Zheng Y.-Z. On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III)Single-Molecule Magnet. Angew. Chem., Int. Ed. 2016, 55, 16071–16074. 10.1002/anie.201609685. [DOI] [PubMed] [Google Scholar]
  26. Ding Y.-S.; Yu K.-X.; Reta D.; Ortu F.; Winpenny R. E. P.; Zheng Y.-Z.; Chilton N. F. Field- and temperature-dependent quantum tunnelling of the magnetisation in a large barrier single-molecule magnet. Nat. Commun. 2018, 9, 3134. 10.1038/s41467-018-05587-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yu K.-X.; Kragskow J. G. C.; Ding Y.-S.; Zhai Y.-Q.; Reta D.; Chilton N. F.; Zheng Y.-Z. Enhancing Magnetic Hysteresis in Single- Molecule Magnets by Ligand Functionalization. Chem. 2020, 6, 1777–1793. 10.1016/j.chempr.2020.04.024. [DOI] [Google Scholar]
  28. Ding Y.-S.; Han T.; Zhai Y.-Q.; Reta D.; Chilton N. F.; Winpenny R. E. P.; Zheng Y.-Z. A Study of Magnetic Relaxation in Dysprosium(III) Single-Molecule Magnets. Chem. - Eur. J. 2020, 26, 5893–5902. 10.1002/chem.202000646. [DOI] [PubMed] [Google Scholar]
  29. Chiesa A.; Cugini F.; Hussain R.; Macaluso E.; Allodi G.; Garlatti E.; Giansiracusa M.; Goodwin C. A. P.; Ortu F.; Reta D.; et al. Understanding magnetic relaxation in single-ion magnets with high blocking temperature. Phys. Rev. B: Condens. Matter Mater. Phys. 2020, 101, 174402. 10.1103/PhysRevB.101.174402. [DOI] [Google Scholar]
  30. Jin P.-B.; Zhai Y.-Q.; Yu K.-X.; Winpenny R. E. P.; Zheng Y.-Z. Dysprosiacarboranes as Organometallic Single-Molecule Magnets. Angew. Chem., Int. Ed. 2020, 59, 9350–9354. 10.1002/anie.202001401. [DOI] [PubMed] [Google Scholar]
  31. Ding Y.-S.; Deng Y.-F.; Zheng Y.-Z. The Rise of Single-Ion Magnets as Spin Qubits. Magnetochemistry 2016, 2, 40. 10.3390/magnetochemistry2040040. [DOI] [Google Scholar]
  32. Chiesa A.; Whitehead G. F. S.; Carretta S.; Carthy L.; Timco G. A.; Teat S. J.; Amoretti G.; Pavarini E.; Winpenny R. E. P.; Santini P. Molecular nanomagnets with switchable coupling for quantum simulation. Sci. Rep. 2015, 4, 7423. 10.1038/srep07423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thiele S.; Balestro F.; Ballou R.; Klyatskaya S.; Ruben M.; Wernsdorfer W. Electrically driven nuclear spin resonance in single-molecule magnets. Science 2014, 344, 1135–1138. 10.1126/science.1249802. [DOI] [PubMed] [Google Scholar]
  34. Godfrin C.; Ferhat A.; Ballou R.; Klyatskaya S.; Ruben M.; Wernsdorfer W.; Balestro F. Operating Quantum States in Single Magnetic Molecules: Implementation of Grover’s Quantum Algorithm. Phys. Rev. Lett. 2017, 119, 187702. 10.1103/PhysRevLett.119.187702. [DOI] [PubMed] [Google Scholar]
  35. Ferrando-Soria J.; Moreno-Pineda E.; Chiesa A.; Fernandez A.; Magee S. A.; Carretta S.; Santini P.; Vitorica-Yrezabal I.; Tuna F.; McInness E. J. L.; Winpenny R. E. P. A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 2016, 7, 11377. 10.1038/ncomms11377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ferrando-Soria J.; Magee S. A.; Chiesa A.; Carretta S.; Santini P.; Vitorica-Yrezabal I. J.; Tuna F.; Whitehead G. F. S.; Sproules S.; Lancaster K. M.; et al. Switchable Interaction in Molecular Double Qubits. Chem. 2016, 1, 727–752. 10.1016/j.chempr.2016.10.001. [DOI] [Google Scholar]
  37. Chiesa A.; Santini P.; Carretta S. Supramolecular Complexes for Quantum Simulation. Magnetochemistry 2016, 2, 37. 10.3390/magnetochemistry2040037. [DOI] [Google Scholar]
  38. Atzori M.; Chiesa A.; Morra E.; Chiesa M.; Sorace L.; Carretta S.; Sessoli R. A two-qubit molecular architecture for electronmediated nuclear quantum simulation. Chem. Sci. 2018, 9, 6183–6192. 10.1039/C8SC01695J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Gaita-Ariño A.; Luis F.; Hill S.; Coronado E. Molecular spins for quantum computation. Nat. Chem. 2019, 11, 301–309. 10.1038/s41557-019-0232-y. [DOI] [PubMed] [Google Scholar]
  40. Shiddiq M.; Komijani D.; Duan Y.; Gaita-Ariño A.; Coronado E.; Hill S. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 2016, 531, 348–351. 10.1038/nature16984. [DOI] [PubMed] [Google Scholar]
  41. Atzori M.; Tesi L.; Morra E.; Chiesa M.; Sorace L.; Sessoli R. Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits. J. Am. Chem. Soc. 2016, 138, 2154–2157. 10.1021/jacs.5b13408. [DOI] [PubMed] [Google Scholar]
  42. Atzori M.; Tesi L.; Benci S.; Lunghi A.; Righini R.; Taschin A.; Torre R.; Sorace L.; Sessoli R. Spin Dynamics and Low Energy Vibrations: Insights from Vanadyl- Based Potential Molecular Qubits. J. Am. Chem. Soc. 2017, 139, 4338–4341. 10.1021/jacs.7b01266. [DOI] [PubMed] [Google Scholar]
  43. Atzori M.; Benci S.; Morra E.; Tesi L.; Chiesa M.; Torre R.; Sorace L.; Sessoli R. Structural Effects on the Spin Dynamics of Potential Molecular Qubits. Inorg. Chem. 2018, 57, 731–740. 10.1021/acs.inorgchem.7b02616. [DOI] [PubMed] [Google Scholar]
  44. Zadrozny J. M.; Niklas J.; Poluektov O. G.; Freedman D. E. Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit. ACS Cent. Sci. 2015, 1, 488–492. 10.1021/acscentsci.5b00338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Jenkins M. D.; Duan Y.; Diosdado B.; García-Ripoll J. J.; Gaita-Arino A.; Giménez-Saiz C.; Alonso P. J.; Coronado E.; Luis F. Coherent manipulation of three-qubit states in a molecular single-ion magnet. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 95, 064423. 10.1103/PhysRevB.95.064423. [DOI] [Google Scholar]
  46. Luis F.; Alonso P. J.; Roubeau O.; Velasco V.; Zueco D.; Aguilá D.; Barrios L. A.; Aromi G.. A dissymmetric [Gd2] coordination molecular dimer hosting six addressable spin qubits. arXiv, 2020, 2006.08528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sanada T.; Suzuki T.; Yoshida T.; Kaizaki S. Heterodinuclear Complexes Containing d- and f-block Elements: Synthesis, Structural Characterization, and Metal-Metal Interactions of Novel Chromium(III)-Lanthanide(III) Compounds Bridged by Oxalate. Inorg. Chem. 1998, 37, 4712–4717. 10.1021/ic971568k. [DOI] [PubMed] [Google Scholar]
  48. Baldoví J. J.; Cardona-Serra S.; Clemente-Juan J. M.; Escalera-Moreno L.; Gaita-Arino A.; Mínguez-Espallargas G. Quantum Error Correction with magnetic molecules. Eur. Phys. Lett. 2015, 110, 33001. 10.1209/0295-5075/110/33001. [DOI] [Google Scholar]
  49. Michael M. H.; Silveri M.; Brierley R. T.; Albert V. V.; Salmilehto J.; Jiang L.; Girvin S. M. New Class of Quantum Error-Correcting Codes for a Bosonic Mode. Phys. Rev. X 2016, 6, 031006. 10.1103/PhysRevX.6.031006. [DOI] [Google Scholar]
  50. Hussain R.; Allodi G.; Chiesa A.; Garlatti E.; Mitcov D.; Konstantatos A.; Pedersen K. S.; De Renzi R.; Piligkos S.; Carretta S. Coherent Manipulation of a Molecular Ln-Based Nuclear Qudit Coupled to an Electron Qubit. J. Am. Chem. Soc. 2018, 140, 9814–9818. 10.1021/jacs.8b05934. [DOI] [PubMed] [Google Scholar]
  51. Graham M. J.; Zadrozny J. M.; Shiddiq M.; Anderson J. S.; Fataftah M. S.; Hill S.; Freedman D. E. Influence of Electronic Spin and Spin-Orbit Coupling on Decoherence in Mononuclear Transition Metal Complexes. J. Am. Chem. Soc. 2014, 136, 7623–7627. 10.1021/ja5037397. [DOI] [PubMed] [Google Scholar]
  52. Fataftah M. S.; Zadrozny J. M.; Coste S. C.; Graham M. J.; Rogers D. M.; Freedman D. E. Employing Forbidden Transitions as Qubits in a Nuclear Spin-Free Chromium Complex. J. Am. Chem. Soc. 2016, 138, 1344–1348. 10.1021/jacs.5b11802. [DOI] [PubMed] [Google Scholar]
  53. Yu C.-Y.; Graham M. J.; Zadrozny J. M.; Niklas J.; Krzyaniak M. D.; Wasielewski M. R.; Poluektov O. G.; Freedman D. E. Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits. J. Am. Chem. Soc. 2016, 138, 14678–14685. 10.1021/jacs.6b08467. [DOI] [PubMed] [Google Scholar]
  54. Bader K.; Dengler D.; Lenz S.; Endeward B.; Jiang S.-D.; Neugebauer P.; van Slageren J. Room temperature quantum coherence in a potential molecular qubit. Nat. Commun. 2014, 5, 5304. 10.1038/ncomms6304. [DOI] [PubMed] [Google Scholar]
  55. Zhong W.; Sun Z.; Ma J.; Wang X.; Nori F. Fisher information under decoherence in Bloch representation. Phys. Rev. A: At., Mol., Opt. Phys. 2013, 87, 022337. 10.1103/PhysRevA.87.022337. [DOI] [Google Scholar]
  56. Albert V. V.; Noh K.; Duivenvoorden K.; Young D. J.; Brierley R. T.; Reinhold P.; Vuillot C.; Li L.; Shen C.; Girvin S. M.; Terhal B. M.; Jiang L. Performance and structure of single-mode bosonic codes. Phys. Rev. A: At., Mol., Opt. Phys. 2018, 97, 032346. 10.1103/PhysRevA.97.032346. [DOI] [Google Scholar]
  57. Knill E.; Laflamme R. Theory of Quantum Error-Correcting Codes. Phys. Rev. A: At., Mol., Opt. Phys. 1997, 55, 900. 10.1103/PhysRevA.55.900. [DOI] [Google Scholar]
  58. Nielsen M. A.; Chuang I. L.. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, England, 2000. [Google Scholar]
  59. Pedersen K. S.; Ariciu A.-M.; McAdams S.; Weihe H.; Bendix J.; Tuna F.; Piligkos S. J. Toward Molecular 4f Single-Ion Magnet Qubits. J. Am. Chem. Soc. 2016, 138, 5801–5804. 10.1021/jacs.6b02702. [DOI] [PubMed] [Google Scholar]
  60. Fujii M.; Wakai F.; Abe H.; Hirai A. 63Cu and 65Cu NMR in a Single Crystal of K2CuF4. J. Phys. Soc. Jpn. 1981, 50, 1109–1118. 10.1143/JPSJ.50.1109. [DOI] [Google Scholar]
  61. Mazzoli C.; Allodi G.; Guidi G.; De Renzi R.; Ghigna P. NMR-NQR of orbitally ordered KCuF3. J. Magn. Magn. Mater. 2004, 272–276, 106–107. 10.1016/j.jmmm.2003.11.046. [DOI] [Google Scholar]
  62. Jenkins M. D.; Zueco D.; Roubeau O.; Aromí G.; Majer J.; Luis F. A scalable architecture for quantum computation with molecular nanomagnets. Dalton Trans 2016, 45, 16682–16693. 10.1039/C6DT02664H. [DOI] [PubMed] [Google Scholar]
  63. H2020-Quantera project SUMO (Scaling Up quantum computation with Molecular Spins) http://sumo.unizar.es.
  64. H2020-FET project FATMOLS (Fault-Tolerant MOLecular Spin processor) https://cordis.europa.eu/project/id/862893.
  65. Garlatti E.; Carretta S.; Santini P.; Amoretti G.; Mariani M.; Lascialfari A.; Sanna S.; Mason K.; Chang J.; Tasker P.; Brechin E. K. Relaxation dynamics in a Fe7 nanomagnet. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 054409. 10.1103/PhysRevB.87.054409. [DOI] [Google Scholar]
  66. Garlatti E.; Carretta S.; Affronte M.; Sanudo E. C.; Amoretti G.; Santini P. Magnetic properties and relaxation dynamics of a frustrated Ni7 molecular nanomagnet. J. Phys.: Condens. Matter 2012, 24, 104006. 10.1088/0953-8984/24/10/104006. [DOI] [PubMed] [Google Scholar]
  67. Schnack J. Effects of frustration on magnetic molecules: a survey from Olivier Kahn until today. Dalton Trans 2010, 39, 4677–4686. 10.1039/b925358k. [DOI] [PubMed] [Google Scholar]
  68. Adelnia F.; Chiesa A.; Bordignon S.; Carretta S.; Ghirri A.; Candini A.; Cervetti C.; Evangelisti M.; Affronte M.; Sheikin I.; et al. Low temperature magnetic properties and spin dynamics in single crystals of Cr8Zn antiferromagnetic molecular rings. J. Chem. Phys. 2015, 143, 244321. 10.1063/1.4938086. [DOI] [PubMed] [Google Scholar]
  69. Furukawa Y.; Kiuchi K.; Kumagai K.; Ajiro Y.; Narumi Y.; Iwaki M.; Kindo K.; Bianchi A.; Carretta S.; Santini P.; et al. Evidence of spin singlet ground state in the frustrated antiferromagnetic ring Cr8Ni. Phys. Rev. B: Condens. Matter Mater. Phys. 2009, 79, 134416. 10.1103/PhysRevB.79.134416. [DOI] [Google Scholar]
  70. Baker M. L.; Lancaster T.; Chiesa A.; Amoretti G.; Baker P. J.; Barker C.; Blundell S. J.; Carretta S.; Collison D.; Güdel H. U.; et al. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8Mn. Chem. - Eur. J. 2016, 22, 1779–1788. 10.1002/chem.201503431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Woolfson R. J.; Timco G. A.; Chiesa A.; Vitorica-Yrezabal I.; Tuna F.; Guidi T.; Pavarini E.; Santini P.; Carretta S.; Winpenny R. E. P. [CrF(O2CtBu)2]9: Synthesis and Characterization of a Regular Homometallic Ring with an Odd Number of Metal Centers and Electrons. Angew. Chem. 2016, 128, 9002–9005. 10.1002/ange.201601734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Schmidt R.; Schnack J.; Richter J. Frustration effects in magnetic molecules. J. Magn. Magn. Mater. 2005, 295, 164–167. 10.1016/j.jmmm.2005.01.009. [DOI] [Google Scholar]
  73. Breuer H.-P.; Petruccione F.. The theory of open quantum systems; Oxford University Press: Oxford, 2007. [Google Scholar]
  74. D’Alessandro D.Introduction to Quantum Control and Dynamics; Chapman & Hall/CRC Applied Mathematics & Non-linear Science, CRC Press: 2007. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

jz0c02213_si_001.pdf (1.2MB, pdf)

Articles from The Journal of Physical Chemistry Letters are provided here courtesy of American Chemical Society

RESOURCES