Abstract
Humanity has been facing the threat of a variety of infectious diseases. Airborne microorganisms can cause airborne infectious diseases, which spread rapidly and extensively, causing huge losses to human society on a global scale. In recent years, the detection technology for airborne microorganisms has developed rapidly; it can be roughly divided into biochemical, immune, and molecular technologies. However, these technologies still have some shortcomings; they are time-consuming and have low sensitivity and poor stability. Most of them need to be used in the ideal environment of a laboratory, which limits their applications. A biosensor is a device that converts biological signals into detectable signals. As an interdisciplinary field, biosensors have successfully introduced a variety of technologies for bio-detection. Given their fast analysis speed, high sensitivity, good portability, strong specificity, and low cost, biosensors have been widely used in environmental monitoring, medical research, food and agricultural safety, military medicine and other fields. In recent years, the performance of biosensors has greatly improved, becoming a promising technology for airborne microorganism detection. This review introduces the detection principle of biosensors from the three aspects of component identification, energy conversion principle, and signal amplification. It also summarizes its research and application in airborne microorganism detection. The new progress and future development trend of the biosensor detection of airborne microorganisms are analyzed.

Keywords: Biosensor, Airborne microorganisms, Microbiological detection technology
Acknowledgements
This study was supported by the National Natural Science Foundation of China (Grant No. 51678402) and the Tianjin New Crown Epidemic Emergency Project (No. 20ZXGBSY00100).
Footnotes
Highlights
• Airborne microorganism detection methods are summarized.
• Biosensors play an important role in detecting airborne microorganisms.
• The principle of biosensor detection of airborne microorganisms is introduced.
• The application and progress of biosensor in recent years is summarized.
• The future perspectives of biosensor are identified.
Special Issue—Bioaerosol, Environment and Health (Responsible Editors: Can Wang, Jungho Hwang, Jingkun Jiang & Maosheng Yao)
These authors contributed equally to this work.
Contributor Information
Can Wang, Email: wangcan@tju.edu.cn.
Xinwu Xie, Email: xinwuxie@163.com.
References
- Ahmed S R, Kim J, Tran V T, Suzuki T, Neethirajan S, Lee J, Park E Y. In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform. Scientific Reports. 2017;7(1):44495. doi: 10.1038/srep44495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ariffin E Y, Tan L L, Karim N H A, Heng L Y. Optical DNA biosensor based on square-planar ethyl piperidine substituted nickel (II) salphen complex for dengue virus detection. Sensors (Basel) 2018;18(4):1173. doi: 10.3390/s18041173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bahavarnia F, Mobed A, Hasanzadeh M, Saadati A, Hassanpour S, Mokhtarzadeh A. Bio-assay of Acintobacter baumannii using DNA conjugated with gold nano-star: A new platform for microorganism analysis. Enzyme and Microbial Technology. 2020;133:109466. doi: 10.1016/j.enzmictec.2019.109466. [DOI] [PubMed] [Google Scholar]
- Bai C, Lu Z, Jiang H, Yang Z, Liu X, Ding H, Li H, Dong J, Huang A, Fang T, Jiang Y, Zhu L, Lou X, Li S, Shao N. Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosensors & Bioelectronics. 2018;110:162–167. doi: 10.1016/j.bios.2018.03.047. [DOI] [PubMed] [Google Scholar]
- Bai H, Wang R, Hargis B, Lu H, Li Y. A SPR aptasensor for detection of avian influenza virus H5N1. Sensors (Basel) 2012;12(9):12506–12518. doi: 10.3390/s120912506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bai L, Chen Y, Liu X, Zhou J, Cao J, Hou L, Guo S. Ultrasensitive electrochemical detection of Mycobacterium tuberculosis IS6110 fragment using gold nanoparticles decorated fullerene nanoparticles/nitrogen-doped graphene nanosheet as signal tags. Analytica Chimica Acta. 2019;1080:75–83. doi: 10.1016/j.aca.2019.06.043. [DOI] [PubMed] [Google Scholar]
- Bhardwaj J, Chaudhary N, Kim H, Jang J. Subtyping of influenza A H1N1 virus using a label-free electrochemical biosensor based on the DNA aptamer targeting the stem region of HA protein. Analytica Chimica Acta. 2019;1064:94–103. doi: 10.1016/j.aca.2019.03.005. [DOI] [PubMed] [Google Scholar]
- Bhardwaj N, Bhardwaj S K, Mehta J, Kim K H, Deep A. MOF-bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus. ACS Applied Materials & Interfaces. 2017;9(39):33589–33598. doi: 10.1021/acsami.7b07818. [DOI] [PubMed] [Google Scholar]
- Bhardwaj N, Bhardwaj S K, Mehta J, Mohanta G C, Deep A. Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae) Analytical Biochemistry. 2016;505:18–25. doi: 10.1016/j.ab.2016.04.008. [DOI] [PubMed] [Google Scholar]
- Bhattacharyya D, Smith Y R, Mohanty S K, Misra M. Titania nanotube array sensor for electrochemical detection of four predominate Tuberculosis volatile biomarkers. Journal of the Electrochemical Society. 2016;163(6):B206. doi: 10.1149/2.0221606jes. [DOI] [Google Scholar]
- Brenner D J, Hall E J. Computed tomography — An increasing source of radiation exposure. New England Journal of Medicine. 2007;357(22):2277–2284. doi: 10.1056/NEJMra072149. [DOI] [PubMed] [Google Scholar]
- Briceno R K, Sergent S R, Benites S M, Alocilja E C. Nanoparticle-based biosensing assay for universally accessible low-cost TB detection with comparable sensitivity as culture. Diagnostics (Basel) 2019;9(4):222. doi: 10.3390/diagnostics9040222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cesewski E, Johnson B N. Electrochemical biosensors for pathogen detection. Biosensors & Bioelectronics. 2020;159:112214. doi: 10.1016/j.bios.2020.112214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang J, Mao S, Zhang Y, Cui S, Zhou G, Wu X, Yang C H, Chen J. Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale. 2013;5(9):3620–3626. doi: 10.1039/c3nr00141e. [DOI] [PubMed] [Google Scholar]
- Chang P H, Weng C C, Li B R, Li Y K. An antifouling peptide-based biosensor for determination of Streptococcus pneumonia markers in human serum. Biosensors & Bioelectronics. 2020;151:111969. doi: 10.1016/j.bios.2019.111969. [DOI] [PubMed] [Google Scholar]
- Chang Y F, Wang W H, Hong Y W, Yuan R Y, Chen K H, Huang Y W, Lu P L, Chen Y H, Chen Y M A, Su L C, Wang S F. Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Analytical Chemistry. 2018;90(3):1861–1869. doi: 10.1021/acs.analchem.7b03934. [DOI] [PubMed] [Google Scholar]
- Chen Q, Zhang L, Jiang F, Wang B, Lv T, Zeng Z, Wu W, Sun S. MnO2 microsphere absorbing Cy5-labeled single strand DNA probe serving as powerful biosensor for effective detection of mycoplasma ovipneumoniae. Sensors and Actuators. B, Chemical. 2017;244:1138–1144. [Google Scholar]
- Chen Y, Liu X, Guo S, Cao J, Zhou J, Zou J, Bai L. A sandwichtype electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C60NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework. Biomaterials. 2019;216:119253. doi: 10.1016/j.biomaterials.2019.119253. [DOI] [PubMed] [Google Scholar]
- Cui F, Zhou H S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosensors & Bioelectronics. 2020;165:112349. doi: 10.1016/j.bios.2020.112349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cui X, Das A, Dhawane A N, Sweeney J, Zhang X, Chivukula V, Iyer S S. Highly specific and rapid glycan based amperometric detection of influenza viruses. Chemical Science (Cambridge) 2017;8(5):3628–3634. doi: 10.1039/C6SC03720H. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dastider S G, Barizuddin S, Yuksek N S, Dweik M, Almasri M F. Efficient and rapid detection of Salmonella using microfluidic impedance based sensing. Journal of Sensors. 2015;8:293461. [Google Scholar]
- Dehghani Z, Mohammadnejad J, Hosseini M, Bakhshi B, Rezayan A H. Whole cell FRET immunosensor based on graphene oxide and graphene dot for Campylobacter jejuni detection. Food Chemistry. 2020;309:125690. doi: 10.1016/j.foodchem.2019.125690. [DOI] [PubMed] [Google Scholar]
- Després V R, Huffman J A, Burrows S M, Hoose C, Safatov A S, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae M O, Pöschl U, Jaenicke R. Primary biological aerosol particles in the atmosphere: A review. Tellus B: Chemical and Physical Meteorology. 2012;64(1):15598. doi: 10.3402/tellusb.v64i0.15598. [DOI] [Google Scholar]
- Donaldson K A, Kramer M F, Lim D V. A rapid detection method for Vaccinia virus, the surrogate for smallpox virus. Biosensors & Bioelectronics. 2004;20(2):322–327. doi: 10.1016/j.bios.2004.01.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dong S, Zhao R, Zhu J, Lu X, Li Y, Qiu S, Jia L, Jiao X, Song S, Fan C, Hao R, Song H. Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus. ACS Applied Materials & Interfaces. 2015;7(16):8834–8842. doi: 10.1021/acsami.5b01438. [DOI] [PubMed] [Google Scholar]
- Doremalen N, Bushmaker T, Morris D H, Holbrook M G, Gamble A, Williamson B N, Tamin A, Harcourt J L, Thornburg N J, Gerber S I, Lloyd-Smith J O, Wit E, Munster V J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. The New England Journal of Medicine. 2020;382(16):1564–1567. doi: 10.1056/NEJMc2004973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddabra R, Ait Benhassou H. Rapid molecular assays for detection of tuberculosis. Pneumonia. 2018;10(1):4. doi: 10.1186/s41479-018-0049-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freije C A, Myhrvold C, Boehm C K, Lin A E, Welch N L, Carter A, Metsky H C, Luo C Y, Abudayyeh O O, Gootenberg J S, Yozwiak N L, Zhang F, Sabeti P C. Programmable inhibition and detection of RNA viruses using Cas13. Molecular Cell. 2019;76(5):826–837.e11. doi: 10.1016/j.molcel.2019.09.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fronczek C F, Yoon J Y. Biosensors for monitoring airborne pathogens. Journal of Laboratory Automation. 2015;20(4):390–410. doi: 10.1177/2211068215580935. [DOI] [PubMed] [Google Scholar]
- Gao A, Chen S, Wang Y, Li T. Silicon nanowire field-effect-transistor-based biosensor for biomedical applications. Sensors and Materials. 2018;30(8):1619–1628. doi: 10.18494/SAM.2018.1829. [DOI] [Google Scholar]
- Gopinath S C B, Perumal V, Kumaresan R, Lakshmipriya T, Rajintraprasad H, Rao B S, Arshad M K M, Chen Y, Kotani N, Hashim U. Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Mikrochimica Acta. 2016;183(10):2697–2703. doi: 10.1007/s00604-016-1911-7. [DOI] [Google Scholar]
- Grabowska I, Malecka K, Stachyra A, Gora-Sochacka A, Sirko A, Zagorski-Ostoja W, Radecka H, Radecki J. Single electrode genosensor for simultaneous determination of sequences encoding hemagglutinin and neuraminidase of avian influenza virus type H5N1. Analytical Chemistry. 2013;85(21):10167–10173. doi: 10.1021/ac401547h. [DOI] [PubMed] [Google Scholar]
- Güner A, Cevik E, Senel M, Alpsoy L. An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chemistry. 2017;229:358–365. doi: 10.1016/j.foodchem.2017.02.083. [DOI] [PubMed] [Google Scholar]
- Guo X, Kulkarni A, Doepke A, Halsall H B, Iyer S, Heineman W R. Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. Analytical Chemistry. 2012;84(1):241–246. doi: 10.1021/ac202419u. [DOI] [PubMed] [Google Scholar]
- Gupta S, Kakkar V. Recent technological advancements in tuberculosis diagnostics: A review. Biosensors & Bioelectronics. 2018;115:14–29. doi: 10.1016/j.bios.2018.05.017. [DOI] [PubMed] [Google Scholar]
- Hassanpour S, Saadati A, Hasanzadeh M. pDNA conjugated with citrate capped silver nanoparticles towards ultrasensitive bio-assay of Haemophilus influenza in human biofluids: A novel optical biosensor. Journal of Pharmaceutical and Biomedical Analysis. 2020;180:113050. doi: 10.1016/j.jpba.2019.113050. [DOI] [PubMed] [Google Scholar]
- Hideshima S, Hinou H, Ebihara D, Sato R, Kuroiwa S, Nakanishi T, Nishimura S I, Osaka T. Attomolar detection of influenza A virus hemagglutinin human H1 and avian H5 using glycan-blotted field effect transistor biosensor. Analytical Chemistry. 2013;85(12):5641–5644. doi: 10.1021/ac401085c. [DOI] [PubMed] [Google Scholar]
- Hoehl S, Rabenau H, Berger A, Kortenbusch M, Cinatl J, Bojkova D, Behrens P, Böddinghaus B, Götsch U, Naujoks F, Neumann P, Schork J, Tiarks-Jungk P, Walczok A, Eickmann M, Vehreschild M J G T, Kann G, Wolf T, Gottschalk R, Ciesek S. Evidence of SARS-CoV-2 infection in returning travelers from Wuhan, China. The New England Journal of Medicine. 2020;382(13):1278–1280. doi: 10.1056/NEJMc2001899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hong G, Liu Y, Chen W, Weng S, Liu Q, Liu A, Zheng D, Lin X. A sandwich-type DNA electrochemical biosensor for hairpin-stemloop structure based on multistep temperature-controlling method. International Journal of Nanomedicine. 2012;7:4953–4960. doi: 10.2147/IJN.S35177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu S, Niu L, Zhao F, Yan L, Nong J, Wang C, Gao N, Zhu X, Wu L, Bo T, Wang H, Gu J. Identification of Acinetobacter baumannii and its carbapenem-resistant gene blaOXA-23-like by multiple cross displacement amplification combined with lateral flow biosensor. Scientific Reports. 2019;9(1):17888. doi: 10.1038/s41598-019-54465-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu Y, Xu X, Liu Q, Wang L, Lin Z, Chen G. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. Analytical Chemistry. 2014;86(17):8785–8790. doi: 10.1021/ac502008k. [DOI] [PubMed] [Google Scholar]
- Huang J, Xie Z, Xie Z, Luo S, Xie L, Huang L, Fan Q, Zhang Y, Wang S, Zeng T. Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Analytica Chimica Acta. 2016;913:121–127. doi: 10.1016/j.aca.2016.01.050. [DOI] [PubMed] [Google Scholar]
- Hudu S A, Alshrari A S, Syahida A, Sekawi Z. Cell culture, technology: enhancing the culture of diagnosing human diseases. Journal of Clinical and Diagnostic Research: JCDR. 2016;10(3):DE1–DE5. doi: 10.7860/JCDR/2016/15837.7460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa F N, Chang H K, Curreli M, Liao H I, Olson C A, Chen P C, Zhang R, Roberts R W, Sun R, Cote R J, Thompson M E, Zhou C. Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano. 2009;3(5):1219–1224. doi: 10.1021/nn900086c. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Islam M A, Hassen W M, Tayabali A F, Dubowski J J. Antimicrobial warnericin RK peptide functionalized GaAs/AlGaAs biosensor for highly sensitive and selective detection of Legionella pneumophila. Biochemical Engineering Journal. 2020;154:107435. doi: 10.1016/j.bej.2019.107435. [DOI] [Google Scholar]
- Ji J, Pang Y, Li D, Wang X, Xu Y, Mu X. Single-layered graphene/Au-nanoparticles-based love wave biosensor for highly sensitive and specific detection of Staphylococcus aureus gene sequences. ACS Applied Materials & Interfaces. 2020;12(11):12417–12425. doi: 10.1021/acsami.9b20639. [DOI] [PubMed] [Google Scholar]
- Jiang G, Wang C, Song L, Wang X, Zhou Y, Fei C, Liu H. Aerosol transmission, an indispensable route of COVID-19 spread: Case study of a department-store cluster. Frontiers of Environmental Science & Engineering. 2021;15(3):46. doi: 10.1007/s11783-021-1386-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jung J H, Cheon D S, Liu F, Lee K B, Seo T S. A graphene oxide based immuno-biosensor for pathogen detection. Angewandte Chemie International Edition. 2010;49(33):5708–5711. doi: 10.1002/anie.201001428. [DOI] [PubMed] [Google Scholar]
- Karash S, Wang R, Kelso L, Lu H, Huang T J, Li Y. Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. Journal of Virological Methods. 2016;236:147–156. doi: 10.1016/j.jviromet.2016.07.018. [DOI] [PubMed] [Google Scholar]
- Khan N I, Mousazadehkasin M, Ghosh S, Tsavalas J G, Song E. An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET. Analyst (London) 2020;145(13):4494–4503. doi: 10.1039/D0AN00251H. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim G, Moon J H, Moh C Y, Lim J G. A microfluidic nanobiosensor for the detection of pathogenic Salmonella. Biosensors & Bioelectronics. 2015;67:243–247. doi: 10.1016/j.bios.2014.08.023. [DOI] [PubMed] [Google Scholar]
- Koo B, Jin C E, Park S Y, Lee T Y, Nam J, Jang Y R, Kim S M, Kim J Y, Kim S H, Shin Y. A rapid bio-optical sensor for diagnosing Q fever in clinical specimens. Journal of Biophotonics. 2018;11(4):e201700167. doi: 10.1002/jbio.201700167. [DOI] [PubMed] [Google Scholar]
- Kumar N, Bhatia S, Pateriya A K, Sood R, Nagarajan S, Murugkar H V, Kumar S, Singh P, Singh V P. Label-free peptide nucleic acid biosensor for visual detection of multiple strains of influenza A virus suitable for field applications. Analytica Chimica Acta. 2020;1093:123–130. doi: 10.1016/j.aca.2019.09.060. [DOI] [PubMed] [Google Scholar]
- Kwon J, Lee Y, Lee T, Ahn J H. Aptamer-based field-effect transistor for detection of avian influenza virus in chicken serum. Analytical Chemistry. 2020;92(7):5524–5531. doi: 10.1021/acs.analchem.0c00348. [DOI] [PubMed] [Google Scholar]
- Labib M, Zamay A S, Muharemagic D, Chechik A V, Bell J C, Berezovski M V. Aptamer-based viability impedimetric sensor for viruses. Analytical Chemistry. 2012;84(4):1813–1816. doi: 10.1021/ac203412m. [DOI] [PubMed] [Google Scholar]
- Lee J, Morita M, Takemura K, Park E Y. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosensors & Bioelectronics. 2018;102:425–431. doi: 10.1016/j.bios.2017.11.052. [DOI] [PubMed] [Google Scholar]
- Li J, Wu J, He Z, Pei H, Xia Q, Wu Q, Ju H. Fast detection of mycoplasma pneumoniae by interaction of tetramolecular G-quadruplex with graphene oxide. Sensors and Actuators. B, Chemical. 2019;290:41–46. doi: 10.1016/j.snb.2019.03.103. [DOI] [Google Scholar]
- Li Y, Xie G, Qiu J, Zhou D, Gou D, Tao Y, Li Y, Chen H. A new biosensor based on the recognition of phages and the signal amplification of organic-inorganic hybrid nanoflowers for discriminating and quantitating live pathogenic bacteria in urine. Sensors and Actuators. B, Chemical. 2018;258:803–812. doi: 10.1016/j.snb.2017.11.155. [DOI] [Google Scholar]
- Liu F, Kim Y H, Cheon D S, Seo T S. Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection. Sensors and Actuators. B, Chemical. 2013;186:252–257. doi: 10.1016/j.snb.2013.05.097. [DOI] [Google Scholar]
- Liu H, Zhang Z, Wen N, Wang C. Determination and risk assessment of airborne endotoxin concentrations in a university campus. Journal of Aerosol Science. 2018;115:146–157. doi: 10.1016/j.jaerosci.2017.09.002. [DOI] [Google Scholar]
- Liu L, Shan D, Zhou X, Shi H, Song B, Falke F, Leinse A, Heideman R. TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection. Biosensors & Bioelectronics. 2018;106:117–121. doi: 10.1016/j.bios.2018.01.066. [DOI] [PubMed] [Google Scholar]
- Liu L, Xiang G, Jiang D, Du C, Liu C, Huang W, Pu X. Electrochemical gene sensor for Mycoplasma pneumoniae DNA using dual signal amplification via a Pt@Pd nanowire and horse radish peroxidase. Mikrochimica Acta. 2016;183(1):379–387. doi: 10.1007/s00604-015-1656-8. [DOI] [Google Scholar]
- Liu Q, Lim B K L, Lim S W, Tang W Y, Gu Z H, Chung J, Park M K, Barkham T. Label-free, real-time and multiplex detection of Mycobacterium tuberculosis based on silicon photonic microring sensors and asymmetric isothermal amplification technique (SPMS-AIA) Sensors and Actuators. B, Chemical. 2018;255:1595–1603. doi: 10.1016/j.snb.2017.08.181. [DOI] [Google Scholar]
- Lubkowicz D, Ho C L, Hwang I Y, Yew W S, Lee Y S, Chang M W. Reprogramming probiotic Lactobacillus reuteri as a biosensor for Staphylococcus aureus derived AIP-I detection. ACS Synthetic Biology. 2018;7(5):1229–1237. doi: 10.1021/acssynbio.8b00063. [DOI] [PubMed] [Google Scholar]
- Lum J, Wang R, Lassiter K, Srinivasan B, Abi-Ghanem D, Berghman L, Hargis B, Tung S, Lu H, Li Y. Rapid detection of avian influenza H5N1 virus using impedance measurement of immunoreaction coupled with RBC amplification. Biosensors & Bioelectronics. 2012;38(1):67–73. doi: 10.1016/j.bios.2012.04.047. [DOI] [PubMed] [Google Scholar]
- Maeng B, Park Y, Park J. Direct label-free detection of Rotavirus using a hydrogel based nanoporous photonic crystal. RSC Advances. 2016;6(9):7384–7390. doi: 10.1039/C5RA21665F. [DOI] [Google Scholar]
- Malvano F, Pilloton R, Albanese D. A novel impedimetric biosensor based on the antimicrobial activity of the peptide nisin for the detection of Salmonella spp. Food Chemistry. 2020;325:126868. doi: 10.1016/j.foodchem.2020.126868. [DOI] [PubMed] [Google Scholar]
- Masdor N A, Altintas Z, Tothill I E. Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor. Biosensors & Bioelectronics. 2016;78:328–336. doi: 10.1016/j.bios.2015.11.033. [DOI] [PubMed] [Google Scholar]
- Mavrikou S, Moschopoulou G, Tsekouras V, Kintzios S. Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors. 2020;20(11):3121. doi: 10.3390/s20113121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazlan N F, Tan L L, Karim N H A, Heng L Y, Jamaluddin N D, Yusof N Y M, Quay D H X, Khalid B. Acrylic-based genosensor utilizing metal salphen labeling approach for reflectometric dengue virus detection. Talanta. 2019;198:358–370. doi: 10.1016/j.talanta.2019.02.036. [DOI] [PubMed] [Google Scholar]
- Mekonnen D, Mengist H M, Derbie A, Nibret E, Munshea A, He H L, Li B F, Jin T C. Diagnostic accuracy of serological tests and kinetics of severe acute respiratory syndrome coronavirus 2 antibody: A systematic review and meta-analysis. Reviews in Medical Virology. 2020;2020:e2181. doi: 10.1002/rmv.2181. [DOI] [PubMed] [Google Scholar]
- Meyer M H F, Stehr M, Bhuju S, Krause H J, Hartmann M, Miethe P, Singh M, Keusgen M. Magnetic biosensor for the detection of Yersinia pestis. Journal of Microbiological Methods. 2007;68(2):218–224. doi: 10.1016/j.mimet.2006.08.004. [DOI] [PubMed] [Google Scholar]
- Mobed A, Hasanzadeh M, Hassanpour S, Saadati A, Agazadeh M, Mokhtarzadeh A. An innovative nucleic acid based biosensor toward detection of Legionella pneumophila using DNA immobilization and hybridization: A novel genosensor. Microchemical Journal. 2019;148:708–716. doi: 10.1016/j.microc.2019.05.027. [DOI] [Google Scholar]
- Mobed A, Nami F, Hasanzadeh M, Hassanpour S, Saadati A, Mokhtarzadeh A. novel nucleic acid based bio-assay toward recognition of Haemophilus influenza using bioconjugation and DNA hybridization method. International Journal of Biological Macromolecules. 2019;139:1239–1251. doi: 10.1016/j.ijbiomac.2019.08.036. [DOI] [PubMed] [Google Scholar]
- Moradi M, Sattarahmady N, Rahi A, Hatam G R, Sorkhabadi S M R, Heli H. A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves. Talanta. 2016;161:48–53. doi: 10.1016/j.talanta.2016.08.030. [DOI] [PubMed] [Google Scholar]
- Moreno-Bondi M C, Taitt C R, Shriver-Lake L C, Ligler F S. Multiplexed measurement of serum antibodies using an array biosensor. Biosensors & Bioelectronics. 2006;21(10):1880–1886. doi: 10.1016/j.bios.2005.12.018. [DOI] [PubMed] [Google Scholar]
- Muhammad-Tahir Z, Alocilja E C. Fabrication of a disposable biosensor for Escherichia coli O157:H7 detection. IEEE Sensors Journal. 2003;3(4):345–351. doi: 10.1109/JSEN.2003.815782. [DOI] [Google Scholar]
- Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin M R. Point-of-care microfluidic devices for pathogen detection. Biosensors & Bioelectronics. 2018;117:112–128. doi: 10.1016/j.bios.2018.05.050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen V T, Seo H B, Kim B C, Kim S K, Song C S, Gu M B. Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosensors & Bioelectronics. 2016;86:293–300. doi: 10.1016/j.bios.2016.06.064. [DOI] [PubMed] [Google Scholar]
- Nidzworski D, Pranszke P, Grudniewska M, Król E, Gromadzka B. Universal biosensor for detection of influenza virus. Biosensors & Bioelectronics. 2014;59:239–242. doi: 10.1016/j.bios.2014.03.050. [DOI] [PubMed] [Google Scholar]
- Nugaeva N, Gfeller K Y, Backmann N, Duggelin M, Lang H P, Guntherodt H J, Hegner M. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. Microscopy and Microanalysis. 2007;13(1):13–17. doi: 10.1017/S1431927607070067. [DOI] [PubMed] [Google Scholar]
- Pal S, Alocilja E C, Downes F P. Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosensors & Bioelectronics. 2007;22(9–10):2329–2336. doi: 10.1016/j.bios.2007.01.013. [DOI] [PubMed] [Google Scholar]
- Paolucci M, Landini M P, Sambri V. Conventional and molecular techniques for the early diagnosis of bacteraemia. International Journal of Antimicrobial Agents. 2010;36:S6–S16. doi: 10.1016/j.ijantimicag.2010.11.010. [DOI] [PubMed] [Google Scholar]
- Parab H J, Jung C, Lee J H, Park H G. A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosensors & Bioelectronics. 2010;26(2):667–673. doi: 10.1016/j.bios.2010.06.067. [DOI] [PubMed] [Google Scholar]
- Park T J, Hyun M S, Lee H J, Lee S Y, Ko S. A self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta. 2009;79(2):295–301. doi: 10.1016/j.talanta.2009.03.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peláez E C, Estevez M C, Mongui A, Menéndez M C, Toro C, Herrera-Sandoval O L, Robledo J, García M J, Portillo P D, Lechuga L M. Detection and quantification of HspX antigen in sputum samples using plasmonic biosensing: toward a real point-of-care (POC) for tuberculosis diagnosis. ACS Infectious Diseases. 2020;6(5):1110–1120. doi: 10.1021/acsinfecdis.9b00502. [DOI] [PubMed] [Google Scholar]
- Phunpae P, Chanwong S, Tayapiwatana C, Apiratmateekul N, Makeudom A, Kasinrerk W. Rapid Diagnosis of tuberculosis by identification of Antigen 85 in mycobacterial culture system. Diagnostic Microbiology and Infectious Disease. 2014;78(3):242–248. doi: 10.1016/j.diagmicrobio.2013.11.028. [DOI] [PubMed] [Google Scholar]
- Pineda M F, Chan L L Y, Kuhlenschmidt T, Choi C J, Kuhlenschmidt M, Cunningham B T. Rapid specific and label-free detection of porcine Rotavirus using photonic crystal biosensors. IEEE Sensors Journal. 2009;9(4):470–477. doi: 10.1109/JSEN.2009.2014427. [DOI] [Google Scholar]
- Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick G A, Wang J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano. 2020;14(5):5268–5277. doi: 10.1021/acsnano.0c02439. [DOI] [PubMed] [Google Scholar]
- Rai V, Nyine Y T, Hapuarachchi H C, Yap H M, Ng L C, Toh C S. Electrochemically amplified molecular beacon biosensor for ultrasensitive DNA sequence-specific detection of Legionella sp. Biosensors & Bioelectronics. 2012;32(1):133–140. doi: 10.1016/j.bios.2011.11.046. [DOI] [PubMed] [Google Scholar]
- Razzini K, Castrica M, Menchetti L, Maggi L, Negroni L, Orfeo N V, Pizzoccheri A, Stocco M, Muttini S, Balzaretti C M. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Science of the Total Environment. 2020;742:140540. doi: 10.1016/j.scitotenv.2020.140540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rufino de Sousa N, Sandstrrom N, Shen L, Håkansson K, Vezozzo R, Udekwu K I, Croda J, Rothfuchs A G. A fieldable electrostatic air sampler enabling tuberculosis detection in bioaerosols. Tuberculosis (Edinburgh, Scotland) 2020;120:101896. doi: 10.1016/j.tube.2019.101896. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlaberg R, Chiu C Y, Miller S, Procop G W, Weinstock G. Validation of metagenomic next-generation sequencing tests for universal pathogen detection. Archives of Pathology & Laboratory Medicine. 2017;141(6):776–786. doi: 10.5858/arpa.2016-0539-RA. [DOI] [PubMed] [Google Scholar]
- Sedighi-Khavidak S, Mazloum-Ardakani M, Khorasgani M R, Emtiazi G, Hosseinzadeh L. Detection of aflD gene in contaminated pistachio with Aspergillus flavus by DNA based electrochemical biosensor. International Journal of Food Properties. 2017;20(Sup1):S119–S130. doi: 10.1080/10942912.2017.1291675. [DOI] [Google Scholar]
- Seibel A, Heinz W, Greim C A, Weber S (2020). Lung ultrasound in COVID-19. Anaesthesist (Published online) [DOI] [PMC free article] [PubMed]
- Seo G, Lee G, Kim M J, Baek S H, Choi M, Ku K B, Lee C S, Jun S M, Park D, Kim S J, Lee J O, Kim B T, Park E C, Kim S. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based Biosensor. ACS Nano. 2020;14(4):5135–5142. doi: 10.1021/acsnano.0c02823. [DOI] [PubMed] [Google Scholar]
- Setti L, Passarini F, de Gennaro G, Barbieri P, Perrone M G, Borelli M, Palmisani J, Di Gilio A, Torboli V, Fontana F, Clemente L, Pallavicini A, Ruscio M, Piscitelli P, Miani A. SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environmental Research. 2020;188:109754. doi: 10.1016/j.envres.2020.109754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheikhzadeh E, Chamsaz M, Turner A P F, Jager E W H, Beni V. Label-free impedimetric biosensor for Salmonella typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosensors & Bioelectronics. 2016;80:194–200. doi: 10.1016/j.bios.2016.01.057. [DOI] [PubMed] [Google Scholar]
- Shen F, Tan M, Wang Z, Yao M, Xu Z, Wu Y, Wang J, Guo X, Zhu T. Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols. Environmental Science & Technology. 2011;45(17):7473–7480. doi: 10.1021/es1043547. [DOI] [PubMed] [Google Scholar]
- Shen F, Wang J, Xu Z, Wu Y, Chen Q, Li X, Jie X, Li L, Yao M, Guo X, Zhu T. Rapid flu diagnosis using silicon nanowire sensor. Nano Letters. 2012;12(7):3722–3730. doi: 10.1021/nl301516z. [DOI] [PubMed] [Google Scholar]
- Shen Z, Wang J, Qiu Z, Jin M, Wang X, Chen Z, Li J, Cao F. Detection of Escherichia coli O157:H7 with piezoelectric immunosensor based on enhancement with immuno-nanoparticles. Acta Microbiologica Sinica. 2009;49(6):820–825. [PubMed] [Google Scholar]
- Silva Junior A G, Oliveira M D L, Oliveira I S, Lima-Neto R G, Sá S R, Franco O L, Andrade C A S. A simple nanostructured impedimetric biosensor based on clavanin a peptide for bacterial detection. Sensors and Actuators. B, Chemical. 2018;255:3267–3274. doi: 10.1016/j.snb.2017.09.153. [DOI] [Google Scholar]
- Soler M, Belushkin A, Cavallini A, Kebbi-Beghdadi C, Greub G, Altug H. Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Biosensors & Bioelectronics. 2017;94:560–567. doi: 10.1016/j.bios.2017.03.047. [DOI] [PubMed] [Google Scholar]
- Song L, Wang C, Wang Y. Optimized determination of airborne tetracycline resistance genes in laboratory atmosphere. Frontiers of Environmental Science & Engineering. 2020;14(6):95. doi: 10.1007/s11783-020-1274-5. [DOI] [Google Scholar]
- Su L C, Chang C M, Tseng Y L, Chang Y F, Li Y C, Chang Y S, Chou C. Rapid and highly sensitive method for influenza A (H1N1) virus detection. Analytical Chemistry. 2012;84(9):3914–3920. doi: 10.1021/ac3002947. [DOI] [PubMed] [Google Scholar]
- Tian J, Wang D, Zheng Y, Jing T. A high sensitive electrochemical avian influenza virus H7 biosensor based on CNTs/MoSx aerogel. International Journal of Electrochemical Science. 2017;12(4):2658–2668. doi: 10.20964/2017.04.30. [DOI] [Google Scholar]
- Vásquez G, Rey A, Rivera C, Iregui C, Orozco J. Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae. Biosensors & Bioelectronics. 2017;87:453–458. doi: 10.1016/j.bios.2016.08.082. [DOI] [PubMed] [Google Scholar]
- Wang L, Huo X, Zheng L, Cai G, Wang Y, Liu N, Wang M, Lin J. An ultrasensitive biosensor for colorimetric detection of Salmonella in large-volume sample using magnetic grid separation and platinum loaded zeolitic imidazolate Framework-8 nanocatalysts. Biosensors & Bioelectronics. 2020;150:111862. doi: 10.1016/j.bios.2019.111862. [DOI] [PubMed] [Google Scholar]
- Wang L, Huo X T, Qi W, Xia Z, Li Y, Lin J. Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta. 2020;211:120715. doi: 10.1016/j.talanta.2020.120715. [DOI] [PubMed] [Google Scholar]
- Wang Y, Wang C, Song L. Distribution of antibiotic resistance genes and bacteria from six atmospheric environments: Exposure risk to human. Science of the Total Environment. 2019;694:133750. doi: 10.1016/j.scitotenv.2019.133750. [DOI] [PubMed] [Google Scholar]
- Wang Y, Wang Y, Jiao W, Li J, Quan S, Sun L, Wang Y, Qi X, Wang X, Shen A. Development of loop-mediated isothermal amplification coupled with nanoparticle-based lateral flow biosensor assay for Mycoplasma pneumoniae detection. AMB Express. 2019;9(1):196. doi: 10.1186/s13568-019-0921-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y, Wang Y, Quan S, Jiao W, Li J, Sun L, Wang Y, Qi X, Wang X, Shen A. Establishment and application of a multiple cross displacement amplification coupled with nanoparticle-based lateral flow biosensor assay for detection of Mycoplasma pneumoniae. Frontiers in Cellular and Infection Microbiology. 2019;9:325. doi: 10.3389/fcimb.2019.00325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wasik D, Mulchandani A, Yates M V. A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus. Biosensors & Bioelectronics. 2017;91:811–816. doi: 10.1016/j.bios.2017.01.017. [DOI] [PubMed] [Google Scholar]
- Wei H, Guo Z, Zhu Z, Tan Y, Du Z, Yang R. Sensitive detection of antibody against antigen F1 of Yersinia pestis by an antigen sandwich method using a portable fiber optic biosensor. Sensors and Actuators. B, Chemical. 2007;127(2):525–530. doi: 10.1016/j.snb.2007.05.012. [DOI] [Google Scholar]
- Wei X, Zheng L, Luo F, Lin Z, Guo L, Qiu B, Chen G. Fluorescence biosensor for the H5N1 antibody based on a metal-organic framework platform. Journal of Materials Chemistry. B, Materials for Biology and Medicine. 2013;1(13):1812–1817. doi: 10.1039/c3tb00501a. [DOI] [PubMed] [Google Scholar]
- Weile J, Knabbe C. Current applications and future trends of molecular diagnostics in clinical bacteriology. Analytical and Bioanalytical Chemistry. 2009;394(3):731–742. doi: 10.1007/s00216-009-2779-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wen N, Liu H, Fu Y, Wang C. Optimization and influence mechanism of sampling and analysis of airborne endotoxin based on limulus amebocyte lysate assay. Aerosol and Air Quality Research. 2017;17(4):1000–1010. doi: 10.4209/aaqr.2016.05.0184. [DOI] [Google Scholar]
- Wu K, Ma C, Zhao H, Chen M, Deng Z. Sensitive aptamer-based fluorescene assay for ochratoxin A based on RNase H signal amplification. Food Chemistry. 2019;277:273–278. doi: 10.1016/j.foodchem.2018.10.130. [DOI] [PubMed] [Google Scholar]
- Wu Z, Zhou C, Chen J, Xiong C, Chen Z, Pang D, Zhang Z. Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. Biosensors & Bioelectronics. 2015;68:586–592. doi: 10.1016/j.bios.2015.01.051. [DOI] [PubMed] [Google Scholar]
- Xiao T, Huang J, Wang D, Meng T, Yang X. Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta. 2020;206:120210. doi: 10.1016/j.talanta.2019.120210. [DOI] [PubMed] [Google Scholar]
- Xie X, Tan F, Xu A, Deng K, Zeng Y, Huang H. UV-induced peroxidase-like activity of gold nanoclusters for differentiating pathogenic bacteria and detection of enterotoxin with colorimetric readout. Sensors and Actuators. B, Chemical. 2019;279:289–297. doi: 10.1016/j.snb.2018.10.019. [DOI] [Google Scholar]
- Xie X, Zhang Z, Ge X, Zhao X, Hao L, Cheng Z, Zhou W, Du Y, Wang L, Tian F, Xu X. Particle self-aligning, focusing, and electric impedance microcytometer device for label-free single cell morphology discrimination and Yeast budding analysis. ACS analytical chemistry. 2019;91:13398–13406. doi: 10.1021/acs.analchem.9b01509. [DOI] [PubMed] [Google Scholar]
- Xing Y, Zhu Q, Zhou X, Qi P. A dual-functional smartphone-based sensor for colorimetric and chemiluminescent detection: A case study for fluoride concentration mapping. Sensors and Actuators. B, Chemical. 2020;319:128254. doi: 10.1016/j.snb.2020.128254. [DOI] [Google Scholar]
- Xu S, Sharma H, Mutharasan R. Sensitive and selective detection of Mycoplasma in cell culture samples using cantilever sensors. Biotechnology and Bioengineering. 2010;105(6):1069–1077. doi: 10.1002/bit.22637. [DOI] [PubMed] [Google Scholar]
- Xu Y, Xie X, Duan Y, Wang L, Cheng Z, Cheng J. A review of impedance measurements of whole cells. Biosensors & Bioelectronics. 2016;77:824–836. doi: 10.1016/j.bios.2015.10.027. [DOI] [PubMed] [Google Scholar]
- Yadav S K, Agrawal B, Chandra P, Goyal R N. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor. Biosensors & Bioelectronics. 2014;55:337–342. doi: 10.1016/j.bios.2013.12.031. [DOI] [PubMed] [Google Scholar]
- Yan Z, Zhou L, Zhao Y, Wang J, Huang L, Hu K, Liu H, Wang H, Guo Z, Song Y, Huang H, Yang R. Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sensors and Actuators. B, Chemical. 2006;119(2):656–663. doi: 10.1016/j.snb.2006.01.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chemical Society Reviews. 2019;48(6):1465–1491. doi: 10.1039/C7CS00730B. [DOI] [PubMed] [Google Scholar]
- Ye W W, Tsang M K, Liu X, Yang M, Hao J. Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype. Small. 2014;10(12):2390–2397. doi: 10.1002/smll.201303766. [DOI] [PubMed] [Google Scholar]
- Yeh C H, Chang Y H, Chang T C, Lin H P, Lin Y C. Electro-microchip DNA-biosensor for bacteria detection. Analyst (London) 2010;135(10):2717–2722. doi: 10.1039/c0an00186d. [DOI] [PubMed] [Google Scholar]
- Yoo M S, Shin M, Kim Y, Jang M, Choi Y E, Park S J, Choi J, Lee J, Park C. Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere. 2017;175:269–274. doi: 10.1016/j.chemosphere.2017.02.060. [DOI] [PubMed] [Google Scholar]
- Yu P, Zhu J, Zhang Z, Han Y. A familial cluster of infection associated with the 2019 novel coronavirus indicating possible person-to-person transmission during the incubation period. Journal of Infectious Diseases. 2020;221(11):1757–1761. doi: 10.1093/infdis/jiaa077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu X, Chen F, Wang R, Li Y. Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. Journal of Biotechnology. 2018;266:39–49. doi: 10.1016/j.jbiotec.2017.12.011. [DOI] [PubMed] [Google Scholar]
- Yu Y, Chen Z, Jian W, Sun D, Zhang B, Li X, Yao M. Ultrasensitive electrochemical detection of avian influenza A (H7N9) virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires. Biosensors & Bioelectronics. 2015;64:566–571. doi: 10.1016/j.bios.2014.09.080. [DOI] [PubMed] [Google Scholar]
- Yuan R, Ding S, Yan Y, Zhang Y, Zhang Y, Cheng W. A facile and pragmatic electrochemical biosensing strategy for ultrasensitive detection of DNA in real sample based on defective T junction induced transcription amplification. Biosensors & Bioelectronics. 2016;77:19–25. doi: 10.1016/j.bios.2015.09.009. [DOI] [PubMed] [Google Scholar]
- Zeinoddini M, Azizi A, Bayat S, Tavasoli Z. Localized surface plasmon resonance (LSPR) detection of diphtheria toxoid using gold nanoparticle-monoclonal antibody conjugates. Plasmonics. 2018;13(2):583–590. doi: 10.1007/s11468-017-0548-7. [DOI] [Google Scholar]
- Zhang G, Zhang L, Huang M J, Luo Z H H, Tay G K I, Lim E J A, Kang T G, Chen Y. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensors and Actuators. B, Chemical. 2010;146(1):138–144. doi: 10.1016/j.snb.2010.02.021. [DOI] [Google Scholar]
- Zhang J, Huang J, He F. The construction of Mycobacterium tuberculosis 16S rDNA MSPQC sensor based on Exonuclease III-assisted cyclic signal amplification. Biosensors & Bioelectronics. 2019;138:111322. doi: 10.1016/j.bios.2019.111322. [DOI] [PubMed] [Google Scholar]
- Zhang X, Feng Y, Duan S, Su L, Zhang J, He F. Mycobacterium tuberculosis strain H37Rv electrochemical sensor mediated by aptamer and AuNPs-DNA. ACS Sensors. 2019;4(4):849–855. doi: 10.1021/acssensors.8b01230. [DOI] [PubMed] [Google Scholar]
- Zhang X, Feng Y, Yao Q, He F. Selection of a new Mycobacterium tuberculosis H37Rv aptamer and its application in the construction of a SWCNT/aptamer/Au-IDE MSPQC H37Rv sensor. Biosensors & Bioelectronics. 2017;98:261–266. doi: 10.1016/j.bios.2017.05.043. [DOI] [PubMed] [Google Scholar]
- Zhang Y, Lai B S, Juhas M. Recent advances in aptamer discovery and applications. Molecules (Basel, Switzerland) 2019;24(5):941. doi: 10.3390/molecules24050941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng L, Cai G, Wang S, Liao M, Li Y, Lin J. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157: H7 using gold nanoparticle aggregation and smart phone imaging. Biosensors & Bioelectronics. 2019;124–125:143–149. doi: 10.1016/j.bios.2018.10.006. [DOI] [PubMed] [Google Scholar]
- Zheng Y, Chen H, Yao M, Li X. Bacterial pathogens were detected from human exhaled breath using a novel protocol. Journal of Aerosol Science. 2018;117:224–234. doi: 10.1016/j.jaerosci.2017.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziółlkowski R, Jarczewska M, Drozd M, Zasada A A, Malinowska E. Studies on the development of electrochemical immunosensor for detection of diphtheria toxoid. Journal of the Electrochemical Society. 2019;166(6):B472–B481. doi: 10.1149/2.1091906jes. [DOI] [Google Scholar]
- Zuser K, Ettenauer J, Kellner K, Posnicek T, Mazza G, Brandl M. A sensitive voltammetric biosensor for Escherichia coli detection using an electroactive substrate for beta-D-glucuronidase. IEEE Sensors Journal. 2019;19(18):7789–7802. doi: 10.1109/JSEN.2019.2917883. [DOI] [Google Scholar]
