Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Apr 1;26(2):165–178. doi: 10.1007/s12257-020-0269-1

A Versatile Surface Modification Method via Vapor-phase Deposited Functional Polymer Films for Biomedical Device Applications

Younghak Cho 1,#, Minseok Lee 1,#, Seonghyeon Park 1, Yesol Kim 1, Eunjung Lee 1,, Sung Gap Im 1,
PMCID: PMC8013202  PMID: 33821132

Abstract

For last two decades, the demand for precisely engineered three-dimensional structures has increased continuously for the developments of biomaterials. With the recent advances in micro- and nano-fabrication techniques, various devices with complex surface geometries have been devised and produced in the pharmaceutical and medical fields for various biomedical applications including drug delivery and biosensors. These advanced biomaterials have been designed to mimic the natural environments of tissues more closely and to enhance the performance for their corresponding biomedical applications. One of the important aspects in the rational design of biomaterials is how to configure the surface of the biomedical devices for better control of the chemical and physical properties of the bioactive surfaces without compromising their bulk characteristics. In this viewpoint, it of critical importance to secure a versatile method to modify the surface of various biomedical devices. Recently, a vapor phase method, termed initiated chemical vapor deposition (iCVD) has emerged as damage-free method highly beneficial for the conformal deposition of various functional polymer films onto many kinds of micro- and nano-structured surfaces without restrictions on the substrate material or geometry, which is not trivial to achieve by conventional solution-based surface functionalization methods. With proper structural design, the functional polymer thin film via iCVD can impart required functionality to the biomaterial surfaces while maintaining the fine structure thereon. We believe the iCVD technique can be not only a valuable approach towards fundamental cell-material studies, but also of great importance as a platform technology to extend to other prospective biomaterial designs and material interface modifications for biomedical applications.

Keywords: initiated chemical vapor deposition (iCVD), surface modification, non-flat surfaces, biomedical applications

Acknowldgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (Grant 2021R1A2B5B03001416), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1I1A1A01066621) and the Technology Innovation Program (No. 20008777) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Footnotes

Ethical Statements

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally.

Contributor Information

Eunjung Lee, Email: ejung0608@kaist.ac.kr.

Sung Gap Im, Email: sgim@kaist.ac.kr.

References

  • 1.Melchels F P W, Feijen J, Grijpma D W. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121–6130. doi: 10.1016/j.biomaterials.2010.04.050. [DOI] [PubMed] [Google Scholar]
  • 2.Mendes P M. Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 2008;37:2512–2529. doi: 10.1039/b714635n. [DOI] [PubMed] [Google Scholar]
  • 3.Patterson J, Martino M M, Hubbell J A. Biomimetic materials in tissue engineering. Mater. Today. 2010;13:14–22. doi: 10.1016/S1369-7021(10)70013-4. [DOI] [Google Scholar]
  • 4.Lutolf M P, Hubbell J A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005;23:47–55. doi: 10.1038/nbt1055. [DOI] [PubMed] [Google Scholar]
  • 5.Rossini P, Colpo P, Ceccone G, Jandt K D, Rossi F. Surfaces engineering of polymeric films for biomedical applications. Mater. Sci. Eng. C. 2003;23:353–358. doi: 10.1016/S0928-4931(02)00286-2. [DOI] [Google Scholar]
  • 6.Chu P K, Chen J Y, Wang L P, Huang N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R. Rep. 2002;36:143–206. doi: 10.1016/S0927-796X(02)00004-9. [DOI] [Google Scholar]
  • 7.Roach P, Eglin D, Rohde K, Perry C C. Modern biomaterials: a review — bulk properties and implications of surface modifications. J. Mater. Sci. Mater. Med. 2007;18:1263–1277. doi: 10.1007/s10856-006-0064-3. [DOI] [PubMed] [Google Scholar]
  • 8.Asri R I M, Harun W S W, Samykano M, Lah N A C, Ghani S A C, Tarlochan F, Raza M R. Corrosion and surface modification on biocompatible metals: A review. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017;77:1261–1274. doi: 10.1016/j.msec.2017.04.102. [DOI] [PubMed] [Google Scholar]
  • 9.Campoccia D, Montanaro L, Arciola C R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34:8533–8554. doi: 10.1016/j.biomaterials.2013.07.089. [DOI] [PubMed] [Google Scholar]
  • 10.Lim J Y, Donahue H J. Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 2007;13:1879–1891. doi: 10.1089/ten.2006.0154. [DOI] [PubMed] [Google Scholar]
  • 11.Bettinger C J, Langer R, Borenstein J T. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Ed. Engl. 2009;48:5406–5415. doi: 10.1002/anie.200805179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A. Engineering microscale topographies to control the cellsubstrate interface. Biomaterials. 2012;33:5230–5246. doi: 10.1016/j.biomaterials.2012.03.079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.McMurray R J, Gadegaard N, Tsimbouri P M, Burgess K V, McNamara L E, Tare R, Murawski K, Kingham E, Oreffo R O C, Dalby M J. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat. Mater. 2011;10:637–644. doi: 10.1038/nmat3058. [DOI] [PubMed] [Google Scholar]
  • 14.Kilian K A, Bugarija B, Lahn B T, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA. 2010;107:4872–4877. doi: 10.1073/pnas.0903269107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Bose S, Robertson S F, Bandyopadhyay A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 2018;66:6–22. doi: 10.1016/j.actbio.2017.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kim Y S, Raston N H A, Gu M B. Aptamer-based nanobiosensors. Biosens. Bioelectron. 2016;76:2–19. doi: 10.1016/j.bios.2015.06.040. [DOI] [PubMed] [Google Scholar]
  • 17.Sandhyarani N. Surface modification methods for electrochemical biosensors. In: Ensafi A A, editor. Electrochemical Biosensors. Amsterdam, Netherlands: Elsevier; 2019. pp. 45–75. [Google Scholar]
  • 18.Mosbach K, Ramstrom O. The emerging technique of molecular imprinting and its future impact on biotechnology. Nat. Biotechnol. 1996;14:163–170. doi: 10.1038/nbt0296-163. [DOI] [Google Scholar]
  • 19.Place E S, George J H, Williams C K, Stevens M M. Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 2009;38:1139–1151. doi: 10.1039/b811392k. [DOI] [PubMed] [Google Scholar]
  • 20.Li Y, Rodrigues J, Tomas H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 2012;41:2193–2221. doi: 10.1039/C1CS15203C. [DOI] [PubMed] [Google Scholar]
  • 21.Guo B, Glavas L, Albertsson A C. Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci. 2013;38:1263–1286. doi: 10.1016/j.progpolymsci.2013.06.003. [DOI] [Google Scholar]
  • 22.Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 2012;37:237–280. doi: 10.1016/j.progpolymsci.2011.06.004. [DOI] [Google Scholar]
  • 23.O’Brien F J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95. doi: 10.1016/S1369-7021(11)70058-X. [DOI] [Google Scholar]
  • 24.Song H G, Rumma R T, Ozaki C K, Edelman E R, Chen C S. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell. 2018;22:340–354. doi: 10.1016/j.stem.2018.02.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Sensharma P, Madhumathi G, Jayant R D, Jaiswal A K. Biomaterials and cells for neural tissue engineering: Current choices. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017;77:1302–1315. doi: 10.1016/j.msec.2017.03.264. [DOI] [PubMed] [Google Scholar]
  • 26.Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30:546–554. doi: 10.1016/j.tibtech.2012.07.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Khang D, Choi J, Im Y M, Kim Y J, Jang J H, Kang S S, Nam T H, Song J, Park J W. Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials. 2012;33:5997–6007. doi: 10.1016/j.biomaterials.2012.05.005. [DOI] [PubMed] [Google Scholar]
  • 28.Variola F, Brunski J B, Orsini G, Tambasco de Oliveira P, Wazen R, Nanci A. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale. 2011;3:335–353. doi: 10.1039/C0NR00485E. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Dalby M J, Gadegaard N, Tare R, Andar A, Riehle M O, Herzyk P, Wilkinson C D W, Oreffo R O. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 2007;6:997–1003. doi: 10.1038/nmat2013. [DOI] [PubMed] [Google Scholar]
  • 30.Downing T L, Soto J, Morez C, Houssin T, Fritz A, Yuan F, Chu J, Patel S, Schaffer D V, Li S. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 2013;12:1154–1162. doi: 10.1038/nmat3777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Cole M A, Voelcker N H, Thissen H, Griesser H J. Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials. 2009;30:1827–1850. doi: 10.1016/j.biomaterials.2008.12.026. [DOI] [PubMed] [Google Scholar]
  • 32.Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:3074–3082. doi: 10.1016/j.biomaterials.2007.03.013. [DOI] [PubMed] [Google Scholar]
  • 33.Ayala R, Zhang C, Yang D, Hwang Y, Aung A, Shroff S S, Arce F T, Lal R, Arya G, Varghese S. Engineering the cell-material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials. 2011;32:3700–3711. doi: 10.1016/j.biomaterials.2011.02.004. [DOI] [PubMed] [Google Scholar]
  • 34.Keselowsky B G, Collard D M, Garcia A J. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A. 2003;66:247–259. doi: 10.1002/jbm.a.10537. [DOI] [PubMed] [Google Scholar]
  • 35.Hadden W J, Young J L, Holle A W, McFetridge M L, Kim D Y, Wijesinghe P, Taylor-Weiner H, Wen J H, Lee A R, Bieback K, Vo B N, Sampson D D, Kennedy B F, Spatz J P, Engler A J, Choi Y S. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl. Acad. Sci. USA. 2017;114:5647–5652. doi: 10.1073/pnas.1618239114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Yim E K F, Darling E M, Kulangara K, Guilak F, Leong K W. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 2010;31:1299–1306. doi: 10.1016/j.biomaterials.2009.10.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Cassidy J W, Roberts J N, Smith C A, Robertson M, White K, Biggs M J, Oreffo R O C, Dalby M J. Osteogenic lineage restriction by osteoprogenitors cultured on nanometric grooved surfaces: the role of focal adhesion maturation. Acta Biomater. 2014;10:651–660. doi: 10.1016/j.actbio.2013.11.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Park G E, Pattison M A, Park K, Webster T J. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials. 2005;26:3075–3082. doi: 10.1016/j.biomaterials.2004.08.005. [DOI] [PubMed] [Google Scholar]
  • 39.Gauvreau V, Laroche G. Micropattern printing of adhesion, spreading, and migration peptides on poly(tetra-fluoroethylene) films to promote endothelialization. Bioconjug Chem. 2005;16:1088–1097. doi: 10.1021/bc049717s. [DOI] [PubMed] [Google Scholar]
  • 40.Santiago L Y, Nowak R W, Peter Rubin J, Marra K G. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials. 2006;27:2962–2969. doi: 10.1016/j.biomaterials.2006.01.011. [DOI] [PubMed] [Google Scholar]
  • 41.Saleh N T, Sohi A N, Esmaeili E, Karami S, Soleimanifar F, Nasoohi N. Immobilized laminin-derived peptide can enhance expression of stemness markers in mesenchymal stem cells. Biotechnol. Bioprocess Eng. 2019;24:876–884. doi: 10.1007/s12257-019-0118-2. [DOI] [Google Scholar]
  • 42.Wang T H, Lee W C. Immobilization of proteins on magnetic nanoparticles. Biotechnol. Bioprocess Eng. 2003;8:263–267. doi: 10.1007/BF02942276. [DOI] [Google Scholar]
  • 43.Elmengaard B, Bechtold J E, Soballe K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials. 2005;26:3521–3526. doi: 10.1016/j.biomaterials.2004.09.039. [DOI] [PubMed] [Google Scholar]
  • 44.Elmengaard B, Bechtold J E, Soballe K. In vivo effects of RGD-coated titanium implants inserted in two bone-gap models. J. Biomed. Mater. Res. A. 2005;75:249–255. doi: 10.1002/jbm.a.30301. [DOI] [PubMed] [Google Scholar]
  • 45.Morra M, Cassinelli C, Cascardo G, Mazzucco L, Borzini P, Fini M, Giavaresi G, Giardino R. Collagen I-coated titanium surfaces: mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. J. Biomed. Mater. Res. A. 2006;78:449–458. doi: 10.1002/jbm.a.30783. [DOI] [PubMed] [Google Scholar]
  • 46.Reyes C D, Petrie T A, Burns K L, Schwartz Z, Garcia A J. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials. 2007;28:3228–3235. doi: 10.1016/j.biomaterials.2007.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Keselowsky B G, Collard D M, Garcia A J. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl. Acad. Sci. USA. 2005;102:5953–5957. doi: 10.1073/pnas.0407356102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Wang X, Yan C, Ye K, He Y, Li Z, Ding J. Effect of RGD nanospacing on differentiation of stem cells. Biomaterials. 2013;34:2865–2874. doi: 10.1016/j.biomaterials.2013.01.021. [DOI] [PubMed] [Google Scholar]
  • 49.Petrie T A, Capadona J R, Reyes C D, Garcia A J. Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials. 2006;27:5459–5470. doi: 10.1016/j.biomaterials.2006.06.027. [DOI] [PubMed] [Google Scholar]
  • 50.Shu X Z, Ghosh K, Liu Y, Palumbo F S, Luo Y, Clark R A, Prestwich G D. Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J. Biomed. Mater. Res. A. 2004;68:365–375. doi: 10.1002/jbm.a.20002. [DOI] [PubMed] [Google Scholar]
  • 51.Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–4415. doi: 10.1016/S0142-9612(03)00343-0. [DOI] [PubMed] [Google Scholar]
  • 52.Kantlehner M, Finsinger D, Meyer J, Schaffner P, Jonczyk A, Diefenbach B, Nies B, Kessler H. Selective RGD-mediated adhesion of osteoblasts at surfaces of implants. Angew. Chem. Int. Ed. Engl. 1999;38:560–562. doi: 10.1002/(SICI)1521-3773(19990215)38:4<560::AID-ANIE560>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  • 53.Li B, Chen J, Wang J H C. RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J. Biomed. Mater. Res. A. 2006;79:989–998. doi: 10.1002/jbm.a.30847. [DOI] [PubMed] [Google Scholar]
  • 54.Sackmann E K, Fulton A L, Beebe D J. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–189. doi: 10.1038/nature13118. [DOI] [PubMed] [Google Scholar]
  • 55.Halldorsson S, Lucumi E, Gomez-Sjoberg R, Fleming R M T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015;63:218–231. doi: 10.1016/j.bios.2014.07.029. [DOI] [PubMed] [Google Scholar]
  • 56.Yu S J, Pak K, Kwak M J, Joo M, Kim B J, Oh M S, Baek J, Park H, Choi G, Kim D H, Choi J, Choi Y, Shin J, Moon H, Lee E, Im S G. Initiated chemical vapor deposition: a versatile tool for various device applications. Adv. Eng. Mater. 2018;20:1700622. doi: 10.1002/adem.201700622. [DOI] [Google Scholar]
  • 57.Kim S H, Lee H R, Yu S J, Han M E, Lee D Y, Kim S Y, Ahn H J, Han M J, Lee T I, Kim T S, Kwon S K, Im S G, Hwang N S. Hydrogel-laden paper scaffold system for origami-based tissue engineering. Proc. Natl. Acad. Sci. USA. 2015;112:15426–15431. doi: 10.1073/pnas.1504745112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.You J B, Yoo Y, Oh M S, Im S G. Simple and reliable method to incorporate the Janus property onto arbitrary porous substrates. ACS Appl. Mater. Interfaces. 2014;6:4005–4010. doi: 10.1021/am4054354. [DOI] [PubMed] [Google Scholar]
  • 59.Im S G, Bong K W, Lee C H, Doyle P S, Gleason K K. A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices. Lab. Chip. 2009;9:411–416. doi: 10.1039/B812121D. [DOI] [PubMed] [Google Scholar]
  • 60.You J B, Kang K, Tran T T, Park H, Hwang W R, Kim J M, Im S G. PDMS-based turbulent microfluidic mixer. Lab. Chip. 2015;15:1727–1735. doi: 10.1039/C5LC00070J. [DOI] [PubMed] [Google Scholar]
  • 61.Cha S, Kang K, You J B, Im S G, Kim Y, Kim J M. Hoop stress-assisted three-dimensional particle focusing under viscoelastic flow. Rheol. Acta. 2014;53:927–933. doi: 10.1007/s00397-014-0808-9. [DOI] [Google Scholar]
  • 62.Kwak M J, Oh M S, Yoo Y, You J B, Kim J, Yu S J, Im S G. Series of liquid separation system made of homogeneous copolymer films with controlled surface wettability. Chem. Mater. 2015;27:3441–3449. doi: 10.1021/acs.chemmater.5b00842. [DOI] [Google Scholar]
  • 63.Baek J, Cho Y, Park H J, Choi G, Lee J S, Lee M, Yu S J, Cho S W, Lee E, Im S G. A surface-tailoring method for rapid non-thermosensitive cell-sheet engineering via functional polymer coatings. Adv. Mater. 2020;32:1907225. doi: 10.1002/adma.201907225. [DOI] [PubMed] [Google Scholar]
  • 64.Ayhan H, Piskin E. Collagen immobilization onto P(EGDMA/HEMA) microbeads for cell affinity systems. J. Bioact. Compat. Polym. 2000;15:27–42. doi: 10.1177/088391150001500103. [DOI] [Google Scholar]
  • 65.Lee S J, Park J P, Park T J, Lee S Y, Lee S, Park J K. Selective immobilization of fusion proteins on poly(hydroxyalkanoate) microbeads. Anal. Chem. 2005;77:5755–5759. doi: 10.1021/ac0505223. [DOI] [PubMed] [Google Scholar]
  • 66.Yildirim E D, Besunder R, Pappas D, Allen F, Guceri S, Sun W. Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Biofabrication. 2010;2:014109. doi: 10.1088/1758-5082/2/1/014109. [DOI] [PubMed] [Google Scholar]
  • 67.Vepari C P, Kaplan D L. Covalently immobilized enzyme gradients within three-dimensional porous scaffolds. Biotechnol. Bioeng. 2006;93:1130–1137. doi: 10.1002/bit.20833. [DOI] [PubMed] [Google Scholar]
  • 68.Horne M K, Nisbet D R, Forsythe J S, Parish C L. Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev. 2010;19:843–852. doi: 10.1089/scd.2009.0158. [DOI] [PubMed] [Google Scholar]
  • 69.Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules. 2007;8:1775–1789. doi: 10.1021/bm061197b. [DOI] [PubMed] [Google Scholar]
  • 70.Kim D, Herr A E. Protein immobilization techniques for microfluidic assays. Biomicrofluidics. 2013;7:41501. doi: 10.1063/1.4816934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Kim H J, Jin J N, Kan E, Kim K J, Lee S H. Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol. Bioprocess Eng. 2017;22:89–94. doi: 10.1007/s12257-016-0381-4. [DOI] [Google Scholar]
  • 72.Raja D S, Liu W L, Huang H Y, Lin C H. Immobilization of protein on nanoporous metal-organic framework materials. Comments Inorg. Chem. 2015;35:331–349. doi: 10.1080/02603594.2015.1059827. [DOI] [Google Scholar]
  • 73.Mahmoudifard M, Soudi S, Soleimani M, Hosseinzadeh S, Esmaeili E, Vossoughi M. Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications. Mater. Sci. Eng. C. Mater. Biol. Appl. 2016;58:586–594. doi: 10.1016/j.msec.2015.09.007. [DOI] [PubMed] [Google Scholar]
  • 74.Zhao M, Li H, Liu W, Guo Y, Chu W. Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice. Biosens. Bioelectron. 2016;79:581–588. doi: 10.1016/j.bios.2015.12.099. [DOI] [PubMed] [Google Scholar]
  • 75.Kong F, Hu Y F. Biomolecule immobilization techniques for bioactive paper fabrication. Anal. Bioanal. Chem. 2012;403:7–13. doi: 10.1007/s00216-012-5821-1. [DOI] [PubMed] [Google Scholar]
  • 76.Hong W, Jeong S G, Shim G, Kim D Y, Pack S P, Lee C S. Improvement in the reproducibility of a paper-based analytical device (PAD) using stable covalent binding between proteins and cellulose paper. Biotechnol. Bioprocess Eng. 2018;23:686–692. doi: 10.1007/s12257-018-0430-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Borkenhagen M, Clemence J F, Sigrist H, Aebischer P. Three-dimensional extracellular matrix engineering in the nervous system. J. Biomed. Mater. Res. 1998;40:392–400. doi: 10.1002/(SICI)1097-4636(19980603)40:3<392::AID-JBM8>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 78.Waseem S F, Gardner S D, He G, Jiang W, Pittman Jr U. Adhesion and surface analysis of carbon fibres electrochemically oxidized in aqueous potassium nitrate. J. Mater. Sci. 1998;33:3151–3162. doi: 10.1023/A:1004304124799. [DOI] [Google Scholar]
  • 79.Yuguo W, Yulin W, Yizao W, Xianghong D. Effects of fiber surface treatment on mechanical properties of 3D braided carbon fiber/epoxy composite materials. Ordnance Mater. Sci. Eng. 2001;2001:41–44. [Google Scholar]
  • 80.Jeong G M, Seong H, Kim Y S, Im S G, Jeong K J. Site-specific immobilization of proteins on non-conventional substrates via solvent-free initiated chemical vapour deposition (iCVD) process. Polym. Chem. 2014;5:4459–4465. doi: 10.1039/c4py00167b. [DOI] [Google Scholar]
  • 81.Kang B J, Kim H, Lee S K, Kim J, Shen Y, Jung S, Kang K S, Im S G, Lee S Y, Choi M, Hwang N S, Cho J Y. Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function. Acta Biomater. 2014;10:3007–3017. doi: 10.1016/j.actbio.2014.03.013. [DOI] [PubMed] [Google Scholar]
  • 82.Youn Y H, Lee S J, Choi G R, Lee H R, Lee D, Heo D N, Kim B S, Bang J B, Hwang Y S, Correlo V M, Reis R L, Im S G, Kwon I K. Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;100:949–958. doi: 10.1016/j.msec.2019.03.048. [DOI] [PubMed] [Google Scholar]
  • 83.Bilek M M, Bax D V, Kondyurin A, Yin Y, Nosworthy N J, Fisher K, Waterhouse A, Weiss A S, dos Remedios C G, McKenzie D R. Free radical functionalization of surfaces to prevent adverse responses to biomedical devices. Proc. Natl. Acad. Sci. USA. 2011;108:14405–14410. doi: 10.1073/pnas.1103277108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Montes-Morán M A, Martínez-Alonso A, Tascón J M D, Paiva M C, Bernardo C A. Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/polycarbonate composites. Carbon. 2001;39:1057–1068. doi: 10.1016/S0008-6223(00)00220-7. [DOI] [Google Scholar]
  • 85.Rucker V C, Havenstrite K L, Simmons B A, Sickafoose S M, Herr A E, Shediac R. Functional antibody immobilization on 3-dimensional polymeric surfaces generated by reactive ion etching. Langmuir. 2005;21:7621–7625. doi: 10.1021/la050251r. [DOI] [PubMed] [Google Scholar]
  • 86.Lasseter T L, Clare B H, Abbott N L, Hamers R J. Covalently modified silicon and diamond surfaces: Resistance to nonspecific protein adsorption and optimization for biosensing. J. Am. Chem. Soc. 2004;126:10220–10221. doi: 10.1021/ja047642x. [DOI] [PubMed] [Google Scholar]
  • 87.Junkar I, Cvelbar U, Lehocky M. Plasma treatment of biomedical materials. Mater. Technol. 2011;45:221–226. [Google Scholar]
  • 88.Simoncicova J, Krystofova S, Medvecka V, Durisova K, Kalinakova B. Technical applications of plasma treatments: current state and perspectives. Appl. Microbiol. Biotechnol. 2019;103:5117–5129. doi: 10.1007/s00253-019-09877-x. [DOI] [PubMed] [Google Scholar]
  • 89.Bilek M M, McKenzie D R. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys. Rev. 2010;2:55–65. doi: 10.1007/s12551-010-0028-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Martin L J, Akhavan B, Bilek M M M. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces. Nat. Commun. 2018;9:357. doi: 10.1038/s41467-017-02545-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Nabesawa H, Hitobo T, Wakabayashi S, Asaji T, Abe T, Seki M. Polymer surface morphology control by reactive ion etching for microfluidic devices. Sens. Actuators B Chem. 2008;132:637–643. doi: 10.1016/j.snb.2008.01.050. [DOI] [Google Scholar]
  • 92.Ganjian M, Modaresifar K, Zhang H, Hagedoorn P L, Fratila-Apachitei L E, Zadpoor A A. Reactive ion etching for fabrication of biofunctional titanium nanostructures. Sci. Rep. 2019;9:18815. doi: 10.1038/s41598-019-55093-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Choi G, Jeong G M, Oh M S, Joo M, Im S G, Jeong K J, Lee E. Robust thin film surface with a selective antibacterial property enabled via a cross-linked ionic polymer coating for infection-resistant medical applications. ACS Biomater. Sci. Eng. 2018;4:2614–2622. doi: 10.1021/acsbiomaterials.8b00241. [DOI] [PubMed] [Google Scholar]
  • 94.Park H J, Yu S J, Yang K, Jin Y, Cho A N, Kim J, Lee B, Yang H S, Im S G, Cho S W. Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering. Biomaterials. 2014;35:9811–9823. doi: 10.1016/j.biomaterials.2014.09.002. [DOI] [PubMed] [Google Scholar]
  • 95.Mansurnezhad R, Ghasemi-Mobarakeh L, Coclite A M, Beigi M H, Gharibi H, Werzer O, Khodadadi-Khorzoughi M, Nasr-Esfahani M H. Fabrication, characterization and cytocompatibility assessment of gelatin nanofibers coated with a polymer thin film by initiated chemical vapor deposition. Mater. Sci. Eng. C Mater. Biol. Appl. 2020;110:110623. doi: 10.1016/j.msec.2019.110623. [DOI] [PubMed] [Google Scholar]
  • 96.Hanak B W, Hsieh C Y, Donaldson W, Browd S R, Lau K K, Shain W. Reduced cell attachment to poly(2-hydroxyethyl methacrylate)-coated ventricular catheters in vitro. J. Biomed. Mater. Res. B. 2018;106:1268–1279. doi: 10.1002/jbm.b.33915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.You J B, Choi A Y, Baek J, Oh M S, Im S G, Lee K E, Gwak H S. Application of monodirectional Janus patch to oromucosal delivery system. Adv. Healthcare Mater. 2015;4:2229–2236. doi: 10.1002/adhm.201500416. [DOI] [PubMed] [Google Scholar]
  • 98.An Y H, Yu S J, Kim I S, Kim S H, Moon J M, Kim S L, Choi Y H, Choi J S, Im S G, Lee K E, Hwang N S. Hydrogel functionalized Janus membrane for skin regeneration. Adv. Healthcare Mater. 2017;6:1600795. doi: 10.1002/adhm.201600795. [DOI] [PubMed] [Google Scholar]
  • 99.Sayin S, Tufani A, Emanet M, Genchi G G, Sen O, Shemshad S, Ozdemir E, Ciofani G, Ince G O. Electrospun nanofibers with pH-responsive coatings for control of release kinetics. Front. Bioeng. Biotechnol. 2019;7:309. doi: 10.3389/fbioe.2019.00309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Bedair T M, Yu S J, Im S G, Park B J, Joung Y K, Han D K. Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent. J. Colloid Interface Sci. 2015;460:189–199. doi: 10.1016/j.jcis.2015.08.051. [DOI] [PubMed] [Google Scholar]
  • 101.Baek J, Jung W B, Cho Y, Lee E, Yun G T, Cho S Y, Jung H T, Im S G. Facile fabrication of high-definition hierarchical wrinkle structures for investigating the geometry-sensitive fate commitment of human neural stem cells. ACS Appl. Mater. Interfaces. 2019;11:17247–17255. doi: 10.1021/acsami.9b03479. [DOI] [PubMed] [Google Scholar]
  • 102.Baek J, Cho S Y, Kang H, Ahn H, Jung W B, Cho Y, Lee E, Cho S W, Jung H T, Im S G. Distinct mechanosensing of human neural stem cells on extremely limited anisotropic cellular contact. ACS Appl. Mater. Interfaces. 2018;10:33891–33900. doi: 10.1021/acsami.8b10171. [DOI] [PubMed] [Google Scholar]
  • 103.Kim M J, Lee B, Yang K, Park J, Jeon S, Um S H, Kim D I, Im S G, Cho S W. BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials. 2013;34:7236–7246. doi: 10.1016/j.biomaterials.2013.06.019. [DOI] [PubMed] [Google Scholar]
  • 104.Jung I Y, You J B, Choi B R, Kim J S, Lee H K, Jang B, Jeong H S, Lee K, Im S G, Lee H. A highly sensitive molecular detection platform for robust and facile diagnosis of Middle East Respiratory Syndrome (MERS) corona virus. Adv. Healthcare Mater. 2016;5:2168–2173. doi: 10.1002/adhm.201600334. [DOI] [PubMed] [Google Scholar]
  • 105.You J B, Kim Y T, Lee K G, Choi Y, Choi S, Kim C H, Kim K H, Chang S J, Lee T J, Lee S J, Im S G. Surface-modified mesh filter for direct nucleic acid extraction and its application to gene expression analysis. Adv. Healthcare Mater. 2017;6:1700642. doi: 10.1002/adhm.201700642. [DOI] [PubMed] [Google Scholar]
  • 106.Choi Y, Kim Y T, Lee S J, Lee E, Lee K G, Im S G. Direct solvent-free modification of the inner wall of the microchip for rapid DNA extraction with enhanced capturing efficiency. Macromol. Res. 2020;28:249–256. doi: 10.1007/s13233-020-8028-x. [DOI] [Google Scholar]
  • 107.Choi Y, Kim Y T, You J B, Jo S H, Lee S J, Im S G, Lee K G. An efficient isolation of foodborne pathogen using surface-modified porous sponge. Food Chem. 2019;270:445–451. doi: 10.1016/j.foodchem.2018.07.125. [DOI] [PubMed] [Google Scholar]
  • 108.Shin J, Kim H, Moon H, Kwak M J, Oh S, Yoo Y, Lee E, Chang Y K, Im S G. A hydrogel-coated membrane for highly efficient separation of microalgal bio-lipid. Korean J. Chem. Eng. 2018;35:1319–1327. doi: 10.1007/s11814-018-0039-3. [DOI] [Google Scholar]
  • 109.Ozaydin-Ince G, Dubach J M, Gleason K K, Clark H A. Microworm optode sensors limit particle diffusion to enable in vivo measurements. Proc. Natl. Acad. Sci. USA. 2011;108:2656–2661. doi: 10.1073/pnas.1015544108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Achyuta A K H, Polikov V S, White A J, Lewis H G P, Murthy S K. Biocompatibility assessment of insulating silicone polymer coatings using an in vitro glial scar assay. Macromol. Biosci. 2010;10:872–880. doi: 10.1002/mabi.200900451. [DOI] [PubMed] [Google Scholar]
  • 111.Choi G, Song Y, Lim H, Lee S H, Lee H K, Lee E, Choi B G, Lee J J, Im S G, Lee K G. Antibacterial nanopillar array for an implantable intraocular lens. Adv. Healthcare Mater. 2020;9:2000447. doi: 10.1002/adhm.202000447. [DOI] [PubMed] [Google Scholar]

Articles from Biotechnology and Bioprocess Engineering are provided here courtesy of Nature Publishing Group

RESOURCES