Abstract
The time truncated plan for the Weibull distribution under the indeterminacy is presented. The plan parameters of the proposed plan are determined by fixing the indeterminacy parameter. The plan parameters are given for various values of indeterminacy parameters. From the results, it can be concluded that the values of sample size reduce as indeterminacy values increase. The application of the proposed plan is given using wind speed data. From the wind speed example, it is concluded that the proposed plan is helpful to test the average wind speed at smaller values of sample size as compared to existing sampling plan.
Subject terms: Climate sciences, Ecology, Mathematics and computing
Introduction
Wind speed is an important parameter of wind energy. The meteorologists are interested to estimate the average wind speed for the next day, next month, or maybe for the next year, see1 for more details. In such a case, the meteorologists are interested to test the null hypothesis that the average wind speed is equal to the specified average speed versus the alternative hypothesis that average wind speed differs significantly. At the time of testing the hypothesis, it may not possible to record the average wind speed for a whole year for example. In this case, a random sample of days can be selected and the average wind speed can be recorded for those selected days only. The null hypothesis can be rejected if the daily average wind speed, say acceptance number of days, is more than or equal to the specified average wind speed during the given number of days. For example, let the specified average wind speed is 7mph and the average wind speed of 30 days is recorded. Let the meteorologists are decided to record the average wind speed for 10 days (acceptance number of days). Based on this information, the null hypothesis that the average wind speed is equal to 7 mph will be rejected if in 30 days, if the daily average wind speed in 10 days is less than 7 mph, otherwise, the alternative hypothesis is accepted. As the decision of daily average wind speed is taken on the basis of sample information, therefore, two types of errors are associated with testing the average wind speed. The probability that rejecting the null hypothesis when it is true is called the type-I error and the probability of accepting it when wrong is known as type-II error. The acceptance sampling plan can help meteorologists to choose the sample size of days and acceptance number of days that minimize both errors. The details about the acceptance sampling plans can be seen in2,3.
The wind speed data is recorded at random and follows the statistical distribution. Among other statistical distributions, the Weibull distribution has been applied widely for estimating and forecasting the wind speed. Akpinar et al.4 presented the statistical study for wind speed data. Yilmaz and Çelik5 discussed the statistical method to estimate wind speed. Ali et al.6 applied the Weibull distribution and Rayleigh distribution for the wind speed data. Arias-Rosales and Osorio-Gómez7 used the statistical analysis for estimating energy cost. The comparisons of wind speed distributions can be seen in8–11 used the Weibull distribution for modeling wind speed data. Campisi-Pinto et al.12 presented the statistical tests for surface wind speed. ul Haq et al.13 applied the Marshall–Olkin Power Lomax distribution for wind speed estimation. More applications of statistical techniques in analyzing the wind speed data can be read in14–17.
For estimating and forecasting, the statistical distributions under classical statistics can only be applied when the observations or the parameters are determined. Usually, the daily wind speed data is recorded in intervals. In this case, the statistical distributions under classical statistics cannot be applied. Alternately, the statistical methods using fuzzy logic can be applied for estimating purposes. Jamkhaneh et al.18 worked on the single sampling plan using a fuzzy approach. Jamkhaneh et al.19 discussed the effect of sampling error on inspection using a fuzzy approach. Sadeghpour Gildeh et al.20 proposed a single plan using fuzzy logic. Afshari and Sadeghpour Gildeh21 proposed the improved sampling plan using fuzzy logic. For details, the reader may refer to22,23.
The neutrosophic logic gives information about the measure of determinacy, and indeterminacy and measure of falseness, see24. Therefore, the neutrosophic logic is more efficient than the fuzzy logic and interval-based analysis. Later on, several authors worked on neutrosophic logic for various real problems and showed its efficiency over fuzzy logic, see, for example25–30. The idea of neutrosophic statistics was given using the idea of neutrosophic logic31–33. The neutrosophic statistics gives information about the measure of determinacy and measure of indeterminacy, see34. The neutrosophic statistics reduces to classical statistics if no information is recorded about the measure of indeterminacy. References35–37 proposed the acceptance sampling plans using the neutrosophic statistics. Aslam et al.38 proposed the time-truncated group plans for the Weibull distribution. Alhasan and Smarandache39 worked on neutrosophic Weibull and neutrosophic family of Weibull distribution.
The existing sampling plans based on classical statistics and fuzzy logic do not give information about the measure of indeterminacy. By exploring the literature and best of our knowledge, there is no work on a time-truncated plan for the neutrosophic Weibull distribution. In this paper, the neutrosophic Weibull distribution is introduced and applied for testing the daily average wind speed. The plan parameters for testing the hypothesis will be determined by minimizing type-I and type-II errors. It is expected that a smaller sample size is needed for testing the average wind speed using the proposed sampling plan.
Methodology
In this section, the Weibull distribution under neutrosophic statistics is introduced. We will also present the design of the sampling scheme plan for testing the average wind speed under an indeterminate environment.
Preliminaries
Suppose that be a neutrosophic probability density function (npdf) having determinate part , indeterminate part and indeterminacy interval . Note that be a neutrosophic random variable follows the npdf. The npdf is the generalization of pdf under classical statistics. The proposed neutrosophic form of reduces to pdf under classical statistics when . Based on this information, the npdf of the Weibull distribution is defined as follows
| 1 |
where and are scale and shape parameters, respectively. Note here that the proposed npdf of the Weibull distribution is the generalization of pdf of the Weibull distribution under classical statistics. The neutrosophic form of the npdf of the Weibull distribution reduces to the Weibull distribution when . The neutrosophic cumulative distribution function (ncdf) of the Weibull distribution is given by
| 2 |
The neutrosophic mean of the Weibull distribution is given by
| 3 |
The median life for the neutrosophic Weibull distribution is given by
| 4 |
Methodology
The null and alternative hypotheses for the average wind speed are stated as follows:
where is true average wind speed and is the specified average wind speed. Based on this information, the proposed sampling plan is stated as follows
Step 1 Select a random sample of number of days and record the daily average speed for these selected days. Specify the number of days, say , average wind speed and indeterminacy parameter .
Step 2 Accept if daily average wind speed in days is more than or equal to , otherwise, reject .
The proposed sampling scheme is characterized by the three parameters , and , where is considered as the specified parameter and set according to the uncertainty level. Suppose that be the time in days, where is the termination ratio. The probability of accepting is given by
| 5 |
where is the probability of rejecting and obtained using Eqs. (2) and (3) and defined by
| 6 |
where is the ratio of true average daily wind speed to specified average daily wind speed. Suppose that and be type-I and type-II errors. The meteorologists are interested to apply the proposed plan for testing such that the probability of accepting when it is true should be larger than at and the probability of accepting when it is wrong should be smaller than at . The plan parameters for testing will be obtained such that the following two inequalities are satisfied.
| 7 |
| 8 |
where and are defined by
| 9 |
and
| 10 |
The values of the plan parameters and for various values of , , and are placed in Tables 1, 2, 3, 4, 5 and 6. Tables 1 and 2 are shown for the exponential distribution case. For exponential distribution, it can be seen that the values of decreases as the values of increases from 0.5 to 1.0. On the other hand for other the same parameters, the values of decreases as the values of increases. Note here that the indeterminacy parameter also plays a significant role in minimizing the sample size.
Table 1.
The plan parameter when and .
| = 0 | = 0.02 | = 0.04 | = 0.05 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.25 | 1.1 | 1143 | 438 | 0.9012 | 0.2485 | 1091 | 433 | 0.9009 | 0.2478 | 1037 | 426 | 0.9008 | 0.2488 | 1010 | 422 | 0.9006 | 0.2493 |
| 1.2 | 327 | 122 | 0.9011 | 0.2433 | 318 | 123 | 0.9049 | 0.2444 | 300 | 120 | 0.9014 | 0.2417 | 290 | 118 | 0.9006 | 0.2435 | |
| 1.3 | 165 | 60 | 0.9031 | 0.2414 | 159 | 60 | 0.9066 | 0.2451 | 154 | 60 | 0.9034 | 0.235 | 151 | 60 | 0.9082 | 0.2426 | |
| 1.4 | 104 | 37 | 0.9084 | 0.2474 | 98 | 36 | 0.9026 | 0.2412 | 97 | 37 | 0.9096 | 0.2429 | 93 | 36 | 0.9047 | 0.24 | |
| 1.5 | 72 | 25 | 0.9064 | 0.249 | 72 | 26 | 0.914 | 0.2493 | 67 | 25 | 0.9096 | 0.2491 | 66 | 25 | 0.9081 | 0.2438 | |
| 1.8 | 37 | 12 | 0.9085 | 0.2465 | 36 | 12 | 0.9037 | 0.2326 | 35 | 12 | 0.9108 | 0.2471 | 34 | 12 | 0.9079 | 0.2369 | |
| 2 | 33 | 10 | 0.9064 | 0.1889 | 32 | 10 | 0.9039 | 0.181 | 30 | 10 | 0.9206 | 0.2146 | 29 | 10 | 0.929 | 0.2353 | |
| 0.1 | 1.1 | 1955 | 741 | 0.9008 | 0.0994 | 1867 | 733 | 0.9008 | 0.0991 | 1779 | 723 | 0.9012 | 0.0998 | 1737 | 718 | 0.9011 | 0.0998 |
| 1.2 | 552 | 202 | 0.9015 | 0.0998 | 525 | 199 | 0.9005 | 0.0996 | 507 | 199 | 0.9024 | 0.0989 | 491 | 196 | 0.901 | 0.0994 | |
| 1.3 | 277 | 98 | 0.9017 | 0.0979 | 267 | 98 | 0.9052 | 0.0993 | 253 | 96 | 0.9011 | 0.0968 | 246 | 95 | 0.9016 | 0.0984 | |
| 1.4 | 175 | 60 | 0.9037 | 0.0972 | 169 | 60 | 0.9034 | 0.0945 | 166 | 61 | 0.9052 | 0.0901 | 155 | 58 | 0.9023 | 0.0973 | |
| 1.5 | 126 | 42 | 0.9084 | 0.0975 | 119 | 41 | 0.9036 | 0.0952 | 118 | 42 | 0.9035 | 0.0872 | 110 | 40 | 0.9048 | 0.0986 | |
| 1.8 | 65 | 20 | 0.9119 | 0.0975 | 60 | 19 | 0.9023 | 0.0955 | 58 | 19 | 0.9018 | 0.0925 | 57 | 19 | 0.9021 | 0.0918 | |
| 2 | 51 | 15 | 0.9189 | 0.0937 | 49 | 15 | 0.9218 | 0.0956 | 47 | 15 | 0.9262 | 0.0998 | 47 | 15 | 0.9156 | 0.0836 | |
| 0.05 | 1.1 | 2544 | 960 | 0.9008 | 0.0499 | 2428 | 949 | 0.9002 | 0.0495 | 2311 | 935 | 0.9002 | 0.0498 | 2260 | 930 | 0.9003 | 0.0496 |
| 1.2 | 722 | 262 | 0.9016 | 0.0495 | 689 | 259 | 0.9009 | 0.0492 | 663 | 258 | 0.9015 | 0.0482 | 639 | 253 | 0.9009 | 0.0499 | |
| 1.3 | 363 | 127 | 0.9034 | 0.049 | 345 | 125 | 0.9014 | 0.0485 | 333 | 125 | 0.9038 | 0.0482 | 322 | 123 | 0.9035 | 0.0496 | |
| 1.4 | 225 | 76 | 0.9019 | 0.0493 | 220 | 77 | 0.9037 | 0.0469 | 210 | 76 | 0.9006 | 0.0452 | 203 | 75 | 0.906 | 0.0498 | |
| 1.5 | 162 | 53 | 0.9054 | 0.0486 | 156 | 53 | 0.9088 | 0.0494 | 148 | 52 | 0.9058 | 0.0485 | 143 | 51 | 0.9011 | 0.0475 | |
| 1.8 | 84 | 25 | 0.9019 | 0.0441 | 81 | 25 | 0.9027 | 0.0432 | 80 | 26 | 0.9214 | 0.0493 | 76 | 25 | 0.9138 | 0.0487 | |
| 2 | 64 | 18 | 0.9018 | 0.0415 | 58 | 17 | 0.9016 | 0.0486 | 56 | 17 | 0.9018 | 0.0472 | 55 | 17 | 0.9025 | 0.047 | |
Table 2.
The plan parameter when and .
| = 0 | = 0.02 | = 0.04 | = 0.05 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.25 | 1.1 | 749 | 464 | 0.9011 | 0.2481 | 704 | 450 | 0.9001 | 0.2463 | 663 | 437 | 0.9002 | 0.2452 | 632 | 423 | 0.9 | 0.2494 |
| 1.2 | 214 | 130 | 0.9054 | 0.2483 | 201 | 126 | 0.9044 | 0.2471 | 192 | 124 | 0.9024 | 0.2382 | 183 | 120 | 0.9008 | 0.2404 | |
| 1.3 | 106 | 63 | 0.9017 | 0.2388 | 101 | 62 | 0.9036 | 0.239 | 98 | 62 | 0.9043 | 0.2307 | 95 | 61 | 0.9032 | 0.2288 | |
| 1.4 | 67 | 39 | 0.9026 | 0.2334 | 63 | 38 | 0.908 | 0.2447 | 61 | 38 | 0.9119 | 0.2437 | 57 | 36 | 0.906 | 0.244 | |
| 1.5 | 47 | 27 | 0.9118 | 0.2498 | 46 | 27 | 0.9005 | 0.2177 | 44 | 27 | 0.9188 | 0.2484 | 44 | 27 | 0.9005 | 0.2042 | |
| 1.8 | 26 | 14 | 0.9116 | 0.2139 | 25 | 14 | 0.9184 | 0.2218 | 24 | 14 | 0.9268 | 0.2346 | 22 | 13 | 0.9202 | 0.2394 | |
| 2 | 23 | 12 | 0.9281 | 0.188 | 20 | 11 | 0.9351 | 0.2311 | 16 | 9 | 0.9174 | 0.2464 | 16 | 9 | 0.908 | 0.2189 | |
| 0.1 | 1.1 | 1281 | 787 | 0.9013 | 0.099 | 1197 | 759 | 0.9007 | 0.0997 | 1124 | 735 | 0.9005 | 0.0991 | 1086 | 721 | 0.9004 | 0.0992 |
| 1.2 | 363 | 217 | 0.9032 | 0.097 | 337 | 208 | 0.902 | 0.0989 | 319 | 203 | 0.9004 | 0.0955 | 317 | 205 | 0.9062 | 0.0956 | |
| 1.3 | 177 | 103 | 0.9007 | 0.0963 | 168 | 101 | 0.9024 | 0.0965 | 158 | 98 | 0.9018 | 0.0958 | 154 | 97 | 0.9022 | 0.0948 | |
| 1.4 | 111 | 63 | 0.9031 | 0.0957 | 104 | 61 | 0.9034 | 0.0974 | 101 | 61 | 0.9012 | 0.0884 | 96 | 59 | 0.9032 | 0.0946 | |
| 1.5 | 81 | 45 | 0.912 | 0.0955 | 75 | 43 | 0.9084 | 0.0959 | 71 | 42 | 0.9076 | 0.0941 | 70 | 42 | 0.9065 | 0.0893 | |
| 1.8 | 42 | 22 | 0.9236 | 0.0988 | 39 | 21 | 0.9164 | 0.0945 | 38 | 21 | 0.9118 | 0.0829 | 37 | 21 | 0.9231 | 0.0945 | |
| 2 | 34 | 17 | 0.9247 | 0.0795 | 31 | 16 | 0.9202 | 0.0825 | 28 | 15 | 0.9203 | 0.0924 | 26 | 14 | 0.9071 | 0.0883 | |
| 0.05 | 1.1 | – | – | – | – | 1565 | 989 | 0.9011 | 0.0494 | 1473 | 960 | 0.9009 | 0.0487 | 1416 | 937 | 0.9007 | 0.0494 |
| 1.2 | 463 | 275 | 0.9011 | 0.0497 | 437 | 268 | 0.9016 | 0.0495 | 411 | 260 | 0.9008 | 0.0488 | 397 | 255 | 0.9001 | 0.0486 | |
| 1.3 | 234 | 135 | 0.9037 | 0.0471 | 218 | 130 | 0.905 | 0.0495 | 205 | 126 | 0.9009 | 0.0471 | 197 | 123 | 0.9007 | 0.0481 | |
| 1.4 | 146 | 82 | 0.9067 | 0.0476 | 138 | 80 | 0.9048 | 0.0461 | 127 | 76 | 0.9025 | 0.048 | 125 | 76 | 0.9044 | 0.0468 | |
| 1.5 | 104 | 57 | 0.912 | 0.0482 | 101 | 57 | 0.908 | 0.0417 | 91 | 53 | 0.9026 | 0.0449 | 91 | 54 | 0.9109 | 0.0453 | |
| 1.8 | 53 | 27 | 0.913 | 0.0453 | 51 | 27 | 0.9201 | 0.0472 | 48 | 26 | 0.9081 | 0.0403 | 47 | 26 | 0.9147 | 0.0428 | |
| 2 | 39 | 19 | 0.9123 | 0.0454 | 38 | 19 | 0.9066 | 0.0382 | 37 | 19 | 0.9021 | 0.0324 | 34 | 18 | 0.9121 | 0.0445 | |
(-) denotes parameters do not exist.
Table 3.
The plan parameter when and .
| = 0 | = 0.02 | = 0.04 | = 0.05 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.25 | 1.1 | 646 | 108 | 0.9008 | 0.2485 | 617 | 109 | 0.9008 | 0.2443 | 573 | 107 | 0.901 | 0.2493 | 558 | 107 | 0.9006 | 0.2478 |
| 1.2 | 198 | 31 | 0.9061 | 0.2435 | 181 | 30 | 0.9043 | 0.2496 | 172 | 30 | 0.901 | 0.2413 | 167 | 30 | 0.9036 | 0.2461 | |
| 1.3 | 110 | 16 | 0.9078 | 0.2224 | 103 | 16 | 0.9141 | 0.2354 | 97 | 16 | 0.9174 | 0.2421 | 94 | 16 | 0.9202 | 0.2482 | |
| 1.4 | 66 | 9 | 0.9053 | 0.2382 | 62 | 9 | 0.9085 | 0.2445 | 59 | 9 | 0.906 | 0.2374 | 58 | 9 | 0.901 | 0.2258 | |
| 1.5 | 47 | 6 | 0.9059 | 0.2435 | 45 | 6 | 0.9008 | 0.2305 | 42 | 6 | 0.9064 | 0.2426 | 41 | 6 | 0.9053 | 0.2392 | |
| 1.8 | 29 | 3 | 0.912 | 0.2144 | 27 | 3 | 0.9157 | 0.2236 | 25 | 3 | 0.921 | 0.2378 | 25 | 3 | 0.9143 | 0.218 | |
| 2 | 21 | 2 | 0.9232 | 0.25 | 20 | 2 | 0.9217 | 0.244 | 19 | 2 | 0.9209 | 0.2402 | 19 | 2 | 0.9154 | 0.2229 | |
| 0.1 | 1.1 | 1122 | 183 | 0.9006 | 0.0977 | 1049 | 181 | 0.9008 | 0.0995 | 993 | 181 | 0.9016 | 0.0994 | 967 | 181 | 0.9009 | 0.0981 |
| 1.2 | 327 | 49 | 0.9005 | 0.1 | 315 | 50 | 0.9044 | 0.0989 | 298 | 50 | 0.9054 | 0.0991 | 285 | 49 | 0.9003 | 0.0975 | |
| 1.3 | 174 | 24 | 0.9023 | 0.0954 | 164 | 24 | 0.9049 | 0.0977 | 155 | 24 | 0.9061 | 0.0983 | 151 | 24 | 0.9054 | 0.097 | |
| 1.4 | 117 | 15 | 0.9099 | 0.0942 | 110 | 15 | 0.9131 | 0.0977 | 105 | 15 | 0.9079 | 0.0901 | 101 | 15 | 0.9151 | 0.0991 | |
| 1.5 | 84 | 10 | 0.9094 | 0.0968 | 79 | 10 | 0.9118 | 0.0994 | 76 | 10 | 0.9034 | 0.0876 | 73 | 10 | 0.9101 | 0.0958 | |
| 1.8 | 50 | 5 | 0.9281 | 0.098 | 47 | 5 | 0.9295 | 0.0999 | 45 | 5 | 0.926 | 0.0929 | 44 | 5 | 0.9246 | 0.09 | |
| 2 | 36 | 3 | 0.908 | 0.0948 | 34 | 3 | 0.9079 | 0.0941 | 32 | 3 | 0.9091 | 0.0954 | 31 | 3 | 0.9102 | 0.0968 | |
| 0.05 | 1.1 | 1467 | 237 | 0.9021 | 0.0492 | 1370 | 234 | 0.9004 | 0.0495 | 1297 | 234 | 0.9008 | 0.0492 | 1257 | 233 | 0.901 | 0.0495 |
| 1.2 | 435 | 64 | 0.9016 | 0.0485 | 411 | 64 | 0.9026 | 0.0486 | 383 | 63 | 0.901 | 0.0494 | 373 | 63 | 0.9003 | 0.0486 | |
| 1.3 | 230 | 31 | 0.9042 | 0.0472 | 218 | 31 | 0.9016 | 0.0449 | 213 | 32 | 0.9044 | 0.0415 | 200 | 31 | 0.9056 | 0.0467 | |
| 1.4 | 153 | 19 | 0.908 | 0.0457 | 145 | 19 | 0.906 | 0.0438 | 142 | 20 | 0.9219 | 0.0473 | 132 | 19 | 0.9141 | 0.049 | |
| 1.5 | 112 | 13 | 0.9159 | 0.0498 | 106 | 13 | 0.915 | 0.0486 | 100 | 13 | 0.9166 | 0.0493 | 98 | 13 | 0.9127 | 0.0458 | |
| 1.8 | 64 | 6 | 0.9187 | 0.0468 | 60 | 6 | 0.9213 | 0.0488 | 57 | 6 | 0.9197 | 0.0468 | 55 | 6 | 0.9225 | 0.0493 | |
| 2 | 49 | 4 | 0.9156 | 0.048 | 46 | 4 | 0.9172 | 0.0493 | 44 | 4 | 0.9139 | 0.0455 | 44 | 4 | 0.9056 | 0.0381 | |
Table 4.
The plan parameter when and .
| = 0 | = 0.02 | = 0.04 | = 0.05 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.25 | 1.1 | 229 | 119 | 0.9104 | 0.2494 | 206 | 112 | 0.9033 | 0.2487 | 190 | 108 | 0.9003 | 0.2476 | 188 | 111 | 0.9044 | 0.2429 |
| 1.2 | 65 | 32 | 0.9026 | 0.2374 | 60 | 31 | 0.9027 | 0.2425 | 59 | 32 | 0.9107 | 0.2423 | 56 | 31 | 0.9063 | 0.2399 | |
| 1.3 | 36 | 17 | 0.9207 | 0.242 | 35 | 17 | 0.9056 | 0.2027 | 33 | 17 | 0.9174 | 0.2224 | 32 | 17 | 0.9246 | 0.2366 | |
| 1.4 | 25 | 11 | 0.9138 | 0.1991 | 23 | 11 | 0.9348 | 0.2492 | 22 | 11 | 0.9346 | 0.2423 | 18 | 9 | 0.908 | 0.2397 | |
| 1.5 | 17 | 7 | 0.9043 | 0.197 | 16 | 7 | 0.911 | 0.2072 | 15 | 7 | 0.9202 | 0.2244 | 15 | 7 | 0.9089 | 0.194 | |
| 1.8 | 11 | 4 | 0.9334 | 0.1844 | 11 | 4 | 0.9184 | 0.1417 | 10 | 4 | 0.9332 | 0.1743 | 9 | 4 | 0.9539 | 0.2495 | |
| 2 | 10 | 3 | 0.9142 | 0.109 | 10 | 4 | 0.9742 | 0.2217 | 9 | 3 | 0.9157 | 0.1047 | 9 | 4 | 0.9786 | 0.2495 | |
| 0.1 | 1.1 | 371 | 189 | 0.9004 | 0.0992 | 352 | 188 | 0.9035 | 0.0994 | 324 | 181 | 0.9003 | 0.0995 | 317 | 181 | 0.9002 | 0.0966 |
| 1.2 | 109 | 52 | 0.902 | 0.0956 | 104 | 52 | 0.9022 | 0.0919 | 99 | 52 | 0.9087 | 0.0946 | 97 | 52 | 0.9059 | 0.0888 | |
| 1.3 | 56 | 25 | 0.9013 | 0.0915 | 55 | 26 | 0.9151 | 0.0951 | 51 | 25 | 0.9014 | 0.0838 | 51 | 26 | 0.9224 | 0.0982 | |
| 1.4 | 38 | 16 | 0.9117 | 0.0872 | 36 | 16 | 0.9163 | 0.0896 | 35 | 16 | 0.9014 | 0.0689 | 35 | 17 | 0.935 | 0.0958 | |
| 1.5 | 30 | 0 | 0.9254 | 0.0808 | 28 | 12 | 0.9365 | 0.0949 | 27 | 12 | 0.9311 | 0.0818 | 24 | 11 | 0.9294 | 0.0987 | |
| 1.8 | 15 | 5 | 0.9172 | 0.0839 | 14 | 5 | 0.924 | 0.0916 | 14 | 5 | 0.9053 | 0.0628 | 13 | 5 | 0.9247 | 0.0872 | |
| 2 | 13 | 4 | 0.9343 | 0.0759 | 13 | 4 | 0.9196 | 0.0525 | 12 | 4 | 0.9288 | 0.0614 | 9 | 3 | 0.9085 | 0.0904 | |
| 0.05 | 1.1 | 494 | 250 | 0.9061 | 0.0496 | 462 | 245 | 0.9056 | 0.0495 | 431 | 239 | 0.9019 | 0.0476 | 416 | 236 | 0.9038 | 0.0488 |
| 1.2 | 146 | 69 | 0.9129 | 0.0497 | 138 | 68 | 0.9018 | 0.042 | 129 | 67 | 0.9132 | 0.0486 | 119 | 63 | 0.9016 | 0.0485 | |
| 1.3 | 73 | 32 | 0.9021 | 0.0452 | 69 | 32 | 0.9123 | 0.0499 | 66 | 32 | 0.9102 | 0.0454 | 65 | 32 | 0.901 | 0.038 | |
| 1.4 | 49 | 20 | 0.9037 | 0.0389 | 44 | 19 | 0.9066 | 0.046 | 42 | 19 | 0.9061 | 0.043 | 41 | 19 | 0.9071 | 0.0423 | |
| 1.5 | 38 | 15 | 0.934 | 0.0462 | 37 | 15 | 0.9201 | 0.0328 | 35 | 15 | 0.9255 | 0.0342 | 30 | 13 | 0.9061 | 0.0393 | |
| 1.8 | 22 | 7 | 0.9189 | 0.0277 | 21 | 7 | 0.917 | 0.0251 | 20 | 7 | 0.9168 | 0.0234 | 18 | 7 | 0.9474 | 0.0496 | |
| 2 | 20 | 6 | 0.9487 | 0.0243 | 18 | 6 | 0.9616 | 0.0376 | 17 | 6 | 0.9633 | 0.0381 | 16 | 5 | 0.9109 | 0.0161 | |
Table 5.
The plan parameter when and .
| = 0 | = 0.02 | = 0.04 | = 0.05 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.25 | 1.1 | 639 | 49 | 0.903 | 0.246 | 580 | 48 | 0.9005 | 0.2473 | 538 | 48 | 0.9007 | 0.2471 | 518 | 48 | 0.9019 | 0.2491 |
| 1.2 | 190 | 13 | 0.9013 | 0.2489 | 188 | 14 | 0.9116 | 0.2466 | 174 | 14 | 0.9129 | 0.249 | 157 | 13 | 0.9023 | 0.2497 | |
| 1.3 | 113 | 7 | 0.9187 | 0.2444 | 100 | 7 | 0.9208 | 0.2497 | 97 | 7 | 0.9188 | 0.2436 | 82 | 6 | 0.9002 | 0.2494 | |
| 1.4 | 73 | 4 | 0.916 | 0.2449 | 68 | 4 | 0.9142 | 0.2395 | 63 | 4 | 0.9144 | 0.2396 | 60 | 4 | 0.9176 | 0.2483 | |
| 1.5 | 59 | 3 | 0.9323 | 0.2491 | 55 | 3 | 0.9309 | 0.2436 | 51 | 3 | 0.9308 | 0.243 | 49 | 3 | 0.9314 | 0.2446 | |
| 1.8 | 32 | 1 | 0.9156 | 0.2306 | 29 | 1 | 0.9185 | 0.2401 | 27 | 1 | 0.9178 | 0.2372 | 26 | 1 | 0.9178 | 0.2371 | |
| 2 | 31 | 1 | 0.9539 | 0.2461 | 29 | 1 | 0.953 | 0.2401 | 27 | 1 | 0.9526 | 0.2372 | 26 | 1 | 0.9526 | 0.2371 | |
| 0.1 | 1.1 | 1097 | 81 | 0.9002 | 0.0967 | 1014 | 81 | 0.9032 | 0.0995 | 930 | 80 | 0.9002 | 0.0987 | 896 | 80 | 0.9007 | 0.099 |
| 1.2 | 341 | 22 | 0.9051 | 0.0988 | 316 | 22 | 0.9044 | 0.0976 | 293 | 22 | 0.9045 | 0.0973 | 282 | 22 | 0.9054 | 0.0982 | |
| 1.3 | 193 | 11 | 0.9151 | 0.0966 | 165 | 10 | 0.9002 | 0.0993 | 153 | 10 | 0.9002 | 0.0988 | 159 | 11 | 0.9169 | 0.0982 | |
| 1.4 | 122 | 6 | 0.9035 | 0.0972 | 126 | 7 | 0.9289 | 0.0982 | 104 | 6 | 0.9059 | 0.0999 | 101 | 6 | 0.9028 | 0.0953 | |
| 1.5 | 92 | 4 | 0.9075 | 0.0991 | 85 | 4 | 0.9079 | 0.0995 | 79 | 4 | 0.9071 | 0.0979 | 76 | 4 | 0.9074 | 0.0983 | |
| 1.8 | 61 | 2 | 0.9345 | 0.0988 | 57 | 2 | 0.9329 | 0.0948 | 53 | 2 | 0.9323 | 0.0932 | 51 | 2 | 0.9325 | 0.0933 | |
| 2 | 45 | 1 | 0.9113 | 0.0945 | 41 | 1 | 0.9135 | 0.0988 | 38 | 1 | 0.9134 | 0.0982 | 37 | 1 | 0.9117 | 0.0947 | |
| 0.05 | 1.1 | 1428 | 104 | 0.9023 | 0.0499 | 1323 | 104 | 0.9015 | 0.0491 | 1227 | 104 | 0.9017 | 0.049 | 1171 | 103 | 0.9008 | 0.0498 |
| 1.2 | 446 | 28 | 0.9039 | 0.0493 | 414 | 28 | 0.9016 | 0.0474 | 384 | 28 | 0.9014 | 0.047 | 369 | 28 | 0.9038 | 0.0485 | |
| 1.3 | 239 | 13 | 0.9032 | 0.0496 | 221 | 13 | 0.9037 | 0.0498 | 205 | 13 | 0.9034 | 0.0493 | 198 | 13 | 0.9019 | 0.048 | |
| 1.4 | 167 | 8 | 0.9116 | 0.0483 | 154 | 8 | 0.913 | 0.0493 | 143 | 8 | 0.9123 | 0.0484 | 138 | 8 | 0.9116 | 0.0477 | |
| 1.5 | 121 | 5 | 0.903 | 0.0491 | 112 | 5 | 0.9028 | 0.0487 | 104 | 5 | 0.9021 | 0.0479 | 100 | 5 | 0.9027 | 0.0483 | |
| 1.8 | 72 | 2 | 0.9037 | 0.0492 | 67 | 2 | 0.9023 | 0.0476 | 62 | 2 | 0.9025 | 0.0476 | 60 | 2 | 0.9014 | 0.0464 | |
| 2 | 72 | 2 | 0.954 | 0.0492 | 67 | 2 | 0.9533 | 0.0476 | 64 | 2 | 0.9496 | 0.0408 | 61 | 2 | 0.9509 | 0.0428 | |
Table 6.
The plan parameter when and .
| = 0 | = 0.02 | = 0.04 | = 0.05 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.25 | 1.1 | 106 | 50 | 0.9023 | 0.2486 | 104 | 52 | 0.9016 | 0.2298 | 92 | 49 | 0.9035 | 0.2472 | 90 | 51 | 0.9085 | 0.2406 |
| 1.2 | 35 | 15 | 0.904 | 0.2157 | 35 | 16 | 0.9109 | 0.2045 | 33 | 16 | 0.9099 | 0.1972 | 28 | 14 | 0.9008 | 0.2192 | |
| 1.3 | 18 | 7 | 0.9041 | 0.216 | 17 | 7 | 0.9007 | 0.2045 | 16 | 7 | 0.9001 | 0.1986 | 15 | 7 | 0.9183 | 0.2385 | |
| 1.4 | 14 | 5 | 0.9223 | 0.1919 | 13 | 5 | 0.9256 | 0.1969 | 10 | 4 | 0.9054 | 0.2146 | 12 | 5 | 0.921 | 0.1773 | |
| 1.5 | 9 | 3 | 0.9267 | 0.2358 | 9 | 3 | 0.9081 | 0.1803 | 8 | 3 | 0.9238 | 0.218 | 8 | 3 | 0.9149 | 0.1903 | |
| 1.8 | 7 | 2 | 0.9628 | 0.2115 | 7 | 2 | 0.9547 | 0.1651 | 4 | 1 | 0.9112 | 0.2115 | 4 | 1 | 0.9052 | 0.1915 | |
| 2 | 5 | 1 | 0.9391 | 0.176 | 5 | 1 | 0.93 | 0.1405 | 4 | 1 | 0.9486 | 0.2115 | 4 | 1 | 0.9449 | 0.1915 | |
| 0.1 | 1.1 | 183 | 84 | 0.9032 | 0.0987 | 168 | 82 | 0.9003 | 0.0976 | 158 | 82 | 0.9043 | 0.0978 | 159 | 85 | 0.9093 | 0.0926 |
| 1.2 | 56 | 23 | 0.9011 | 0.0895 | 52 | 23 | 0.9117 | 0.0991 | 47 | 22 | 0.9037 | 0.0959 | 48 | 23 | 0.9008 | 0.0805 | |
| 1.3 | 32 | 12 | 0.9215 | 0.0892 | 28 | 11 | 0.9038 | 0.0836 | 29 | 12 | 0.9028 | 0.0617 | 23 | 10 | 0.9023 | 0.0983 | |
| 1.4 | 21 | 7 | 0.9149 | 0.0809 | 17 | 6 | 0.9011 | 0.0949 | 18 | 7 | 0.9255 | 0.0905 | 18 | 7 | 0.9114 | 0.0692 | |
| 1.5 | 17 | 5 | 0.9132 | 0.0617 | 16 | 5 | 0.9105 | 0.0566 | 14 | 5 | 0.9342 | 0.087 | 14 | 5 | 0.9238 | 0.0685 | |
| 1.8 | 12 | 3 | 0.9596 | 0.0644 | 11 | 3 | 0.9621 | 0.0688 | 10 | 3 | 0.9658 | 0.0775 | 8 | 2 | 0.9134 | 0.0566 | |
| 2 | 11 | 2 | 0.9394 | 0.0284 | 10 | 2 | 0.943 | 0.0313 | 8 | 2 | 0.9628 | 0.0686 | 5 | 1 | 0.9144 | 0.0953 | |
| 0.05 | 1.1 | 236 | 107 | 0.9001 | 0.0489 | 226 | 109 | 0.9015 | 0.0447 | 212 | 109 | 0.9113 | 0.0482 | 195 | 103 | 0.9006 | 0.0483 |
| 1.2 | 72 | 29 | 0.9005 | 0.0452 | 65 | 28 | 0.9012 | 0.0489 | 61 | 28 | 0.9034 | 0.0479 | 59 | 28 | 0.9072 | 0.0491 | |
| 1.3 | 39 | 14 | 0.9049 | 0.0424 | 36 | 14 | 0.9152 | 0.0483 | 34 | 14 | 0.9111 | 0.0426 | 33 | 14 | 0.9104 | 0.0408 | |
| 1.4 | 28 | 9 | 0.9142 | 0.0352 | 26 | 9 | 0.9179 | 0.0362 | 24 | 9 | 0.9255 | 0.0402 | 21 | 8 | 0.9098 | 0.0437 | |
| 1.5 | 20 | 6 | 0.9307 | 0.0486 | 20 | 6 | 0.9042 | 0.026 | 18 | 6 | 0.9206 | 0.0351 | 17 | 6 | 0.93 | 0.0423 | |
| 1.8 | 14 | 3 | 0.9321 | 0.0244 | 12 | 3 | 0.9486 | 0.0409 | 11 | 3 | 0.9519 | 0.0441 | 11 | 3 | 0.946 | 0.0345 | |
| 2 | 11 | 2 | 0.9394 | 0.0284 | 10 | 2 | 0.943 | 0.0313 | 9 | 2 | 0.9482 | 0.0367 | 9 | 2 | 0.9432 | 0.0292 | |
Comparative study
In this section, the efficiency of the proposed plan is discussed in terms of sample size. The smaller the sample size means that less cost is needed for testing the hypothesis about the daily average wind speed. Note here that the proposed sampling plan is the generalization of the plan under classical statistics when no uncertainty/indeterminacy is found in recording the daily average wind speed. The proposed sampling plan reduces to the existing sampling plan when =0. The first column in Tables 1, 2, 3, 4, 5 and 6 presents the plan parameters under the classical statistics. From Tables 1, 2, 3, 4, 5 and 6, it can be noted that the values of the sample size required for testing decreasing as the indeterminacy parameter increases. For example, when and from Table 1, it can be seen that from the plan under classical statistics and for the proposed sampling plan when . From the study, it is concluded that the proposed plan under indeterminacy is efficient in sample size as compared to the existing sampling plan under classical statistics. Therefore, the application of the proposed plan for testing the null hypothesis requires a smaller sample as compared to the existing plan. The meteorologist can apply the proposed plan under uncertainty with fewer effort and time.
Application for wind speed data
The application of the proposed sampling plan will be discussed using wind speed data. The wind speed is a big and important source of energy. Due to the randomness and uncertainty, the wind speed data follows the statistical distribution under neutrosophic statistics. The meteorologists are interested to see the daily average wind speed under indeterminacy. The average wind speed data of Cairo city is taken from40 and shown in Table 7. It is found that the wind speed data follows the Weibull distribution with shape parameter 2.7857 and scale parameter . The plan parameters for this shape parameter are shown in Tables 8 and 9. For the proposed plan, the shape parameter is when . Suppose that meteorologists are interested to test with the aid of the proposed sampling plan when , , , and . From Table 5, it can be noted that and . The proposed sampling plan will be implemented as: accept the null hypothesis if average daily speed in 7 days is more than equal to 7.15mph. From the data, it can be noted average daily wind speed is more than equal to 7.15mph in more than 7 days, therefore, the claim about the average daily wind speed will be accepted. From the real example, it is concluded that the proposed sampling will be helpful to check the daily average wind speed.
Table 7.
The daily average wind speed data.
| 2.7 | 4.2 | 4.9 | 5.4 | 5.7 | 6.8 | 7.5 | 8.6 | 9.5 | 11.1 |
|---|---|---|---|---|---|---|---|---|---|
| 3.1 | 4.2 | 4.9 | 5.4 | 5.8 | 6.8 | 7.6 | 8.7 | 9.6 | 11.3 |
| 3.2 | 4.3 | 4.9 | 5.4 | 5.8 | 6.8 | 7.6 | 8.8 | 9.8 | 12 |
| 3.2 | 4.3 | 5 | 5.5 | 6 | 6.8 | 7.7 | 8.9 | 9.8 | 12.2 |
| 3.3 | 4.3 | 5 | 5.5 | 6.1 | 6.9 | 7.8 | 9.3 | 9.9 | 12.4 |
| 3.5 | 4.5 | 5.1 | 5.6 | 6.3 | 7.1 | 7.9 | 9.3 | 10 | 12.5 |
| 3.5 | 4.7 | 5.2 | 5.6 | 6.4 | 7.3 | 8 | 9.3 | 10.1 | 13.3 |
| 3.8 | 4.7 | 5.2 | 5.6 | 6.6 | 7.3 | 8 | 9.4 | 10.3 | 13.8 |
| 3.8 | 4.8 | 5.3 | 5.7 | 6.7 | 7.3 | 8.2 | 9.4 | 10.6 | 14.4 |
| 3.8 | 4.9 | 5.4 | 5.7 | 6.7 | 7.4 | 8.2 | 9.4 | 10.7 | 14.7 |
Table 8.
The plan parameter when and .
| = 0 | = 0.02 | = 0.04 | = 0.05 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.25 | 1.1 | 630 | 57 | 0.9032 | 0.2455 | 585 | 57 | 0.9057 | 0.2499 | 536 | 56 | 0.9029 | 0.2494 | 518 | 56 | 0.9022 | 0.2476 |
| 1.2 | 195 | 16 | 0.9093 | 0.2476 | 171 | 15 | 0.9005 | 0.2495 | 169 | 16 | 0.9093 | 0.2463 | 163 | 16 | 0.9101 | 0.2479 | |
| 1.3 | 108 | 8 | 0.9143 | 0.2407 | 100 | 8 | 0.912 | 0.2344 | 93 | 8 | 0.9167 | 0.2457 | 90 | 8 | 0.9159 | 0.2431 | |
| 1.4 | 74 | 5 | 0.9223 | 0.2418 | 69 | 5 | 0.9215 | 0.2389 | 64 | 5 | 0.9227 | 0.2418 | 62 | 5 | 0.9217 | 0.2387 | |
| 1.5 | 51 | 3 | 0.9101 | 0.2393 | 47 | 3 | 0.9123 | 0.2449 | 45 | 3 | 0.9051 | 0.225 | 42 | 3 | 0.9138 | 0.2482 | |
| 1.8 | 40 | 2 | 0.9532 | 0.2253 | 36 | 2 | 0.9568 | 0.244 | 34 | 2 | 0.9552 | 0.2347 | 22 | 1 | 0.9012 | 0.245 | |
| 2 | 27 | 1 | 0.9376 | 0.2347 | 25 | 1 | 0.938 | 0.2358 | 23 | 1 | 0.9392 | 0.2408 | 22 | 1 | 0.9402 | 0.245 | |
| 0.1 | 1.1 | 1064 | 93 | 0.9002 | 0.0992 | 1000 | 94 | 0.902 | 0.0983 | 922 | 93 | 0.9005 | 0.0986 | 890 | 93 | 0.9014 | 0.0993 |
| 1.2 | 336 | 26 | 0.9083 | 0.0992 | 302 | 25 | 0.9006 | 0.0989 | 281 | 25 | 0.9016 | 0.0995 | 281 | 26 | 0.9086 | 0.0983 | |
| 1.3 | 176 | 12 | 0.9039 | 0.0983 | 164 | 12 | 0.9027 | 0.0964 | 152 | 12 | 0.9054 | 0.0993 | 147 | 12 | 0.9045 | 0.0979 | |
| 1.4 | 116 | 7 | 0.9031 | 0.0988 | 108 | 7 | 0.9024 | 0.0975 | 101 | 7 | 0.9005 | 0.0945 | 97 | 7 | 0.9028 | 0.0973 | |
| 1.5 | 91 | 5 | 0.9161 | 0.0997 | 85 | 5 | 0.9145 | 0.0968 | 79 | 5 | 0.915 | 0.0972 | 76 | 5 | 0.9161 | 0.0987 | |
| 1.8 | 52 | 2 | 0.9121 | 0.0982 | 49 | 2 | 0.9092 | 0.0927 | 45 | 2 | 0.9119 | 0.097 | 44 | 2 | 0.9092 | 0.0921 | |
| 2 | 52 | 2 | 0.956 | 0.0982 | 49 | 2 | 0.9544 | 0.0927 | 45 | 2 | 0.9559 | 0.097 | 44 | 2 | 0.9544 | 0.0921 | |
| 0.05 | 1.1 | 1404 | 121 | 0.9011 | 0.049 | 1295 | 120 | 0.9006 | 0.0496 | 1216 | 121 | 0.9023 | 0.0491 | 1165 | 120 | 0.9009 | 0.0493 |
| 1.2 | 438 | 33 | 0.9061 | 0.049 | 396 | 32 | 0.9009 | 0.0499 | 369 | 32 | 0.9004 | 0.0493 | 356 | 32 | 0.9013 | 0.0497 | |
| 1.3 | 228 | 15 | 0.9001 | 0.0495 | 223 | 16 | 0.9138 | 0.0495 | 209 | 16 | 0.9099 | 0.0461 | 201 | 16 | 0.9123 | 0.0478 | |
| 1.4 | 155 | 9 | 0.9029 | 0.0482 | 144 | 9 | 0.9032 | 0.0481 | 134 | 9 | 0.9034 | 0.048 | 129 | 9 | 0.9047 | 0.0489 | |
| 1.5 | 116 | 6 | 0.9062 | 0.0498 | 108 | 6 | 0.9055 | 0.0489 | 101 | 6 | 0.9037 | 0.0471 | 97 | 6 | 0.9057 | 0.0486 | |
| 1.8 | 76 | 3 | 0.9318 | 0.048 | 71 | 3 | 0.9307 | 0.0464 | 66 | 3 | 0.9309 | 0.0464 | 63 | 3 | 0.9331 | 0.0491 | |
| 2 | 62 | 2 | 0.9325 | 0.0464 | 57 | 2 | 0.9341 | 0.0485 | 54 | 2 | 0.9312 | 0.0442 | 52 | 2 | 0.9315 | 0.0445 | |
Table 9.
The plan parameter when and .
| Alpha = 0.10; b = 2.7857; a = 1.0 | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| = 0 | = 0.02 | = 0.04 | = 0.05 | ||||||||||||||
| 0.25 | 1.1 | 123 | 59 | 0.9028 | 0.2445 | 112 | 57 | 0.9023 | 0.2498 | 104 | 56 | 0.9022 | 0.2494 | 103 | 57 | 0.9045 | 0.2448 |
| 1.2 | 36 | 16 | 0.9055 | 0.2485 | 34 | 16 | 0.9043 | 0.2413 | 34 | 17 | 0.9127 | 0.234 | 31 | 16 | 0.9116 | 0.2492 | |
| 1.3 | 26 | 11 | 0.9475 | 0.2295 | 23 | 10 | 0.9262 | 0.1966 | 19 | 9 | 0.9334 | 0.2499 | 17 | 8 | 0.9075 | 0.2198 | |
| 1.4 | 16 | 6 | 0.9251 | 0.1925 | 15 | 6 | 0.9266 | 0.1922 | 14 | 6 | 0.9306 | 0.1983 | 13 | 6 | 0.9464 | 0.2486 | |
| 1.5 | 12 | 4 | 0.9156 | 0.1663 | 11 | 4 | 0.9237 | 0.1825 | 10 | 4 | 0.9343 | 0.2093 | 10 | 4 | 0.9256 | 0.1807 | |
| 1.8 | 7 | 2 | 0.9475 | 0.2028 | 7 | 2 | 0.937 | 0.1594 | 6 | 2 | 0.9518 | 0.2141 | 6 | 2 | 0.9473 | 0.1911 | |
| 2 | 5 | 1 | 0.9191 | 0.1694 | 4 | 1 | 0.9407 | 0.2481 | 4 | 1 | 0.9325 | 0.208 | 4 | 1 | 0.928 | 0.189 | |
| 0.1 | 1.1 | 214 | 100 | 0.9024 | 0.0925 | 201 | 100 | 0.9121 | 0.0997 | 179 | 94 | 0.901 | 0.0973 | 174 | 94 | 0.9032 | 0.0971 |
| 1.2 | 66 | 28 | 0.9087 | 0.0883 | 62 | 28 | 0.9117 | 0.0887 | 56 | 27 | 0.9168 | 0.0999 | 53 | 26 | 0.9019 | 0.0883 | |
| 1.3 | 34 | 13 | 0.9037 | 0.0843 | 32 | 13 | 0.9033 | 0.081 | 30 | 13 | 0.9073 | 0.0822 | 29 | 13 | 0.911 | 0.0847 | |
| 1.4 | 23 | 8 | 0.91 | 0.0812 | 21 | 8 | 0.924 | 0.0985 | 20 | 8 | 0.9188 | 0.0868 | 20 | 8 | 0.9034 | 0.066 | |
| 1.5 | 19 | 6 | 0.9184 | 0.0652 | 17 | 6 | 0.9359 | 0.0891 | 17 | 6 | 0.9127 | 0.054 | 16 | 6 | 0.9252 | 0.067 | |
| 1.8 | 11 | 3 | 0.9544 | 0.0952 | 11 | 3 | 0.9428 | 0.0651 | 10 | 3 | 0.9489 | 0.0749 | 10 | 3 | 0.943 | 0.0613 | |
| 2 | 9 | 2 | 0.9476 | 0.076 | 9 | 2 | 0.9372 | 0.0529 | 8 | 2 | 0.9456 | 0.0664 | 8 | 2 | 0.9406 | 0.0552 | |
| 0.05 | 1.1 | 268 | 124 | 0.9001 | 0.0495 | 259 | 127 | 0.901 | 0.0441 | 240 | 125 | 0.9091 | 0.0487 | 228 | 122 | 0.9052 | 0.0483 |
| 1.2 | 84 | 35 | 0.9081 | 0.0452 | 77 | 34 | 0.9028 | 0.0439 | 72 | 34 | 0.9138 | 0.049 | 68 | 33 | 0.9101 | 0.0494 | |
| 1.3 | 45 | 17 | 0.9159 | 0.0451 | 42 | 17 | 0.9215 | 0.0476 | 40 | 17 | 0.9136 | 0.039 | 39 | 17 | 0.9106 | 0.0358 | |
| 1.4 | 29 | 10 | 0.921 | 0.0493 | 28 | 10 | 0.9056 | 0.0354 | 26 | 10 | 0.9134 | 0.0387 | 25 | 10 | 0.9187 | 0.0416 | |
| 1.5 | 23 | 7 | 0.9125 | 0.0342 | 21 | 7 | 0.9241 | 0.0418 | 20 | 7 | 0.9186 | 0.0352 | 19 | 7 | 0.9275 | 0.0416 | |
| 1.8 | 13 | 3 | 0.9201 | 0.0366 | 12 | 3 | 0.9235 | 0.0384 | 11 | 3 | 0.929 | 0.0423 | 11 | 3 | 0.9212 | 0.0334 | |
| 2 | 10 | 2 | 0.9305 | 0.045 | 13 | 3 | 0.9575 | 0.0222 | 9 | 2 | 0.9252 | 0.0353 | 9 | 2 | 0.9186 | 0.0283 | |
Concluding remarks
The time truncated plan for the Weibull distribution under the indeterminacy was presented. The plan parameters of the proposed plan were determined by fixing the indeterminacy parameter. The plan parameters were given for various values of indeterminacy parameters, shape parameter, and scale parameter. Several tables for the application of the proposed plan are given. The application of the proposed plan was given with the help of daily average wind speed. The testing of the hypothesis was done to test the average daily wind speed. From the study, it is concluded that the indeterminacy parameter plays a significant role in fixing the plan parameters. The less sample size is needed as the indeterminacy parameter increased. In addition, it is found that the proposed plan is efficient than the existing sampling plan in terms of sample size. To save time, efforts, and energy, it is recommended to apply the proposed plan for testing the average wind speed. The proposed plan can be applied in metrology, oceanography, and thermodynamics. The proposed plan can be applied for testing big data from oceanography as future research. By following41,42, the software for goodness of fit tests using the npdf in Eq. (1) can be developed as future research.
Acknowledgements
The author is deeply thankful to the editor and reviewers for their valuable suggestions to improve the quality of the paper.
Author contributions
M.A wrote the paper.
Data availability
The data is given in the paper.
Competing interests
The author declares no competing interests.
Footnotes
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Ajayi OO, Fagbenle RO, Katende J, Aasa SA, Okeniyi JO. Wind profile characteristics and turbine performance analysis in Kano, north-western Nigeria. Int. J. Energy Environ. Eng. 2013;4:1–15. doi: 10.1186/2251-6832-4-27. [DOI] [Google Scholar]
- 2.Yan A, Liu S, Dong X. Variables two stage sampling plans based on the coefficient of variation. J. Adv. Mech. Des. Syst. Manuf. 2016;10:JAMDSM0002. doi: 10.1299/jamdsm.2016jamdsm0002. [DOI] [Google Scholar]
- 3.Yen C-H, Lee C-C, Lo K-H, Shiue Y-R, Li S-H. A rectifying acceptance sampling plan based on the process capability index. Mathematics. 2020;8:141. doi: 10.3390/math8010141. [DOI] [Google Scholar]
- 4.Akpinar EK, Akpinar S. A statistical analysis of wind speed data used in installation of wind energy conversion systems. Energy Convers. Manag. 2005;46:515–532. doi: 10.1016/j.enconman.2004.05.002. [DOI] [Google Scholar]
- 5.Yilmaz V, Çelik HE. A statistical approach to estimate the wind speed distribution: the case of Gelibolu region. Doğuş Üniversitesi Dergisi. 2011;9:122–132. [Google Scholar]
- 6.Ali S, Lee S-M, Jang C-M. Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island-Incheon, South Korea. Renew. Energy. 2018;123:652–663. doi: 10.1016/j.renene.2018.02.087. [DOI] [Google Scholar]
- 7.Arias-Rosales A, Osorio-Gómez G. Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy. Appl. Energy. 2018;228:980–998. doi: 10.1016/j.apenergy.2018.06.103. [DOI] [Google Scholar]
- 8.Akgül, F. G. & Şenoğlu, B. Comparison of wind speed distributions: a case study for Aegean coast of Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18 (2019).
- 9.Ozay C, Celiktas MS. Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region. Energy Convers. Manag. 2016;121:49–54. doi: 10.1016/j.enconman.2016.05.026. [DOI] [Google Scholar]
- 10.Qing X. Statistical analysis of wind energy characteristics in Santiago island, Cape Verde. Renew. Energy. 2018;115:448–461. doi: 10.1016/j.renene.2017.08.077. [DOI] [Google Scholar]
- 11.Mahmood FH, Resen AK, Khamees AB. Wind Characteristic Analysis Based on Weibull Distribution of Al-Salman site. Iraq; 2019. [Google Scholar]
- 12.Campisi-Pinto S, Gianchandani K, Ashkenazy Y. Statistical tests for the distribution of surface wind and current speeds across the globe. Renew. Energy. 2020;149:861–876. doi: 10.1016/j.renene.2019.12.041. [DOI] [Google Scholar]
- 13.ul Haq MA, Rao GS, Albassam M, Aslam M. Marshall-Olkin Power Lomax distribution for modeling of wind speed data. Energy Rep. 2020;6:1118–1123. doi: 10.1016/j.egyr.2020.04.033. [DOI] [Google Scholar]
- 14.Bludszuweit H, Domínguez-Navarro JA, Llombart A. Statistical analysis of wind power forecast error. IEEE Trans. Power Syst. 2008;23:983–991. doi: 10.1109/TPWRS.2008.922526. [DOI] [Google Scholar]
- 15.Brano VL, Orioli A, Ciulla G, Culotta S. Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renew. Energy. 2011;36:1026–1039. doi: 10.1016/j.renene.2010.09.009. [DOI] [Google Scholar]
- 16.Katinas V, Gecevicius G, Marciukaitis M. An investigation of wind power density distribution at location with low and high wind speeds using statistical model. Appl. Energy. 2018;218:442–451. doi: 10.1016/j.apenergy.2018.02.163. [DOI] [Google Scholar]
- 17.Zaman B, Lee MH, Riaz M. An improved process monitoring by mixed multivariate memory control charts: an application in wind turbine field. Comput. Ind. Eng. 2020;142:106343. doi: 10.1016/j.cie.2020.106343. [DOI] [Google Scholar]
- 18.Jamkhaneh EB, Sadeghpour-Gildeh B, Yari G. Important criteria of rectifying inspection for single sampling plan with fuzzy parameter. Int. J. Contemp. Math. Sci. 2009;4:1791–1801. [Google Scholar]
- 19.Jamkhaneh EB, Sadeghpour-Gildeh B, Yari G. Inspection error and its effects on single sampling plans with fuzzy parameters. Struct. Multidiscip. Optim. 2011;43:555–560. doi: 10.1007/s00158-010-0579-6. [DOI] [Google Scholar]
- 20.Sadeghpour Gildeh B, Baloui Jamkhaneh E, Yari G. Acceptance single sampling plan with fuzzy parameter. Iran. J. Fuzzy Syst. 2011;8:47–55. [Google Scholar]
- 21.Afshari R, Sadeghpour Gildeh B. Designing a multiple deferred state attribute sampling plan in a fuzzy environment. Am. J. Math. Manag. Sci. 2017;36:328–345. [Google Scholar]
- 22.Tong X, Wang Z. Fuzzy acceptance sampling plans for inspection of geospatial data with ambiguity in quality characteristics. Comput. Geosci. 2012;48:256–266. doi: 10.1016/j.cageo.2012.01.013. [DOI] [Google Scholar]
- 23.Uma G, Ramya K. Impact of fuzzy logic on acceptance sampling plans–a review. Autom. Auton. Syst. 2015;7:181–185. [Google Scholar]
- 24.Smarandache, F. Neutrosophy. Neutrosophic probability, set, and logic, proquest information & learning. Ann Arbor, Michigan, USA105, 118–123 (1998).
- 25.Smarandache, F. & Khalid, H. E. Neutrosophic Precalculus and Neutrosophic Calculus. (Infinite Study, 2015).
- 26.Peng X, Dai J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput. Appl. 2018;29:939–954. doi: 10.1007/s00521-016-2607-y. [DOI] [Google Scholar]
- 27.Abdel-Basset M, Mohamed M, Elhoseny M, Chiclana F, Zaied AE-NH. Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artif. Intell. Med. 2019;101:101735. doi: 10.1016/j.artmed.2019.101735. [DOI] [PubMed] [Google Scholar]
- 28.Nabeeh NA, Smarandache F, Abdel-Basset M, El-Ghareeb HA, Aboelfetouh A. An integrated neutrosophic-topsis approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access. 2019;7:29734–29744. doi: 10.1109/ACCESS.2019.2899841. [DOI] [Google Scholar]
- 29.Pratihar, J., Kumar, R., Dey, A. & Broumi, S. In Neutrosophic Graph Theory and Algorithms 180–212 (IGI Global, 2020).
- 30.Pratihar J, Kumar R, Edalatpanah S, Dey A. Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex Intell. Syst. 2020;7:1–12. [Google Scholar]
- 31.Smarandache, F. Introduction to neutrosophic statistics. (Infinite Study, 2014).
- 32.Chen J, Ye J, Du S. Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry. 2017;9:208. doi: 10.3390/sym9100208. [DOI] [Google Scholar]
- 33.Chen J, Ye J, Du S, Yong R. Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry. 2017;9:123. doi: 10.3390/sym9070123. [DOI] [Google Scholar]
- 34.Aslam M. Introducing Kolmogorov–Smirnov tests under uncertainty: an application to radioactive data. ACS Omega. 2019;5:9914–9917. doi: 10.1021/acsomega.9b03940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Aslam M. A new sampling plan using neutrosophic process loss consideration. Symmetry. 2018;10:132. doi: 10.3390/sym10050132. [DOI] [Google Scholar]
- 36.Aslam M. Design of sampling plan for exponential distribution under neutrosophic statistical interval method. IEEE Access. 2018;6:64153–64158. doi: 10.1109/ACCESS.2018.2877923. [DOI] [Google Scholar]
- 37.Aslam M. A new attribute sampling plan using neutrosophic statistical interval method. Complex Intell. Syst. 2019;11:1–6. [Google Scholar]
- 38.Aslam M, Jeyadurga P, Balamurali S, Marshadi AH. Time-Truncated Group Plan under a Weibull Distribution based on Neutrosophic Statistics. Mathematics. 2019;7:905. doi: 10.3390/math7100905. [DOI] [Google Scholar]
- 39.Alhasan, K. F. H. & Smarandache, F. Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution. (Infinite Study, 2019).
- 40.Cheema AN, Aslam M, Almanjahie IM, Ahmad I. Mixture modeling of exponentiated pareto distribution in bayesian framework with applications of wind-speed and tensile strength of carbon fiber. IEEE Access. 2020;8:178514–178525. doi: 10.1109/ACCESS.2020.3027369. [DOI] [Google Scholar]
- 41.Deep S, Sarkar A, Ghawat M, Rajak MK. Estimation of the wind energy potential for coastal locations in India using the Weibull model. Renew. Energy. 2020;161:319–339. doi: 10.1016/j.renene.2020.07.054. [DOI] [Google Scholar]
- 42.Gugliani G, Sarkar A, Ley C, Mandal S. New methods to assess wind resources in terms of wind speed, load, power and direction. Renew. Energy. 2018;129:168–182. doi: 10.1016/j.renene.2018.05.088. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The data is given in the paper.
