Abstract
BACKGROUND
Bisphosphonates are contraindicated in patients with stage 4+ chronic kidney disease. However, they are widely used to prevent fragility fractures in stage 3 chronic kidney disease, despite a lack of good-quality data on their effects.
OBJECTIVES
The aims of each work package were as follows. Work package 1: to study the relationship between bisphosphonate use and chronic kidney disease progression. Work package 2: to study the association between using bisphosphonates and fracture risk. Work package 3: to determine the risks of hypocalcaemia, hypophosphataemia, acute kidney injury and upper gastrointestinal events associated with using bisphosphonates. Work package 4: to investigate the association between using bisphosphonates and changes in bone mineral density over time.
DESIGN
This was a new-user cohort study design with propensity score matching.
SETTING AND DATA SOURCES
Data were obtained from UK NHS primary care (Clinical Practice Research Datalink GOLD database) and linked hospital inpatient records (Hospital Episode Statistics) for work packages 1-3 and from the Danish Odense University Hospital Databases for work package 4.
PARTICIPANTS
Patients registered in the data sources who had at least one measurement of estimated glomerular filtration rate of < 45 ml/minute/1.73 m2 were eligible. A second estimated glomerular filtration rate value of < 45 ml/minute/1.73 m2 within 1 year after the first was requested for work packages 1 and 3. Patients with no Hospital Episode Statistics linkage were excluded from work packages 1-3. Patients with < 1 year of run-in data before index estimated glomerular filtration rate and previous users of anti-osteoporosis medications were excluded from work packages 1-4.
INTERVENTIONS/EXPOSURE
Bisphosphonate use, identified from primary care prescriptions (for work packages 1-3) or pharmacy dispensations (for work package 4), was the main exposure.
MAIN OUTCOME MEASURES
Work package 1: chronic kidney disease progression, defined as stage worsening or starting renal replacement. Work package 2: hip fracture. Work package 3: acute kidney injury, hypocalcaemia and hypophosphataemia identified from Hospital Episode Statistics, and gastrointestinal events identified from Clinical Practice Research Datalink or Hospital Episode Statistics. Work package 4: annualised femoral neck bone mineral density percentage change.
RESULTS
Bisphosphonate use was associated with an excess risk of chronic kidney disease progression (subdistribution hazard ratio 1.12, 95% confidence interval 1.02 to 1.24) in work package 1, but did not increase the probability of other safety outcomes in work package 3. The results from work package 2 suggested that bisphosphonate use increased fracture risk (hazard ratio 1.25, 95% confidence interval 1.13 to 1.39) for hip fractures, but sensitivity analyses suggested that this was related to unresolved confounding. Conversely, work package 4 suggested that bisphosphonates improved bone mineral density, with an average 2.65% (95% confidence interval 1.32% to 3.99%) greater gain in femoral neck bone mineral density per year in bisphosphonate users than in matched non-users.
LIMITATIONS
Confounding by indication was a concern for the clinical effectiveness (i.e. work package 2) data. Bias analyses suggested that these findings were due to inappropriate adjustment for pre-treatment risk. work packages 3 and 4 were based on small numbers of events and participants, respectively.
CONCLUSIONS
Bisphosphonates were associated with a 12% excess risk of chronic kidney disease progression in participants with stage 3B+ chronic kidney disease. No other safety concerns were identified. Bisphosphonate therapy increased bone mineral density, but the research team failed to demonstrate antifracture effectiveness.
FUTURE WORK
Randomised controlled trial data are needed to demonstrate antifracture efficacy in patients with stage 3B+ chronic kidney disease. More safety analyses are needed to characterise the renal toxicity of bisphosphonates in stage 3A chronic kidney disease, possibly using observational data.
STUDY REGISTRATION
This study is registered as EUPAS10029.
FUNDING
This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 25, No. 17. See the NIHR Journals Library website for further project information. The project was also supported by the National Institute for Health Research Biomedical Research Centre, Oxford.
Plain language summary
RATIONALE AND AIMS
Bisphosphonates are used to prevent fractures in people with fragile bones. People with chronic kidney disease have a high risk of fracturing, but the safety and effectiveness of bisphosphonates in severe chronic kidney disease is unclear. The aim of this study was to assess the benefits (e.g. bone strength improvement and fracture prevention) and the risks of unwanted effects associated with bisphosphonates for people with moderate to severe chronic kidney disease.
METHODS
Anonymised primary and secondary care electronic medical records data from the UK NHS were used, as well as a Danish equivalent that included bone density scans. Anyone in these databases with a measure of reduced kidney function that suggested moderate to severe chronic kidney disease was eligible, which was > 220,000 people from the UK. Over 20,000 of them used bisphosphonates. Bisphosphonate users were matched to non-users with similar age, sex and other characteristics.
RESULTS
Bisphosphonate users had a 12% higher risk of their chronic kidney disease getting worse than non-users. Their risks of other side effects, such as acute kidney injuries and gastrointestinal problems, did not change. Bisphosphonate users had a 25% higher risk of fractures than non-users in the UK database, probably because the matching methods did not create similar-enough groups of users and non-users. However, it was found that bisphosphonate improved bone density in the Danish database. Bone density is a proxy for bone strength, so better bone density should mean fewer fractures.
CONCLUSIONS
These results suggest that bisphosphonate therapy may make moderate to severe chronic kidney disease worse. More studies are needed on how bisphosphonates affect milder chronic kidney disease. Bisphosphonates were associated with better bone strength, but it could not be demonstrated that they reduced fracture risk. More data are required, probably from a placebo-controlled trial, to determine whether or not bisphosphonates prevent fractures in people with moderate to severe chronic kidney disease and whether or not this is worth the risk of their chronic kidney disease worsening.
Full text of this article can be found in Bookshelf.
References
- Svedbom A, Hernlund E, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: a compendium of country-specific reports. Arch Osteoporos 2013;8:137. https://doi.org/10.1007/s11657-013-0137-0 doi: 10.1007/s11657-013-0137-0. [DOI] [PMC free article] [PubMed]
- Lubwama R, Nguyen A, Modi A, Chirovsky D, Miller PD. Prevalence of renal impairment among osteoporotic women in the USA, NHANES 2005–2008: is treatment with bisphosphonates an option? Osteoporos Int 2014;25:1607–15. https://doi.org/10.1007/s00198-014-2645-1 doi: 10.1007/s00198-014-2645-1. [DOI] [PubMed]
- Gifford FJ, Methven S, Boag DE, Spalding EM, Macgregor MS. Chronic kidney disease prevalence and secular trends in a UK population: the impact of MDRD and CKD-EPI formulae. QJM 2011;104:1045–53. https://doi.org/10.1093/qjmed/hcr122 doi: 10.1093/qjmed/hcr122. [DOI] [PubMed]
- Jamal SA, Swan VJ, Brown JP, Hanley DA, Prior JC, Papaioannou A, et al. Kidney function and rate of bone loss at the hip and spine: the Canadian Multicentre Osteoporosis Study. Am J Kidney Dis 2010;55:291–9. https://doi.org/10.1053/j.ajkd.2009.10.049 doi: 10.1053/j.ajkd.2009.10.049. [DOI] [PubMed]
- Nickolas TL, McMahon DJ, Shane E. Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol 2006;17:3223–32. https://doi.org/10.1681/ASN.2005111194 doi: 10.1681/ASN.2005111194. [DOI] [PubMed]
- Ensrud KE, Lui LY, Taylor BC, Ishani A, Shlipak MG, Stone KL, et al. Renal function and risk of hip and vertebral fractures in older women. Arch Intern Med 2007;167:133–9. https://doi.org/10.1001/archinte.167.2.133 doi: 10.1001/archinte.167.2.133. [DOI] [PubMed]
- Dooley AC, Weiss NS, Kestenbaum B. Increased risk of hip fracture among men with CKD. Am J Kidney Dis 2008;51:38–44. https://doi.org/10.1053/j.ajkd.2007.08.019 doi: 10.1053/j.ajkd.2007.08.019. [DOI] [PubMed]
- Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 2000;58:396–9. https://doi.org/10.1046/j.1523-1755.2000.00178.x doi: 10.1046/j.1523-1755.2000.00178.x. [DOI] [PubMed]
- Chennuru S, Koduri J, Baumann MA. Risk factors for symptomatic hypocalcaemia complicating treatment with zoledronic acid. Intern Med J 2008;38:635–7. https://doi.org/10.1111/j.1445-5994.2007.01580.x doi: 10.1111/j.1445-5994.2007.01580.x. [DOI] [PubMed]
- Miller PD. Fragility fractures in chronic kidney disease: an opinion-based approach. Cleve Clin J Med 2009;76:715–23. https://doi.org/10.3949/ccjm.76a.08108 doi: 10.3949/ccjm.76a.08108. [DOI] [PubMed]
- Miller PD, Roux C, Boonen S, Barton IP, Dunlap LE, Burgio DE. Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J Bone Miner Res 2005;20:2105–15. https://doi.org/10.1359/JBMR.050817 doi: 10.1359/JBMR.050817. [DOI] [PubMed]
- Reyes C, Pottegård A, Schwarz P, Javaid MK, Van Staa TP, Cooper C, et al. Real-life and RCT participants: alendronate users versus FITs’ trial eligibility criterion. Calcif Tissue Int 2016;99:243–9. https://doi.org/10.1007/s00223-016-0141-7 doi: 10.1007/s00223-016-0141-7. [DOI] [PubMed]
- Couttenye MM, D’Haese PC, Deng JT, Van Hoof VO, Verpooten GA, De Broe ME. High prevalence of adynamic bone disease diagnosed by biochemical markers in a wide sample of the European CAPD population. Nephrol Dial Transplant 1997;12:2144–50. https://doi.org/10.1093/ndt/12.10.2144 doi: 10.1093/ndt/12.10.2144. [DOI] [PubMed]
- Monier-Faugere MC, Mawad H, Qi Q, Friedler RM, Malluche HH. High prevalence of low bone turnover and occurrence of osteomalacia after kidney transplantation. J Am Soc Nephrol 2000;11:1093–9. doi: 10.1681/ASN.V1161093. [DOI] [PubMed]
- Ott SM. Bone histomorphometry in renal osteodystrophy. Semin Nephrol 2009;29:122–32. https://doi.org/10.1016/j.semnephrol.2009.01.005 doi: 10.1016/j.semnephrol.2009.01.005. [DOI] [PubMed]
- Wilson LM, Rebholz CM, Jirru E, Liu MC, Zhang A, Gayleard J, et al. Benefits and harms of osteoporosis medications in patients with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med 2017;166:649–58. https://doi.org/10.7326/M16-2752 doi: 10.7326/M16-2752. [DOI] [PubMed]
- Jamal SA, Bauer DC, Ensrud KE, Cauley JA, Hochberg M, Ishani A, Cummings SR. Alendronate treatment in women with normal to severely impaired renal function: an analysis of the fracture intervention trial. J Bone Miner Res 2007;22:503–8. https://doi.org/10.1359/jbmr.070112 doi: 10.1359/jbmr.070112. [DOI] [PubMed]
- National Institute for Health and Care Excellence. Raloxifene for the Primary Prevention of Osteoporotic Fragility Fractures in Postmenopausal Women. Technology Appraisal Guidance [TA160]. URL: www.nice.org.uk/guidance/ta160 (accessed 12 July 2012).
- National Institute for Health and Care Excellence. Raloxifene and Teriparatide for the Secondary Prevention of Osteoporotic Fragility Fractures in Postmenopausal Women. URL: www.nice.org.uk/guidance/ta161 (accessed 12 July 2019).
- Electronic Medicines Compendium. Fosamax Once Weekly 70 mg Tablets: Summary of Product Characteristics. URL: www.medicines.org.uk/emc/product/1281/smpc (accessed April 2018).
- Electronic Medicines Compendium. Bonviva 150 mg Film-coated Tablets: Summary of Product Characteristics. URL: www.medicines.org.uk/emc/product/9383/smpc (accessed April 2018).
- Electronic Medicines Compendium. Actonel 30 mg Film-coated Tablets: Summary of Product Characteristics. URL: www.medicines.org.uk/emc/product/3836/smpc (accessed April 2018).
- Saleem S, Patel S, Ahmed A, Saleem N. Denosumab causing severe, refractory hypocalcaemia in a patient with chronic kidney disease. BMJ Case Rep 2018;2018:bcr–2017–224068. https://doi.org/10.1136/bcr-2017-224068 doi: 10.1136/bcr-2017-224068. [DOI] [PMC free article] [PubMed]
- Salim SA, Nair LR, Thomas L, Garla V, Palabindala V, Agarwal M, Fülöp T. Denosumab-associated severe hypocalcemia in a patient with chronic kidney disease. Am J Med Sci 2018;355:506–9. https://doi.org/10.1016/j.amjms.2017.09.008 doi: 10.1016/j.amjms.2017.09.008. [DOI] [PubMed]
- Kostine M, Mehsen-Cetre N, Bannwarth B. Denosumab-induced severe hypocalcemia in a patient with Paget’s disease of bone and impaired renal function. Therapie 2017;72:383–5. https://doi.org/10.1016/j.therap.2016.07.003 doi: 10.1016/j.therap.2016.07.003. [DOI] [PubMed]
- Huynh AL, Baker ST, Stewardson AJ, Johnson DF. Denosumab-associated hypocalcaemia: incidence, severity and patient characteristics in a tertiary hospital setting. Pharmacoepidemiol Drug Saf 2016;25:1274–8. https://doi.org/10.1002/pds.4045 doi: 10.1002/pds.4045. [DOI] [PubMed]
- Isakova T, Nickolas TL, Denburg M, Yarlagadda S, Weiner DE, Gutiérrez OM, et al. KDOQI US commentary on the 2017 KDIGO clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Am J Kidney Dis 2017;70:737–51. https://doi.org/10.1053/j.ajkd.2017.07.019 doi: 10.1053/j.ajkd.2017.07.019. [DOI] [PubMed]
- Nitta K, Yajima A, Tsuchiya K. Management of osteoporosis in chronic kidney disease. Intern Med 2017;56:3271–6. https://doi.org/10.2169/internalmedicine.8618-16 doi: 10.2169/internalmedicine.8618-16. [DOI] [PMC free article] [PubMed]
- Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, Smeeth L. Data resource profile: Clinical Practice Research Datalink (CPRD). Int J Epidemiol 2015;44:827–36. https://doi.org/10.1093/ije/dyv098 doi: 10.1093/ije/dyv098. [DOI] [PMC free article] [PubMed]
- Benson T. The history of the Read Codes: the inaugural James Read Memorial Lecture 2011. Inform Prim Care 2011;19:173–82. https://doi.org/10.14236/jhi.v19i3.811 doi: 10.14236/jhi.v19i3.811. [DOI] [PubMed]
- Judge A, Javaid MK, Leal J, Hawley S, Drew S, Sheard S, et al. Models of care for the delivery of secondary fracture prevention after hip fracture: a health service cost, clinical outcomes and cost-effectiveness study within a region of England. Health Serv Deliv Res 2016;4(28). https://doi.org/10.3310/hsdr04280 doi: 10.3310/hsdr04280. [DOI] [PubMed]
- Kynaston-Pearson F, Ashmore AM, Malak TT, Rombach I, Taylor A, Beard D, et al. Primary hip replacement prostheses and their evidence base: systematic review of literature. BMJ 2013;347:f6956. https://doi.org/10.1136/bmj.f6956 doi: 10.1136/bmj.f6956. [DOI] [PMC free article] [PubMed]
- Tomlinson LA, Riding AM, Payne RA, Abel GA, Tomson CR, Wilkinson IB, et al. The accuracy of diagnostic coding for acute kidney injury in England – a single centre study. BMC Nephrol 2013;14:58. https://doi.org/10.1186/1471-2369-14-58 doi: 10.1186/1471-2369-14-58. [DOI] [PMC free article] [PubMed]
- Fotheringham J, Fogarty D, Jacques R, El Nahas M, Campbell M. Chapter 13 The linkage of incident renal replacement therapy patients in England (2002–2006) to hospital episodes and national mortality data: improved demography and hospitalisation data in patients undergoing renal replacement therapy. Nephron Clin Pract 2012;120(Suppl. 1):c247–60. https://doi.org/10.1159/000342857 doi: 10.1159/000342857. [DOI] [PubMed]
- World Health Organization. International Classification of Diseases. 10th revision. Geneva: World Health Organization. URL: www.who.int/classifications/icd/icdonlineversions/en/ (accessed 17 September 2019).
- NHS Digital. NHS Classifications OPCS-4. URL: https://isd.digital.nhs.uk/trud3/user/guest/group/0/pack/10 (accessed 17 September 2019).
- Laulund AS, Nybo M, Brix TH, Abrahamsen B, Jørgensen HL, Hegedüs L. Duration of thyroid dysfunction correlates with all-cause mortality. the OPENTHYRO Register Cohort. PLOS ONE 2014;9:e110437. https://doi.org/10.1371/journal.pone.0110437 doi: 10.1371/journal.pone.0110437. [DOI] [PMC free article] [PubMed]
- European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation) (OJ L 119 4.5.2016 p. 1–88). Brussels: European Union; 2016.
- Suissa S. Immortal time bias in pharmaco-epidemiology. Am J Epidemiol 2008;167:492–9. https://doi.org/10.1093/aje/kwm324 doi: 10.1093/aje/kwm324. [DOI] [PubMed]
- Lévesque LE, Hanley JA, Kezouh A, Suissa S. Problem of immortal time bias in cohort studies: example using statins for preventing progression of diabetes. BMJ 2010;340:b5087. https://doi.org/10.1136/bmj.b5087 doi: 10.1136/bmj.b5087. [DOI] [PubMed]
- Prieto-Alhambra D, Javaid MK, Judge A, Maskell J, Cooper C, Arden NK, COASt Study Group. Hormone replacement therapy and mid-term implant survival following knee or hip arthroplasty for osteoarthritis: a population-based cohort study. Ann Rheum Dis 2015;74:557–63. https://doi.org/10.1136/annrheumdis-2013-204043 doi: 10.1136/annrheumdis-2013-204043. [DOI] [PubMed]
- Vestergaard P, Prieto-Alhambra D, Javaid MK, Cooper C. Fractures in users of antidepressants and anxiolytics and sedatives: effects of age and dose. Osteoporos Int 2013;24:671–80. https://doi.org/10.1007/s00198-012-2043-5 doi: 10.1007/s00198-012-2043-5. [DOI] [PMC free article] [PubMed]
- Prieto-Alhambra D, Lalmohamed A, Abrahamsen B, Arden NK, de Boer A, Vestergaard P, de Vries F. Oral bisphosphonate use and total knee/hip implant survival: validation of results in an external population-based cohort. Arthritis Rheum 2014;66:3233–40. https://doi.org/10.1002/art.38789 doi: 10.1002/art.38789. [DOI] [PubMed]
- Zhou Z, Rahme E, Abrahamowicz M, Pilote L. Survival bias associated with time-to-treatment initiation in drug effectiveness evaluation: a comparison of methods. Am J Epidemiol 2005;162:1016–23. https://doi.org/10.1093/aje/kwi307 doi: 10.1093/aje/kwi307. [DOI] [PubMed]
- Klebe B, Farmer C, Cooley R, de Lusignan S, Middleton R, O’Donoghue D, et al. Kidney disease management in UK primary care: guidelines, incentives and information technology. Fam Pract 2007;24:330–5. https://doi.org/10.1093/fampra/cmm026 doi: 10.1093/fampra/cmm026. [DOI] [PubMed]
- Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006 doi: 10.7326/0003-4819-150-9-200905050-00006. [DOI] [PMC free article] [PubMed]
- Williamson EJ, Forbes A. Introduction to propensity scores. Respirology 2014;19:625–35. https://doi.org/10.1111/resp.12312 doi: 10.1111/resp.12312. [DOI] [PubMed]
- Westreich D, Cole SR, Funk MJ, Brookhart MA, Stürmer T. The role of the c-statistic in variable selection for propensity score models. Pharmacoepidemiol Drug Saf 2011;20:317–20. https://doi.org/10.1002/pds.2074 doi: 10.1002/pds.2074. [DOI] [PMC free article] [PubMed]
- Austin PC. The performance of different propensity-score methods for estimating relative risks. J Clin Epidemiol 2008;61:537–45. https://doi.org/10.1016/j.jclinepi.2007.07.011 doi: 10.1016/j.jclinepi.2007.07.011. [DOI] [PubMed]
- Nguyen TL, Collins GS, Spence J, Daurès JP, Devereaux PJ, Landais P, Le Manach Y. Double-adjustment in propensity score matching analysis: choosing a threshold for considering residual imbalance. BMC Med Res Methodol 2017;17:78. https://doi.org/10.1186/s12874-017-0338-0 doi: 10.1186/s12874-017-0338-0. [DOI] [PMC free article] [PubMed]
- Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T. Variable selection for propensity score models. Am J Epidemiol 2006;163:1149–56. https://doi.org/10.1093/aje/kwj149 doi: 10.1093/aje/kwj149. [DOI] [PMC free article] [PubMed]
- Leyrat C, Seaman SR, White IR, Douglas I, Smeeth L, Kim J, et al. Propensity score analysis with partially observed covariates: how should multiple imputation be used? Stat Methods Med Res 2017;0:962280217713032. https://doi.org/10.1177/0962280217713032 doi: 10.1177/0962280217713032. [DOI] [PMC free article] [PubMed]
- Green JR, Seltenmeyer Y, Jaeggi KA, Widler L. Renal tolerability profile of novel, potent bisphosphonates in two short-term rat models. Pharmacol Toxicol 1997;80:225–30. https://doi.org/10.1111/j.1600-0773.1997.tb01964.x doi: 10.1111/j.1600-0773.1997.tb01964.x. [DOI] [PubMed]
- Cal JC, Daley-Yates PT. Disposition and nephrotoxicity of 3-amino-1-hydroxypropylidene-1, 1-bisphosphonate (APD), in rats and mice. Toxicology 1990;65:179–97. https://doi.org/10.1016/0300-483X(90)90088-X doi: 10.1016/0300-483X(90)90088-X. [DOI] [PubMed]
- Braun JP, Rico AG, Benard P, Burgat-Sacaze V, Eghbali B, Godfrain JC. [Urinary gamma-glutamyl transferase in renal toxicology of the rat. Bases of its use and significance in acute mercurial nephritis.] Toxicology 1978;11:73–82. https://doi.org/10.1016/S0300-483X(78)90539-5 doi: 10.1016/S0300-483X(78)90539-5. [DOI] [PubMed]
- Bauss F, Russell RG. Ibandronate in osteoporosis: preclinical data and rationale for intermittent dosing. Osteoporos Int 2004;15:423–33. https://doi.org/10.1007/s00198-004-1612-7 doi: 10.1007/s00198-004-1612-7. [DOI] [PubMed]
- Pfister T, Atzpodien E, Bohrmann B, Bauss F. Acute renal effects of intravenous bisphosphonates in the rat. Basic Clin Pharmacol Toxicol 2005;97:374–81. https://doi.org/10.1111/j.1742-7843.2005.pto_160.x doi: 10.1111/j.1742-7843.2005.pto_160.x. [DOI] [PubMed]
- Markowitz GS, Appel GB, Fine PL, Fenves AZ, Loon NR, Jagannath S, et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J Am Soc Nephrol 2001;12:1164–72. doi: 10.1681/ASN.V1261164. [DOI] [PubMed]
- Barri YM, Munshi NC, Sukumalchantra S, Abulezz SR, Bonsib SM, Wallach J, Walker PD. Podocyte injury associated glomerulopathies induced by pamidronate. Kidney Int 2004;65:634–41. https://doi.org/10.1111/j.1523-1755.2004.00426.x doi: 10.1111/j.1523-1755.2004.00426.x. [DOI] [PubMed]
- Desikan R, Veksler Y, Raza S, Stokes B, Sabir T, Li ZJ, Jagannath S. Nephrotic proteinuria associated with high-dose pamidronate in multiple myeloma. Br J Haematol 2002;119:496–9. https://doi.org/10.1046/j.1365-2141.2002.03826.x doi: 10.1046/j.1365-2141.2002.03826.x. [DOI] [PubMed]
- Shreedhara M, Fenves AZ, Benavides D, Stone MJ. Reversibility of pamidronate-associated glomerulosclerosis. Proc 2007;20:249–53. https://doi.org/10.1080/08998280.2007.11928298 doi: 10.1080/08998280.2007.11928298. [DOI] [PMC free article] [PubMed]
- Markowitz GS, Fine PL, D’Agati VD. Nephrotic syndrome after treatment with pamidronate. Am J Kidney Dis 2002;39:1118–22. https://doi.org/10.1053/ajkd.2002.32797 doi: 10.1053/ajkd.2002.32797. [DOI] [PubMed]
- Kunin M, Kopolovic J, Avigdor A, Holtzman EJ. Collapsing glomerulopathy induced by long-term treatment with standard-dose pamidronate in a myeloma patient. Nephrol Dial Transplant 2004;19:723–6. https://doi.org/10.1093/ndt/gfg567 doi: 10.1093/ndt/gfg567. [DOI] [PubMed]
- Lockridge L, Papac RJ, Perazella MA. Pamidronate-associated nephrotoxicity in a patient with Langerhans’s histiocytosis. Am J Kidney Dis 2002;40:E2. https://doi.org/10.1053/ajkd.2002.33933 doi: 10.1053/ajkd.2002.33933. [DOI] [PubMed]
- Nasr SH, Preddie DC, Markowitz GS, Appel GB, D’Agati VD. Multiple myeloma, nephrotic syndrome and crystalloid inclusions in podocytes. Kidney Int 2006;69:616–20. https://doi.org/10.1038/sj.ki.5000144 doi: 10.1038/sj.ki.5000144. [DOI] [PubMed]
- Bodmer M, Amico P, Mihatsch MJ, Haschke M, Kummer O, Krahenbuhl S, et al. Focal segmental glomerulosclerosis associated with long-term treatment with zoledronate in a myeloma patient. Nephrol Dial Transplant 2007;22:2366–70. https://doi.org/10.1093/ndt/gfm209 doi: 10.1093/ndt/gfm209. [DOI] [PubMed]
- Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 2007;356:1809–22. https://doi.org/10.1056/NEJMoa067312 doi: 10.1056/NEJMoa067312. [DOI] [PubMed]
- Lyles KW, Colón-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 2007;357:1799–809. https://doi.org/10.1056/NEJMoa074941 doi: 10.1056/NEJMoa074941. [DOI] [PMC free article] [PubMed]
- Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 1996;334:488–93. https://doi.org/10.1056/NEJM199602223340802 doi: 10.1056/NEJM199602223340802. [DOI] [PubMed]
- Lipton A, Theriault RL, Hortobagyi GN, Simeone J, Knight RD, Mellars K, et al. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer 2000;88:1082–90. https://doi.org/10.1002/(SICI)1097-0142(20000301)88:5<1082::AID-CNCR20>3.0.CO;2-Z doi: 10.1002/(SICI)1097-0142(20000301)88:5<1082::AID-CNCR20>3.0.CO;2-Z. [DOI] [PubMed]
- Rosen LS, Gordon D, Tchekmedyian S, Yanagihara R, Hirsh V, Krzakowski M, et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial – the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol 2003;21:3150–7. https://doi.org/10.1200/JCO.2003.04.105 doi: 10.1200/JCO.2003.04.105. [DOI] [PubMed]
- Nunn AJ, Mwaba P, Chintu C, Mwinga A, Darbyshire JH, Zumla A, UNZA-UCLMS Project LUCOT Collaboration. Role of co-trimoxazole prophylaxis in reducing mortality in HIV infected adults being treated for tuberculosis: randomised clinical trial. BMJ 2008;337:a257. https://doi.org/10.1136/bmj.a257 doi: 10.1136/bmj.a257. [DOI] [PMC free article] [PubMed]
- Tilling K, Macdonald-Wallis C, Lawlor DA, Hughes RA, Howe LD. Modelling childhood growth using fractional polynomials and linear splines. Ann Nutr Metab 2014;65:129–38. https://doi.org/10.1159/000362695 doi: 10.1159/000362695. [DOI] [PMC free article] [PubMed]
- Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 1999;94:496–509. https://doi.org/10.1080/01621459.1999.10474144 doi: 10.1080/01621459.1999.10474144. [DOI]
- Hill AB. The environment and disease: association or causation? Proc R Soc Med 1965;58:295–300. https://doi.org/10.1177/003591576505800503 doi: 10.1177/003591576505800503. [DOI] [PMC free article] [PubMed]
- Schneeweiss S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol Drug Saf 2006;15:291–303. https://doi.org/10.1002/pds.1200 doi: 10.1002/pds.1200. [DOI] [PubMed]
- Freemantle N, Cooper C, Diez-Perez A, Gitlin M, Radcliffe H, Shepherd S, et al. Results of indirect and mixed treatment comparison of fracture efficacy for osteoporosis treatments: a meta-analysis. Osteoporos Int 2013;24:209–17. https://doi.org/10.1007/s00198-012-2068-9 doi: 10.1007/s00198-012-2068-9. [DOI] [PMC free article] [PubMed]
- Nayak S, Greenspan SL. Osteoporosis treatment efficacy for men: a systematic review and meta-analysis. J Am Geriatr Soc 2017;65:490–5. https://doi.org/10.1111/jgs.14668 doi: 10.1111/jgs.14668. [DOI] [PMC free article] [PubMed]
- Miller PD, Jamal SA, Evenepoel P, Eastell R, Boonen S. Renal safety in patients treated with bisphosphonates for osteoporosis: a review. J Bone Miner Res 2013;28:2049–59. https://doi.org/10.1002/jbmr.2058 doi: 10.1002/jbmr.2058. [DOI] [PubMed]
- Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 1996;348:1535–41. https://doi.org/10.1016/S0140-6736(96)07088-2 doi: 10.1016/S0140-6736(96)07088-2. [DOI] [PubMed]
- Chesnut CH, Skag A, Christiansen C, Recker R, Stakkestad JA, Hoiseth A, et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 2004;19:1241–9. https://doi.org/10.1359/JBMR.040325 doi: 10.1359/JBMR.040325. [DOI] [PubMed]
- Hawley S, Leal J, Delmestri A, Prieto-Alhambra D, Arden NK, Cooper C, et al. Anti-osteoporosis medication prescriptions and incidence of subsequent fracture among primary hip fracture patients in England and Wales: an interrupted time-series analysis. J Bone Miner Res 2016;31:2008–15. https://doi.org/10.1002/jbmr.2882 doi: 10.1002/jbmr.2882. [DOI] [PMC free article] [PubMed]
- Pimentel A, Ureña-Torres P, Zillikens MC, Bover J, Cohen-Solal M. Fractures in patients with CKD-diagnosis, treatment, and prevention: a review by members of the European Calcified Tissue Society and the European Renal Association of Nephrology Dialysis and Transplantation. Kidney Int 2017;92:1343–55. https://doi.org/10.1016/j.kint.2017.07.021 doi: 10.1016/j.kint.2017.07.021. [DOI] [PubMed]
- Black DM, Thompson DE, Bauer DC, Ensrud K, Musliner T, Hochberg MC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab 2000;85:4118–24. https://doi.org/10.1210/jcem.85.11.6953 doi: 10.1210/jcem.85.11.6953. [DOI] [PubMed]
- Suresh E, Pazianas M, Abrahamsen B. Safety issues with bisphosphonate therapy for osteoporosis. Rheumatology 2014;53:19–31. https://doi.org/10.1093/rheumatology/ket236 doi: 10.1093/rheumatology/ket236. [DOI] [PubMed]
- Lewiecki EM. Safety of long-term bisphosphonate therapy for the management of osteoporosis. Drugs 2011;71:791–814. https://doi.org/10.2165/11585470-000000000-00000 doi: 10.2165/11585470-000000000-00000. [DOI] [PubMed]
- Chang JT, Green L, Beitz J. Renal failure with the use of zoledronic acid. N Engl J Med 2003;349:1676–9. https://doi.org/10.1056/NEJM200310233491721 doi: 10.1056/NEJM200310233491721. [DOI] [PubMed]
- Munier A, Gras V, Andrejak M, Bernard N, Jean-Pastor MJ, Gautier S, et al. Zoledronic acid and renal toxicity: data from French adverse effect reporting database. Ann Pharmacother 2005;39:1194–7. https://doi.org/10.1345/aph.1E589 doi: 10.1345/aph.1E589. [DOI] [PubMed]
- Banerjee D, Asif A, Striker L, Preston RA, Bourgoignie JJ, Roth D. Short-term, high-dose pamidronate-induced acute tubular necrosis: the postulated mechanisms of bisphosphonate nephrotoxicity. Am J Kidney Dis 2003;41:E18. https://doi.org/10.1016/S0272-6386(03)00214-2 doi: 10.1016/S0272-6386(03)00214-2. [DOI] [PubMed]
- Liaño F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int 1996;50:811–18. https://doi.org/10.1038/ki.1996.380 doi: 10.1038/ki.1996.380. [DOI] [PubMed]
- Pedersen AB, Christiansen CF, Gammelager H, Kahlert J, Sørensen HT. Risk of acute renal failure and mortality after surgery for a fracture of the hip: a population-based cohort study. Bone Joint J 2016;98–B:1112–18. https://doi.org/10.1302/0301-620X.98B8.37497 doi: 10.1302/0301-620X.98B8.37497. [DOI] [PubMed]
- Bauer DC, Black D, Ensrud K, Thompson D, Hochberg M, Nevitt M, et al. Upper gastrointestinal tract safety profile of alendronate: the fracture intervention trial. Arch Intern Med 2000;160:517–25. https://doi.org/10.1001/archinte.160.4.517 doi: 10.1001/archinte.160.4.517. [DOI] [PubMed]
- Peng YL, Hu HY, Luo JC, Hou MC, Lin HC, Lee FY. Alendronate, a bisphosphonate, increased upper and lower gastrointestinal bleeding: risk factor analysis from a nationwide population-based study. Osteoporos Int 2014;25:1617–23. https://doi.org/10.1007/s00198-014-2647-z doi: 10.1007/s00198-014-2647-z. [DOI] [PubMed]
- Recker RR, Lewiecki EM, Miller PD, Reiffel J. Safety of bisphosphonates in the treatment of osteoporosis. Am J Med 2009;122(Suppl. 2):22–32. https://doi.org/10.1016/j.amjmed.2008.12.004 doi: 10.1016/j.amjmed.2008.12.004. [DOI] [PubMed]
- UK Renal Registry. Front & Back Matter. Nephron Clinical Practice 2013;125:1–4. https://doi.org/10.1159/000362374 doi: 10.1159/000362374. [DOI]
- Nuffield Department of Orthopaedics, Rhuematology and Musculoskeletal Sciences. European Program of Post-Authorization Safety Studies for Protelos®/Osseor® through EU-ADR Alliance. EUPAS9117. URL: www.ndorms.ox.ac.uk/research-groups/Musculoskeletal-Pharmacoepidemiology/ongoing-projects/european-program-of-post-authorisation-safety-studies-for-protelos-r-osseor-r-through-eu-adr-alliance (accessed November 2018).
- Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 1993;341:72–5. https://doi.org/10.1016/0140-6736(93)92555-8 doi: 10.1016/0140-6736(93)92555-8. [DOI] [PubMed]
- West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, et al. Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res 2015;30:913–19. https://doi.org/10.1002/jbmr.2406 doi: 10.1002/jbmr.2406. [DOI] [PubMed]
- Hochberg MC, Ross PD, Black D, Cummings SR, Genant HK, Nevitt MC, et al. Larger increases in bone mineral density during alendronate therapy are associated with a lower risk of new vertebral fractures in women with postmenopausal osteoporosis. Fracture Intervention Trial Research Group. Arthritis Rheum 1999;42:1246–54. https://doi.org/10.1002/1529-0131(199906)42:6<1246::AID-ANR22>3.0.CO;2-U doi: 10.1002/1529-0131(199906)42:6<1246::AID-ANR22>3.0.CO;2-U. [DOI] [PubMed]
- Schnitzer T, Bone HG, Crepaldi G, Adami S, McClung M, Kiel D, et al. Therapeutic equivalence of alendronate 70 mg once-weekly and alendronate 10 mg daily in the treatment of osteoporosis. Alendronate Once-Weekly Study Group. Aging 2000;12:1–12. https://doi.org/10.1007/BF03339822 doi: 10.1007/BF03339822. [DOI] [PubMed]
- Orwoll E, Ettinger M, Weiss S, Miller P, Kendler D, Graham J, et al. Alendronate for the treatment of osteoporosis in men. N Engl J Med 2000;343:604–10. https://doi.org/10.1056/NEJM200008313430902 doi: 10.1056/NEJM200008313430902. [DOI] [PubMed]
- Saag KG, Emkey R, Schnitzer TJ, Brown JP, Hawkins F, Goemaere S, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med 1998;339:292–9. https://doi.org/10.1056/NEJM199807303390502 doi: 10.1056/NEJM199807303390502. [DOI] [PubMed]
- Cummings SR, Palermo L, Browner W, Marcus R, Wallace R, Pearson J, et al. Monitoring osteoporosis therapy with bone densitometry: misleading changes and regression to the mean. Fracture Intervention Trial Research Group. JAMA 2000;283:1318–21. https://doi.org/10.1001/jama.283.10.1318 doi: 10.1001/jama.283.10.1318. [DOI] [PubMed]
- Iwasaki Y, Kazama JJ, Fukagawa M. Molecular abnormalities underlying bone fragility in chronic kidney disease. Biomed Res Int 2017;2017:3485785. https://doi.org/10.1155/2017/3485785 doi: 10.1155/2017/3485785. [DOI] [PMC free article] [PubMed]
- Riggs BL, Hodgson SF, O’Fallon WM, Chao EY, Wahner HW, Muhs JM, et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 1990;322:802–9. https://doi.org/10.1056/NEJM199003223221203 doi: 10.1056/NEJM199003223221203. [DOI] [PubMed]
- Kinsella S, Murphy K, Breen M, O’Neill S, McLaughlin P, Coyle J, et al. Comparison of single CT scan assessment of bone mineral density, vascular calcification and fat mass with standard clinical measurements in renal transplant subjects: the ABC HeART study. BMC Nephrol 2015;16:188. https://doi.org/10.1186/s12882-015-0182-6 doi: 10.1186/s12882-015-0182-6. [DOI] [PMC free article] [PubMed]
- Abrahamsen B, Jørgensen HL, Laulund AS, Nybo M, Brix TH, Hegedüs L. Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures-the OPENTHYRO register cohort. J Bone Miner Res 2014;29:2040–50. https://doi.org/10.1002/jbmr.2244 doi: 10.1002/jbmr.2244. [DOI] [PubMed]
- Abrahamsen B, Jørgensen HL, Laulund AS, Nybo M, Bauer DC, Brix TH, Hegedüs L. The excess risk of major osteoporotic fractures in hypothyroidism is driven by cumulative hyperthyroid as opposed to hypothyroid time: an observational register-based time-resolved cohort analysis. J Bone Miner Res 2015;30:898–905. https://doi.org/10.1002/jbmr.2416 doi: 10.1002/jbmr.2416. [DOI] [PubMed]
- Händel MN, Frederiksen P, Cohen A, Cooper C, Heitmann BL, Abrahamsen B. Neonatal vitamin D status from archived dried blood spots and future risk of fractures in childhood: results from the D-tect study, a population-based case-cohort study. Am J Clin Nutr 2017;106:155–61. https://doi.org/10.3945/ajcn.116.145599 doi: 10.3945/ajcn.116.145599. [DOI] [PubMed]
- Praetorius K, Madsen CM, Abrahamsen B, Jørgensen HL, Lauritzen JB, Laulund AS. Low levels of hemoglobin at admission are associated with increased 30-day mortality in patients with hip fracture. Geriatr Orthop Surg Rehabil 2016;7:115–20. https://doi.org/10.1177/2151458516647989 doi: 10.1177/2151458516647989. [DOI] [PMC free article] [PubMed]
- Rubin KH, Glintborg D, Nybo M, Andersen M, Abrahamsen B. Fracture risk is decreased in women with polycystic ovary syndrome: a register-based and population-based cohort study. J Bone Miner Res 2016;31:709–17. https://doi.org/10.1002/jbmr.2737 doi: 10.1002/jbmr.2737. [DOI] [PubMed]
- Sanni Ali M, Ernst M, Robinson DE, Caskey F, Arden NK, Ben-Shlomo Y, et al. Alendronate use and bone mineral density gains in women with moderate-severe (stages 3B–5) chronic kidney disease: an open cohort multivariable and propensity score analysis from Funen, Denmark. Arch Osteoporos 2020;15:81. https://doi.org/10.1007/s11657-020-00746-z doi: 10.1007/s11657-020-00746-z. [DOI] [PMC free article] [PubMed]
- The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP). Guide on Methodological Standards in Pharmacoepidemiology (Revision 5). EMA/95098/2010. URL: www.encepp.eu/standards_and_guidances/documents/ENCePPGuideofMethStandardsinPE_Rev5.pdf (accessed November 2018).
- Prieto-Alhambra D, Elorza-Ricart JM, Hermosilla E, Rodriguez-Ruiz J, Mendez-Boo L, Medina-Peralta M. Primary care prescriptions and subsequent pharmacy dispensing: a population-based study. Pharmacoepidemiol Drug Saf 2014;23:322.
- McDonald HI, Shaw C, Thomas SL, Mansfield KE, Tomlinson LA, Nitsch D. Methodological challenges when carrying out research on CKD and AKI using routine electronic health records. Kidney Int 2016;90:943–9. https://doi.org/10.1016/j.kint.2016.04.010 doi: 10.1016/j.kint.2016.04.010. [DOI] [PubMed]
- Moride Y, Abenhaim L, Yola M, Lucein A. Evidence of the depletion of susceptibles effect in non-experimental pharmacoepidemiologic research. J Clin Epidemiol 1994;47:731–7. https://doi.org/10.1016/0895-4356(94)90170-8 doi: 10.1016/0895-4356(94)90170-8. [DOI] [PubMed]
- Patorno E, Goldfine AB, Schneeweiss S, Everett BM, Glynn RJ, Liu J, Kim SC. Cardiovascular outcomes associated with canagliflozin versus other non-gliflozin antidiabetic drugs: population based cohort study. BMJ 2018;360:k119. https://doi.org/10.1136/bmj.k119 doi: 10.1136/bmj.k119. [DOI] [PMC free article] [PubMed]
- Smerud KT, Dolgos S, Olsen IC, Åsberg A, Sagedal S, Reisæter AV, et al. A 1-year randomized, double-blind, placebo-controlled study of intravenous ibandronate on bone loss following renal transplantation. Am J Transplant 2012;12:3316–25. https://doi.org/10.1111/j.1600-6143.2012.04233.x doi: 10.1111/j.1600-6143.2012.04233.x. [DOI] [PubMed]
- Torregrosa JV, Fuster D, Gentil MA, Marcen R, Guirado L, Zarraga S, et al. Open-label trial: effect of weekly risedronate immediately after transplantation in kidney recipients. Transplantation 2010;89:1476–81. https://doi.org/10.1097/TP.0b013e3181dc13d0 doi: 10.1097/TP.0b013e3181dc13d0. [DOI] [PubMed]
- Walsh SB, Altmann P, Pattison J, Wilkie M, Yaqoob MM, Dudley C, et al. Effect of pamidronate on bone loss after kidney transplantation: a randomized trial. Am J Kidney Dis 2009;53:856–65. https://doi.org/10.1053/j.ajkd.2008.11.036 doi: 10.1053/j.ajkd.2008.11.036. [DOI] [PubMed]
- Toussaint ND, Lau KK, Strauss BJ, Polkinghorne KR, Kerr PG. Effect of alendronate on vascular calcification in CKD stages 3 and 4: a pilot randomized controlled trial. Am J Kidney Dis 2010;56:57–68. https://doi.org/10.1053/j.ajkd.2009.12.039 doi: 10.1053/j.ajkd.2009.12.039. [DOI] [PubMed]
- Johansson H, Siggeirsdottir K, Harvey NC, Oden A, Gudnason V, McCloskey E, et al. Imminent risk of fracture after fracture. Osteoporos Int 2017;28:775–80. https://doi.org/10.1007/s00198-016-3868-0 doi: 10.1007/s00198-016-3868-0. [DOI] [PMC free article] [PubMed]
- Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 2008;19:385–97. https://doi.org/10.1007/s00198-007-0543-5 doi: 10.1007/s00198-007-0543-5. [DOI] [PMC free article] [PubMed]
- Van Staa TP, Abenhaim L, Cooper C, Zhang B, Leufkens HG. The use of a large pharmacoepidemiological database to study exposure to oral corticosteroids and risk of fractures: validation of study population and results. Pharmacoepidemiol Drug Saf 2000;9:359–66. https://doi.org/10.1002/1099-1557(200009/10)9:5<359::AID-PDS507>3.0.CO;2-E doi: 10.1002/1099-1557(200009/10)9:5<359::AID-PDS507>3.0.CO;2-E. [DOI] [PubMed]
- Prieto-Alhambra D, Javaid MK, Judge A, Maskell J, Kiran A, de Vries F, et al. Fracture risk before and after total hip replacement in patients with osteoarthritis: potential benefits of bisphosphonate use. Arthritis Rheum 2011;63:992–1001. https://doi.org/10.1002/art.30214 doi: 10.1002/art.30214. [DOI] [PubMed]
- Prieto-Alhambra D, Javaid MK, Maskell J, Judge A, Nevitt M, Cooper C, Arden NK. Changes in hip fracture rate before and after total knee replacement due to osteoarthritis: a population-based cohort study. Ann Rheum Dis 2011;70:134–8. https://doi.org/10.1136/ard.2010.131110 doi: 10.1136/ard.2010.131110. [DOI] [PubMed]
- Reginster J, Minne HW, Sorensen OH, Hooper M, Roux C, Brandi ML, et al. Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int 2000;11:83–91. https://doi.org/10.1007/s001980050010 doi: 10.1007/s001980050010. [DOI] [PubMed]
- Davis S, Martyn-St James M, Sanderson J, Stevens J, Goka E, Rawdin A, et al. A systematic review and economic evaluation of bisphosphonates for the prevention of fragility fractures. Health Technol Assess 2016;20(78). https://doi.org/10.3310/hta20780 doi: 10.3310/hta20780. [DOI] [PMC free article] [PubMed]
- Abrahamsen B, Eiken P, Prieto-Alhambra D, Eastell R. Risk of hip, subtrochanteric, and femoral shaft fractures among mid and long term users of alendronate: nationwide cohort and nested case-control study. BMJ 2016;353:i3365. https://doi.org/10.1136/bmj.i3365 doi: 10.1136/bmj.i3365. [DOI] [PMC free article] [PubMed]
- Prieto-Alhambra D, Javaid MK, Judge A, Maskell J, Kiran A, Cooper C, et al. Bisphosphonate use and risk of post-operative fracture among patients undergoing a total knee replacement for knee osteoarthritis: a propensity score analysis. Osteoporos Int 2011;22:1555–71. https://doi.org/10.1007/s00198-010-1368-1 doi: 10.1007/s00198-010-1368-1. [DOI] [PubMed]
- Erviti J, Alonso A, Gorricho J, Lopez A. Oral bisphosphonates may not decrease hip fracture risk in elderly Spanish women: a nested case-control study. BMJ Open 2013;3:e002084. https://doi.org/10.1136/bmjopen-2012-002084 doi: 10.1136/bmjopen-2012-002084. [DOI] [PMC free article] [PubMed]
- Real J, Galindo G, Galván L, Lafarga MA, Rodrigo MD, Ortega M. Use of oral bisphosphonates in primary prevention of fractures in postmenopausal women: a population-based cohort study. PLOS ONE 2015;10:e0118178. https://doi.org/10.1371/journal.pone.0118178 doi: 10.1371/journal.pone.0118178. [DOI] [PMC free article] [PubMed]
- He Y, Reyes C, Lapi F, Simonetti M, Rijnbeek P, Van der Lei J et al. A multi-database, multinational validation study of cardiovascular death, venous thromboembolic events and gastrointestinal diseases in the EU-ADR Alliance. International Society for Pharmaeconomics and Outcomes Research (ISPOR) Europe, Barcelona, Spain, November 2018.
- Edwards BJ, Usmani S, Raisch DW, McKoy JM, Samaras AT, Belknap SM, et al. Acute kidney injury and bisphosphonate use in cancer: a report from the research on adverse drug events and reports (RADAR) project. J Oncol Pract 2013;9:101–6. https://doi.org/10.1200/JOP.2011.000486 doi: 10.1200/JOP.2011.000486. [DOI] [PMC free article] [PubMed]
- Komada T, Morishita Y, Kitamura M, Iwazu K, Numata A, Kobayashi T, et al. Acute kidney injury in a patient with nephrotic syndrome due to focal segmental glomerular nephritis induced by a single oral administration of high-dose bisphosphonate (minodronate). Intern Med 2013;52:1383–7. https://doi.org/10.2169/internalmedicine.52.0094 doi: 10.2169/internalmedicine.52.0094. [DOI] [PubMed]
- Peña de la Vega L, Fervenza FC, Lager D, Habermann T, Leung N. Acute granulomatous interstitial nephritis secondary to bisphosphonate alendronate sodium. Ren Fail 2005;27:485–9. https://doi.org/10.1081/JDI-65397 doi: 10.1081/JDI-65397. [DOI] [PubMed]
- Shih AW, Weir MA, Clemens KK, Yao Z, Gomes T, Mamdani MM, et al. Oral bisphosphonate use in the elderly is not associated with acute kidney injury. Kidney Int 2012;82:903–8. https://doi.org/10.1038/ki.2012.227 doi: 10.1038/ki.2012.227. [DOI] [PubMed]
- Ali M, Robinson D, Pallares N, Tebe C, Cooper C, Abrahamsen B, et al. The effect of oral bisphosphonates on acute kidney injury, gastrointestinal events and hypocalcaemia in patients with chronic kidney disease. Pharmacoepidemiol Drug Saf 2018;27:184.
- Moe SM, Drüeke TB, Block GA, Cannata-Andía JB, Elder GJ, Fukagawa M, et al. Kidney Disease: Improving Global Outcomes CKDMBDWG. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2009;188:S1–130. https://doi.org/10.1038/ki.2009.188 doi: 10.1038/ki.2009.188. [DOI] [PubMed]
- Kreutle V, Blum C, Meier C, Past M, Müller B, Schütz P, Borm K. Bisphosphonate induced hypocalcaemia – report of six cases and review of the literature. Swiss Med Wkly 2014;144:w13979. https://doi.org/10.4414/smw.2014.13979 doi: 10.4414/smw.2014.13979. [DOI] [PubMed]
- Do WS, Park JK, Park MI, Kim HS, Kim SH, Lee DH. Bisphosphonate-induced severe hypocalcemia – a case report. J Bone Metab 2012;19:139–45. https://doi.org/10.11005/jbm.2012.19.2.139 doi: 10.11005/jbm.2012.19.2.139. [DOI] [PMC free article] [PubMed]
- Vouri SM, Alvarez CA, Blaszczyk AT. Effects of oral bisphosphonate therapy on serum calcium in elderly veterans with poor kidney function. Am J Geriatr Pharmacother 2012;10:178–84. https://doi.org/10.1016/j.amjopharm.2012.04.001 doi: 10.1016/j.amjopharm.2012.04.001. [DOI] [PubMed]
- Bell KJ, Hayen A, Macaskill P, Irwig L, Craig JC, Ensrud K, Bauer DC. Value of routine monitoring of bone mineral density after starting bisphosphonate treatment: secondary analysis of trial data. BMJ 2009;338:b2266. https://doi.org/10.1136/bmj.b2266 doi: 10.1136/bmj.b2266. [DOI] [PMC free article] [PubMed]
- Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA 1999;282:1344–52. https://doi.org/10.1001/jama.282.14.1344 doi: 10.1001/jama.282.14.1344. [DOI] [PubMed]
- Rubin KH, Abrahamsen B, Hermann AP, Bech M, Gram J, Brixen K. Prevalence of risk factors for fractures and use of DXA scanning in Danish women. A regional population-based study. Osteoporos Int 2011;22:1401–9. https://doi.org/10.1007/s00198-010-1348-5 doi: 10.1007/s00198-010-1348-5. [DOI] [PubMed]
- Eastell R, Devogelaer JP, Peel NF, Chines AA, Bax DE, Sacco-Gibson N, et al. Prevention of bone loss with risedronate in glucocorticoid-treated rheumatoid arthritis patients. Osteoporos Int 2000;11:331–7. https://doi.org/10.1007/s001980070122 doi: 10.1007/s001980070122. [DOI] [PubMed]
- Liberman UA, Weiss SR, Bröll J, Minne HW, Quan H, Bell NH, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 1995;333:1437–43. https://doi.org/10.1056/NEJM199511303332201 doi: 10.1056/NEJM199511303332201. [DOI] [PubMed]
- Block GA, Bone HG, Fang L, Lee E, Padhi D. A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res 2012;27:1471–9. https://doi.org/10.1002/jbmr.1613 doi: 10.1002/jbmr.1613. [DOI] [PMC free article] [PubMed]
- Alarkawi D, Bliuc D, Pallares N, Tebe C, Cooper C, Caskey F, et al. Oral bisphosphonate use and all-cause mortality in patients with advanced (stage IIIB+) chronic kidney disease: a propensity score analysis. Pharmacoepidemiol Drug Saf 2018;27:185.
