Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 19;77(Pt 4):412–415. doi: 10.1107/S2056989021002802

Crystal structure and Hirshfeld surface analysis of a copper(II) complex containing 2-nitro­benzoate and tetra­methyl­ethylenedi­amine ligands

Sevgi Kansiz a,*, Adnan M Qadir b, Necmi Dege c, Li Yongxin d, Eiad Saif e,f,*
PMCID: PMC8025849  PMID: 33936767

In the title complex, [Cu(2-nitro­benzoate)2(tmeda)], the central metal atom has distorted square-planar geometry with one oxygen atom each from two 2-nitro­benzoate ligands and two TMEDA ligand nitro­gen atoms.

Keywords: crystal structure, copper(II), tetra­methyl­ethylenedi­amine, 2-nitro­benzoate, Hirshfeld surface

Abstract

The reaction of copper(II) sulfatepentahydrate with 2-nitro­benzoic acid and N,N,N′,N′-tetra­methyl­ethylenedi­amine (TMEDA) in basic solution produces the complex bis­(2-nitro­benzoato-κO)(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2 N,N′)copper(II), [Cu(C7H4NO4)2(C6H16N2)] or [Cu(2-nitro­benzoate)2(tmeda)]. Each carboxyl­ate group of the 2-nitro­benzoate ligand is coordinated by CuII atom in a monodentate fashion and two TMEDA ligand nitro­gen atoms are coordinate by the metal center, giving rise to a distorted square-planar coordination environment. In the crystal, metal complexes are linked by centrosymmetric C—H⋯O hydrogen bonds, forming ribbons via a R 2 2(10) ring motif. These ribbons are linked by further C—H⋯O hydrogen bonds, leading to two-dimensional hydrogen-bonded arrays parallel to the bc plane. Weak π–π stacking inter­actions provide additional stabilization of the crystal structure. Hirshfeld surface analysis, dnorm and two-dimensional fingerprint plots were examined to verify the contributions of the different inter­molecular contacts within the supra­molecular structure. The major inter­actions of the complex are O⋯H/H⋯O (44.9%), H⋯H (34%) and C⋯H (14.5%).

Chemical context  

Copper(II) carboxyl­ate complexes continue to be of considerable inter­est on account of their biological properties such as anti­bacterial (Melník et al., 1982), anti­fungal (Kozlevčar et al., 1999), cytotoxic and anti­viral activities (Ranford et al., 1993). Carboxyl­ate ligands are versatile and can coordinate to metal centers in different modes such as monodentate, bidentate and bridging fashions. The bidentate coordination can be either symmetrical bidentate chelating, having the same C—O bond lengths, or asymmetrical bidentate chelating, having different C—O bond lengths. Carboxyl­ate ligands have been used to generate units for developing supra­molecular architectures. Copper is one of essential metals for human life. In the human body, various enzymes are copper-dependent such as Cytochrome c oxidase, superoxide dismutase, ferroxidases, mono­amine oxidase, and dopamine β-monoxygenase (Brewer, 2009; Balamurugan & Schaffner, 2006). In this work, a new copper(II) complex involving 2-nitro­benzoic acid and N,N,N′,N′-tetra­methyl­ethylenedi­amine was synthesized, characterized by single crystal X-ray and studied by Hirshfeld surface analysis.graphic file with name e-77-00412-scheme1.jpg

Structural commentary  

Copper(II) acetate reacts with 2-nitro­benzoic acid and N,N,N′,N′-tetra­methyl­ethylenedi­amine (TMEDA) to give the mono-nuclear copper(II) complex (I). The asymmetric unit of the title compound contains one half of the metal complex, the central metal being located on the special position 4e (1/2, y, 1/4). The CuII atom has a distorted square-planar geometry with one oxygen atom each from two nitro­benzoic acid ligands and two TMEDA ligand nitro­gen atoms (Figs. 1 and 2). The two nitro groups of the rings are oriented trans to each other, being symmetry-related to each other through a twofold axis. The structure of the complex is shown in Fig. 1. The Cu1—N1 and Cu1—O1 bond distances are 2.0269 (13) and 1.9589 (11) Å, respectively. The structural parameters of the TMEDA ligand, i.e. Cu—N bond lengths, are in agreement with a work reported by Gumienna-Kontecka et al. (2013). The C4—O1 and C4—O2 distances in the carboxyl group are 1.2772 (19) and 1.2388 (18) Å, respectively. Selected bond lengths are given in Table 1.

Figure 1.

Figure 1

The mol­ecular structure of [Cu(2-nitro­benzoate)2(tmeda)], with the atom labeling. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) −x + 1, y, −z + Inline graphic.

Figure 2.

Figure 2

View of the two-dimensional hydrogen-bonded network in the structure of [Cu(2-nitro­benzoate)2(tmeda) showing C9—H9⋯O4 hydrogen bonds [described by an Inline graphic(10) ring motif] as green dashed lines and C3—H3A⋯O3 hydrogen bonds as blue dashed lines.

Table 1. Selected bond lengths (Å).

C1—N1 1.482 (2) Cu1—O1 1.9589 (11)
C2—N1 1.483 (2) Cu1—N1 2.0269 (13)
C3—N1 1.490 (2) N2—O4 1.2206 (18)
C10—N2 1.4742 (19) N2—O3 1.2249 (19)

Supra­molecular features  

The crystal packing of the title complex (Fig. 2) features inter­molecular hydrogen bonds (C3—H3A⋯O3i and C9—H9⋯O4ii; symmetry codes as in Table 2). The metal complexes are self-assembled by centrosymmetric C9—H9⋯O4 hydrogen bonds along the c–axis direction, forming supra­molecular ribbons linked via R 2 2(10) ring motifs. Adjacent ribbons are connected by C3—H3A⋯O3 hydrogen bonds; these inter­actions lead to the formation of layers lying parallel to the bc plane. The three-dimensional network is stabilized by π–π stacking inter­actions with a centroid-to-centroid distance Cg1⋯Cg1iii of 3.741 (2) Å, where Cg1 is the centroid of the C5–C10 ring [symmetry code: (iii) −x + 1, −y + 1, −z + 1].

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O3i 0.99 2.59 3.531 (2) 158
C9—H9⋯O4ii 0.95 2.42 3.291 (2) 152

Symmetry codes: (i) -x+1, y-1, -z+{\script{1\over 2}}; (ii) -x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016) for the title complex revealed four hits: catena-[(μ2-terephthalato-O,O′,O′′,O′′′)(μ2-terephthalato-O,O′′)bis­[N-(2-amino­eth­yl)-3-amino-1-propanol]dicopper(II)] (FEMBEF; Mukherjee et al., 2004), bis­[(μ2-biphenyl-2,2′-di­carboxyl­ato-O 2,O 2′)[N-(pyr­id;in-2-yl-N)pyridin-2-amine-N 1]]dicopper(II) tetra­hydrate (GUCXOS; Kumagai et al., 2009), bis­[(μ2-biphenyl-2,2′-di­carboxyl­ato-O 2,O 2′)[N-(pyridin-2-yl-N)pyridin-2-am­ine-N 1]]dicopper(II) biphenyl-2,2′-di­carb­oxy­lic acid solvate monohydrate (GUCXUY; Kumagai et al., 2009) and bis­(2-nitro­benzoato)bis­(3,5-dimethyl-1H-pyrazole-N 2)copper(II) (MIJFUH; Karmakar et al., 2007). The Cu—N and Cu—O bond lengths range from 1.973 to 2.022 Å and 1.955 to 1.987 Å, respectively. The Cu—N and Cu—O bond lengths in the title complex [2.0269 (13) and 1.9589 (11) Å, respectively] fall within these limits.

Hirshfeld surface analysis  

Hirshfeld surface analysis and the associated two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009) are very important for explaining the inter­molecular contacts in the crystal structure (Demircioğlu et al., 2019; Ilmi et al., 2020). We performed the Hirshfeld surface analysis with CrystalExplorer17 (Turner et al., 2017). Fig. 3 shows the Hirshfeld surface mapped over d norm (–0.2250 to 1.2935 a.u.) and the mol­ecular electrostatic potentials (–0.2173 to 0.1248). In Fig. 3 a, the red spots correspond to the O⋯H contacts. The electrostatic potential (Fig. 3 b) shows donor (red) and acceptor (blue) regions. O⋯H/H⋯O (44.9%) contacts, seen as a pair of spikes of scattered points in the fingerprint plot, make the largest contribution to the total Hirshfeld surface in [Cu(2-nitro­benzoate)2(tmeda)] (Fig. 4). The second most important inter­action is H⋯H, contributing 34% to the overall crystal packing, which is shown in the 2D fingerprint of the (d i, d e) points related to the H atoms. Two symmetrical wings on the left and right sides are shown in the graph of C⋯H/H⋯C inter­actions (14.5%). The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of O⋯H, H⋯H and C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major role in the crystal packing.

Figure 3.

Figure 3

Hirshfeld surface of [Cu(2-nitro­benzoate)2(tmeda)] mapped with (a) d norm and (b) the mol­ecular electrostatic potential.

Figure 4.

Figure 4

Two-dimensional fingerprint plots for [Cu(2-nitro­benzoate)2(tmeda)] showing all inter­actions and those delineated into O⋯H/H⋯O, H⋯H and C⋯H/H⋯C contacts (d i is the closest inter­nal distance from a given point on the Hirshfeld surface and d e is the closest external contact).

Synthesis and crystallization  

An aqueous solution of sodium 2-nitro­benzoate (5 mmol, 0.9 g) was added to an aqueous solution of CuSO4·5H2O (2.5 mmol, 0.6 g) under stirring. Tetra­methyl­ethylenedi­amine (2.5 mmol, 0.3 g) was added and the color changed from light blue to violet. The mixture was filtered and the filtrate was allowed to stand for slow evaporation. Single crystals suitable for X-ray were obtained after several days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were positioned geometrically (C—H = 0.95, 0.98 and 0.99 Å) and refined using a riding model, with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) otherwise.

Table 3. Experimental details.

Crystal data
Chemical formula [Cu(C7H4NO4)2(C6H16N2)]
M r 511.97
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 12.7286 (3), 7.4918 (2), 22.8967 (6)
β (°) 98.395 (1)
V3) 2160.04 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.22 × 0.20 × 0.12
 
Data collection
Diffractometer Bruker D8 Quest withPhoton II CPADs detector
Absorption correction Multi-scan (SADABS; Bruker, 2017)
T min, T max 0.77, 0.88
No. of measured, independent and observed [I > 2σ(I)] reflections 23494, 4737, 3573
R int 0.056
(sin θ/λ)max−1) 0.808
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.092, 1.03
No. of reflections 4737
No. of parameters 152
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.63

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXT2014/5 (Sheldrick, 2015a ) and SHELXL2017/1 (Sheldrick, 2015b ).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002802/zn2005sup1.cif

e-77-00412-sup1.cif (707.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002802/zn2005Isup2.hkl

e-77-00412-Isup2.hkl (377.6KB, hkl)

CCDC reference: 1910225

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors contributions are as follows. Methodology, AMQ; software, SK, ND, LY and ES; validation, SK, AMQ and ND; formal analysis, AMQ; investigation, SK, AMQ, ND and ES; resources, AMQ and ES; writing (review and editing), SK and AMQ; visualization, SK; supervision, SK and ND; funding acquisition, LY and ES.

supplementary crystallographic information

Crystal data

[Cu(C7H4NO4)2(C6H16N2)] F(000) = 1060
Mr = 511.97 Dx = 1.574 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 12.7286 (3) Å Cell parameters from 6607 reflections
b = 7.4918 (2) Å θ = 3.2–34.7°
c = 22.8967 (6) Å µ = 1.07 mm1
β = 98.395 (1)° T = 100 K
V = 2160.04 (10) Å3 Block, blue
Z = 4 0.22 × 0.20 × 0.12 mm

Data collection

Bruker D8 Quest withPhoton II CPADs detector diffractometer 4737 independent reflections
Radiation source: Incoatec microfocus source, Bruker D8 Quest 3573 reflections with I > 2σ(I)
Multilayer Mirror monochromator Rint = 0.056
Detector resolution: 7.4074 pixels mm-1 θmax = 35.1°, θmin = 3.2°
phi and ω scans h = −20→20
Absorption correction: multi-scan (SADABS; Bruker, 2017) k = −12→12
Tmin = 0.77, Tmax = 0.88 l = −36→34
23494 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0258P)2 + 3.2488P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4737 reflections Δρmax = 0.55 e Å3
152 parameters Δρmin = −0.63 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.29927 (12) 0.0971 (2) 0.26549 (9) 0.0226 (3)
H1A 0.282285 0.110738 0.222582 0.034*
H1B 0.282610 0.208122 0.284815 0.034*
H1C 0.257167 −0.000768 0.278536 0.034*
C2 0.43747 (14) 0.0376 (2) 0.34649 (8) 0.0227 (3)
H2A 0.395284 −0.060381 0.359361 0.034*
H2B 0.419573 0.148951 0.365245 0.034*
H2C 0.513178 0.011891 0.357879 0.034*
C3 0.44109 (12) −0.1106 (2) 0.25164 (8) 0.0191 (3)
H3A 0.400440 −0.116874 0.211384 0.023*
H3B 0.422415 −0.215879 0.274155 0.023*
C4 0.51601 (12) 0.4529 (2) 0.34319 (7) 0.0161 (3)
C5 0.48616 (11) 0.56860 (19) 0.39205 (7) 0.0141 (3)
C6 0.37979 (12) 0.5852 (2) 0.39976 (7) 0.0164 (3)
H6 0.326473 0.529299 0.372478 0.020*
C7 0.35056 (12) 0.6815 (2) 0.44637 (8) 0.0196 (3)
H7 0.277599 0.693902 0.450177 0.024*
C8 0.42749 (12) 0.7599 (2) 0.48755 (7) 0.0205 (3)
H8 0.407256 0.823813 0.519973 0.025*
C9 0.53414 (12) 0.7451 (2) 0.48142 (7) 0.0188 (3)
H9 0.587555 0.797819 0.509431 0.023*
C10 0.56064 (11) 0.6518 (2) 0.43364 (7) 0.0151 (3)
Cu1 0.500000 0.25244 (3) 0.250000 0.01202 (6)
N1 0.41383 (10) 0.05640 (17) 0.28142 (6) 0.0152 (2)
N2 0.67360 (10) 0.65314 (18) 0.42590 (6) 0.0176 (3)
O1 0.44317 (9) 0.43232 (14) 0.29904 (5) 0.0165 (2)
O2 0.60401 (9) 0.37907 (16) 0.34882 (6) 0.0226 (2)
O3 0.69761 (10) 0.73929 (18) 0.38435 (6) 0.0275 (3)
O4 0.73708 (9) 0.57614 (18) 0.46249 (6) 0.0268 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0144 (6) 0.0213 (7) 0.0324 (10) −0.0007 (6) 0.0050 (6) −0.0020 (7)
C2 0.0297 (8) 0.0196 (7) 0.0197 (8) −0.0011 (6) 0.0063 (7) 0.0039 (6)
C3 0.0187 (6) 0.0126 (6) 0.0265 (8) −0.0024 (5) 0.0054 (6) −0.0010 (6)
C4 0.0175 (6) 0.0128 (6) 0.0184 (7) −0.0012 (5) 0.0039 (5) −0.0002 (5)
C5 0.0144 (6) 0.0124 (6) 0.0159 (7) 0.0005 (5) 0.0030 (5) 0.0005 (5)
C6 0.0140 (6) 0.0167 (6) 0.0187 (7) −0.0013 (5) 0.0025 (5) 0.0003 (6)
C7 0.0161 (6) 0.0231 (7) 0.0211 (8) 0.0007 (6) 0.0073 (6) 0.0002 (6)
C8 0.0201 (6) 0.0241 (7) 0.0189 (7) 0.0001 (6) 0.0073 (6) −0.0038 (7)
C9 0.0178 (6) 0.0204 (6) 0.0181 (7) −0.0009 (6) 0.0026 (5) −0.0021 (6)
C10 0.0131 (6) 0.0149 (6) 0.0177 (7) 0.0004 (5) 0.0036 (5) −0.0002 (5)
Cu1 0.01247 (10) 0.01009 (10) 0.01356 (12) 0.000 0.00210 (8) 0.000
N1 0.0149 (5) 0.0127 (5) 0.0186 (6) −0.0002 (4) 0.0040 (5) 0.0006 (5)
N2 0.0145 (5) 0.0174 (6) 0.0214 (7) −0.0017 (5) 0.0037 (5) −0.0035 (5)
O1 0.0189 (5) 0.0143 (5) 0.0161 (5) 0.0004 (4) 0.0021 (4) −0.0023 (4)
O2 0.0180 (5) 0.0237 (6) 0.0262 (6) 0.0038 (4) 0.0038 (5) −0.0065 (5)
O3 0.0213 (5) 0.0332 (7) 0.0297 (7) −0.0039 (5) 0.0092 (5) 0.0044 (6)
O4 0.0165 (5) 0.0295 (7) 0.0329 (7) 0.0040 (5) −0.0013 (5) 0.0026 (6)

Geometric parameters (Å, º)

C1—N1 1.482 (2) C5—C6 1.396 (2)
C1—H1A 0.9800 C6—C7 1.383 (2)
C1—H1B 0.9800 C6—H6 0.9500
C1—H1C 0.9800 C7—C8 1.387 (2)
C2—N1 1.483 (2) C7—H7 0.9500
C2—H2A 0.9800 C8—C9 1.389 (2)
C2—H2B 0.9800 C8—H8 0.9500
C2—H2C 0.9800 C9—C10 1.381 (2)
C3—N1 1.490 (2) C9—H9 0.9500
C3—C3i 1.513 (3) C10—N2 1.4742 (19)
C3—H3A 0.9900 Cu1—O1 1.9589 (11)
C3—H3B 0.9900 Cu1—O1i 1.9589 (11)
C4—O2 1.2388 (18) Cu1—N1 2.0269 (13)
C4—O1 1.2772 (19) Cu1—N1i 2.0269 (13)
C4—C5 1.508 (2) N2—O4 1.2206 (18)
C5—C10 1.389 (2) N2—O3 1.2249 (19)
N1—C1—H1A 109.5 C6—C7—H7 119.9
N1—C1—H1B 109.5 C8—C7—H7 119.9
H1A—C1—H1B 109.5 C7—C8—C9 120.04 (15)
N1—C1—H1C 109.5 C7—C8—H8 120.0
H1A—C1—H1C 109.5 C9—C8—H8 120.0
H1B—C1—H1C 109.5 C10—C9—C8 118.42 (14)
N1—C2—H2A 109.5 C10—C9—H9 120.8
N1—C2—H2B 109.5 C8—C9—H9 120.8
H2A—C2—H2B 109.5 C9—C10—C5 123.28 (14)
N1—C2—H2C 109.5 C9—C10—N2 116.55 (13)
H2A—C2—H2C 109.5 C5—C10—N2 120.05 (13)
H2B—C2—H2C 109.5 O1—Cu1—O1i 93.07 (7)
N1—C3—C3i 108.76 (11) O1—Cu1—N1 91.76 (5)
N1—C3—H3A 109.9 O1i—Cu1—N1 165.06 (5)
C3i—C3—H3A 109.9 O1—Cu1—N1i 165.06 (5)
N1—C3—H3B 109.9 O1i—Cu1—N1i 91.76 (5)
C3i—C3—H3B 109.9 N1—Cu1—N1i 87.13 (7)
H3A—C3—H3B 108.3 C1—N1—C2 108.35 (13)
O2—C4—O1 124.71 (15) C1—N1—C3 110.27 (12)
O2—C4—C5 120.10 (14) C2—N1—C3 110.70 (13)
O1—C4—C5 115.09 (13) C1—N1—Cu1 109.12 (10)
C10—C5—C6 116.79 (14) C2—N1—Cu1 112.61 (10)
C10—C5—C4 123.09 (13) C3—N1—Cu1 105.77 (9)
C6—C5—C4 119.95 (13) O4—N2—O3 124.54 (14)
C7—C6—C5 121.26 (14) O4—N2—C10 118.28 (14)
C7—C6—H6 119.4 O3—N2—C10 117.09 (13)
C5—C6—H6 119.4 C4—O1—Cu1 104.50 (9)
C6—C7—C8 120.18 (14)
O2—C4—C5—C10 24.2 (2) C4—C5—C10—C9 −174.19 (15)
O1—C4—C5—C10 −159.09 (14) C6—C5—C10—N2 −174.93 (13)
O2—C4—C5—C6 −150.89 (15) C4—C5—C10—N2 9.9 (2)
O1—C4—C5—C6 25.8 (2) C3i—C3—N1—C1 157.97 (16)
C10—C5—C6—C7 0.6 (2) C3i—C3—N1—C2 −82.14 (18)
C4—C5—C6—C7 175.98 (15) C3i—C3—N1—Cu1 40.11 (18)
C5—C6—C7—C8 −1.8 (2) C9—C10—N2—O4 67.41 (19)
C6—C7—C8—C9 1.3 (3) C5—C10—N2—O4 −116.36 (17)
C7—C8—C9—C10 0.2 (2) C9—C10—N2—O3 −109.26 (17)
C8—C9—C10—C5 −1.5 (2) C5—C10—N2—O3 66.97 (19)
C8—C9—C10—N2 174.64 (15) O2—C4—O1—Cu1 4.07 (19)
C6—C5—C10—C9 1.0 (2) C5—C4—O1—Cu1 −172.47 (10)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3A···O3ii 0.99 2.59 3.531 (2) 158
C9—H9···O4iii 0.95 2.42 3.291 (2) 152

Symmetry codes: (ii) −x+1, y−1, −z+1/2; (iii) −x+3/2, −y+3/2, −z+1.

References

  1. Balamurugan, K. & Schaffner, W. (2006). BBA Mol. Cell. Res. 1763, 737–746.
  2. Brewer, G. J. (2009). J. Am. Coll. Nutr. 28, 238–242. [DOI] [PubMed]
  3. Bruker (2017). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Demircioğlu, Z., Kaştaş, G., Kaştaş, Ç. A. & Frank, R. (2019). J. Mol. Struct. 1191, 129–137.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633–7644. [DOI] [PubMed]
  7. Ilmi, R., Kansız, S., Al-Rasbi, N. K., Dege, N., Raithby, P. R. & Khan, M. S. (2020). New J. Chem. 44, 5673–5683.
  8. Karmakar, A., Bania, K., Baruah, A. M. & Baruah, J. B. (2007). Inorg. Chem. Commun. 10, 959–964.
  9. Kozlevčar, B., Leban, I., Turel, I., Šegedin, P., Petric, M., Pohleven, F., White, A., Williams, D. & Sieler, J. (1999). Polyhedron, 18, 755–762.
  10. Kumagai, H., Akita-Tanaka, M., Kawata, S., Inoue, K., Kepert, C. J. & Kurmoo, M. (2009). Cryst. Growth Des. 9, 2734–2741.
  11. Melník, M., Auderová, M. & Hol’ko, M. (1982). Inorg. Chim. Acta, 67, 117–120.
  12. Mukherjee, P. S., Ghoshal, D., Zangrando, E., Mallah, T. & Chaudhuri, N. R. (2004). Eur. J. Inorg. Chem. pp. 4675–4680.
  13. Ranford, J. D., Sadler, P. J. & Tocher, D. A. (1993). J. Chem. Soc. Dalton Trans. pp. 3393–3399.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  17. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http://hirshfeldsurface.net.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002802/zn2005sup1.cif

e-77-00412-sup1.cif (707.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002802/zn2005Isup2.hkl

e-77-00412-Isup2.hkl (377.6KB, hkl)

CCDC reference: 1910225

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES