Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2021 Apr 6;11:7532. doi: 10.1038/s41598-021-87136-8

Testing average wind speed using sampling plan for Weibull distribution under indeterminacy

Muhammad Aslam 1,
PMCID: PMC8024277  PMID: 33824362

Abstract

The time truncated plan for the Weibull distribution under the indeterminacy is presented. The plan parameters of the proposed plan are determined by fixing the indeterminacy parameter. The plan parameters are given for various values of indeterminacy parameters. From the results, it can be concluded that the values of sample size reduce as indeterminacy values increase. The application of the proposed plan is given using wind speed data. From the wind speed example, it is concluded that the proposed plan is helpful to test the average wind speed at smaller values of sample size as compared to existing sampling plan.

Subject terms: Climate sciences, Ecology, Mathematics and computing

Introduction

Wind speed is an important parameter of wind energy. The meteorologists are interested to estimate the average wind speed for the next day, next month, or maybe for the next year, see1 for more details. In such a case, the meteorologists are interested to test the null hypothesis that the average wind speed is equal to the specified average speed versus the alternative hypothesis that average wind speed differs significantly. At the time of testing the hypothesis, it may not possible to record the average wind speed for a whole year for example. In this case, a random sample of days can be selected and the average wind speed can be recorded for those selected days only. The null hypothesis can be rejected if the daily average wind speed, say acceptance number of days, is more than or equal to the specified average wind speed during the given number of days. For example, let the specified average wind speed is 7mph and the average wind speed of 30 days is recorded. Let the meteorologists are decided to record the average wind speed for 10 days (acceptance number of days). Based on this information, the null hypothesis that the average wind speed is equal to 7 mph will be rejected if in 30 days, if the daily average wind speed in 10 days is less than 7 mph, otherwise, the alternative hypothesis is accepted. As the decision of daily average wind speed is taken on the basis of sample information, therefore, two types of errors are associated with testing the average wind speed. The probability that rejecting the null hypothesis when it is true is called the type-I error and the probability of accepting it when wrong is known as type-II error. The acceptance sampling plan can help meteorologists to choose the sample size of days and acceptance number of days that minimize both errors. The details about the acceptance sampling plans can be seen in2,3.

The wind speed data is recorded at random and follows the statistical distribution. Among other statistical distributions, the Weibull distribution has been applied widely for estimating and forecasting the wind speed. Akpinar et al.4 presented the statistical study for wind speed data. Yilmaz and Çelik5 discussed the statistical method to estimate wind speed. Ali et al.6 applied the Weibull distribution and Rayleigh distribution for the wind speed data. Arias-Rosales and Osorio-Gómez7 used the statistical analysis for estimating energy cost. The comparisons of wind speed distributions can be seen in811 used the Weibull distribution for modeling wind speed data. Campisi-Pinto et al.12 presented the statistical tests for surface wind speed. ul Haq et al.13 applied the Marshall–Olkin Power Lomax distribution for wind speed estimation. More applications of statistical techniques in analyzing the wind speed data can be read in1417.

For estimating and forecasting, the statistical distributions under classical statistics can only be applied when the observations or the parameters are determined. Usually, the daily wind speed data is recorded in intervals. In this case, the statistical distributions under classical statistics cannot be applied. Alternately, the statistical methods using fuzzy logic can be applied for estimating purposes. Jamkhaneh et al.18 worked on the single sampling plan using a fuzzy approach. Jamkhaneh et al.19 discussed the effect of sampling error on inspection using a fuzzy approach. Sadeghpour Gildeh et al.20 proposed a single plan using fuzzy logic. Afshari and Sadeghpour Gildeh21 proposed the improved sampling plan using fuzzy logic. For details, the reader may refer to22,23.

The neutrosophic logic gives information about the measure of determinacy, and indeterminacy and measure of falseness, see24. Therefore, the neutrosophic logic is more efficient than the fuzzy logic and interval-based analysis. Later on, several authors worked on neutrosophic logic for various real problems and showed its efficiency over fuzzy logic, see, for example2530. The idea of neutrosophic statistics was given using the idea of neutrosophic logic3133. The neutrosophic statistics gives information about the measure of determinacy and measure of indeterminacy, see34. The neutrosophic statistics reduces to classical statistics if no information is recorded about the measure of indeterminacy. References3537 proposed the acceptance sampling plans using the neutrosophic statistics. Aslam et al.38 proposed the time-truncated group plans for the Weibull distribution. Alhasan and Smarandache39 worked on neutrosophic Weibull and neutrosophic family of Weibull distribution.

The existing sampling plans based on classical statistics and fuzzy logic do not give information about the measure of indeterminacy. By exploring the literature and best of our knowledge, there is no work on a time-truncated plan for the neutrosophic Weibull distribution. In this paper, the neutrosophic Weibull distribution is introduced and applied for testing the daily average wind speed. The plan parameters for testing the hypothesis will be determined by minimizing type-I and type-II errors. It is expected that a smaller sample size is needed for testing the average wind speed using the proposed sampling plan.

Methodology

In this section, the Weibull distribution under neutrosophic statistics is introduced. We will also present the design of the sampling scheme plan for testing the average wind speed under an indeterminate environment.

Preliminaries

Suppose that fxN=fxL+fxUIN;INϵIL,IU be a neutrosophic probability density function (npdf) having determinate part fxL, indeterminate part fxUIN and indeterminacy interval INϵIL,IU. Note that xNϵxL,xU be a neutrosophic random variable follows the npdf. The npdf is the generalization of pdf under classical statistics. The proposed neutrosophic form of fxNϵfxL,fxU reduces to pdf under classical statistics when IL=0. Based on this information, the npdf of the Weibull distribution is defined as follows

fxN=βαxNαβ-1e-xNαβ+βαxNαβ-1e-xNαβINp;INIL,IU 1

where α and β are scale and shape parameters, respectively. Note here that the proposed npdf of the Weibull distribution is the generalization of pdf of the Weibull distribution under classical statistics. The neutrosophic form of the npdf of the Weibull distribution reduces to the Weibull distribution when IL=0. The neutrosophic cumulative distribution function (ncdf) of the Weibull distribution is given by

FxN=1-e-xNαβ1+IN+IN;INIL,IU 2

The neutrosophic mean of the Weibull distribution is given by

μN=αΓ1+1/β1+IN;INIL,IU 3

The median life for the neutrosophic Weibull distribution is given by

μ~N=αln21/β1+IN;INIL,IU 4

Methodology

The null and alternative hypotheses for the average wind speed are stated as follows:

H0:μ=μ0Vs.H1:μμ0

where μ is true average wind speed and μ0 is the specified average wind speed. Based on this information, the proposed sampling plan is stated as follows

Step 1 Select a random sample of n number of days and record the daily average speed for these selected days. Specify the number of days, say c, average wind speed μ0 and indeterminacy parameter INϵIL,IU.

Step 2 Accept H0:μ=μ0 if daily average wind speed in c days is more than or equal to μ0, otherwise, reject H0:μ=μ0.

The proposed sampling scheme is characterized by the three parameters n, c and IN, where INϵIL,IU is considered as the specified parameter and set according to the uncertainty level. Suppose that t0=aμ0 be the time in days, where a is the termination ratio. The probability of accepting H0:μ=μ0 is given by

Lp=i=0cnipi1-pn-i 5

where p is the probability of rejecting H0:μ=μ0 and obtained using Eqs. (2) and (3) and defined by

p=1-exp(-aβμ/μ0-βΓ1/β/ββ1+INβ)1+IN+IN 6

where μ/μ0 is the ratio of true average daily wind speed to specified average daily wind speed. Suppose that α and β be type-I and type-II errors. The meteorologists are interested to apply the proposed plan for testing H0:μ=μ0 such that the probability of accepting H0:μ=μ0 when it is true should be larger than 1-α at μ/μ0 and the probability of accepting H0:μ=μ0 when it is wrong should be smaller than β at μ/μ0=1. The plan parameters for testing H0:μ=μ0 will be obtained such that the following two inequalities are satisfied.

Lp1|μ/μ0=1β 7
Lp2|μ/μ01-α 8

where p1 and p2 are defined by

p1=1-exp(-aβΓ1/β/ββ1+INβ)1+IN+IN 9

and

p2=1-exp(-aβμ/μ0-βΓ1/β/ββ1+INβ)1+IN+IN 10

The values of the plan parameters n and c for various values of β, α=0.10, a and IN are placed in Tables 1, 2, 3, 4, 5 and 6. Tables 1 and 2 are shown for the exponential distribution case. For exponential distribution, it can be seen that the values of n decreases as the values of a increases from 0.5 to 1.0. On the other hand for other the same parameters, the values of n decreases as the values of β increases. Note here that the indeterminacy parameter IN also plays a significant role in minimizing the sample size.

Table 1.

The plan parameter when α=0.10;β=1 and a=0.50.

β μ/μ0 IU = 0 IU = 0.02 IU = 0.04 IU = 0.05
n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2
0.25 1.1 1143 438 0.9012 0.2485 1091 433 0.9009 0.2478 1037 426 0.9008 0.2488 1010 422 0.9006 0.2493
1.2 327 122 0.9011 0.2433 318 123 0.9049 0.2444 300 120 0.9014 0.2417 290 118 0.9006 0.2435
1.3 165 60 0.9031 0.2414 159 60 0.9066 0.2451 154 60 0.9034 0.235 151 60 0.9082 0.2426
1.4 104 37 0.9084 0.2474 98 36 0.9026 0.2412 97 37 0.9096 0.2429 93 36 0.9047 0.24
1.5 72 25 0.9064 0.249 72 26 0.914 0.2493 67 25 0.9096 0.2491 66 25 0.9081 0.2438
1.8 37 12 0.9085 0.2465 36 12 0.9037 0.2326 35 12 0.9108 0.2471 34 12 0.9079 0.2369
2 33 10 0.9064 0.1889 32 10 0.9039 0.181 30 10 0.9206 0.2146 29 10 0.929 0.2353
0.1 1.1 1955 741 0.9008 0.0994 1867 733 0.9008 0.0991 1779 723 0.9012 0.0998 1737 718 0.9011 0.0998
1.2 552 202 0.9015 0.0998 525 199 0.9005 0.0996 507 199 0.9024 0.0989 491 196 0.901 0.0994
1.3 277 98 0.9017 0.0979 267 98 0.9052 0.0993 253 96 0.9011 0.0968 246 95 0.9016 0.0984
1.4 175 60 0.9037 0.0972 169 60 0.9034 0.0945 166 61 0.9052 0.0901 155 58 0.9023 0.0973
1.5 126 42 0.9084 0.0975 119 41 0.9036 0.0952 118 42 0.9035 0.0872 110 40 0.9048 0.0986
1.8 65 20 0.9119 0.0975 60 19 0.9023 0.0955 58 19 0.9018 0.0925 57 19 0.9021 0.0918
2 51 15 0.9189 0.0937 49 15 0.9218 0.0956 47 15 0.9262 0.0998 47 15 0.9156 0.0836
0.05 1.1 2544 960 0.9008 0.0499 2428 949 0.9002 0.0495 2311 935 0.9002 0.0498 2260 930 0.9003 0.0496
1.2 722 262 0.9016 0.0495 689 259 0.9009 0.0492 663 258 0.9015 0.0482 639 253 0.9009 0.0499
1.3 363 127 0.9034 0.049 345 125 0.9014 0.0485 333 125 0.9038 0.0482 322 123 0.9035 0.0496
1.4 225 76 0.9019 0.0493 220 77 0.9037 0.0469 210 76 0.9006 0.0452 203 75 0.906 0.0498
1.5 162 53 0.9054 0.0486 156 53 0.9088 0.0494 148 52 0.9058 0.0485 143 51 0.9011 0.0475
1.8 84 25 0.9019 0.0441 81 25 0.9027 0.0432 80 26 0.9214 0.0493 76 25 0.9138 0.0487
2 64 18 0.9018 0.0415 58 17 0.9016 0.0486 56 17 0.9018 0.0472 55 17 0.9025 0.047

Table 2.

The plan parameter when α=0.10;β=1 and a=1.0.

β μ/μ0 IU = 0 IU = 0.02 IU = 0.04 IU = 0.05
n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2
0.25 1.1 749 464 0.9011 0.2481 704 450 0.9001 0.2463 663 437 0.9002 0.2452 632 423 0.9 0.2494
1.2 214 130 0.9054 0.2483 201 126 0.9044 0.2471 192 124 0.9024 0.2382 183 120 0.9008 0.2404
1.3 106 63 0.9017 0.2388 101 62 0.9036 0.239 98 62 0.9043 0.2307 95 61 0.9032 0.2288
1.4 67 39 0.9026 0.2334 63 38 0.908 0.2447 61 38 0.9119 0.2437 57 36 0.906 0.244
1.5 47 27 0.9118 0.2498 46 27 0.9005 0.2177 44 27 0.9188 0.2484 44 27 0.9005 0.2042
1.8 26 14 0.9116 0.2139 25 14 0.9184 0.2218 24 14 0.9268 0.2346 22 13 0.9202 0.2394
2 23 12 0.9281 0.188 20 11 0.9351 0.2311 16 9 0.9174 0.2464 16 9 0.908 0.2189
0.1 1.1 1281 787 0.9013 0.099 1197 759 0.9007 0.0997 1124 735 0.9005 0.0991 1086 721 0.9004 0.0992
1.2 363 217 0.9032 0.097 337 208 0.902 0.0989 319 203 0.9004 0.0955 317 205 0.9062 0.0956
1.3 177 103 0.9007 0.0963 168 101 0.9024 0.0965 158 98 0.9018 0.0958 154 97 0.9022 0.0948
1.4 111 63 0.9031 0.0957 104 61 0.9034 0.0974 101 61 0.9012 0.0884 96 59 0.9032 0.0946
1.5 81 45 0.912 0.0955 75 43 0.9084 0.0959 71 42 0.9076 0.0941 70 42 0.9065 0.0893
1.8 42 22 0.9236 0.0988 39 21 0.9164 0.0945 38 21 0.9118 0.0829 37 21 0.9231 0.0945
2 34 17 0.9247 0.0795 31 16 0.9202 0.0825 28 15 0.9203 0.0924 26 14 0.9071 0.0883
0.05 1.1 1565 989 0.9011 0.0494 1473 960 0.9009 0.0487 1416 937 0.9007 0.0494
1.2 463 275 0.9011 0.0497 437 268 0.9016 0.0495 411 260 0.9008 0.0488 397 255 0.9001 0.0486
1.3 234 135 0.9037 0.0471 218 130 0.905 0.0495 205 126 0.9009 0.0471 197 123 0.9007 0.0481
1.4 146 82 0.9067 0.0476 138 80 0.9048 0.0461 127 76 0.9025 0.048 125 76 0.9044 0.0468
1.5 104 57 0.912 0.0482 101 57 0.908 0.0417 91 53 0.9026 0.0449 91 54 0.9109 0.0453
1.8 53 27 0.913 0.0453 51 27 0.9201 0.0472 48 26 0.9081 0.0403 47 26 0.9147 0.0428
2 39 19 0.9123 0.0454 38 19 0.9066 0.0382 37 19 0.9021 0.0324 34 18 0.9121 0.0445

(-) denotes parameters do not exist.

Table 3.

The plan parameter when α=0.10;β=2 and a=0.50.

β μ/μ0 IU = 0 IU = 0.02 IU = 0.04 IU = 0.05
n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2
0.25 1.1 646 108 0.9008 0.2485 617 109 0.9008 0.2443 573 107 0.901 0.2493 558 107 0.9006 0.2478
1.2 198 31 0.9061 0.2435 181 30 0.9043 0.2496 172 30 0.901 0.2413 167 30 0.9036 0.2461
1.3 110 16 0.9078 0.2224 103 16 0.9141 0.2354 97 16 0.9174 0.2421 94 16 0.9202 0.2482
1.4 66 9 0.9053 0.2382 62 9 0.9085 0.2445 59 9 0.906 0.2374 58 9 0.901 0.2258
1.5 47 6 0.9059 0.2435 45 6 0.9008 0.2305 42 6 0.9064 0.2426 41 6 0.9053 0.2392
1.8 29 3 0.912 0.2144 27 3 0.9157 0.2236 25 3 0.921 0.2378 25 3 0.9143 0.218
2 21 2 0.9232 0.25 20 2 0.9217 0.244 19 2 0.9209 0.2402 19 2 0.9154 0.2229
0.1 1.1 1122 183 0.9006 0.0977 1049 181 0.9008 0.0995 993 181 0.9016 0.0994 967 181 0.9009 0.0981
1.2 327 49 0.9005 0.1 315 50 0.9044 0.0989 298 50 0.9054 0.0991 285 49 0.9003 0.0975
1.3 174 24 0.9023 0.0954 164 24 0.9049 0.0977 155 24 0.9061 0.0983 151 24 0.9054 0.097
1.4 117 15 0.9099 0.0942 110 15 0.9131 0.0977 105 15 0.9079 0.0901 101 15 0.9151 0.0991
1.5 84 10 0.9094 0.0968 79 10 0.9118 0.0994 76 10 0.9034 0.0876 73 10 0.9101 0.0958
1.8 50 5 0.9281 0.098 47 5 0.9295 0.0999 45 5 0.926 0.0929 44 5 0.9246 0.09
2 36 3 0.908 0.0948 34 3 0.9079 0.0941 32 3 0.9091 0.0954 31 3 0.9102 0.0968
0.05 1.1 1467 237 0.9021 0.0492 1370 234 0.9004 0.0495 1297 234 0.9008 0.0492 1257 233 0.901 0.0495
1.2 435 64 0.9016 0.0485 411 64 0.9026 0.0486 383 63 0.901 0.0494 373 63 0.9003 0.0486
1.3 230 31 0.9042 0.0472 218 31 0.9016 0.0449 213 32 0.9044 0.0415 200 31 0.9056 0.0467
1.4 153 19 0.908 0.0457 145 19 0.906 0.0438 142 20 0.9219 0.0473 132 19 0.9141 0.049
1.5 112 13 0.9159 0.0498 106 13 0.915 0.0486 100 13 0.9166 0.0493 98 13 0.9127 0.0458
1.8 64 6 0.9187 0.0468 60 6 0.9213 0.0488 57 6 0.9197 0.0468 55 6 0.9225 0.0493
2 49 4 0.9156 0.048 46 4 0.9172 0.0493 44 4 0.9139 0.0455 44 4 0.9056 0.0381

Table 4.

The plan parameter when α=0.10;β=2 and a=0.10.

β μ/μ0 IU = 0 IU = 0.02 IU = 0.04 IU = 0.05
n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2
0.25 1.1 229 119 0.9104 0.2494 206 112 0.9033 0.2487 190 108 0.9003 0.2476 188 111 0.9044 0.2429
1.2 65 32 0.9026 0.2374 60 31 0.9027 0.2425 59 32 0.9107 0.2423 56 31 0.9063 0.2399
1.3 36 17 0.9207 0.242 35 17 0.9056 0.2027 33 17 0.9174 0.2224 32 17 0.9246 0.2366
1.4 25 11 0.9138 0.1991 23 11 0.9348 0.2492 22 11 0.9346 0.2423 18 9 0.908 0.2397
1.5 17 7 0.9043 0.197 16 7 0.911 0.2072 15 7 0.9202 0.2244 15 7 0.9089 0.194
1.8 11 4 0.9334 0.1844 11 4 0.9184 0.1417 10 4 0.9332 0.1743 9 4 0.9539 0.2495
2 10 3 0.9142 0.109 10 4 0.9742 0.2217 9 3 0.9157 0.1047 9 4 0.9786 0.2495
0.1 1.1 371 189 0.9004 0.0992 352 188 0.9035 0.0994 324 181 0.9003 0.0995 317 181 0.9002 0.0966
1.2 109 52 0.902 0.0956 104 52 0.9022 0.0919 99 52 0.9087 0.0946 97 52 0.9059 0.0888
1.3 56 25 0.9013 0.0915 55 26 0.9151 0.0951 51 25 0.9014 0.0838 51 26 0.9224 0.0982
1.4 38 16 0.9117 0.0872 36 16 0.9163 0.0896 35 16 0.9014 0.0689 35 17 0.935 0.0958
1.5 30 0 0.9254 0.0808 28 12 0.9365 0.0949 27 12 0.9311 0.0818 24 11 0.9294 0.0987
1.8 15 5 0.9172 0.0839 14 5 0.924 0.0916 14 5 0.9053 0.0628 13 5 0.9247 0.0872
2 13 4 0.9343 0.0759 13 4 0.9196 0.0525 12 4 0.9288 0.0614 9 3 0.9085 0.0904
0.05 1.1 494 250 0.9061 0.0496 462 245 0.9056 0.0495 431 239 0.9019 0.0476 416 236 0.9038 0.0488
1.2 146 69 0.9129 0.0497 138 68 0.9018 0.042 129 67 0.9132 0.0486 119 63 0.9016 0.0485
1.3 73 32 0.9021 0.0452 69 32 0.9123 0.0499 66 32 0.9102 0.0454 65 32 0.901 0.038
1.4 49 20 0.9037 0.0389 44 19 0.9066 0.046 42 19 0.9061 0.043 41 19 0.9071 0.0423
1.5 38 15 0.934 0.0462 37 15 0.9201 0.0328 35 15 0.9255 0.0342 30 13 0.9061 0.0393
1.8 22 7 0.9189 0.0277 21 7 0.917 0.0251 20 7 0.9168 0.0234 18 7 0.9474 0.0496
2 20 6 0.9487 0.0243 18 6 0.9616 0.0376 17 6 0.9633 0.0381 16 5 0.9109 0.0161

Table 5.

The plan parameter when α=0.10;β=3 and a=0.50.

β μ/μ0 IU = 0 IU = 0.02 IU = 0.04 IU = 0.05
n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2
0.25 1.1 639 49 0.903 0.246 580 48 0.9005 0.2473 538 48 0.9007 0.2471 518 48 0.9019 0.2491
1.2 190 13 0.9013 0.2489 188 14 0.9116 0.2466 174 14 0.9129 0.249 157 13 0.9023 0.2497
1.3 113 7 0.9187 0.2444 100 7 0.9208 0.2497 97 7 0.9188 0.2436 82 6 0.9002 0.2494
1.4 73 4 0.916 0.2449 68 4 0.9142 0.2395 63 4 0.9144 0.2396 60 4 0.9176 0.2483
1.5 59 3 0.9323 0.2491 55 3 0.9309 0.2436 51 3 0.9308 0.243 49 3 0.9314 0.2446
1.8 32 1 0.9156 0.2306 29 1 0.9185 0.2401 27 1 0.9178 0.2372 26 1 0.9178 0.2371
2 31 1 0.9539 0.2461 29 1 0.953 0.2401 27 1 0.9526 0.2372 26 1 0.9526 0.2371
0.1 1.1 1097 81 0.9002 0.0967 1014 81 0.9032 0.0995 930 80 0.9002 0.0987 896 80 0.9007 0.099
1.2 341 22 0.9051 0.0988 316 22 0.9044 0.0976 293 22 0.9045 0.0973 282 22 0.9054 0.0982
1.3 193 11 0.9151 0.0966 165 10 0.9002 0.0993 153 10 0.9002 0.0988 159 11 0.9169 0.0982
1.4 122 6 0.9035 0.0972 126 7 0.9289 0.0982 104 6 0.9059 0.0999 101 6 0.9028 0.0953
1.5 92 4 0.9075 0.0991 85 4 0.9079 0.0995 79 4 0.9071 0.0979 76 4 0.9074 0.0983
1.8 61 2 0.9345 0.0988 57 2 0.9329 0.0948 53 2 0.9323 0.0932 51 2 0.9325 0.0933
2 45 1 0.9113 0.0945 41 1 0.9135 0.0988 38 1 0.9134 0.0982 37 1 0.9117 0.0947
0.05 1.1 1428 104 0.9023 0.0499 1323 104 0.9015 0.0491 1227 104 0.9017 0.049 1171 103 0.9008 0.0498
1.2 446 28 0.9039 0.0493 414 28 0.9016 0.0474 384 28 0.9014 0.047 369 28 0.9038 0.0485
1.3 239 13 0.9032 0.0496 221 13 0.9037 0.0498 205 13 0.9034 0.0493 198 13 0.9019 0.048
1.4 167 8 0.9116 0.0483 154 8 0.913 0.0493 143 8 0.9123 0.0484 138 8 0.9116 0.0477
1.5 121 5 0.903 0.0491 112 5 0.9028 0.0487 104 5 0.9021 0.0479 100 5 0.9027 0.0483
1.8 72 2 0.9037 0.0492 67 2 0.9023 0.0476 62 2 0.9025 0.0476 60 2 0.9014 0.0464
2 72 2 0.954 0.0492 67 2 0.9533 0.0476 64 2 0.9496 0.0408 61 2 0.9509 0.0428

Table 6.

The plan parameter when α=0.10;β=3 and a=0.10.

β μ/μ0 IU = 0 IU = 0.02 IU = 0.04 IU = 0.05
n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2
0.25 1.1 106 50 0.9023 0.2486 104 52 0.9016 0.2298 92 49 0.9035 0.2472 90 51 0.9085 0.2406
1.2 35 15 0.904 0.2157 35 16 0.9109 0.2045 33 16 0.9099 0.1972 28 14 0.9008 0.2192
1.3 18 7 0.9041 0.216 17 7 0.9007 0.2045 16 7 0.9001 0.1986 15 7 0.9183 0.2385
1.4 14 5 0.9223 0.1919 13 5 0.9256 0.1969 10 4 0.9054 0.2146 12 5 0.921 0.1773
1.5 9 3 0.9267 0.2358 9 3 0.9081 0.1803 8 3 0.9238 0.218 8 3 0.9149 0.1903
1.8 7 2 0.9628 0.2115 7 2 0.9547 0.1651 4 1 0.9112 0.2115 4 1 0.9052 0.1915
2 5 1 0.9391 0.176 5 1 0.93 0.1405 4 1 0.9486 0.2115 4 1 0.9449 0.1915
0.1 1.1 183 84 0.9032 0.0987 168 82 0.9003 0.0976 158 82 0.9043 0.0978 159 85 0.9093 0.0926
1.2 56 23 0.9011 0.0895 52 23 0.9117 0.0991 47 22 0.9037 0.0959 48 23 0.9008 0.0805
1.3 32 12 0.9215 0.0892 28 11 0.9038 0.0836 29 12 0.9028 0.0617 23 10 0.9023 0.0983
1.4 21 7 0.9149 0.0809 17 6 0.9011 0.0949 18 7 0.9255 0.0905 18 7 0.9114 0.0692
1.5 17 5 0.9132 0.0617 16 5 0.9105 0.0566 14 5 0.9342 0.087 14 5 0.9238 0.0685
1.8 12 3 0.9596 0.0644 11 3 0.9621 0.0688 10 3 0.9658 0.0775 8 2 0.9134 0.0566
2 11 2 0.9394 0.0284 10 2 0.943 0.0313 8 2 0.9628 0.0686 5 1 0.9144 0.0953
0.05 1.1 236 107 0.9001 0.0489 226 109 0.9015 0.0447 212 109 0.9113 0.0482 195 103 0.9006 0.0483
1.2 72 29 0.9005 0.0452 65 28 0.9012 0.0489 61 28 0.9034 0.0479 59 28 0.9072 0.0491
1.3 39 14 0.9049 0.0424 36 14 0.9152 0.0483 34 14 0.9111 0.0426 33 14 0.9104 0.0408
1.4 28 9 0.9142 0.0352 26 9 0.9179 0.0362 24 9 0.9255 0.0402 21 8 0.9098 0.0437
1.5 20 6 0.9307 0.0486 20 6 0.9042 0.026 18 6 0.9206 0.0351 17 6 0.93 0.0423
1.8 14 3 0.9321 0.0244 12 3 0.9486 0.0409 11 3 0.9519 0.0441 11 3 0.946 0.0345
2 11 2 0.9394 0.0284 10 2 0.943 0.0313 9 2 0.9482 0.0367 9 2 0.9432 0.0292

Comparative study

In this section, the efficiency of the proposed plan is discussed in terms of sample size. The smaller the sample size means that less cost is needed for testing the hypothesis about the daily average wind speed. Note here that the proposed sampling plan is the generalization of the plan under classical statistics when no uncertainty/indeterminacy is found in recording the daily average wind speed. The proposed sampling plan reduces to the existing sampling plan when IN=0. The first column in Tables 1, 2, 3, 4, 5 and 6 presents the plan parameters under the classical statistics. From Tables 1, 2, 3, 4, 5 and 6, it can be noted that the values of the sample size required for testing H0:μ=μ0 decreasing as the indeterminacy parameter IN increases. For example, when μ/μ0=1.1 and a=0.5 from Table 1, it can be seen that n=1143 from the plan under classical statistics and n=1010 for the proposed sampling plan when IN=0.05. From the study, it is concluded that the proposed plan under indeterminacy is efficient in sample size as compared to the existing sampling plan under classical statistics. Therefore, the application of the proposed plan for testing the null hypothesis H0:μ=μ0 requires a smaller sample as compared to the existing plan. The meteorologist can apply the proposed plan under uncertainty with fewer effort and time.

Application for wind speed data

The application of the proposed sampling plan will be discussed using wind speed data. The wind speed is a big and important source of energy. Due to the randomness and uncertainty, the wind speed data follows the statistical distribution under neutrosophic statistics. The meteorologists are interested to see the daily average wind speed under indeterminacy. The average wind speed data of Cairo city is taken from40 and shown in Table 7. It is found that the wind speed data follows the Weibull distribution with shape parameter β^= 2.7857 and scale parameter α=8.05. The plan parameters for this shape parameter are shown in Tables 8 and 9. For the proposed plan, the shape parameter is β^N=(1+0.02)×2.78573 when IU=0.02. Suppose that meteorologists are interested to test H0:μ=7.15 with the aid of the proposed sampling plan when IU=0.02, α~=0.10, μ/μ0=1.3, a=0.5 and β~=0.25. From Table 5, it can be noted that n=100 and c=7. The proposed sampling plan will be implemented as: accept the null hypothesis H0:μ=7.15 if average daily speed in 7 days is more than equal to 7.15mph. From the data, it can be noted average daily wind speed is more than equal to 7.15mph in more than 7 days, therefore, the claim about the average daily wind speed H0:μ=7.15 will be accepted. From the real example, it is concluded that the proposed sampling will be helpful to check the daily average wind speed.

Table 7.

The daily average wind speed data.

2.7 4.2 4.9 5.4 5.7 6.8 7.5 8.6 9.5 11.1
3.1 4.2 4.9 5.4 5.8 6.8 7.6 8.7 9.6 11.3
3.2 4.3 4.9 5.4 5.8 6.8 7.6 8.8 9.8 12
3.2 4.3 5 5.5 6 6.8 7.7 8.9 9.8 12.2
3.3 4.3 5 5.5 6.1 6.9 7.8 9.3 9.9 12.4
3.5 4.5 5.1 5.6 6.3 7.1 7.9 9.3 10 12.5
3.5 4.7 5.2 5.6 6.4 7.3 8 9.3 10.1 13.3
3.8 4.7 5.2 5.6 6.6 7.3 8 9.4 10.3 13.8
3.8 4.8 5.3 5.7 6.7 7.3 8.2 9.4 10.6 14.4
3.8 4.9 5.4 5.7 6.7 7.4 8.2 9.4 10.7 14.7

Table 8.

The plan parameter when α=0.10;β=2.7857 and a=0.50.

β μ/μ0 IU = 0 IU = 0.02 IU = 0.04 IU = 0.05
n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2
0.25 1.1 630 57 0.9032 0.2455 585 57 0.9057 0.2499 536 56 0.9029 0.2494 518 56 0.9022 0.2476
1.2 195 16 0.9093 0.2476 171 15 0.9005 0.2495 169 16 0.9093 0.2463 163 16 0.9101 0.2479
1.3 108 8 0.9143 0.2407 100 8 0.912 0.2344 93 8 0.9167 0.2457 90 8 0.9159 0.2431
1.4 74 5 0.9223 0.2418 69 5 0.9215 0.2389 64 5 0.9227 0.2418 62 5 0.9217 0.2387
1.5 51 3 0.9101 0.2393 47 3 0.9123 0.2449 45 3 0.9051 0.225 42 3 0.9138 0.2482
1.8 40 2 0.9532 0.2253 36 2 0.9568 0.244 34 2 0.9552 0.2347 22 1 0.9012 0.245
2 27 1 0.9376 0.2347 25 1 0.938 0.2358 23 1 0.9392 0.2408 22 1 0.9402 0.245
0.1 1.1 1064 93 0.9002 0.0992 1000 94 0.902 0.0983 922 93 0.9005 0.0986 890 93 0.9014 0.0993
1.2 336 26 0.9083 0.0992 302 25 0.9006 0.0989 281 25 0.9016 0.0995 281 26 0.9086 0.0983
1.3 176 12 0.9039 0.0983 164 12 0.9027 0.0964 152 12 0.9054 0.0993 147 12 0.9045 0.0979
1.4 116 7 0.9031 0.0988 108 7 0.9024 0.0975 101 7 0.9005 0.0945 97 7 0.9028 0.0973
1.5 91 5 0.9161 0.0997 85 5 0.9145 0.0968 79 5 0.915 0.0972 76 5 0.9161 0.0987
1.8 52 2 0.9121 0.0982 49 2 0.9092 0.0927 45 2 0.9119 0.097 44 2 0.9092 0.0921
2 52 2 0.956 0.0982 49 2 0.9544 0.0927 45 2 0.9559 0.097 44 2 0.9544 0.0921
0.05 1.1 1404 121 0.9011 0.049 1295 120 0.9006 0.0496 1216 121 0.9023 0.0491 1165 120 0.9009 0.0493
1.2 438 33 0.9061 0.049 396 32 0.9009 0.0499 369 32 0.9004 0.0493 356 32 0.9013 0.0497
1.3 228 15 0.9001 0.0495 223 16 0.9138 0.0495 209 16 0.9099 0.0461 201 16 0.9123 0.0478
1.4 155 9 0.9029 0.0482 144 9 0.9032 0.0481 134 9 0.9034 0.048 129 9 0.9047 0.0489
1.5 116 6 0.9062 0.0498 108 6 0.9055 0.0489 101 6 0.9037 0.0471 97 6 0.9057 0.0486
1.8 76 3 0.9318 0.048 71 3 0.9307 0.0464 66 3 0.9309 0.0464 63 3 0.9331 0.0491
2 62 2 0.9325 0.0464 57 2 0.9341 0.0485 54 2 0.9312 0.0442 52 2 0.9315 0.0445

Table 9.

The plan parameter when α=0.10;β=2.7857 and a=0.10.

β μ/μ0 Alpha = 0.10; b = 2.7857; a = 1.0
IU = 0 IU = 0.02 IU = 0.04 IU = 0.05
n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2 n c Lp1 Lp2
0.25 1.1 123 59 0.9028 0.2445 112 57 0.9023 0.2498 104 56 0.9022 0.2494 103 57 0.9045 0.2448
1.2 36 16 0.9055 0.2485 34 16 0.9043 0.2413 34 17 0.9127 0.234 31 16 0.9116 0.2492
1.3 26 11 0.9475 0.2295 23 10 0.9262 0.1966 19 9 0.9334 0.2499 17 8 0.9075 0.2198
1.4 16 6 0.9251 0.1925 15 6 0.9266 0.1922 14 6 0.9306 0.1983 13 6 0.9464 0.2486
1.5 12 4 0.9156 0.1663 11 4 0.9237 0.1825 10 4 0.9343 0.2093 10 4 0.9256 0.1807
1.8 7 2 0.9475 0.2028 7 2 0.937 0.1594 6 2 0.9518 0.2141 6 2 0.9473 0.1911
2 5 1 0.9191 0.1694 4 1 0.9407 0.2481 4 1 0.9325 0.208 4 1 0.928 0.189
0.1 1.1 214 100 0.9024 0.0925 201 100 0.9121 0.0997 179 94 0.901 0.0973 174 94 0.9032 0.0971
1.2 66 28 0.9087 0.0883 62 28 0.9117 0.0887 56 27 0.9168 0.0999 53 26 0.9019 0.0883
1.3 34 13 0.9037 0.0843 32 13 0.9033 0.081 30 13 0.9073 0.0822 29 13 0.911 0.0847
1.4 23 8 0.91 0.0812 21 8 0.924 0.0985 20 8 0.9188 0.0868 20 8 0.9034 0.066
1.5 19 6 0.9184 0.0652 17 6 0.9359 0.0891 17 6 0.9127 0.054 16 6 0.9252 0.067
1.8 11 3 0.9544 0.0952 11 3 0.9428 0.0651 10 3 0.9489 0.0749 10 3 0.943 0.0613
2 9 2 0.9476 0.076 9 2 0.9372 0.0529 8 2 0.9456 0.0664 8 2 0.9406 0.0552
0.05 1.1 268 124 0.9001 0.0495 259 127 0.901 0.0441 240 125 0.9091 0.0487 228 122 0.9052 0.0483
1.2 84 35 0.9081 0.0452 77 34 0.9028 0.0439 72 34 0.9138 0.049 68 33 0.9101 0.0494
1.3 45 17 0.9159 0.0451 42 17 0.9215 0.0476 40 17 0.9136 0.039 39 17 0.9106 0.0358
1.4 29 10 0.921 0.0493 28 10 0.9056 0.0354 26 10 0.9134 0.0387 25 10 0.9187 0.0416
1.5 23 7 0.9125 0.0342 21 7 0.9241 0.0418 20 7 0.9186 0.0352 19 7 0.9275 0.0416
1.8 13 3 0.9201 0.0366 12 3 0.9235 0.0384 11 3 0.929 0.0423 11 3 0.9212 0.0334
2 10 2 0.9305 0.045 13 3 0.9575 0.0222 9 2 0.9252 0.0353 9 2 0.9186 0.0283

Concluding remarks

The time truncated plan for the Weibull distribution under the indeterminacy was presented. The plan parameters of the proposed plan were determined by fixing the indeterminacy parameter. The plan parameters were given for various values of indeterminacy parameters, shape parameter, and scale parameter. Several tables for the application of the proposed plan are given. The application of the proposed plan was given with the help of daily average wind speed. The testing of the hypothesis was done to test the average daily wind speed. From the study, it is concluded that the indeterminacy parameter plays a significant role in fixing the plan parameters. The less sample size is needed as the indeterminacy parameter increased. In addition, it is found that the proposed plan is efficient than the existing sampling plan in terms of sample size. To save time, efforts, and energy, it is recommended to apply the proposed plan for testing the average wind speed. The proposed plan can be applied in metrology, oceanography, and thermodynamics. The proposed plan can be applied for testing big data from oceanography as future research. By following41,42, the software for goodness of fit tests using the npdf in Eq. (1) can be developed as future research.

Acknowledgements

The author is deeply thankful to the editor and reviewers for their valuable suggestions to improve the quality of the paper.

Author contributions

M.A wrote the paper.

Data availability

The data is given in the paper.

Competing interests

The author declares no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Ajayi OO, Fagbenle RO, Katende J, Aasa SA, Okeniyi JO. Wind profile characteristics and turbine performance analysis in Kano, north-western Nigeria. Int. J. Energy Environ. Eng. 2013;4:1–15. doi: 10.1186/2251-6832-4-27. [DOI] [Google Scholar]
  • 2.Yan A, Liu S, Dong X. Variables two stage sampling plans based on the coefficient of variation. J. Adv. Mech. Des. Syst. Manuf. 2016;10:JAMDSM0002. doi: 10.1299/jamdsm.2016jamdsm0002. [DOI] [Google Scholar]
  • 3.Yen C-H, Lee C-C, Lo K-H, Shiue Y-R, Li S-H. A rectifying acceptance sampling plan based on the process capability index. Mathematics. 2020;8:141. doi: 10.3390/math8010141. [DOI] [Google Scholar]
  • 4.Akpinar EK, Akpinar S. A statistical analysis of wind speed data used in installation of wind energy conversion systems. Energy Convers. Manag. 2005;46:515–532. doi: 10.1016/j.enconman.2004.05.002. [DOI] [Google Scholar]
  • 5.Yilmaz V, Çelik HE. A statistical approach to estimate the wind speed distribution: the case of Gelibolu region. Doğuş Üniversitesi Dergisi. 2011;9:122–132. [Google Scholar]
  • 6.Ali S, Lee S-M, Jang C-M. Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island-Incheon, South Korea. Renew. Energy. 2018;123:652–663. doi: 10.1016/j.renene.2018.02.087. [DOI] [Google Scholar]
  • 7.Arias-Rosales A, Osorio-Gómez G. Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy. Appl. Energy. 2018;228:980–998. doi: 10.1016/j.apenergy.2018.06.103. [DOI] [Google Scholar]
  • 8.Akgül, F. G. & Şenoğlu, B. Comparison of wind speed distributions: a case study for Aegean coast of Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18 (2019).
  • 9.Ozay C, Celiktas MS. Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region. Energy Convers. Manag. 2016;121:49–54. doi: 10.1016/j.enconman.2016.05.026. [DOI] [Google Scholar]
  • 10.Qing X. Statistical analysis of wind energy characteristics in Santiago island, Cape Verde. Renew. Energy. 2018;115:448–461. doi: 10.1016/j.renene.2017.08.077. [DOI] [Google Scholar]
  • 11.Mahmood FH, Resen AK, Khamees AB. Wind Characteristic Analysis Based on Weibull Distribution of Al-Salman site. Iraq; 2019. [Google Scholar]
  • 12.Campisi-Pinto S, Gianchandani K, Ashkenazy Y. Statistical tests for the distribution of surface wind and current speeds across the globe. Renew. Energy. 2020;149:861–876. doi: 10.1016/j.renene.2019.12.041. [DOI] [Google Scholar]
  • 13.ul Haq MA, Rao GS, Albassam M, Aslam M. Marshall-Olkin Power Lomax distribution for modeling of wind speed data. Energy Rep. 2020;6:1118–1123. doi: 10.1016/j.egyr.2020.04.033. [DOI] [Google Scholar]
  • 14.Bludszuweit H, Domínguez-Navarro JA, Llombart A. Statistical analysis of wind power forecast error. IEEE Trans. Power Syst. 2008;23:983–991. doi: 10.1109/TPWRS.2008.922526. [DOI] [Google Scholar]
  • 15.Brano VL, Orioli A, Ciulla G, Culotta S. Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renew. Energy. 2011;36:1026–1039. doi: 10.1016/j.renene.2010.09.009. [DOI] [Google Scholar]
  • 16.Katinas V, Gecevicius G, Marciukaitis M. An investigation of wind power density distribution at location with low and high wind speeds using statistical model. Appl. Energy. 2018;218:442–451. doi: 10.1016/j.apenergy.2018.02.163. [DOI] [Google Scholar]
  • 17.Zaman B, Lee MH, Riaz M. An improved process monitoring by mixed multivariate memory control charts: an application in wind turbine field. Comput. Ind. Eng. 2020;142:106343. doi: 10.1016/j.cie.2020.106343. [DOI] [Google Scholar]
  • 18.Jamkhaneh EB, Sadeghpour-Gildeh B, Yari G. Important criteria of rectifying inspection for single sampling plan with fuzzy parameter. Int. J. Contemp. Math. Sci. 2009;4:1791–1801. [Google Scholar]
  • 19.Jamkhaneh EB, Sadeghpour-Gildeh B, Yari G. Inspection error and its effects on single sampling plans with fuzzy parameters. Struct. Multidiscip. Optim. 2011;43:555–560. doi: 10.1007/s00158-010-0579-6. [DOI] [Google Scholar]
  • 20.Sadeghpour Gildeh B, Baloui Jamkhaneh E, Yari G. Acceptance single sampling plan with fuzzy parameter. Iran. J. Fuzzy Syst. 2011;8:47–55. [Google Scholar]
  • 21.Afshari R, Sadeghpour Gildeh B. Designing a multiple deferred state attribute sampling plan in a fuzzy environment. Am. J. Math. Manag. Sci. 2017;36:328–345. [Google Scholar]
  • 22.Tong X, Wang Z. Fuzzy acceptance sampling plans for inspection of geospatial data with ambiguity in quality characteristics. Comput. Geosci. 2012;48:256–266. doi: 10.1016/j.cageo.2012.01.013. [DOI] [Google Scholar]
  • 23.Uma G, Ramya K. Impact of fuzzy logic on acceptance sampling plans–a review. Autom. Auton. Syst. 2015;7:181–185. [Google Scholar]
  • 24.Smarandache, F. Neutrosophy. Neutrosophic probability, set, and logic, proquest information & learning. Ann Arbor, Michigan, USA105, 118–123 (1998).
  • 25.Smarandache, F. & Khalid, H. E. Neutrosophic Precalculus and Neutrosophic Calculus. (Infinite Study, 2015).
  • 26.Peng X, Dai J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput. Appl. 2018;29:939–954. doi: 10.1007/s00521-016-2607-y. [DOI] [Google Scholar]
  • 27.Abdel-Basset M, Mohamed M, Elhoseny M, Chiclana F, Zaied AE-NH. Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artif. Intell. Med. 2019;101:101735. doi: 10.1016/j.artmed.2019.101735. [DOI] [PubMed] [Google Scholar]
  • 28.Nabeeh NA, Smarandache F, Abdel-Basset M, El-Ghareeb HA, Aboelfetouh A. An integrated neutrosophic-topsis approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access. 2019;7:29734–29744. doi: 10.1109/ACCESS.2019.2899841. [DOI] [Google Scholar]
  • 29.Pratihar, J., Kumar, R., Dey, A. & Broumi, S. In Neutrosophic Graph Theory and Algorithms 180–212 (IGI Global, 2020).
  • 30.Pratihar J, Kumar R, Edalatpanah S, Dey A. Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex Intell. Syst. 2020;7:1–12. [Google Scholar]
  • 31.Smarandache, F. Introduction to neutrosophic statistics. (Infinite Study, 2014).
  • 32.Chen J, Ye J, Du S. Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry. 2017;9:208. doi: 10.3390/sym9100208. [DOI] [Google Scholar]
  • 33.Chen J, Ye J, Du S, Yong R. Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry. 2017;9:123. doi: 10.3390/sym9070123. [DOI] [Google Scholar]
  • 34.Aslam M. Introducing Kolmogorov–Smirnov tests under uncertainty: an application to radioactive data. ACS Omega. 2019;5:9914–9917. doi: 10.1021/acsomega.9b03940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Aslam M. A new sampling plan using neutrosophic process loss consideration. Symmetry. 2018;10:132. doi: 10.3390/sym10050132. [DOI] [Google Scholar]
  • 36.Aslam M. Design of sampling plan for exponential distribution under neutrosophic statistical interval method. IEEE Access. 2018;6:64153–64158. doi: 10.1109/ACCESS.2018.2877923. [DOI] [Google Scholar]
  • 37.Aslam M. A new attribute sampling plan using neutrosophic statistical interval method. Complex Intell. Syst. 2019;11:1–6. [Google Scholar]
  • 38.Aslam M, Jeyadurga P, Balamurali S, Marshadi AH. Time-Truncated Group Plan under a Weibull Distribution based on Neutrosophic Statistics. Mathematics. 2019;7:905. doi: 10.3390/math7100905. [DOI] [Google Scholar]
  • 39.Alhasan, K. F. H. & Smarandache, F. Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution. (Infinite Study, 2019).
  • 40.Cheema AN, Aslam M, Almanjahie IM, Ahmad I. Mixture modeling of exponentiated pareto distribution in bayesian framework with applications of wind-speed and tensile strength of carbon fiber. IEEE Access. 2020;8:178514–178525. doi: 10.1109/ACCESS.2020.3027369. [DOI] [Google Scholar]
  • 41.Deep S, Sarkar A, Ghawat M, Rajak MK. Estimation of the wind energy potential for coastal locations in India using the Weibull model. Renew. Energy. 2020;161:319–339. doi: 10.1016/j.renene.2020.07.054. [DOI] [Google Scholar]
  • 42.Gugliani G, Sarkar A, Ley C, Mandal S. New methods to assess wind resources in terms of wind speed, load, power and direction. Renew. Energy. 2018;129:168–182. doi: 10.1016/j.renene.2018.05.088. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The data is given in the paper.


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES