Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 2;77(Pt 4):324–330. doi: 10.1107/S2056989021002012

Synthesis and structure of a complex of copper(I) with l-cysteine and chloride ions containing Cu12S6 nanoclusters

Amir Gizatullin a, Jonathan Becker b, Daut Islamov c, Nikita Serov a, Siegfried Schindler b, Alexander Klimovitskii a, Valery Shtyrlin a,*
PMCID: PMC8025850  PMID: 33936751

A cluster containing copper(I), l-cysteine and chloride ions was synthesized and characterized by X-ray diffraction and FTIR spectroscopy.

Keywords: crystal structure, cysteine, copper(I), cage structure, SQUEEZE procedure, metal–organic framework

Abstract

The title hydrated copper(I)–l-cysteine–chloride complex has a polymeric structure of composition {[Cu16(CysH2)6Cl16xH2O}n [CysH2 = HO2CCH(NH3 +)CH2S or C3H7NO2S], namely, poly[[tetra-μ3-chlorido-deca-μ2-chlorido-di­chlorido­hexa­kis­(μ4-l-cysteinato)hexa­deca­copper] polyhydrate]. The copper atoms are linked by thiol­ate groups to form Cu12S6 nanoclusters that take the form of a tetra­kis cubocta­hedron, made up of a Cu12 cubo-octa­hedral subunit that is augmented by six sulfur atoms that are located symmetrically atop of each of the Cu4 square units of the Cu12 cubo-octa­hedron. The six S atoms thus form an octa­hedral subunit themselves. The exterior of the Cu12S6 sphere is decorated by chloride ions and trichlorocuprate units. Three chloride ions are coordinated in an irregular fashion to trigonal Cu3 subunits of the nanocluster, and four trigonal CuCl3 units are bonded via each of their chloride ions to a copper ion on the Cu12S6 sphere. The trigonal CuCl3 units are linked via Cu2Cl2 bridges covalently connected to equivalent units in neighboring nanoclusters. Four such connections are arranged in a tetra­hedral fashion, thus creating an infinite diamond-like net of Cu12S6Cl4(CuCl3)4 nanoclusters. The network thus formed results in large channels occupied by solvent mol­ecules that are mostly too ill-defined to model. The content of the voids, believed to be water mol­ecules, was accounted for via reverse Fourier-transform methods using the SQUEEZE algorithm [Spek (2015). Acta Cryst. C71, 9–18]. The protonated amino groups of the cysteine ligands are directed away from the sphere, forming N—H⋯Cl hydrogen bonds with chloride-ion acceptors of their cluster. The protonated carb­oxy groups point outwards and presumably form O—H⋯O hydrogen bonds with the unresolved water mol­ecules of the solvent channels. Disorder is observed in one of the two crystallographically unique [Cu16(CysH2)6Cl16] segments for three of the six cysteine anions.

Chemical context  

l-cysteine is an important proteinogenic amino acid widely distributed in living organisms (Lennarz & Lane, 2013). Copper–cysteine clusters are of inter­est as possible models of active sites of some copper-containing proteins (Kretsinger et al., 2013). It is inter­esting to observe that there are no structures of copper complexes with both chloride ions and cysteine and even cystine determined by single crystal X-ray diffraction. As part of our studies in this area, we now describe the synthesis and structure of the title cluster compound.graphic file with name e-77-00324-scheme1.jpg

Structural commentary  

The crystallographic analysis of the title compound revealed a complex polymeric structure of composition {[Cu16(CysH2)6Cl16xH2O}n, [CysH2 = HO2CCH(NH3 +)CH2S]. The copper atoms are linked by thiol­ate groups to form Cu12S6 copper thiol­ate nanoclusters (‘atlas spheres’), which have the form of a tetra­kis cubocta­hedron, made up of a Cu12 cubo-octa­hedral subunit that is augmented by six sulfur atoms that are located symmetrically atop of each of the Cu4 square units of the Cu12 cubo-octa­hedron. The six S atoms form an octa­hedral subunit themselves. The exterior of the Cu12S6 sphere is decorated by chloride ions and trichloro­cuprate units. Three chloride ions are irregularly coordinated to trigonal Cu3 subunits of the nanocluster, and four trigonal CuCl3-units are linked through each of their chloride ions to each one copper ion on the ‘atlas spheres’. The trigonal CuCl3 units are covalently connected through Cu2Cl2 bridges to equivalent units in neighboring nanoclusters. Four such connections are arranged in a tetra­hedral fashion, forming a diamond like network of Cu12S6Cl4(CuCl3)4 nanoclusters. The rigid diamond-like network results in large channels occupied by solvate mol­ecules, which in most cases were too poorly defined for modeling. The content of the voids, believed to be water mol­ecules, was accounted using reverse Fourier-transform methods using the SQUEEZE algorithm (Spek, 2015). The protonated amino groups of the cysteine ligands are directed away from the sphere, forming N—H⋯Cl hydrogen bonds with chloride ions of their cluster. The protonated –CO2H carb­oxy groups point outwards into the void and presumably form O—H⋯O hydrogen bonds with the unresolved water mol­ecules in the solvate channels (the carboxyl­ate protons are omitted in the structure).

Conclusion about the state of the carb­oxy groups is based on the following facts: (i) the FTIR spectrum confirms the presence of –CO2H groups and the absence of H3O+ ions in the crystal (see below); (ii) the coordination geometries observed are strongly favored by CuI; (iii) the crystals of the complex are colorless, which excludes the presence of copper(II).

Disorder is observed in one of the two crystallographically unique [Cu16(CysH2)6Cl16] clusters for three of the six cysteine ligands. The asymmetric unit consists of two Cu12 distorted cubo-octa­hedra (Figs. 1, 2). Almost all of the Cu—S bonds are similar in length (mean 2.25 ± 0.03 Å) except for the bonds formed by the disordered S1_1, S1_5 and S1_12 atoms, where the Cu—S bond lengths were determined with higher errors. The S—Cu—S angles are clustered in a narrow range (mean 130 ± 4°). Thus the Cu—S bonds and angles are typical for such Cu12S6 copper thiol­ate nanoclusters (see Database survey).

Figure 1.

Figure 1

Asymmetric unit of the title compound. Orange: copper, yellow: sulfur, green: chlorine, red: oxygen, blue: nitro­gen.

Figure 2.

Figure 2

Displacement ellipsoid plot (50% probability level) of the asymmetric unit.

In the ‘atlas sphere’ there are four tetra­hedral copper atoms (atoms Cu17, Cu26, Cu28, Cu32 for the first core and Cu1, Cu9, Cu11, Cu16 for the second) surrounded by two μ2-chloride ions and one μ3-chloride ion (for example, Cu1 ion is surrounded by Cl1, Cl2 and Cl3 atoms), which are close to planar with copper and the μ3-Cl that is almost perpendicular to this imaginary plane wherein the length of Cu—μ3-Cl bond is longer than the others (mean 2.58 ± 0.04 Å). We note that the lengths of the other Cu—μ3-Cl bonds are about the same as the Cu—μ2-Cl lengths (mean 2.31 ± 0.04 Å) and the Cl—Cu—Cl angle in the [Cu2Cl2] units is 94.9 ± 2.4°. In addition, there are two non-bridging chloride ions: Cl28 and Cl26. The other chloride ions form μ2-bridges between the copper ions in the core except for μ3-Cl15.

The charge distribution per cage is as following: 16 positive charges of Cu+ ions are balanced by the negative charges of 16 chloride ions. The 12 amino acid residues occur as neutral CysH2 = HO2CCH(NH3 +)CH2S zwitterions. The ‘atlas spheres’ in the asymmetric unit have differences regarding the presence of disorder, viz. three of the six cysteine mol­ecules are disordered in one ‘atlas sphere’ while the other is not disordered.

Supra­molecular features  

In the structure, the ‘atlas spheres’ are linked to form a three-dimensional framework with the Cu2Cl2 linkages forming a tetra­hedral environment in each of the clusters (Fig. 3). As a result, the ‘atlas spheres’ form a distorted diamond-like structure (Fig. 4). However, it is not possible to give an exact description of the topology (O’Keeffe et al., 2008). These bridges are based on the μ3-Cl atoms described above, with the exception of Cl15 and eight copper atoms in a distorted tetra­hedral environment (four such atoms per cage); thus, from the point of view of the coordination environment, it is more accurate to talk about Cu2Cl8 bridges. In addition, the cages are connected by a system of hydrogen bonds. Namely, two water mol­ecules (O4_6 and O3_6) act as donors for two amino groups (N1_9 and N1_6, respectively), forming N—H⋯O hydrogen bonds. In turn, the water mol­ecules are linked by hydrogen bonds. Thus, a chain of three hydrogen bonds exists between neighboring ‘atlas spheres’. The structure has voids in which there are presumably disordered water mol­ecules (Figs. 5, 6). Using PLATON SQUEEZE (Spek, 2015), a void was identified occupying 38.6% of the unit-cell volume for the compound. The void volume of 7685 Å3 contains the equivalent of 3455 electrons, corresponding to about 346 water mol­ecules. The hydrogen-bond geometry is given in Table 1.

Figure 3.

Figure 3

Tetra­hedral environment of ‘atlas-sphere’ of the title compound.

Figure 4.

Figure 4

Diamond-like extended structure of the title compound.

Figure 5.

Figure 5

Crystal packing of the title compound viewed along c-axis direction.

Figure 6.

Figure 6

Visualization of the void space of the title compound viewed along the b-axis direction.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1_1—H1A_1⋯Cl6 0.91 2.73 3.554 (19) 151
N1_1—H1A_1⋯Cl16 0.91 2.66 3.148 (16) 115
N1_1—H1B_1⋯Cl3i 0.91 2.81 3.42 (2) 126
N1A_1—H1AA_1⋯Cl7 0.91 2.74 3.34 (4) 125
N1A_1—H1AA_1⋯Cl9 0.91 2.54 3.28 (3) 138
N1_2—H1A_2⋯Cl4 0.91 2.78 3.395 (15) 126
N1_2—H1A_2⋯O2A_5i 0.91 2.48 3.04 (2) 120
N1_2—H1C_2⋯Cl5 0.91 2.19 3.101 (15) 175
N1_3—H1A_3⋯Cl10 0.91 2.69 3.592 (9) 171
N1_3—H1B_3⋯O2_3 0.91 2.13 2.605 (10) 112
N1_3—H1C_3⋯Cl2 0.91 2.53 3.306 (8) 143
N1_3—H1C_3⋯Cl11 0.91 2.68 3.228 (9) 120
N1_4—H1B_4⋯Cl15 0.91 2.44 3.199 (10) 141
N1_4—H1B_4⋯S1_4 0.91 2.82 3.300 (10) 114
N1_5—H1B_5⋯O2_12 0.91 2.36 3.14 (3) 144
N1_5—H1C_5⋯Cl11 0.91 2.76 3.46 (2) 134
N1_5—H1C_5⋯Cl13 0.91 2.49 3.24 (2) 139
N1A_5—H1A2_5⋯Cl2 0.91 2.74 3.46 (2) 137
N1A_5—H1A2_5⋯Cl11 0.91 2.42 2.99 (2) 121
N1A_5—H1A2_5⋯S1A_5 0.91 2.68 3.22 (4) 119
N1A_5—H1A3_5⋯Cl4ii 0.91 2.82 3.49 (3) 132
N1_6—H1B_6⋯O3_6 0.91 1.92 2.70 (3) 142
N1_6—H1C_6⋯Cl16 0.91 2.53 3.311 (16) 145
N1_6—H1C_6⋯S1_6 0.91 2.89 3.330 (16) 111
N1A_6—H1AC_6⋯Cl11 0.91 2.74 3.60 (7) 158
N1_7—H1B_7⋯Cl23 0.91 2.77 3.435 (9) 131
N1_7—H1B_7⋯Cl26 0.91 2.58 3.315 (9) 138
N1_7—H1C_7⋯O1_13 0.91 1.99 2.803 (12) 148
N1_8—H1C_8⋯Cl26 0.91 2.51 3.370 (12) 158
N1_8—H1C_8⋯S1_8 0.91 2.83 3.286 (13) 112
N1_9—H1A_9⋯Cl20 0.91 2.85 3.585 (9) 139
N1_9—H1A_9⋯O1_10iii 0.91 2.12 2.796 (11) 130
N1_9—H1B_9⋯O4_6 0.91 2.01 2.86 (3) 154
N1_9—H1C_9⋯Cl17 0.91 2.79 3.348 (9) 121
N1_9—H1C_9⋯Cl28 0.91 2.45 3.211 (9) 142
N1_10—H1B_10⋯Cl25 0.91 2.77 3.239 (9) 113
N1_10—H1B_10⋯Cl26 0.91 2.57 3.363 (8) 146
N1_10—H1C_10⋯O2_9iv 0.91 2.15 2.856 (12) 134
N1_11—H1A_11⋯O1_13v 0.91 2.08 2.971 (13) 167
N1_11—H1C_11⋯Cl21 0.91 2.61 3.362 (10) 141
N1_11—H1C_11⋯Cl24 0.91 2.61 3.235 (9) 126
N1_12—H1A_12⋯Cl31 0.91 2.92 3.387 (9) 113
N1_12—H1C_12⋯Cl29 0.91 2.44 3.316 (9) 161
O4_6—H4B_6⋯Cl12 0.84 (1) 2.89 (10) 3.32 (3) 114 (8)
O4_6—H4B_6⋯O3_6 0.84 (1) 1.76 (7) 2.51 (4) 148 (10)
O1_13—H1A_13⋯Cl25 0.82 (3) 2.97 (3) 3.501 (9) 125 (2)

Symmetry codes: (i) -x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1; (ii) -x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1; (iii) -x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z; (iv) -x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z; (v) -x+1, y, -z.

Database survey  

Considering copper(I) complexes with cysteine, a number of heteroligand CoIII/CuI complexes with ethyl­enedi­amine are known where the inner sphere of CoIII contains two coord­in­ated ethyl­enedi­amine mol­ecules and one monoprotonated l-cysteine mol­ecule coordinated via nitro­gen and sulfur ([Co(en)2(l-CysH)]). In addition, the sulfur atom of cysteine is coordinated to the CuI atom, which is surrounded by other sulfur atoms and chloride ions ([CuCl3S], [CuClS3], [CuClS2]), for example, see Cambridge Structural Database (CSD; Groom et al., 2016) refcodes TOHREO, XOMDEJ, XOMDIN, XOMDOT, XOMDUZ, XOMFAH (Aridomi et al., 2008). A copper(II) complex with S-methyl-l-cysteine of composition [Cu(l-MeCys)2]n (MeCysH = HO2CCH(NH2)CH2SCH3) has been characterized (Dubler et al., 1986). The ligand coordin­ates to the metal ion via its oxygen and nitro­gen atoms and the structure is polymeric because both carb­oxy­lic groups are also coordinated to other copper(II) atoms. It should be noted that only one copper(II)–cystine complex has been synthesized, which includes 2,2′-bipyridyl as a second ligand (Seko et al., 2010).

Several copper–cyste­amine (CyH = SCH2CH2NH3 +) structures have been reported: {[Cu8Cl6(CyH)6]Cl2}n (Salehi et al., 1997); [Cu13Cl13(CyH)6·H2O]n consisting of [Cu12S6Cl12] clusters bridged by Cl and [Cu2Cl2] units (Parish et al., 1997); {[Cu13(CyH)6Br13xH2O}n formed of [Cu12(CyH)6Br12] clusters, which are linked by [Cu2Br2] bridges (Prichard et al., 1999), and the most recent one [Cu3Cl(Cy)2] (here cyste­amine has deprotonated amino and thio groups) where there are parallel chains [Cu2Cy2]n connected to neighboring ones by [CuCl] links (Ma et al., 2014). In addition, there are five complexes of copper(I) with cystamine (H2NCH2CH2S–SCH2CH2NH2) and bromide ligands (Louvain et al., 2008). The dimethyl derivative of cyste­amine forms a complex {[Cu17(RS)6Cl17]}n [RS = SCH2CH2NH(CH3)2 +] including a [Cu12S6] cluster (Prichard et al., 1999). In addition, the [Cu6S12] cluster has been found in copper–thiol systems: [Cu12(SR′)6Cl12][(Cu(R′SH))6] (R′ = n-Bu) and [H(THF)2]2[Cu17(SR′′)6Cl13(THF)2(R′′SH)3] (R′′ = CH2CH2Ph) (Cook et al., 2019).

Thus [Cu12S6] clusters in copper(I) complexes with cyste­amine, a close derivative of cysteine, are stabilized with Cl or Br anions. Chloride ions also stabilize such clusters containing simple thiols. It should be noted that phosphine ligands also can stabilize a [Cu12S6] core containing just sulfur instead of thiols and forming [Cu12S6(PR 3)8] complexes: [Cu12S6(PPh2Et)8], [Cu12S6(PEt3)8] (Dehnen et al., 1994) and [Cu12S6(PnPR 3)8] (Dehnen et al., 1996). Moreover, there are some complexes containing four diphosphine ligands (Eichhöfer et al., 2015, Yang et al., 2014, Khadka et al., 2013) with high photoluminescence quantum yields.

Synthesis and crystallization  

Masses of 0.085 g (0.500 mmol) of CuCl2·2H2O and 0.060 g (0.50 mmol) of l-cysteine were mixed in 5 ml of water under inert conditions. A precipitate was formed, which was dissolved by adding approximately 1 ml of a 2 M HCl oxygen-free solution. The resulting solution was left to stand in an inert atmosphere. Colorless crystals of the title compound formed within 24 h.

As a result of the rapid degradation of the crystals in air, it was not possible to perform an elemental analysis. The IR spectra of the crystals were recorded using an FTIR Bruker Vertex 70 spectrometer (400–4000 cm−1). The IR spectrum of {[Cu16(CysH2)6Cl16xH2O}n (1) is shown in Fig. 7, and the spectroscopic parameters are presented in Table 2 in comparison with the corresponding values for the crystal of l-cysteine hydro­chloride, l-CysH2·HCl (Dokken et al., 2009) along with our assignment of the spectroscopic lines.

Figure 7.

Figure 7

IR spectrum of the title compound.

Table 2. Comparison of infrared band assignments (cm−1) for 1 and L-cysteine hydro­chloride, L-CysH2·HCl (Dokken et al., 2009).

1 L-CysH2·HCl Assignment
776 w 770 w γ CH2
819 w 839 w δ COO
871 mw 868 mw ν CC, δ COO
944 w 929 w ν CN, ν CC
1060 mw 1058 mw ν CN, ν CC
1127 mw 1141 mw NH3 +
1203 s 1201 s ν CO, δ OH (COOH)
1247 mw 1272 w γ CH2
1317 w 1344 w δ CH
1415 m 1427 m δ as CH3, δ CH2
1484 s 1477 sh
1574 mw 1571 mw δ as NH3 +, ν as COO
1601 sh 1619 w δ as NH3 +, ν as COO
1724 vs 1743 vs ν CO
1968 w
2641 sh 2645 w ν CH2
2923 s 2943 sh ν NH3 +, ν CH2, ν CH3
3011 s 3051 sh ν NH3 +
3453 m

As follows from Table 2, there is a satisfactory correspondence of most bands of both crystals, 1 and l-CysH2·HCl. Of particular note is the almost complete coincidence of the position of the most intense line at 1201–1203 cm−1 for both compounds. According to Dokken et al. (2009), this intense band is associated with vibrations of the protonated –COOH group. In this case, the possibility of protonation of water mol­ecules instead of a carb­oxy group with the hydroxonium ion formation is practically excluded. Indeed, according to numerous experimental and calculated data for crystals and liquid phases, H3O+ ions show four broad lines in the IR spectra near 1150, 1740, 3160, and 3320 cm−1 (Chukanov, 2014; Yukhnevich, 1973). As follows from Fig. 7 and Table 2, no sign of these bands was detected in the spectrum of the crystal 1. On the other hand, there is a satisfactory agreement between the vibration lines of the –NH3 + group at ∼1130, ∼1572, ∼1610, and ∼2930 cm−1 for compounds 1 and l-CysH2·HCl. Thus, according to the IR spectroscopic data, the protons in 1 are localized on the carboxyl and ammonium groups, while the thiol groups are deprotonated and bonded to copper(I).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All non-hydrogen atoms were refined anisotropically and C—H hydrogen atoms were positioned at geometrically calculated positions (C—H = 0.99–1.00 Å, N—H = 0.91 Å) and refined using a riding model. The constraint U iso(H) = 1.2U eq(C) or 1.5U eq(N) was applied in all cases. Three of the cysteine ligands were found to be disordered over two sets of sites with refined major occupancies of 0.826 (8), 0.550 (19) and 0.657 (9). Close to one of the disordered cysteine ligands, two partially occupied water mol­ecules were found, which could not be modeled using SQUEEZE (Spek, 2015) because of their proximity to the cysteine disorder. Their occupancy was refined freely and converged to 0.55 (2) and 0.33 (2). The structure was refined with the help of similarity restraints, strong similarity restraints on anisotropic displacement parameters (Müller, 2009) and rigid bond restraints (Thorn et al., 2012) on the disordered ligands. One of the partially occupied water mol­ecules was strongly restrained to have a more isotropic behavior using the ISOR instruction as implemented in SHELXL. The unit cell contains a significant amount of solvent, most likely a heavily disordered hydrogen-bonded network of water mol­ecules. To refine the model against the measured data, the SWAT instruction as implemented in SHELXL (Langridge et al., 1960; Driessen et al., 1989) was used. In addition, SQUEEZE (Spek, 2015) as implemented in PLATON (Spek, 2020) was used to model the disordered solvent in the voids of the structure. SQUEEZE identified a void centered at ∼(0 0.1 0) with a volume of 7685 Å3 containing the equivalent of 3455 electrons. This would correspond to about 346 water mol­ecules.

Table 3. Experimental details.

Crystal data
Chemical formula [Cu32Cl32(C3H6NO2S)12]·2.68H1.97O
M r 4643.74
Crystal system, space group Monoclinic, C2
Temperature (K) 100
a, b, c (Å) 29.4665 (14), 22.1299 (11), 28.9371 (14)
β (°) 97.3964 (14)
V3) 18712.6 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.18
Crystal size (mm) 0.36 × 0.31 × 0.13
 
Data collection
Diffractometer Bruker PHOTON100
Absorption correction Multi-scan (SADABS; Sheldrick, 2016)
T min, T max 0.487, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 189540, 33050, 26149
R int 0.050
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.114, 1.09
No. of reflections 33050
No. of parameters 1568
No. of restraints 1778
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.74
Absolute structure Flack x determined using 10959 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.030 (4)

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXT2015 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002012/hb7953sup1.cif

e-77-00324-sup1.cif (6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002012/hb7953Isup2.hkl

e-77-00324-Isup2.hkl (1.8MB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002012/hb7953Isup4.cdx

Author's response to referees comments for previous submission ZL2796. DOI: 10.1107/S2056989021002012/hb7953sup3.txt

e-77-00324-sup3.txt (7.1KB, txt)

CCDC reference: 2064015

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was carried out as a part of the partnership between the Justus-Liebig University Giessen and the Kazan Federal University. We thank Dr Miriam Wern (JLU Giessen) for her assistance with the experiments. We express our sincere gratitude to the Reviewer for the great work on the article, which contributed to its significant improvement.

supplementary crystallographic information

Crystal data

[Cu32Cl32(C3H6NO2S)12]·2.68H1.97O F(000) = 8986
Mr = 4643.74 Dx = 1.648 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
a = 29.4665 (14) Å Cell parameters from 9656 reflections
b = 22.1299 (11) Å θ = 2.3–27.0°
c = 28.9371 (14) Å µ = 4.18 mm1
β = 97.3964 (14)° T = 100 K
V = 18712.6 (16) Å3 Block, colourless
Z = 4 0.36 × 0.31 × 0.13 mm

Data collection

Bruker PHOTON100 diffractometer 33050 independent reflections
Radiation source: IµS micro-focus sealed tube, multilayer optics 26149 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1 Rint = 0.050
φ and ω scans θmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2016) h = −35→35
Tmin = 0.487, Tmax = 0.746 k = −26→26
189540 measured reflections l = −34→34

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0624P)2 + 8.4715P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.005
33050 reflections Δρmax = 0.56 e Å3
1568 parameters Δρmin = −0.74 e Å3
1778 restraints Absolute structure: Flack x determined using 10959 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dual Absolute structure parameter: 0.030 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Bruker D8 Venture Dual IµS fixed chi instrument.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.23519 (5) 0.31230 (6) 0.54032 (5) 0.0579 (4)
Cu2 0.20172 (5) 0.44258 (8) 0.54083 (5) 0.0691 (5)
Cu3 0.26766 (5) 0.41381 (6) 0.47398 (5) 0.0672 (5)
Cu4 0.17391 (5) 0.36921 (6) 0.46655 (5) 0.0559 (4)
Cu5 0.21846 (5) 0.58001 (6) 0.51074 (5) 0.0567 (4)
Cu6 0.13091 (5) 0.53887 (6) 0.51306 (6) 0.0630 (5)
Cu7 0.09631 (5) 0.44665 (8) 0.42588 (6) 0.0798 (5)
Cu8 0.10651 (7) 0.57526 (9) 0.40780 (7) 0.0977 (7)
Cu9 0.02387 (5) 0.54135 (7) 0.45601 (6) 0.0745 (5)
Cu10 0.20700 (6) 0.61803 (6) 0.41657 (6) 0.0698 (5)
Cu11 0.28239 (5) 0.67012 (6) 0.48669 (5) 0.0626 (5)
Cu12 0.28192 (5) 0.54007 (6) 0.45474 (5) 0.0614 (4)
Cu13 0.17952 (6) 0.53201 (8) 0.33686 (5) 0.0785 (5)
Cu14 0.15793 (5) 0.40690 (7) 0.36370 (5) 0.0695 (5)
Cu15 0.25597 (7) 0.45178 (6) 0.37674 (6) 0.0824 (6)
Cu16 0.20923 (6) 0.43008 (6) 0.27659 (5) 0.0651 (5)
Cl17 0.22173 (9) 0.37582 (11) 0.19939 (9) 0.0545 (7)
Cl18 0.34231 (11) 0.45854 (12) 0.21509 (10) 0.0665 (8)
Cl19 0.33498 (9) 0.28328 (11) 0.24565 (9) 0.0570 (7)
Cl20 0.19600 (9) 0.48492 (10) 0.00147 (9) 0.0517 (7)
Cl21 0.40264 (9) 0.49108 (12) 0.11204 (9) 0.0552 (7)
Cl22 0.32955 (9) 0.54141 (10) 0.00565 (9) 0.0505 (6)
Cl23 0.27217 (9) 0.44123 (11) −0.09437 (9) 0.0510 (6)
Cl24 0.48113 (8) 0.37736 (11) 0.06546 (9) 0.0475 (6)
Cl25 0.44196 (8) 0.25954 (10) −0.03622 (9) 0.0457 (6)
Cl26 0.31903 (10) 0.28123 (11) −0.09826 (9) 0.0569 (7)
Cl27 0.46038 (9) 0.20465 (13) 0.09290 (11) 0.0633 (8)
Cl28 0.15872 (11) 0.35724 (12) 0.07666 (11) 0.0684 (8)
Cl29 0.36295 (11) 0.16125 (14) 0.15790 (12) 0.0724 (9)
Cl30 0.16584 (9) 0.20464 (11) 0.03029 (10) 0.0576 (7)
Cl31 0.26426 (9) 0.09887 (10) 0.07751 (9) 0.0544 (7)
Cl32 0.24954 (9) 0.15419 (10) −0.05720 (9) 0.0499 (7)
Cu17 0.29960 (5) 0.37517 (6) 0.23092 (5) 0.0575 (4)
Cu18 0.34600 (5) 0.40742 (6) 0.14677 (5) 0.0554 (4)
Cu19 0.32706 (5) 0.27978 (6) 0.16614 (5) 0.0544 (4)
Cu20 0.25792 (4) 0.35959 (5) 0.13493 (4) 0.0491 (4)
Cu21 0.34111 (5) 0.45217 (6) 0.05047 (5) 0.0597 (5)
Cu22 0.40555 (4) 0.36029 (5) 0.07127 (4) 0.0449 (4)
Cu23 0.38409 (5) 0.23608 (6) 0.09839 (5) 0.0588 (4)
Cu24 0.27759 (5) 0.23655 (6) −0.01539 (6) 0.0726 (5)
Cu25 0.21648 (5) 0.28572 (6) 0.05507 (5) 0.0591 (4)
Cu26 0.47292 (4) 0.27944 (6) 0.04148 (5) 0.0530 (4)
Cu27 0.24038 (5) 0.40504 (5) 0.03107 (5) 0.0531 (4)
Cu28 0.26203 (5) 0.50137 (6) −0.02970 (5) 0.0547 (4)
Cu29 0.29722 (5) 0.37054 (8) −0.03934 (5) 0.0725 (5)
Cu30 0.37891 (4) 0.28444 (5) −0.00011 (5) 0.0526 (4)
Cu31 0.29053 (5) 0.19625 (5) 0.07819 (5) 0.0558 (4)
Cu32 0.21772 (5) 0.13500 (6) 0.01025 (5) 0.0584 (4)
Cl1 0.21146 (14) 0.37186 (13) 0.59869 (11) 0.0872 (11)
Cl2 0.17357 (9) 0.26957 (10) 0.49121 (10) 0.0506 (7)
Cl3 0.30254 (9) 0.33463 (13) 0.51603 (12) 0.0676 (8)
Cl4 0.25123 (12) 0.65910 (13) 0.55372 (10) 0.0698 (9)
Cl5 0.16698 (12) 0.54014 (15) 0.59363 (11) 0.0775 (9)
Cl6 0.24411 (10) 0.71154 (11) 0.41794 (10) 0.0596 (7)
Cl7 0.05734 (10) 0.56982 (13) 0.52772 (12) 0.0727 (9)
Cl8 0.34112 (11) 0.60748 (13) 0.47090 (12) 0.0725 (9)
Cl9 0.03342 (11) 0.60746 (15) 0.39359 (13) 0.0813 (10)
Cl10 0.01797 (10) 0.44353 (12) 0.42994 (12) 0.0674 (8)
Cl11 0.09607 (10) 0.32954 (13) 0.39005 (11) 0.0674 (8)
Cl12 0.19252 (11) 0.52940 (12) 0.26019 (10) 0.0651 (8)
Cl13 0.14881 (11) 0.37007 (14) 0.28865 (10) 0.0691 (8)
Cl14 0.28293 (10) 0.40796 (12) 0.31312 (9) 0.0584 (7)
Cl15 0.34099 (11) 0.44163 (14) 0.43265 (11) 0.0729 (8)
Cl16 0.14480 (14) 0.65016 (15) 0.33655 (12) 0.0871 (11)
S1_1 0.1561 (9) 0.6131 (9) 0.4672 (12) 0.052 (3) 0.658 (9)
O1_1 0.0759 (5) 0.8191 (6) 0.4557 (6) 0.113 (5) 0.658 (9)
O2_1 0.0863 (8) 0.7659 (9) 0.5246 (7) 0.118 (5) 0.658 (9)
N1_1 0.1252 (7) 0.7406 (8) 0.4156 (6) 0.111 (6) 0.658 (9)
H1A_1 0.151161 0.719806 0.412019 0.166* 0.658 (9)
H1B_1 0.131609 0.780828 0.417792 0.166* 0.658 (9)
H1C_1 0.103787 0.733853 0.390538 0.166* 0.658 (9)
C1_1 0.1448 (12) 0.6878 (13) 0.4909 (10) 0.070 (4) 0.658 (9)
H1D_1 0.136453 0.683168 0.522750 0.084* 0.658 (9)
H1E_1 0.172790 0.712814 0.492789 0.084* 0.658 (9)
C2_1 0.1065 (7) 0.7191 (7) 0.4607 (6) 0.080 (4) 0.658 (9)
H2_1 0.081462 0.689175 0.451812 0.096* 0.658 (9)
C3_1 0.0861 (7) 0.7744 (8) 0.4811 (7) 0.090 (4) 0.658 (9)
S1A_1 0.1520 (18) 0.6071 (19) 0.464 (2) 0.059 (5) 0.342 (9)
O1A_1 0.0945 (11) 0.8049 (13) 0.5349 (12) 0.105 (7) 0.342 (9)
O2A_1 0.1397 (11) 0.7542 (13) 0.5775 (12) 0.101 (8) 0.342 (9)
N1A_1 0.0682 (12) 0.7037 (16) 0.4767 (13) 0.103 (7) 0.342 (9)
H1AA_1 0.061418 0.664940 0.467933 0.154* 0.342 (9)
H1AB_1 0.071144 0.726452 0.451103 0.154* 0.342 (9)
H1AC_1 0.045293 0.718996 0.491569 0.154* 0.342 (9)
C1A_1 0.140 (2) 0.685 (3) 0.483 (2) 0.070 (4) 0.342 (9)
H1BA_1 0.169334 0.700592 0.498029 0.084* 0.342 (9)
H1BB_1 0.132959 0.708072 0.453391 0.084* 0.342 (9)
C2A_1 0.1108 (13) 0.7049 (16) 0.5080 (15) 0.080 (4) 0.342 (9)
H2A_1 0.107182 0.669949 0.529161 0.096* 0.342 (9)
C3A_1 0.1142 (19) 0.759 (2) 0.542 (2) 0.089 (5) 0.342 (9)
S1_2 0.26016 (10) 0.49555 (12) 0.51876 (9) 0.0543 (7)
O1_2 0.3397 (6) 0.4979 (8) 0.6846 (5) 0.194 (7)
O2_2 0.3717 (6) 0.4512 (8) 0.6279 (5) 0.207 (7)
N1_2 0.2702 (5) 0.5443 (6) 0.6317 (5) 0.134 (5)
H1A_2 0.283616 0.579645 0.624647 0.202*
H1B_2 0.271827 0.540574 0.663135 0.202*
H1C_2 0.240393 0.544265 0.618745 0.202*
C1_2 0.3100 (4) 0.4995 (7) 0.5638 (4) 0.087 (3)
H1AA_2 0.332332 0.467894 0.557937 0.104*
H1AB_2 0.325032 0.539330 0.562332 0.104*
C2_2 0.2956 (5) 0.4905 (7) 0.6119 (4) 0.113 (4)
H2_2 0.274803 0.454690 0.610315 0.136*
C3_2 0.3374 (6) 0.4757 (9) 0.6452 (5) 0.139 (5)
S1_3 0.13160 (9) 0.43683 (12) 0.49842 (10) 0.0559 (8)
O1_3 0.0699 (3) 0.3400 (3) 0.6162 (3) 0.064 (2)
O2_3 0.0193 (3) 0.2967 (3) 0.5619 (3) 0.062 (2)
N1_3 0.0668 (3) 0.3145 (4) 0.4932 (3) 0.060 (2)
H1A_3 0.052131 0.343936 0.475120 0.091*
H1B_3 0.046652 0.284637 0.497854 0.091*
H1C_3 0.089799 0.298864 0.478603 0.091*
C1_3 0.0914 (4) 0.4085 (4) 0.5362 (4) 0.058 (3)
H1D_3 0.100998 0.423664 0.568113 0.069*
H1DE_3 0.060896 0.425945 0.525503 0.069*
C2_3 0.0863 (3) 0.3404 (4) 0.5387 (3) 0.054 (3)
H2_3 0.117107 0.322164 0.548152 0.064*
C3_3 0.0555 (3) 0.3246 (4) 0.5750 (4) 0.053 (3)
S1_4 0.24826 (10) 0.55195 (11) 0.38094 (10) 0.0555 (8)
O1_4 0.3746 (4) 0.5903 (4) 0.2768 (4) 0.099 (3)
O2_4 0.3076 (4) 0.6387 (5) 0.2617 (3) 0.100 (3)
N1_4 0.3531 (4) 0.5391 (5) 0.3535 (3) 0.086 (3)
H1A_4 0.365353 0.506414 0.340640 0.128*
H1B_4 0.342295 0.527912 0.380334 0.128*
H1C_4 0.375056 0.567934 0.360014 0.128*
C1_4 0.2815 (4) 0.5998 (4) 0.3464 (4) 0.070 (4)
H1AA_4 0.260230 0.623059 0.323806 0.085*
H1AB_4 0.299331 0.629054 0.367322 0.085*
C2_4 0.3144 (4) 0.5642 (5) 0.3198 (4) 0.076 (4)
H2_4 0.297116 0.529201 0.304379 0.091*
C3_4 0.3353 (5) 0.5980 (6) 0.2830 (5) 0.085 (4)
S1_5 0.2212 (13) 0.3822 (12) 0.4101 (14) 0.042 (3) 0.549 (19)
O1_5 0.3101 (6) 0.2390 (8) 0.3591 (7) 0.065 (4) 0.549 (19)
O2_5 0.2538 (7) 0.1796 (7) 0.3275 (7) 0.070 (4) 0.549 (19)
N1_5 0.1852 (7) 0.2529 (8) 0.3495 (9) 0.070 (5) 0.549 (19)
H1A_5 0.179836 0.233180 0.375827 0.105* 0.549 (19)
H1B_5 0.181330 0.226863 0.324919 0.105* 0.549 (19)
H1C_5 0.165145 0.284184 0.343973 0.105* 0.549 (19)
C1_5 0.2459 (11) 0.3084 (13) 0.4011 (10) 0.048 (4) 0.549 (19)
H1AA_5 0.279575 0.312745 0.406670 0.058* 0.549 (19)
H1AB_5 0.237115 0.281074 0.425576 0.058* 0.549 (19)
C2_5 0.2343 (7) 0.2773 (8) 0.3556 (7) 0.053 (3) 0.549 (19)
H2_5 0.236155 0.308172 0.330686 0.063* 0.549 (19)
C3_5 0.2687 (7) 0.2277 (8) 0.3484 (9) 0.056 (4) 0.549 (19)
S1A_5 0.2191 (17) 0.3740 (15) 0.4142 (18) 0.047 (4) 0.451 (19)
O1A_5 0.2899 (9) 0.2343 (11) 0.3394 (8) 0.062 (5) 0.451 (19)
O2A_5 0.2275 (9) 0.1722 (9) 0.3300 (8) 0.067 (5) 0.451 (19)
N1A_5 0.1740 (8) 0.2498 (11) 0.3727 (9) 0.065 (5) 0.451 (19)
H1A1_5 0.150234 0.250176 0.349289 0.097* 0.451 (19)
H1A2_5 0.167656 0.274871 0.395968 0.097* 0.451 (19)
H1A3_5 0.178272 0.211565 0.384006 0.097* 0.451 (19)
C1A_5 0.2514 (16) 0.3002 (19) 0.4055 (15) 0.055 (4) 0.451 (19)
H1AC_5 0.282546 0.307891 0.397360 0.066* 0.451 (19)
H1AD_5 0.253385 0.273703 0.433267 0.066* 0.451 (19)
C2A_5 0.2129 (12) 0.2691 (12) 0.3560 (11) 0.058 (4) 0.451 (19)
H2A_5 0.205748 0.299946 0.330870 0.070* 0.451 (19)
C3A_5 0.2450 (11) 0.2183 (12) 0.3405 (11) 0.059 (4) 0.451 (19)
S1_6 0.11738 (19) 0.49435 (19) 0.36352 (19) 0.0583 (11) 0.826 (8)
O1_6 0.0079 (5) 0.5202 (8) 0.2134 (5) 0.140 (5) 0.826 (8)
O2_6 0.0236 (6) 0.4271 (7) 0.2359 (6) 0.157 (6) 0.826 (8)
N1_6 0.0591 (6) 0.5742 (6) 0.2781 (6) 0.118 (5) 0.826 (8)
H1A_6 0.028620 0.579676 0.279043 0.176* 0.826 (8)
H1B_6 0.067484 0.593466 0.252741 0.176* 0.826 (8)
H1C_6 0.075139 0.589663 0.304429 0.176* 0.826 (8)
C1_6 0.0642 (5) 0.4796 (8) 0.3219 (5) 0.092 (3) 0.826 (8)
H1D_6 0.058696 0.435578 0.319164 0.110* 0.826 (8)
H1E_6 0.037551 0.498417 0.333876 0.110* 0.826 (8)
C2_6 0.0694 (6) 0.5054 (7) 0.2748 (5) 0.109 (4) 0.826 (8)
H2_6 0.100328 0.497319 0.265367 0.131* 0.826 (8)
C3_6 0.0289 (7) 0.4819 (6) 0.2374 (7) 0.125 (5) 0.826 (8)
O3_6 0.0965 (9) 0.5789 (13) 0.1979 (8) 0.174 (11) 0.63 (3)
O4_6 0.1142 (9) 0.4710 (12) 0.1799 (9) 0.126 (15) 0.34 (2)
H4A_6 0.104 (3) 0.457 (2) 0.2032 (15) 0.189* 0.34 (2)
H4B_6 0.119 (4) 0.5077 (14) 0.186 (3) 0.189* 0.34 (2)
S1A_6 0.1183 (9) 0.4940 (7) 0.3643 (9) 0.076 (5) 0.174 (8)
O1A_6 −0.0009 (18) 0.566 (3) 0.253 (2) 0.131 (9) 0.174 (8)
O2A_6 0.0670 (19) 0.557 (3) 0.230 (2) 0.131 (7) 0.174 (8)
N1A_6 0.039 (2) 0.421 (2) 0.298 (3) 0.115 (9) 0.174 (8)
H1AA_6 0.046971 0.399268 0.273729 0.172* 0.174 (8)
H1AB_6 0.008531 0.416314 0.299682 0.172* 0.174 (8)
H1AC_6 0.055404 0.408946 0.324933 0.172* 0.174 (8)
C1A_6 0.1033 (14) 0.491 (3) 0.2993 (12) 0.093 (4) 0.174 (8)
H1BA_6 0.115553 0.526535 0.284486 0.111* 0.174 (8)
H1BB_6 0.116165 0.453884 0.286595 0.111* 0.174 (8)
C2A_6 0.049 (2) 0.490 (2) 0.290 (2) 0.108 (4) 0.174 (8)
H2A_6 0.040481 0.508481 0.318976 0.130* 0.174 (8)
C3A_6 0.0366 (16) 0.543 (2) 0.2528 (15) 0.118 (5) 0.174 (8)
S1_7 0.36689 (8) 0.38424 (10) 0.00077 (8) 0.0404 (6)
O1_7 0.4468 (2) 0.4789 (3) −0.1283 (3) 0.0589 (19)
O2_7 0.4529 (3) 0.5238 (3) −0.0570 (3) 0.071 (2)
N1_7 0.3819 (3) 0.4029 (4) −0.1109 (3) 0.060 (2)
H1A_7 0.378061 0.421294 −0.139249 0.091*
H1B_7 0.354802 0.386784 −0.105029 0.091*
H1C_7 0.403111 0.373007 −0.110793 0.091*
C1_7 0.4124 (3) 0.4198 (4) −0.0277 (3) 0.043 (2)
H1AA_7 0.427358 0.451126 −0.006499 0.051*
H1AB_7 0.435787 0.388758 −0.031710 0.051*
C2_7 0.3979 (4) 0.4484 (4) −0.0740 (3) 0.056 (3)
H2_7 0.371636 0.475948 −0.070501 0.067*
C3_7 0.4356 (4) 0.4859 (4) −0.0895 (4) 0.058 (3)
S1_8 0.23844 (8) 0.32201 (10) −0.01282 (9) 0.0447 (6)
O1_8 0.1102 (4) 0.2923 (6) −0.1457 (4) 0.126 (4)
O2_8 0.0919 (4) 0.2791 (7) −0.0744 (4) 0.135 (5)
N1_8 0.2039 (4) 0.2799 (7) −0.1205 (4) 0.113 (4)
H1A_8 0.195095 0.308718 −0.142253 0.170*
H1B_8 0.202257 0.242869 −0.134323 0.170*
H1C_8 0.233226 0.287100 −0.107569 0.170*
C1_8 0.1848 (4) 0.3330 (5) −0.0509 (4) 0.078 (4)
H1AA_8 0.159872 0.339170 −0.031531 0.093*
H1AB_8 0.187185 0.370161 −0.069566 0.093*
C2_8 0.1727 (4) 0.2815 (6) −0.0831 (4) 0.084 (4)
H2_8 0.177643 0.243402 −0.064519 0.101*
C3_8 0.1220 (4) 0.2840 (8) −0.1037 (5) 0.097 (5)
S1_9 0.28393 (9) 0.43517 (10) 0.09544 (9) 0.0456 (6)
O1_9 0.2567 (3) 0.6072 (3) 0.1752 (3) 0.067 (2)
O2_9 0.1845 (3) 0.6009 (3) 0.1452 (3) 0.066 (2)
N1_9 0.1864 (3) 0.4857 (3) 0.1237 (3) 0.062 (3)
H1A_9 0.177384 0.501291 0.094865 0.093*
H1B_9 0.164774 0.493925 0.142642 0.093*
H1C_9 0.189821 0.444984 0.121499 0.093*
C1_9 0.2675 (4) 0.5114 (4) 0.1116 (3) 0.050 (3)
H1D_9 0.295158 0.532541 0.126530 0.060*
H1DE_9 0.256105 0.533730 0.082830 0.060*
C2_9 0.2317 (3) 0.5140 (4) 0.1439 (3) 0.053 (3)
H2_9 0.243468 0.491512 0.172971 0.064*
C3_9 0.2233 (4) 0.5788 (4) 0.1571 (4) 0.057 (3)
S1_10 0.34156 (9) 0.20907 (10) 0.02913 (9) 0.0453 (6)
O1_10 0.3877 (2) 0.0336 (3) −0.0650 (3) 0.0577 (19)
O2_10 0.4188 (2) 0.0312 (3) 0.0089 (3) 0.065 (2)
N1_10 0.3713 (3) 0.1500 (3) −0.0661 (3) 0.056 (2)
H1A_10 0.392315 0.145372 −0.086286 0.083*
H1B_10 0.365034 0.189931 −0.063085 0.083*
H1C_10 0.345224 0.129913 −0.077095 0.083*
C1_10 0.3564 (3) 0.1313 (4) 0.0164 (4) 0.049 (3)
H1D_10 0.369984 0.111794 0.045775 0.059*
H1DE_10 0.327957 0.109160 0.005012 0.059*
C2_10 0.3901 (3) 0.1250 (4) −0.0198 (3) 0.050 (2)
H2_10 0.419376 0.145957 −0.008207 0.060*
C3_10 0.3996 (4) 0.0576 (4) −0.0274 (4) 0.060 (3)
S1_11 0.38783 (9) 0.32509 (11) 0.13855 (9) 0.0448 (6)
O1_11 0.5256 (3) 0.3758 (6) 0.2567 (3) 0.105 (3)
O2_11 0.4636 (4) 0.3444 (6) 0.2834 (3) 0.129 (4)
N1_11 0.4846 (3) 0.4092 (4) 0.1750 (3) 0.065 (2)
H1A_11 0.508989 0.386110 0.169671 0.097*
H1B_11 0.494809 0.444097 0.189389 0.097*
H1C_11 0.467496 0.418043 0.147344 0.097*
C1_11 0.4369 (3) 0.3176 (5) 0.1838 (4) 0.060 (3)
H1AA_11 0.427724 0.291727 0.208978 0.072*
H1AB_11 0.461595 0.296187 0.170304 0.072*
C2_11 0.4561 (3) 0.3754 (5) 0.2053 (3) 0.064 (3)
H2_11 0.430147 0.401846 0.211697 0.077*
C3_11 0.4854 (4) 0.3628 (6) 0.2501 (3) 0.079 (4)
S1_12 0.25882 (9) 0.25913 (10) 0.12410 (9) 0.0461 (6)
O1_12 0.1909 (3) 0.1233 (4) 0.2376 (3) 0.084 (3)
O2_12 0.1752 (3) 0.2212 (4) 0.2429 (3) 0.087 (3)
N1_12 0.2607 (3) 0.1363 (4) 0.1905 (3) 0.066 (3)
H1A_12 0.241493 0.111217 0.172395 0.099*
H1B_12 0.271226 0.117414 0.217684 0.099*
H1C_12 0.284796 0.146215 0.175143 0.099*
C1_12 0.2162 (3) 0.2244 (4) 0.1561 (3) 0.053 (3)
H1AA_12 0.194705 0.256091 0.163770 0.064*
H1AB_12 0.198493 0.194725 0.135472 0.064*
C2_12 0.2355 (3) 0.1927 (4) 0.2007 (3) 0.054 (3)
H2_12 0.257345 0.220635 0.219442 0.065*
C3_12 0.1972 (4) 0.1767 (5) 0.2292 (4) 0.075 (4)
O1_13 0.4453 (3) 0.3261 (4) −0.1455 (3) 0.075 (2)
H1A_13 0.4610 (11) 0.302 (2) −0.1292 (14) 0.113*
H1B_13 0.4318 (11) 0.310 (2) −0.1691 (11) 0.113*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0695 (9) 0.0469 (8) 0.0612 (9) 0.0022 (6) 0.0228 (7) 0.0054 (6)
Cu2 0.0668 (10) 0.0784 (10) 0.0671 (10) −0.0047 (8) 0.0277 (7) 0.0144 (8)
Cu3 0.0886 (11) 0.0427 (8) 0.0688 (10) 0.0137 (7) 0.0043 (8) −0.0085 (7)
Cu4 0.0662 (8) 0.0386 (7) 0.0706 (9) 0.0057 (6) 0.0381 (7) 0.0037 (6)
Cu5 0.0663 (9) 0.0384 (7) 0.0702 (9) −0.0073 (6) 0.0271 (7) −0.0109 (6)
Cu6 0.0628 (9) 0.0400 (7) 0.0946 (11) 0.0042 (6) 0.0422 (8) 0.0084 (7)
Cu7 0.0564 (9) 0.0954 (13) 0.0946 (12) 0.0039 (8) 0.0363 (8) 0.0186 (10)
Cu8 0.0959 (13) 0.0811 (12) 0.1121 (15) 0.0341 (10) −0.0019 (11) −0.0430 (11)
Cu9 0.0705 (10) 0.0455 (8) 0.1142 (13) 0.0015 (7) 0.0377 (9) 0.0014 (8)
Cu10 0.0987 (11) 0.0370 (7) 0.0857 (11) −0.0071 (7) 0.0573 (9) −0.0131 (7)
Cu11 0.0792 (10) 0.0467 (8) 0.0690 (10) −0.0138 (6) 0.0373 (8) −0.0074 (7)
Cu12 0.0805 (10) 0.0476 (8) 0.0625 (9) −0.0060 (7) 0.0340 (7) 0.0006 (6)
Cu13 0.0888 (11) 0.0962 (12) 0.0579 (10) 0.0041 (9) 0.0378 (8) 0.0132 (8)
Cu14 0.0789 (10) 0.0568 (9) 0.0713 (10) 0.0205 (7) 0.0040 (8) −0.0159 (7)
Cu15 0.1385 (15) 0.0323 (7) 0.0943 (12) −0.0080 (8) 0.0829 (11) −0.0085 (7)
Cu16 0.0938 (11) 0.0477 (8) 0.0590 (9) 0.0080 (7) 0.0299 (8) 0.0013 (6)
Cl17 0.0777 (17) 0.0387 (12) 0.0531 (15) 0.0059 (12) 0.0316 (13) −0.0027 (11)
Cl18 0.094 (2) 0.0466 (14) 0.0667 (18) −0.0101 (14) 0.0416 (16) −0.0090 (13)
Cl19 0.0714 (17) 0.0458 (13) 0.0589 (16) 0.0051 (12) 0.0274 (13) 0.0043 (12)
Cl20 0.0591 (15) 0.0337 (12) 0.0680 (17) 0.0063 (10) 0.0297 (13) 0.0058 (11)
Cl21 0.0609 (16) 0.0498 (14) 0.0589 (16) 0.0025 (12) 0.0236 (13) 0.0037 (12)
Cl22 0.0670 (16) 0.0292 (11) 0.0604 (16) 0.0047 (11) 0.0278 (13) 0.0054 (11)
Cl23 0.0636 (16) 0.0382 (12) 0.0539 (15) 0.0063 (11) 0.0185 (12) 0.0020 (11)
Cl24 0.0442 (13) 0.0399 (12) 0.0617 (15) 0.0011 (10) 0.0193 (11) −0.0059 (11)
Cl25 0.0465 (14) 0.0349 (11) 0.0600 (15) −0.0022 (9) 0.0231 (11) −0.0013 (10)
Cl26 0.0774 (18) 0.0352 (12) 0.0620 (16) −0.0057 (12) 0.0242 (14) −0.0025 (11)
Cl27 0.0633 (17) 0.0524 (15) 0.081 (2) 0.0136 (13) 0.0367 (15) 0.0168 (14)
Cl28 0.087 (2) 0.0369 (13) 0.089 (2) 0.0048 (13) 0.0405 (17) −0.0066 (13)
Cl29 0.0744 (19) 0.0572 (17) 0.094 (2) 0.0090 (14) 0.0406 (17) 0.0264 (16)
Cl30 0.0598 (16) 0.0381 (13) 0.0799 (19) −0.0079 (11) 0.0280 (14) −0.0121 (13)
Cl31 0.0727 (17) 0.0331 (12) 0.0631 (17) −0.0138 (11) 0.0298 (14) −0.0096 (11)
Cl32 0.0692 (17) 0.0268 (11) 0.0597 (16) −0.0071 (10) 0.0311 (13) −0.0057 (10)
Cu17 0.0797 (9) 0.0432 (7) 0.0547 (8) 0.0008 (6) 0.0280 (7) −0.0016 (6)
Cu18 0.0648 (9) 0.0380 (7) 0.0666 (9) 0.0070 (6) 0.0212 (7) −0.0037 (6)
Cu19 0.0596 (8) 0.0526 (8) 0.0557 (8) −0.0054 (6) 0.0251 (6) 0.0032 (6)
Cu20 0.0690 (8) 0.0270 (6) 0.0577 (8) 0.0020 (5) 0.0327 (6) 0.0005 (5)
Cu21 0.0868 (10) 0.0319 (7) 0.0704 (9) 0.0149 (6) 0.0484 (8) 0.0098 (6)
Cu22 0.0513 (7) 0.0387 (7) 0.0482 (7) −0.0001 (5) 0.0196 (6) 0.0019 (5)
Cu23 0.0639 (9) 0.0450 (7) 0.0707 (9) 0.0076 (6) 0.0214 (7) −0.0111 (6)
Cu24 0.0809 (11) 0.0362 (7) 0.0980 (12) 0.0146 (7) 0.0008 (9) −0.0216 (7)
Cu25 0.0714 (9) 0.0493 (8) 0.0604 (9) −0.0164 (7) 0.0228 (7) 0.0064 (6)
Cu26 0.0529 (8) 0.0410 (7) 0.0692 (9) 0.0003 (6) 0.0230 (6) −0.0047 (6)
Cu27 0.0649 (8) 0.0309 (6) 0.0664 (9) 0.0079 (5) 0.0196 (7) −0.0045 (6)
Cu28 0.0643 (9) 0.0385 (7) 0.0673 (9) 0.0042 (6) 0.0313 (7) 0.0044 (6)
Cu29 0.0535 (9) 0.0941 (12) 0.0710 (10) −0.0127 (8) 0.0128 (7) 0.0350 (9)
Cu30 0.0597 (8) 0.0277 (6) 0.0773 (9) −0.0017 (5) 0.0358 (7) −0.0006 (6)
Cu31 0.0714 (9) 0.0310 (7) 0.0737 (9) −0.0083 (6) 0.0424 (7) −0.0090 (6)
Cu32 0.0748 (9) 0.0384 (7) 0.0691 (9) −0.0047 (6) 0.0367 (7) −0.0057 (6)
Cl1 0.157 (3) 0.0459 (16) 0.0664 (19) 0.0100 (18) 0.044 (2) 0.0021 (14)
Cl2 0.0529 (14) 0.0330 (12) 0.0703 (17) 0.0034 (10) 0.0246 (13) 0.0023 (11)
Cl3 0.0546 (16) 0.0535 (16) 0.096 (2) 0.0047 (12) 0.0133 (15) 0.0251 (15)
Cl4 0.105 (2) 0.0479 (15) 0.0650 (18) −0.0293 (15) 0.0416 (17) −0.0163 (13)
Cl5 0.099 (2) 0.0708 (19) 0.0665 (19) −0.0157 (17) 0.0264 (17) −0.0030 (16)
Cl6 0.087 (2) 0.0333 (12) 0.0648 (17) −0.0048 (12) 0.0320 (15) −0.0064 (12)
Cl7 0.0625 (18) 0.0525 (16) 0.111 (3) −0.0026 (13) 0.0429 (17) −0.0128 (16)
Cl8 0.076 (2) 0.0488 (16) 0.099 (2) −0.0061 (14) 0.0352 (17) −0.0013 (15)
Cl9 0.076 (2) 0.0588 (18) 0.114 (3) 0.0073 (15) 0.0324 (19) 0.0191 (17)
Cl10 0.0578 (16) 0.0471 (15) 0.105 (2) −0.0066 (12) 0.0384 (16) −0.0053 (15)
Cl11 0.0685 (19) 0.0560 (16) 0.079 (2) −0.0113 (14) 0.0156 (16) 0.0024 (14)
Cl12 0.100 (2) 0.0477 (14) 0.0542 (16) 0.0138 (14) 0.0366 (15) 0.0073 (12)
Cl13 0.090 (2) 0.0618 (17) 0.0603 (17) −0.0062 (15) 0.0264 (15) −0.0095 (14)
Cl14 0.0828 (19) 0.0454 (13) 0.0542 (15) 0.0034 (12) 0.0363 (14) −0.0042 (11)
Cl15 0.077 (2) 0.0669 (18) 0.080 (2) 0.0005 (15) 0.0287 (16) 0.0111 (16)
Cl16 0.132 (3) 0.0600 (19) 0.070 (2) 0.0096 (19) 0.014 (2) 0.0117 (16)
S1_1 0.066 (5) 0.026 (4) 0.073 (5) −0.008 (3) 0.039 (4) −0.008 (3)
O1_1 0.106 (11) 0.058 (8) 0.170 (13) 0.028 (8) −0.003 (10) −0.017 (8)
O2_1 0.147 (11) 0.083 (9) 0.129 (9) 0.013 (10) 0.042 (10) −0.026 (9)
N1_1 0.152 (15) 0.086 (12) 0.099 (11) 0.053 (11) 0.036 (10) −0.006 (9)
C1_1 0.084 (7) 0.042 (6) 0.090 (8) 0.003 (6) 0.034 (6) −0.014 (6)
C2_1 0.089 (8) 0.050 (6) 0.104 (8) 0.014 (6) 0.026 (7) −0.022 (6)
C3_1 0.097 (8) 0.055 (6) 0.119 (8) 0.017 (6) 0.026 (7) −0.031 (7)
S1A_1 0.071 (8) 0.036 (8) 0.075 (7) 0.005 (8) 0.032 (7) −0.006 (8)
O1A_1 0.124 (14) 0.059 (11) 0.137 (15) 0.017 (11) 0.034 (13) −0.039 (11)
O2A_1 0.111 (17) 0.069 (15) 0.123 (15) −0.002 (13) 0.018 (12) −0.021 (13)
N1A_1 0.107 (11) 0.072 (12) 0.127 (14) 0.008 (12) 0.006 (11) −0.018 (12)
C1A_1 0.085 (7) 0.040 (7) 0.089 (8) 0.003 (7) 0.030 (7) −0.015 (7)
C2A_1 0.089 (8) 0.050 (7) 0.105 (8) 0.014 (7) 0.028 (7) −0.024 (7)
C3A_1 0.097 (11) 0.060 (8) 0.114 (10) 0.014 (9) 0.028 (9) −0.031 (8)
S1_2 0.0725 (18) 0.0388 (13) 0.0534 (16) −0.0094 (12) 0.0153 (14) 0.0002 (12)
O1_2 0.244 (16) 0.191 (14) 0.131 (10) 0.066 (12) −0.030 (11) −0.056 (10)
O2_2 0.272 (16) 0.206 (15) 0.129 (11) 0.112 (13) −0.026 (11) −0.051 (11)
N1_2 0.154 (12) 0.099 (10) 0.150 (12) 0.013 (9) 0.018 (10) −0.018 (9)
C1_2 0.106 (8) 0.069 (7) 0.082 (7) −0.001 (6) −0.001 (6) 0.000 (6)
C2_2 0.157 (10) 0.088 (8) 0.088 (7) 0.021 (7) −0.009 (7) −0.002 (7)
C3_2 0.187 (12) 0.119 (10) 0.097 (9) 0.049 (9) −0.040 (9) −0.019 (8)
S1_3 0.0564 (16) 0.0403 (14) 0.0796 (19) −0.0027 (11) 0.0417 (15) −0.0025 (13)
O1_3 0.069 (5) 0.059 (5) 0.069 (5) −0.006 (4) 0.028 (4) 0.005 (4)
O2_3 0.074 (5) 0.047 (4) 0.073 (5) −0.013 (4) 0.037 (4) 0.007 (4)
N1_3 0.060 (5) 0.036 (4) 0.093 (7) −0.008 (4) 0.037 (5) −0.010 (4)
C1_3 0.056 (6) 0.051 (6) 0.075 (7) 0.003 (5) 0.043 (6) 0.002 (5)
C2_3 0.060 (6) 0.029 (5) 0.080 (8) −0.002 (4) 0.038 (6) −0.005 (5)
C3_3 0.045 (6) 0.041 (6) 0.082 (9) 0.003 (5) 0.034 (6) 0.008 (5)
S1_4 0.085 (2) 0.0317 (13) 0.0572 (16) −0.0029 (12) 0.0379 (15) −0.0028 (11)
O1_4 0.134 (9) 0.056 (5) 0.121 (8) −0.012 (5) 0.074 (7) 0.008 (5)
O2_4 0.142 (9) 0.088 (7) 0.074 (6) −0.012 (7) 0.033 (6) 0.016 (5)
N1_4 0.104 (8) 0.084 (8) 0.078 (7) −0.006 (6) 0.048 (7) 0.018 (6)
C1_4 0.114 (10) 0.037 (6) 0.070 (8) −0.016 (6) 0.048 (7) 0.000 (5)
C2_4 0.102 (10) 0.047 (6) 0.088 (9) −0.008 (6) 0.048 (8) 0.003 (6)
C3_4 0.105 (11) 0.073 (9) 0.090 (10) −0.009 (8) 0.058 (9) 0.017 (8)
S1_5 0.053 (4) 0.023 (6) 0.056 (7) −0.001 (4) 0.027 (4) 0.005 (5)
O1_5 0.081 (9) 0.044 (7) 0.074 (11) 0.009 (7) 0.027 (8) −0.002 (8)
O2_5 0.095 (12) 0.046 (7) 0.073 (9) 0.009 (8) 0.023 (9) −0.019 (6)
N1_5 0.077 (9) 0.043 (8) 0.093 (12) −0.009 (8) 0.026 (9) −0.019 (9)
C1_5 0.067 (7) 0.020 (7) 0.064 (7) 0.008 (6) 0.031 (6) 0.000 (6)
C2_5 0.072 (7) 0.029 (6) 0.063 (6) 0.007 (6) 0.032 (6) 0.000 (5)
C3_5 0.081 (9) 0.034 (6) 0.059 (7) 0.013 (7) 0.028 (8) −0.006 (6)
S1A_5 0.064 (6) 0.025 (7) 0.059 (7) 0.004 (6) 0.031 (5) 0.006 (6)
O1A_5 0.077 (11) 0.055 (9) 0.058 (11) 0.011 (8) 0.025 (9) −0.003 (9)
O2A_5 0.101 (13) 0.045 (7) 0.062 (9) 0.005 (8) 0.033 (11) −0.016 (7)
N1A_5 0.084 (10) 0.059 (10) 0.059 (12) 0.001 (8) 0.039 (9) −0.022 (9)
C1A_5 0.076 (8) 0.029 (8) 0.067 (7) 0.006 (7) 0.033 (7) −0.003 (7)
C2A_5 0.079 (8) 0.034 (6) 0.067 (7) 0.011 (6) 0.031 (7) −0.002 (6)
C3A_5 0.081 (9) 0.035 (6) 0.065 (7) 0.010 (7) 0.030 (7) −0.004 (6)
S1_6 0.069 (2) 0.045 (2) 0.065 (2) 0.0061 (19) 0.019 (2) 0.001 (2)
O1_6 0.136 (10) 0.172 (11) 0.101 (9) 0.010 (9) −0.027 (8) −0.019 (8)
O2_6 0.150 (12) 0.146 (10) 0.161 (12) −0.003 (10) −0.035 (10) −0.035 (10)
N1_6 0.125 (10) 0.112 (9) 0.110 (10) −0.003 (8) −0.007 (9) −0.007 (8)
C1_6 0.098 (7) 0.086 (7) 0.088 (6) 0.010 (6) 0.000 (6) −0.012 (6)
C2_6 0.113 (8) 0.112 (7) 0.097 (7) 0.001 (7) −0.007 (6) −0.007 (7)
C3_6 0.127 (9) 0.136 (8) 0.105 (8) −0.001 (8) −0.013 (7) −0.015 (8)
O3_6 0.17 (2) 0.19 (2) 0.155 (19) −0.008 (16) 0.015 (15) 0.008 (16)
O4_6 0.077 (18) 0.18 (3) 0.13 (2) 0.046 (17) 0.046 (16) 0.041 (19)
S1A_6 0.085 (9) 0.067 (9) 0.077 (9) 0.007 (9) 0.009 (9) −0.003 (9)
O1A_6 0.127 (14) 0.144 (17) 0.117 (17) 0.011 (14) −0.008 (14) −0.016 (16)
O2A_6 0.137 (13) 0.150 (14) 0.102 (14) −0.007 (13) −0.003 (12) 0.007 (12)
N1A_6 0.112 (17) 0.114 (13) 0.114 (17) −0.004 (14) −0.002 (17) −0.005 (16)
C1A_6 0.102 (8) 0.086 (8) 0.088 (8) 0.004 (7) 0.002 (7) −0.007 (8)
C2A_6 0.113 (8) 0.110 (8) 0.098 (8) 0.001 (8) −0.007 (8) −0.012 (8)
C3A_6 0.120 (9) 0.125 (9) 0.102 (9) 0.001 (9) −0.010 (8) −0.007 (8)
S1_7 0.0493 (14) 0.0293 (11) 0.0467 (14) 0.0008 (9) 0.0215 (11) 0.0035 (10)
O1_7 0.066 (5) 0.049 (4) 0.065 (5) 0.000 (3) 0.020 (4) 0.012 (4)
O2_7 0.085 (6) 0.051 (5) 0.084 (6) −0.011 (4) 0.037 (5) −0.004 (4)
N1_7 0.070 (6) 0.063 (6) 0.051 (5) −0.001 (5) 0.020 (5) −0.001 (4)
C1_7 0.054 (6) 0.033 (5) 0.043 (5) 0.009 (4) 0.015 (4) 0.000 (4)
C2_7 0.080 (7) 0.032 (5) 0.063 (7) 0.001 (5) 0.036 (6) 0.000 (5)
C3_7 0.062 (7) 0.045 (6) 0.072 (8) 0.002 (5) 0.032 (6) 0.006 (6)
S1_8 0.0515 (15) 0.0308 (12) 0.0546 (16) 0.0010 (10) 0.0180 (12) 0.0011 (10)
O1_8 0.127 (9) 0.165 (12) 0.091 (8) 0.001 (8) 0.031 (7) −0.010 (8)
O2_8 0.099 (8) 0.173 (13) 0.142 (10) −0.001 (8) 0.054 (8) −0.009 (9)
N1_8 0.096 (9) 0.126 (12) 0.121 (11) 0.001 (8) 0.027 (8) −0.040 (9)
C1_8 0.093 (9) 0.066 (8) 0.073 (9) −0.033 (7) 0.010 (7) −0.001 (7)
C2_8 0.104 (11) 0.075 (9) 0.074 (9) 0.014 (8) 0.011 (8) 0.003 (7)
C3_8 0.083 (11) 0.119 (13) 0.091 (11) 0.004 (9) 0.016 (9) −0.016 (10)
S1_9 0.0616 (16) 0.0257 (11) 0.0558 (15) 0.0067 (10) 0.0314 (13) 0.0023 (10)
O1_9 0.102 (6) 0.042 (4) 0.062 (5) 0.003 (4) 0.028 (5) −0.010 (4)
O2_9 0.105 (6) 0.034 (4) 0.066 (5) 0.017 (4) 0.041 (5) 0.002 (3)
N1_9 0.081 (7) 0.034 (4) 0.079 (7) 0.022 (4) 0.038 (5) 0.007 (4)
C1_9 0.079 (7) 0.023 (4) 0.055 (6) 0.014 (4) 0.033 (5) −0.001 (4)
C2_9 0.080 (8) 0.030 (5) 0.055 (6) 0.012 (5) 0.029 (6) 0.013 (4)
C3_9 0.092 (9) 0.028 (5) 0.057 (7) 0.014 (6) 0.035 (7) −0.003 (5)
S1_10 0.0616 (16) 0.0238 (11) 0.0561 (15) −0.0028 (10) 0.0292 (13) −0.0019 (10)
O1_10 0.067 (5) 0.040 (4) 0.073 (5) 0.003 (3) 0.033 (4) −0.007 (4)
O2_10 0.061 (5) 0.049 (4) 0.088 (6) 0.007 (3) 0.026 (4) 0.009 (4)
N1_10 0.076 (6) 0.037 (4) 0.060 (6) 0.007 (4) 0.034 (5) −0.004 (4)
C1_10 0.065 (6) 0.031 (5) 0.059 (6) −0.001 (4) 0.034 (5) −0.005 (4)
C2_10 0.055 (6) 0.041 (5) 0.056 (6) −0.003 (4) 0.021 (5) −0.001 (5)
C3_10 0.070 (8) 0.045 (6) 0.073 (8) 0.001 (5) 0.045 (7) −0.001 (6)
S1_11 0.0534 (15) 0.0369 (12) 0.0473 (15) 0.0039 (10) 0.0182 (12) 0.0020 (10)
O1_11 0.070 (6) 0.159 (10) 0.081 (7) 0.019 (7) −0.015 (5) 0.000 (7)
O2_11 0.166 (11) 0.161 (11) 0.071 (7) −0.008 (9) 0.053 (7) 0.008 (7)
N1_11 0.066 (6) 0.069 (6) 0.060 (6) −0.009 (5) 0.010 (5) −0.002 (5)
C1_11 0.066 (7) 0.055 (6) 0.063 (7) 0.001 (5) 0.024 (6) 0.001 (5)
C2_11 0.055 (7) 0.092 (9) 0.047 (6) 0.001 (6) 0.016 (5) −0.005 (6)
C3_11 0.105 (11) 0.090 (10) 0.044 (7) 0.003 (8) 0.019 (7) −0.001 (7)
S1_12 0.0602 (16) 0.0288 (12) 0.0551 (16) −0.0066 (10) 0.0300 (13) −0.0017 (10)
O1_12 0.118 (7) 0.061 (5) 0.083 (6) −0.042 (5) 0.056 (5) −0.008 (4)
O2_12 0.103 (7) 0.074 (6) 0.095 (7) 0.014 (5) 0.058 (6) 0.030 (5)
N1_12 0.086 (7) 0.056 (5) 0.062 (6) 0.010 (5) 0.038 (5) 0.010 (5)
C1_12 0.074 (7) 0.040 (5) 0.054 (6) 0.002 (5) 0.042 (6) −0.004 (5)
C2_12 0.069 (7) 0.034 (5) 0.067 (7) 0.001 (5) 0.034 (6) 0.002 (5)
C3_12 0.083 (9) 0.074 (9) 0.074 (9) −0.003 (7) 0.039 (7) 0.013 (7)
O1_13 0.091 (6) 0.064 (5) 0.069 (5) −0.004 (4) 0.007 (5) −0.009 (4)

Geometric parameters (Å, º)

Cu1—Cl3 2.244 (3) N1_1—H1B_1 0.9100
Cu1—Cl1 2.320 (3) N1_1—H1C_1 0.9100
Cu1—Cl2 2.355 (3) C1_1—C2_1 1.503 (19)
Cu1—Cl6i 2.572 (3) C1_1—H1D_1 0.9900
Cu1—Cu4 2.900 (2) C1_1—H1E_1 0.9900
Cu1—Cu2 3.048 (2) C2_1—C3_1 1.518 (16)
Cu2—S1_2 2.243 (3) C2_1—H2_1 1.0000
Cu2—S1_3 2.267 (3) S1A_1—C1A_1 1.86 (5)
Cu2—Cl1 2.283 (3) O1A_1—C3A_1 1.17 (6)
Cu2—Cu4 2.734 (2) O2A_1—C3A_1 1.20 (6)
Cu2—Cu3 2.982 (2) N1A_1—C2A_1 1.45 (5)
Cu2—Cu6 3.018 (2) N1A_1—H1AA_1 0.9100
Cu3—S1_2 2.253 (3) N1A_1—H1AB_1 0.9100
Cu3—S1_5 2.26 (4) N1A_1—H1AC_1 0.9100
Cu3—S1A_5 2.28 (5) C1A_1—C2A_1 1.26 (7)
Cu3—Cl3 2.299 (3) C1A_1—H1BA_1 0.9900
Cu3—Cl15 2.673 (3) C1A_1—H1BB_1 0.9900
Cu3—Cu12 2.890 (2) C2A_1—C3A_1 1.54 (6)
Cu3—Cu15 2.914 (2) C2A_1—H2A_1 1.0000
Cu3—Cu4 2.915 (2) S1_2—C1_2 1.835 (11)
Cu4—S1A_5 2.14 (4) O1_2—C3_2 1.235 (15)
Cu4—S1_3 2.223 (3) O2_2—C3_2 1.302 (16)
Cu4—S1_5 2.30 (3) N1_2—C2_2 1.553 (15)
Cu4—Cl2 2.318 (3) N1_2—H1A_2 0.9100
Cu4—Cu7 2.976 (2) N1_2—H1B_2 0.9100
Cu5—S1_1 2.21 (3) N1_2—H1C_2 0.9100
Cu5—S1_2 2.232 (3) C1_2—C2_2 1.520 (15)
Cu5—Cl4 2.288 (3) C1_2—H1AA_2 0.9900
Cu5—S1A_1 2.31 (6) C1_2—H1AB_2 0.9900
Cu5—Cu6 2.7449 (19) C2_2—C3_2 1.499 (16)
Cu5—Cu12 2.7721 (18) C2_2—H2_2 1.0000
Cu5—Cu10 2.830 (2) S1_3—C1_3 1.824 (8)
Cu5—Cu11 2.8889 (18) O1_3—C3_3 1.260 (11)
Cu6—S1A_1 2.21 (6) O2_3—C3_3 1.248 (11)
Cu6—S1_1 2.29 (3) N1_3—C2_3 1.482 (11)
Cu6—S1_3 2.298 (3) N1_3—H1A_3 0.9100
Cu6—Cl7 2.363 (3) N1_3—H1B_3 0.9100
Cu6—Cl5 2.435 (4) N1_3—H1C_3 0.9100
Cu7—S1_3 2.230 (4) C1_3—C2_3 1.517 (11)
Cu7—S1A_6 2.234 (17) C1_3—H1D_3 0.9900
Cu7—S1_6 2.246 (5) C1_3—H1DE_3 0.9900
Cu7—Cl10 2.328 (3) C2_3—C3_3 1.513 (11)
Cu7—Cu14 2.855 (2) C2_3—H2_3 1.0000
Cu7—Cu8 2.916 (3) S1_4—C1_4 1.826 (9)
Cu8—S1A_1 2.10 (6) O1_4—C3_4 1.208 (12)
Cu8—S1A_6 2.248 (18) O2_4—C3_4 1.314 (13)
Cu8—S1_6 2.249 (5) N1_4—C2_4 1.509 (13)
Cu8—Cl9 2.255 (4) N1_4—H1A_4 0.9100
Cu8—S1_1 2.27 (3) N1_4—H1B_4 0.9100
Cu8—Cu9 3.052 (3) N1_4—H1C_4 0.9100
Cu9—Cl7 2.269 (4) C1_4—C2_4 1.531 (13)
Cu9—Cl10 2.292 (3) C1_4—H1AA_4 0.9900
Cu9—Cl9 2.369 (4) C1_4—H1AB_4 0.9900
Cu9—Cl7ii 2.576 (3) C2_4—C3_4 1.496 (13)
Cu10—S1_1 2.23 (3) C2_4—H2_4 1.0000
Cu10—S1_4 2.236 (3) S1_5—C1_5 1.819 (19)
Cu10—S1A_1 2.27 (6) O1_5—C3_5 1.245 (17)
Cu10—Cl6 2.338 (3) O2_5—C3_5 1.273 (17)
Cu10—Cu12 2.906 (2) N1_5—C2_5 1.535 (17)
Cu10—Cu13 3.020 (2) N1_5—H1A_5 0.9100
Cu10—Cu11 3.036 (2) N1_5—H1B_5 0.9100
Cu11—Cl4 2.264 (3) N1_5—H1C_5 0.9100
Cu11—Cl8 2.308 (3) C1_5—C2_5 1.486 (19)
Cu11—Cl6 2.344 (3) C1_5—H1AA_5 0.9900
Cu11—Cl2iii 2.593 (3) C1_5—H1AB_5 0.9900
Cu11—Cu12 3.0223 (19) C2_5—C3_5 1.525 (17)
Cu12—S1_4 2.251 (3) C2_5—H2_5 1.0000
Cu12—S1_2 2.263 (3) S1A_5—C1A_5 1.92 (3)
Cu12—Cl8 2.297 (3) O1A_5—C3A_5 1.37 (3)
Cu12—Cu15 3.009 (2) O2A_5—C3A_5 1.16 (3)
Cu13—S1A_6 2.228 (18) N1A_5—C2A_5 1.37 (4)
Cu13—S1_6 2.237 (5) N1A_5—H1A1_5 0.9100
Cu13—S1_4 2.293 (4) N1A_5—H1A2_5 0.9100
Cu13—Cl12 2.300 (3) N1A_5—H1A3_5 0.9100
Cu13—C1A_6 2.54 (4) C1A_5—C2A_5 1.84 (5)
Cu13—Cu14 2.966 (2) C1A_5—H1AC_5 0.9900
Cu13—Cu15 2.981 (3) C1A_5—H1AD_5 0.9900
Cu13—Cu16 3.048 (2) C2A_5—C3A_5 1.57 (3)
Cu14—S1_5 2.22 (4) C2A_5—H2A_5 1.0000
Cu14—S1A_6 2.255 (18) S1_6—C1_6 1.878 (14)
Cu14—S1_6 2.274 (4) O1_6—C3_6 1.214 (11)
Cu14—S1A_5 2.29 (5) O2_6—C3_6 1.222 (11)
Cu14—Cl13 2.303 (3) N1_6—C2_6 1.558 (16)
Cu14—Cl11 2.682 (3) N1_6—H1A_6 0.9100
Cu14—Cu15 3.032 (2) N1_6—H1B_6 0.9100
Cu15—S1_5 2.15 (3) N1_6—H1C_6 0.9100
Cu15—S1_4 2.233 (3) C1_6—C2_6 1.502 (17)
Cu15—Cl14 2.310 (3) C1_6—H1D_6 0.9900
Cu15—S1A_5 2.37 (4) C1_6—H1E_6 0.9900
Cu16—Cl13 2.284 (3) C2_6—C3_6 1.594 (16)
Cu16—Cl12 2.289 (3) C2_6—H2_6 1.0000
Cu16—Cl14 2.341 (3) O4_6—H4A_6 0.8401 (15)
Cu16—Cl17 2.604 (3) O4_6—H4B_6 0.8400 (17)
Cl17—Cu20 2.293 (2) S1A_6—C1A_6 1.877 (19)
Cl17—Cu17 2.358 (3) O1A_6—C3A_6 1.211 (14)
Cl18—Cu18 2.292 (3) O2A_6—C3A_6 1.214 (14)
Cl18—Cu17 2.312 (3) N1A_6—C2A_6 1.57 (2)
Cl19—Cu19 2.284 (3) N1A_6—H1AA_6 0.9100
Cl19—Cu17 2.300 (3) N1A_6—H1AB_6 0.9100
Cl20—Cu28 2.277 (3) N1A_6—H1AC_6 0.9100
Cl20—Cu27 2.298 (3) C1A_6—C2A_6 1.59 (7)
Cl21—Cu21 2.524 (3) C1A_6—H1BA_6 0.9900
Cl21—Cu18 2.767 (3) C1A_6—H1BB_6 0.9900
Cl22—Cu28 2.295 (3) C2A_6—C3A_6 1.61 (2)
Cl22—Cu21 2.363 (3) C2A_6—H2A_6 1.0000
Cl22—Cu32iv 2.505 (3) S1_7—C1_7 1.840 (9)
Cl23—Cu29 2.286 (3) O1_7—C3_7 1.222 (10)
Cl23—Cu28 2.347 (3) O2_7—C3_7 1.312 (11)
Cl24—Cu26 2.279 (3) N1_7—C2_7 1.499 (11)
Cl24—Cu22 2.286 (2) N1_7—H1A_7 0.9100
Cl25—Cu30 2.312 (2) N1_7—H1B_7 0.9100
Cl25—Cu26 2.356 (3) N1_7—H1C_7 0.9100
Cl25—Cu26v 2.570 (3) C1_7—C2_7 1.493 (11)
Cl26—Cu29 2.740 (3) C1_7—H1AA_7 0.9900
Cl27—Cu26 2.287 (3) C1_7—H1AB_7 0.9900
Cl27—Cu23 2.378 (3) C2_7—C3_7 1.500 (11)
Cl28—Cu25 2.463 (3) C2_7—H2_7 1.0000
Cl29—Cu23 2.524 (3) S1_8—C1_8 1.823 (11)
Cl30—Cu32 2.297 (3) O1_8—C3_8 1.234 (13)
Cl30—Cu25 2.384 (3) O2_8—C3_8 1.309 (13)
Cl31—Cu31 2.289 (3) N1_8—C2_8 1.509 (13)
Cl31—Cu32 2.371 (3) N1_8—H1A_8 0.9100
Cl31—Cu28vi 2.626 (3) N1_8—H1B_8 0.9100
Cl32—Cu24 2.283 (3) N1_8—H1C_8 0.9100
Cl32—Cu32 2.311 (3) C1_8—C2_8 1.485 (14)
Cu17—Cl14 2.594 (3) C1_8—H1AA_8 0.9900
Cu17—Cu20 2.9094 (19) C1_8—H1AB_8 0.9900
Cu17—Cu19 3.0024 (18) C2_8—C3_8 1.537 (14)
Cu17—Cu18 3.0272 (18) C2_8—H2_8 1.0000
Cu18—S1_11 2.229 (3) S1_9—C1_9 1.832 (8)
Cu18—S1_9 2.287 (3) O1_9—C3_9 1.226 (11)
Cu18—Cu20 2.7830 (19) O2_9—C3_9 1.252 (11)
Cu18—Cu21 2.9437 (19) N1_9—C2_9 1.523 (12)
Cu18—Cu19 2.9469 (18) N1_9—H1A_9 0.9100
Cu19—S1_12 2.259 (3) N1_9—H1B_9 0.9100
Cu19—S1_11 2.284 (3) N1_9—H1C_9 0.9100
Cu19—Cu20 2.7589 (18) C1_9—C2_9 1.496 (11)
Cu19—Cu23 2.9070 (18) C1_9—H1D_9 0.9900
Cu20—S1_9 2.217 (2) C1_9—H1DE_9 0.9900
Cu20—S1_12 2.246 (2) C2_9—C3_9 1.513 (11)
Cu20—Cu25 2.9624 (19) C2_9—H2_9 1.0000
Cu21—S1_7 2.277 (3) S1_10—C1_10 1.825 (8)
Cu21—S1_9 2.289 (3) O1_10—C3_10 1.221 (11)
Cu21—Cu22 2.7944 (17) O2_10—C3_10 1.270 (11)
Cu22—S1_11 2.221 (3) N1_10—C2_10 1.487 (11)
Cu22—S1_7 2.268 (3) N1_10—H1A_10 0.9100
Cu22—Cu30 2.6986 (18) N1_10—H1B_10 0.9100
Cu22—Cu26 2.8853 (16) N1_10—H1C_10 0.9100
Cu22—Cu23 2.9494 (17) C1_10—C2_10 1.540 (11)
Cu23—S1_11 2.282 (3) C1_10—H1D_10 0.9900
Cu23—S1_10 2.302 (3) C1_10—H1DE_10 0.9900
Cu23—Cu31 2.882 (2) C2_10—C3_10 1.538 (12)
Cu23—Cu30 3.030 (2) C2_10—H2_10 1.0000
Cu24—S1_8 2.222 (3) S1_11—C1_11 1.830 (10)
Cu24—S1_10 2.226 (3) O1_11—C3_11 1.211 (13)
Cu24—Cu31 2.830 (2) O2_11—C3_11 1.290 (12)
Cu24—Cu32 3.008 (2) N1_11—C2_11 1.491 (11)
Cu25—S1_8 2.291 (3) N1_11—H1A_11 0.9100
Cu25—S1_12 2.291 (3) N1_11—H1B_11 0.9100
Cu25—Cu27 2.8418 (17) N1_11—H1C_11 0.9100
Cu25—Cu31 2.959 (2) C1_11—C2_11 1.501 (13)
Cu26—Cu30 2.8768 (19) C1_11—H1AA_11 0.9900
Cu26—Cu26v 3.049 (2) C1_11—H1AB_11 0.9900
Cu27—S1_9 2.224 (3) C2_11—C3_11 1.489 (13)
Cu27—S1_8 2.230 (3) C2_11—H2_11 1.0000
Cu27—Cu28 2.8866 (18) S1_12—C1_12 1.823 (8)
Cu27—Cu29 2.901 (2) O1_12—C3_12 1.226 (12)
Cu28—Cu32iv 3.0548 (18) O2_12—C3_12 1.269 (12)
Cu29—S1_7 2.245 (3) N1_12—C2_12 1.501 (11)
Cu29—S1_8 2.255 (3) N1_12—H1A_12 0.9100
Cu30—S1_10 2.225 (2) N1_12—H1B_12 0.9100
Cu30—S1_7 2.238 (2) N1_12—H1C_12 0.9100
Cu31—S1_12 2.212 (3) C1_12—C2_12 1.514 (12)
Cu31—S1_10 2.215 (3) C1_12—H1AA_12 0.9900
Cu31—Cu32 3.036 (2) C1_12—H1AB_12 0.9900
S1_1—C1_1 1.837 (19) C2_12—C3_12 1.522 (12)
O1_1—C3_1 1.246 (16) C2_12—H2_12 1.0000
O2_1—C3_1 1.272 (17) O1_13—H1A_13 0.82 (3)
N1_1—C2_1 1.555 (17) O1_13—H1B_13 0.83 (3)
N1_1—H1A_1 0.9100
Cl3—Cu1—Cl1 117.68 (14) Cl27—Cu26—Cu26v 131.07 (7)
Cl3—Cu1—Cl2 122.94 (12) Cl25—Cu26—Cu26v 55.00 (7)
Cl1—Cu1—Cl2 112.72 (13) Cl25v—Cu26—Cu26v 48.68 (7)
Cl3—Cu1—Cl6i 99.92 (10) Cu30—Cu26—Cu26v 104.12 (7)
Cl1—Cu1—Cl6i 103.06 (11) Cu22—Cu26—Cu26v 133.25 (5)
Cl2—Cu1—Cl6i 93.04 (10) S1_9—Cu27—S1_8 133.93 (11)
Cl3—Cu1—Cu4 99.55 (9) S1_9—Cu27—Cl20 108.72 (10)
Cl1—Cu1—Cu4 94.11 (10) S1_8—Cu27—Cl20 116.73 (11)
Cl2—Cu1—Cu4 51.07 (7) S1_9—Cu27—Cu25 102.03 (8)
Cl6i—Cu1—Cu4 144.07 (9) S1_8—Cu27—Cu25 52.02 (7)
Cl3—Cu1—Cu2 95.34 (9) Cl20—Cu27—Cu25 131.21 (9)
Cl1—Cu1—Cu2 48.02 (8) S1_9—Cu27—Cu28 98.04 (8)
Cl2—Cu1—Cu2 99.09 (8) S1_8—Cu27—Cu28 104.65 (8)
Cl6i—Cu1—Cu2 151.08 (8) Cl20—Cu27—Cu28 50.55 (7)
Cu4—Cu1—Cu2 54.66 (5) Cu25—Cu27—Cu28 156.37 (6)
S1_2—Cu2—S1_3 123.71 (12) S1_9—Cu27—Cu29 110.13 (8)
S1_2—Cu2—Cl1 122.58 (15) S1_8—Cu27—Cu29 50.06 (7)
S1_3—Cu2—Cl1 112.23 (14) Cl20—Cu27—Cu29 107.03 (8)
S1_2—Cu2—Cu4 104.48 (9) Cu25—Cu27—Cu29 96.36 (5)
S1_3—Cu2—Cu4 51.76 (8) Cu28—Cu27—Cu29 64.77 (5)
Cl1—Cu2—Cu4 99.56 (10) Cl20—Cu28—Cl22 128.41 (11)
S1_2—Cu2—Cu3 48.59 (8) Cl20—Cu28—Cl23 115.36 (11)
S1_3—Cu2—Cu3 105.17 (9) Cl22—Cu28—Cl23 112.48 (10)
Cl1—Cu2—Cu3 107.37 (11) Cl20—Cu28—Cl31iv 97.52 (9)
Cu4—Cu2—Cu3 61.16 (5) Cl22—Cu28—Cl31iv 95.60 (10)
S1_2—Cu2—Cu6 94.88 (9) Cl23—Cu28—Cl31iv 96.03 (9)
S1_3—Cu2—Cu6 49.06 (8) Cl20—Cu28—Cu27 51.21 (7)
Cl1—Cu2—Cu6 134.15 (11) Cl22—Cu28—Cu27 105.10 (8)
Cu4—Cu2—Cu6 94.76 (6) Cl23—Cu28—Cu27 97.34 (7)
Cu3—Cu2—Cu6 117.65 (6) Cl31iv—Cu28—Cu27 148.71 (8)
S1_2—Cu2—Cu1 103.43 (9) Cl20—Cu28—Cu32iv 103.79 (8)
S1_3—Cu2—Cu1 102.55 (9) Cl22—Cu28—Cu32iv 53.59 (7)
Cl1—Cu2—Cu1 49.07 (8) Cl23—Cu28—Cu32iv 130.85 (8)
Cu4—Cu2—Cu1 59.92 (5) Cl31iv—Cu28—Cu32iv 48.61 (7)
Cu3—Cu2—Cu1 63.67 (5) Cu27—Cu28—Cu32iv 130.99 (6)
Cu6—Cu2—Cu1 151.60 (7) S1_7—Cu29—S1_8 125.43 (11)
S1_2—Cu3—S1_5 128.6 (7) S1_7—Cu29—Cl23 117.35 (11)
S1_2—Cu3—S1A_5 130.5 (10) S1_8—Cu29—Cl23 111.70 (11)
S1_2—Cu3—Cl3 112.21 (13) S1_7—Cu29—Cl26 98.46 (10)
S1_5—Cu3—Cl3 112.2 (7) S1_8—Cu29—Cl26 96.90 (10)
S1A_5—Cu3—Cl3 107.6 (10) Cl23—Cu29—Cl26 98.08 (10)
S1_2—Cu3—Cl15 102.54 (12) S1_7—Cu29—Cu27 99.99 (9)
S1_5—Cu3—Cl15 98.3 (9) S1_8—Cu29—Cu27 49.32 (7)
S1A_5—Cu3—Cl15 102.4 (11) Cl23—Cu29—Cu27 98.35 (9)
Cl3—Cu3—Cl15 94.60 (11) Cl26—Cu29—Cu27 146.06 (8)
S1_2—Cu3—Cu12 50.35 (8) S1_10—Cu30—S1_7 130.46 (10)
S1_5—Cu3—Cu12 103.3 (8) S1_10—Cu30—Cl25 117.32 (10)
S1A_5—Cu3—Cu12 108.7 (10) S1_7—Cu30—Cl25 112.21 (9)
Cl3—Cu3—Cu12 140.59 (10) S1_10—Cu30—Cu22 106.53 (8)
Cl15—Cu3—Cu12 62.95 (8) S1_7—Cu30—Cu22 53.71 (7)
S1_2—Cu3—Cu15 108.40 (9) Cl25—Cu30—Cu22 108.82 (8)
S1_5—Cu3—Cu15 46.9 (8) S1_10—Cu30—Cu26 108.00 (9)
S1A_5—Cu3—Cu15 52.6 (11) S1_7—Cu30—Cu26 100.28 (8)
Cl3—Cu3—Cu15 136.06 (11) Cl25—Cu30—Cu26 52.66 (7)
Cl15—Cu3—Cu15 60.23 (9) Cu22—Cu30—Cu26 62.23 (5)
Cu12—Cu3—Cu15 62.43 (5) S1_10—Cu30—Cu23 49.07 (8)
S1_2—Cu3—Cu4 98.75 (9) S1_7—Cu30—Cu23 109.07 (8)
S1_5—Cu3—Cu4 50.8 (9) Cl25—Cu30—Cu23 113.25 (8)
S1A_5—Cu3—Cu4 46.8 (11) Cu22—Cu30—Cu23 61.65 (4)
Cl3—Cu3—Cu4 97.81 (9) Cu26—Cu30—Cu23 70.35 (5)
Cl15—Cu3—Cu4 149.09 (10) S1_12—Cu31—S1_10 132.71 (10)
Cu12—Cu3—Cu4 118.22 (6) S1_12—Cu31—Cl31 115.40 (10)
Cu15—Cu3—Cu4 91.90 (6) S1_10—Cu31—Cl31 111.83 (10)
S1_2—Cu3—Cu2 48.31 (8) S1_12—Cu31—Cu24 111.17 (9)
S1_5—Cu3—Cu2 102.7 (8) S1_10—Cu31—Cu24 50.59 (8)
S1A_5—Cu3—Cu2 100.2 (11) Cl31—Cu31—Cu24 106.54 (9)
Cl3—Cu3—Cu2 95.96 (10) S1_12—Cu31—Cu23 98.79 (9)
Cl15—Cu3—Cu2 150.81 (10) S1_10—Cu31—Cu23 51.70 (8)
Cu12—Cu3—Cu2 92.38 (5) Cl31—Cu31—Cu23 127.11 (9)
Cu15—Cu3—Cu2 123.98 (7) Cu24—Cu31—Cu23 96.04 (6)
Cu4—Cu3—Cu2 55.23 (5) S1_12—Cu31—Cu25 50.10 (8)
S1A_5—Cu4—S1_3 133.8 (9) S1_10—Cu31—Cu25 108.12 (9)
S1_3—Cu4—S1_5 129.4 (7) Cl31—Cu31—Cu25 112.92 (9)
S1A_5—Cu4—Cl2 107.0 (9) Cu24—Cu31—Cu25 64.41 (5)
S1_3—Cu4—Cl2 119.20 (10) Cu23—Cu31—Cu25 119.97 (5)
S1_5—Cu4—Cl2 111.4 (7) S1_12—Cu31—Cu32 110.60 (9)
S1A_5—Cu4—Cu2 112.0 (12) S1_10—Cu31—Cu32 97.10 (9)
S1_3—Cu4—Cu2 53.22 (9) Cl31—Cu31—Cu32 50.52 (8)
S1_5—Cu4—Cu2 109.7 (8) Cu24—Cu31—Cu32 61.59 (5)
Cl2—Cu4—Cu2 109.62 (9) Cu23—Cu31—Cu32 147.74 (6)
S1A_5—Cu4—Cu1 99.0 (14) Cu25—Cu31—Cu32 73.34 (5)
S1_3—Cu4—Cu1 108.44 (10) Cl30—Cu32—Cl32 116.45 (11)
S1_5—Cu4—Cu1 101.5 (10) Cl30—Cu32—Cl31 110.64 (11)
Cl2—Cu4—Cu1 52.21 (8) Cl32—Cu32—Cl31 120.05 (11)
Cu2—Cu4—Cu1 65.42 (5) Cl30—Cu32—Cl22vi 103.22 (10)
S1A_5—Cu4—Cu3 50.7 (14) Cl32—Cu32—Cl22vi 105.85 (9)
S1_3—Cu4—Cu3 108.56 (9) Cl31—Cu32—Cl22vi 96.96 (9)
S1_5—Cu4—Cu3 49.8 (10) Cl30—Cu32—Cu24 89.52 (8)
Cl2—Cu4—Cu3 109.93 (9) Cl32—Cu32—Cu24 48.68 (7)
Cu2—Cu4—Cu3 63.62 (5) Cl31—Cu32—Cu24 99.14 (8)
Cu1—Cu4—Cu3 66.32 (5) Cl22vi—Cu32—Cu24 154.43 (8)
S1A_5—Cu4—Cu7 102.0 (13) Cl30—Cu32—Cu31 88.56 (8)
S1_3—Cu4—Cu7 48.16 (9) Cl32—Cu32—Cu31 97.77 (8)
S1_5—Cu4—Cu7 98.8 (9) Cl31—Cu32—Cu31 48.18 (7)
Cl2—Cu4—Cu7 129.50 (9) Cl22vi—Cu32—Cu31 144.87 (9)
Cu2—Cu4—Cu7 96.09 (6) Cu24—Cu32—Cu31 55.83 (5)
Cu1—Cu4—Cu7 156.21 (6) Cl30—Cu32—Cu28vi 136.35 (8)
Cu3—Cu4—Cu7 120.44 (6) Cl32—Cu32—Cu28vi 104.04 (7)
S1_1—Cu5—S1_2 137.8 (6) Cl31—Cu32—Cu28vi 56.20 (7)
S1_1—Cu5—Cl4 108.5 (6) Cl22vi—Cu32—Cu28vi 47.49 (7)
S1_2—Cu5—Cl4 113.32 (13) Cu24—Cu32—Cu28vi 131.43 (6)
S1_2—Cu5—S1A_1 133.8 (12) Cu31—Cu32—Cu28vi 102.00 (6)
Cl4—Cu5—S1A_1 112.7 (11) Cu2—Cl1—Cu1 82.91 (11)
S1_1—Cu5—Cu6 53.9 (6) Cu4—Cl2—Cu1 76.72 (9)
S1_2—Cu5—Cu6 103.08 (9) Cu4—Cl2—Cu11i 149.49 (12)
Cl4—Cu5—Cu6 124.94 (9) Cu1—Cl2—Cu11i 82.50 (9)
S1A_1—Cu5—Cu6 51.0 (13) Cu1—Cl3—Cu3 88.88 (11)
S1_1—Cu5—Cu12 110.2 (8) Cu11—Cl4—Cu5 78.80 (10)
S1_2—Cu5—Cu12 52.42 (8) Cu10—Cl6—Cu11 80.86 (10)
Cl4—Cu5—Cu12 107.01 (9) Cu10—Cl6—Cu1iii 149.02 (12)
S1A_1—Cu5—Cu12 109.1 (15) Cu11—Cl6—Cu1iii 83.18 (10)
Cu6—Cu5—Cu12 127.98 (6) Cu9—Cl7—Cu6 93.22 (12)
S1_1—Cu5—Cu10 50.7 (7) Cu9—Cl7—Cu9ii 78.14 (12)
S1_2—Cu5—Cu10 110.17 (9) Cu6—Cl7—Cu9ii 149.00 (14)
Cl4—Cu5—Cu10 106.60 (9) Cu12—Cl8—Cu11 82.02 (11)
S1A_1—Cu5—Cu10 51.3 (15) Cu8—Cl9—Cu9 82.54 (13)
Cu6—Cu5—Cu10 97.24 (7) Cu9—Cl10—Cu7 87.41 (11)
Cu12—Cu5—Cu10 62.47 (5) Cu16—Cl12—Cu13 83.23 (10)
S1_1—Cu5—Cu11 98.8 (6) Cu16—Cl13—Cu14 86.53 (12)
S1_2—Cu5—Cu11 103.63 (9) Cu15—Cl14—Cu16 82.98 (10)
Cl4—Cu5—Cu11 50.23 (8) Cu15—Cl14—Cu17 166.76 (15)
S1A_1—Cu5—Cu11 102.2 (12) Cu16—Cl14—Cu17 85.33 (10)
Cu6—Cu5—Cu11 151.51 (7) C1_1—S1_1—Cu5 105.2 (13)
Cu12—Cu5—Cu11 64.50 (5) C1_1—S1_1—Cu10 111.8 (16)
Cu10—Cu5—Cu11 64.12 (5) Cu5—S1_1—Cu10 79.1 (8)
S1A_1—Cu6—S1_3 122.9 (14) C1_1—S1_1—Cu8 118.9 (14)
S1_1—Cu6—S1_3 125.8 (6) Cu5—S1_1—Cu8 135.7 (10)
S1A_1—Cu6—Cl7 104.9 (13) Cu10—S1_1—Cu8 86.7 (11)
S1_1—Cu6—Cl7 105.6 (6) C1_1—S1_1—Cu6 109.9 (18)
S1_3—Cu6—Cl7 110.36 (11) Cu5—S1_1—Cu6 75.0 (9)
S1A_1—Cu6—Cl5 118.6 (16) Cu10—S1_1—Cu6 135.3 (10)
S1_1—Cu6—Cl5 114.3 (8) Cu8—S1_1—Cu6 87.1 (7)
S1_3—Cu6—Cl5 100.06 (13) C2_1—N1_1—H1A_1 109.5
Cl7—Cu6—Cl5 97.02 (13) C2_1—N1_1—H1B_1 109.5
S1A_1—Cu6—Cu5 54.2 (15) H1A_1—N1_1—H1B_1 109.5
S1_1—Cu6—Cu5 51.2 (7) C2_1—N1_1—H1C_1 109.5
S1_3—Cu6—Cu5 106.91 (8) H1A_1—N1_1—H1C_1 109.5
Cl7—Cu6—Cu5 142.66 (9) H1B_1—N1_1—H1C_1 109.5
Cl5—Cu6—Cu5 73.96 (9) C2_1—C1_1—S1_1 110.9 (16)
S1A_1—Cu6—Cu2 114.2 (13) C2_1—C1_1—H1D_1 109.5
S1_1—Cu6—Cu2 113.3 (6) S1_1—C1_1—H1D_1 109.5
S1_3—Cu6—Cu2 48.17 (9) C2_1—C1_1—H1E_1 109.5
Cl7—Cu6—Cu2 140.86 (10) S1_1—C1_1—H1E_1 109.5
Cl5—Cu6—Cu2 63.36 (10) H1D_1—C1_1—H1E_1 108.0
Cu5—Cu6—Cu2 67.72 (5) C1_1—C2_1—C3_1 116.8 (16)
S1_3—Cu7—S1A_6 130.5 (8) C1_1—C2_1—N1_1 108.0 (19)
S1_3—Cu7—S1_6 131.18 (19) C3_1—C2_1—N1_1 106.3 (13)
S1_3—Cu7—Cl10 107.14 (12) C1_1—C2_1—H2_1 108.5
S1A_6—Cu7—Cl10 116.4 (7) C3_1—C2_1—H2_1 108.5
S1_6—Cu7—Cl10 115.66 (18) N1_1—C2_1—H2_1 108.5
S1_3—Cu7—Cu14 107.82 (9) O1_1—C3_1—O2_1 132.1 (17)
S1A_6—Cu7—Cu14 50.8 (4) O1_1—C3_1—C2_1 119.3 (15)
S1_6—Cu7—Cu14 51.27 (12) O2_1—C3_1—C2_1 108.3 (15)
Cl10—Cu7—Cu14 137.58 (12) C1A_1—S1A_1—Cu8 114 (3)
S1_3—Cu7—Cu8 102.57 (10) C1A_1—S1A_1—Cu6 112 (4)
S1A_6—Cu7—Cu8 49.6 (4) Cu8—S1A_1—Cu6 93.7 (18)
S1_6—Cu7—Cu8 49.59 (12) C1A_1—S1A_1—Cu10 105 (3)
Cl10—Cu7—Cu8 99.43 (10) Cu8—S1A_1—Cu10 90 (2)
Cu14—Cu7—Cu8 95.69 (7) Cu6—S1A_1—Cu10 138 (2)
S1_3—Cu7—Cu4 47.95 (7) C1A_1—S1A_1—Cu5 105 (3)
S1A_6—Cu7—Cu4 107.4 (6) Cu8—S1A_1—Cu5 141 (2)
S1_6—Cu7—Cu4 108.10 (14) Cu6—S1A_1—Cu5 74.9 (19)
Cl10—Cu7—Cu4 132.80 (10) Cu10—S1A_1—Cu5 76.4 (16)
Cu14—Cu7—Cu4 63.46 (5) C2A_1—N1A_1—H1AA_1 109.5
Cu8—Cu7—Cu4 122.77 (7) C2A_1—N1A_1—H1AB_1 109.5
S1A_1—Cu8—S1A_6 125.1 (15) H1AA_1—N1A_1—H1AB_1 109.5
S1A_1—Cu8—Cl9 122.4 (13) C2A_1—N1A_1—H1AC_1 109.5
S1A_6—Cu8—Cl9 111.3 (8) H1AA_1—N1A_1—H1AC_1 109.5
S1_6—Cu8—Cl9 110.5 (2) H1AB_1—N1A_1—H1AC_1 109.5
S1_6—Cu8—S1_1 126.9 (6) C2A_1—C1A_1—S1A_1 131 (6)
Cl9—Cu8—S1_1 121.9 (6) C2A_1—C1A_1—H1BA_1 104.4
S1A_1—Cu8—Cu7 104.9 (13) S1A_1—C1A_1—H1BA_1 104.4
S1A_6—Cu8—Cu7 49.2 (4) C2A_1—C1A_1—H1BB_1 104.4
S1_6—Cu8—Cu7 49.50 (12) S1A_1—C1A_1—H1BB_1 104.4
Cl9—Cu8—Cu7 102.89 (12) H1BA_1—C1A_1—H1BB_1 105.6
S1_1—Cu8—Cu7 107.2 (6) C1A_1—C2A_1—N1A_1 103 (4)
S1A_1—Cu8—Cu9 101.2 (16) C1A_1—C2A_1—C3A_1 130 (5)
S1A_6—Cu8—Cu9 104.4 (5) N1A_1—C2A_1—C3A_1 113 (3)
S1_6—Cu8—Cu9 104.20 (14) C1A_1—C2A_1—H2A_1 102.5
Cl9—Cu8—Cu9 50.34 (10) N1A_1—C2A_1—H2A_1 102.5
S1_1—Cu8—Cu9 102.6 (7) C3A_1—C2A_1—H2A_1 102.5
Cu7—Cu8—Cu9 64.62 (6) O1A_1—C3A_1—O2A_1 118 (5)
Cl7—Cu9—Cl10 124.68 (14) O1A_1—C3A_1—C2A_1 125 (6)
Cl7—Cu9—Cl9 116.46 (14) O2A_1—C3A_1—C2A_1 117 (4)
Cl10—Cu9—Cl9 110.10 (14) C1_2—S1_2—Cu5 114.4 (5)
Cl7—Cu9—Cl7ii 93.99 (13) C1_2—S1_2—Cu2 113.3 (4)
Cl10—Cu9—Cl7ii 104.96 (11) Cu5—S1_2—Cu2 91.98 (12)
Cl9—Cu9—Cl7ii 101.10 (12) C1_2—S1_2—Cu3 108.5 (5)
Cl7—Cu9—Cu8 94.09 (9) Cu5—S1_2—Cu3 134.92 (14)
Cl10—Cu9—Cu8 96.49 (9) Cu2—S1_2—Cu3 83.10 (11)
Cl9—Cu9—Cu8 47.12 (9) C1_2—S1_2—Cu12 106.0 (4)
Cl7ii—Cu9—Cu8 146.94 (10) Cu5—S1_2—Cu12 76.15 (10)
S1_1—Cu10—S1_4 136.2 (5) Cu2—S1_2—Cu12 140.31 (15)
S1_4—Cu10—S1A_1 133.0 (10) Cu3—S1_2—Cu12 79.60 (10)
S1_1—Cu10—Cl6 112.6 (5) C2_2—N1_2—H1A_2 109.5
S1_4—Cu10—Cl6 107.80 (11) C2_2—N1_2—H1B_2 109.5
S1A_1—Cu10—Cl6 116.9 (11) H1A_2—N1_2—H1B_2 109.5
S1_1—Cu10—Cu5 50.2 (8) C2_2—N1_2—H1C_2 109.5
S1_4—Cu10—Cu5 104.17 (10) H1A_2—N1_2—H1C_2 109.5
S1A_1—Cu10—Cu5 52.3 (16) H1B_2—N1_2—H1C_2 109.5
Cl6—Cu10—Cu5 104.43 (9) C2_2—C1_2—S1_2 110.6 (9)
S1_1—Cu10—Cu12 105.3 (7) C2_2—C1_2—H1AA_2 109.5
S1_4—Cu10—Cu12 49.87 (9) S1_2—C1_2—H1AA_2 109.5
S1A_1—Cu10—Cu12 105.7 (14) C2_2—C1_2—H1AB_2 109.5
Cl6—Cu10—Cu12 100.85 (10) S1_2—C1_2—H1AB_2 109.5
Cu5—Cu10—Cu12 57.78 (5) H1AA_2—C1_2—H1AB_2 108.1
S1_1—Cu10—Cu13 109.5 (6) C3_2—C2_2—C1_2 108.3 (13)
S1_4—Cu10—Cu13 49.00 (9) C3_2—C2_2—N1_2 109.0 (12)
S1A_1—Cu10—Cu13 104.8 (14) C1_2—C2_2—N1_2 116.2 (12)
Cl6—Cu10—Cu13 130.52 (9) C3_2—C2_2—H2_2 107.7
Cu5—Cu10—Cu13 122.34 (6) C1_2—C2_2—H2_2 107.7
Cu12—Cu10—Cu13 91.83 (6) N1_2—C2_2—H2_2 107.7
S1_1—Cu10—Cu11 94.3 (7) O1_2—C3_2—O2_2 124.6 (16)
S1_4—Cu10—Cu11 99.32 (10) O1_2—C3_2—C2_2 116.7 (15)
S1A_1—Cu10—Cu11 98.7 (15) O2_2—C3_2—C2_2 117.3 (14)
Cl6—Cu10—Cu11 49.64 (9) C1_3—S1_3—Cu4 117.3 (3)
Cu5—Cu10—Cu11 58.87 (5) C1_3—S1_3—Cu7 109.7 (4)
Cu12—Cu10—Cu11 61.10 (5) Cu4—S1_3—Cu7 83.88 (11)
Cu13—Cu10—Cu11 148.31 (7) C1_3—S1_3—Cu2 108.2 (4)
Cl4—Cu11—Cl8 120.14 (14) Cu4—S1_3—Cu2 75.02 (10)
Cl4—Cu11—Cl6 124.44 (13) Cu7—S1_3—Cu2 141.82 (12)
Cl8—Cu11—Cl6 110.98 (12) C1_3—S1_3—Cu6 101.9 (3)
Cl4—Cu11—Cl2iii 97.20 (10) Cu4—S1_3—Cu6 139.18 (12)
Cl8—Cu11—Cl2iii 101.21 (10) Cu7—S1_3—Cu6 93.65 (12)
Cl6—Cu11—Cl2iii 92.76 (10) Cu2—S1_3—Cu6 82.77 (11)
Cl4—Cu11—Cu5 50.96 (8) C2_3—N1_3—H1A_3 109.5
Cl8—Cu11—Cu5 99.32 (9) C2_3—N1_3—H1B_3 109.5
Cl6—Cu11—Cu5 102.54 (9) H1A_3—N1_3—H1B_3 109.5
Cl2iii—Cu11—Cu5 147.94 (8) C2_3—N1_3—H1C_3 109.5
Cl4—Cu11—Cu12 99.98 (8) H1A_3—N1_3—H1C_3 109.5
Cl8—Cu11—Cu12 48.83 (8) H1B_3—N1_3—H1C_3 109.5
Cl6—Cu11—Cu12 97.48 (8) C2_3—C1_3—S1_3 116.5 (6)
Cl2iii—Cu11—Cu12 150.02 (8) C2_3—C1_3—H1D_3 108.2
Cu5—Cu11—Cu12 55.88 (4) S1_3—C1_3—H1D_3 108.2
Cl4—Cu11—Cu10 100.91 (10) C2_3—C1_3—H1DE_3 108.2
Cl8—Cu11—Cu10 98.19 (10) S1_3—C1_3—H1DE_3 108.2
Cl6—Cu11—Cu10 49.50 (7) H1D_3—C1_3—H1DE_3 107.3
Cl2iii—Cu11—Cu10 141.90 (9) N1_3—C2_3—C3_3 109.3 (8)
Cu5—Cu11—Cu10 57.01 (5) N1_3—C2_3—C1_3 111.8 (9)
Cu12—Cu11—Cu10 57.32 (5) C3_3—C2_3—C1_3 109.5 (7)
S1_4—Cu12—S1_2 133.70 (12) N1_3—C2_3—H2_3 108.7
S1_4—Cu12—Cl8 110.34 (12) C3_3—C2_3—H2_3 108.7
S1_2—Cu12—Cl8 113.81 (13) C1_3—C2_3—H2_3 108.7
S1_4—Cu12—Cu5 105.62 (9) O2_3—C3_3—O1_3 126.2 (9)
S1_2—Cu12—Cu5 51.44 (8) O2_3—C3_3—C2_3 118.0 (9)
Cl8—Cu12—Cu5 103.03 (10) O1_3—C3_3—C2_3 115.8 (9)
S1_4—Cu12—Cu3 103.80 (9) C1_4—S1_4—Cu15 118.7 (3)
S1_2—Cu12—Cu3 50.04 (8) C1_4—S1_4—Cu10 103.6 (3)
Cl8—Cu12—Cu3 135.56 (11) Cu15—S1_4—Cu10 137.67 (13)
Cu5—Cu12—Cu3 94.01 (5) C1_4—S1_4—Cu12 112.7 (5)
S1_4—Cu12—Cu10 49.43 (8) Cu15—S1_4—Cu12 84.27 (12)
S1_2—Cu12—Cu10 106.76 (9) Cu10—S1_4—Cu12 80.70 (10)
Cl8—Cu12—Cu10 102.22 (10) C1_4—S1_4—Cu13 107.8 (5)
Cu5—Cu12—Cu10 59.75 (5) Cu15—S1_4—Cu13 82.38 (12)
Cu3—Cu12—Cu10 121.68 (7) Cu10—S1_4—Cu13 83.61 (12)
S1_4—Cu12—Cu15 47.61 (8) Cu12—S1_4—Cu13 139.02 (13)
S1_2—Cu12—Cu15 105.08 (9) C2_4—N1_4—H1A_4 109.5
Cl8—Cu12—Cu15 133.43 (10) C2_4—N1_4—H1B_4 109.5
Cu5—Cu12—Cu15 121.35 (6) H1A_4—N1_4—H1B_4 109.5
Cu3—Cu12—Cu15 59.18 (5) C2_4—N1_4—H1C_4 109.5
Cu10—Cu12—Cu15 89.61 (6) H1A_4—N1_4—H1C_4 109.5
S1_4—Cu12—Cu11 99.38 (8) H1B_4—N1_4—H1C_4 109.5
S1_2—Cu12—Cu11 98.90 (8) C2_4—C1_4—S1_4 113.4 (7)
Cl8—Cu12—Cu11 49.15 (8) C2_4—C1_4—H1AA_4 108.9
Cu5—Cu12—Cu11 59.63 (4) S1_4—C1_4—H1AA_4 108.9
Cu3—Cu12—Cu11 148.94 (6) C2_4—C1_4—H1AB_4 108.9
Cu10—Cu12—Cu11 61.58 (5) S1_4—C1_4—H1AB_4 108.9
Cu15—Cu12—Cu11 146.99 (7) H1AA_4—C1_4—H1AB_4 107.7
S1A_6—Cu13—S1_4 124.9 (8) C3_4—C2_4—N1_4 107.4 (9)
S1_6—Cu13—S1_4 125.68 (18) C3_4—C2_4—C1_4 116.4 (9)
S1A_6—Cu13—Cl12 125.2 (7) N1_4—C2_4—C1_4 109.8 (10)
S1_6—Cu13—Cl12 124.64 (19) C3_4—C2_4—H2_4 107.6
S1_4—Cu13—Cl12 107.25 (12) N1_4—C2_4—H2_4 107.6
S1A_6—Cu13—C1A_6 45.8 (7) C1_4—C2_4—H2_4 107.6
S1_4—Cu13—C1A_6 167.9 (12) O1_4—C3_4—O2_4 125.2 (11)
Cl12—Cu13—C1A_6 80.0 (9) O1_4—C3_4—C2_4 121.7 (12)
S1A_6—Cu13—Cu14 49.0 (4) O2_4—C3_4—C2_4 113.0 (10)
S1_6—Cu13—Cu14 49.42 (12) C1_5—S1_5—Cu15 111 (2)
S1_4—Cu13—Cu14 103.76 (9) C1_5—S1_5—Cu14 117.0 (18)
Cl12—Cu13—Cu14 107.28 (10) Cu15—S1_5—Cu14 87.9 (14)
C1A_6—Cu13—Cu14 64.4 (12) C1_5—S1_5—Cu3 100.6 (18)
S1A_6—Cu13—Cu15 104.1 (6) Cu15—S1_5—Cu3 82.7 (11)
S1_6—Cu13—Cu15 104.82 (15) Cu14—S1_5—Cu3 142.1 (12)
S1_4—Cu13—Cu15 47.94 (8) C1_5—S1_5—Cu4 106.3 (16)
Cl12—Cu13—Cu15 98.45 (9) Cu15—S1_5—Cu4 141.0 (12)
C1A_6—Cu13—Cu15 122.3 (13) Cu14—S1_5—Cu4 85.5 (12)
Cu14—Cu13—Cu15 61.30 (5) Cu3—S1_5—Cu4 79.4 (12)
S1A_6—Cu13—Cu10 96.7 (6) C2_5—N1_5—H1A_5 109.5
S1_6—Cu13—Cu10 97.03 (15) C2_5—N1_5—H1B_5 109.5
S1_4—Cu13—Cu10 47.39 (8) H1A_5—N1_5—H1B_5 109.5
Cl12—Cu13—Cu10 133.71 (11) C2_5—N1_5—H1C_5 109.5
C1A_6—Cu13—Cu10 133.6 (10) H1A_5—N1_5—H1C_5 109.5
Cu14—Cu13—Cu10 115.71 (6) H1B_5—N1_5—H1C_5 109.5
Cu15—Cu13—Cu10 87.99 (6) C2_5—C1_5—S1_5 119.5 (19)
S1A_6—Cu13—Cu16 103.3 (5) C2_5—C1_5—H1AA_5 107.4
S1_6—Cu13—Cu16 103.28 (13) S1_5—C1_5—H1AA_5 107.4
S1_4—Cu13—Cu16 99.36 (9) C2_5—C1_5—H1AB_5 107.4
Cl12—Cu13—Cu16 48.22 (8) S1_5—C1_5—H1AB_5 107.4
C1A_6—Cu13—Cu16 78.0 (11) H1AA_5—C1_5—H1AB_5 107.0
Cu14—Cu13—Cu16 63.01 (5) C1_5—C2_5—C3_5 111.9 (17)
Cu15—Cu13—Cu16 61.47 (5) C1_5—C2_5—N1_5 111.8 (18)
Cu10—Cu13—Cu16 146.63 (8) C3_5—C2_5—N1_5 111.4 (13)
S1_5—Cu14—S1_6 127.7 (7) C1_5—C2_5—H2_5 107.1
S1A_6—Cu14—S1A_5 129.3 (12) C3_5—C2_5—H2_5 107.2
S1_5—Cu14—Cl13 118.0 (8) N1_5—C2_5—H2_5 107.2
S1A_6—Cu14—Cl13 108.2 (7) O1_5—C3_5—O2_5 123.5 (17)
S1_6—Cu14—Cl13 107.55 (18) O1_5—C3_5—C2_5 117.9 (14)
S1A_5—Cu14—Cl13 118.5 (10) O2_5—C3_5—C2_5 118.2 (16)
S1_5—Cu14—Cl11 102.7 (8) C1A_5—S1A_5—Cu4 114 (2)
S1A_6—Cu14—Cl11 99.9 (5) C1A_5—S1A_5—Cu3 99 (2)
S1_6—Cu14—Cl11 99.65 (14) Cu4—S1A_5—Cu3 82.5 (16)
S1A_5—Cu14—Cl11 97.1 (11) C1A_5—S1A_5—Cu14 123 (2)
Cl13—Cu14—Cl11 92.35 (11) Cu4—S1A_5—Cu14 87.6 (17)
S1_5—Cu14—Cu7 104.3 (9) Cu3—S1A_5—Cu14 136.8 (15)
S1A_6—Cu14—Cu7 50.2 (4) C1A_5—S1A_5—Cu15 107 (2)
S1_6—Cu14—Cu7 50.40 (12) Cu4—S1A_5—Cu15 136.2 (15)
S1A_5—Cu14—Cu7 102.0 (11) Cu3—S1A_5—Cu15 77.7 (13)
Cl13—Cu14—Cu7 134.18 (11) Cu14—S1A_5—Cu15 81.2 (15)
Cl11—Cu14—Cu7 60.45 (8) C2A_5—N1A_5—H1A1_5 109.5
S1_5—Cu14—Cu13 101.3 (7) C2A_5—N1A_5—H1A2_5 109.5
S1A_6—Cu14—Cu13 48.2 (5) H1A1_5—N1A_5—H1A2_5 109.5
S1_6—Cu14—Cu13 48.36 (12) C2A_5—N1A_5—H1A3_5 109.5
S1A_5—Cu14—Cu13 106.6 (10) H1A1_5—N1A_5—H1A3_5 109.5
Cl13—Cu14—Cu13 94.96 (10) H1A2_5—N1A_5—H1A3_5 109.5
Cl11—Cu14—Cu13 147.85 (9) C2A_5—C1A_5—S1A_5 99 (2)
Cu7—Cu14—Cu13 93.02 (6) C2A_5—C1A_5—H1AC_5 112.0
S1_5—Cu14—Cu15 45.0 (8) S1A_5—C1A_5—H1AC_5 112.0
S1A_6—Cu14—Cu15 101.9 (6) C2A_5—C1A_5—H1AD_5 112.0
S1_6—Cu14—Cu15 102.33 (15) S1A_5—C1A_5—H1AD_5 112.0
S1A_5—Cu14—Cu15 50.6 (11) H1AC_5—C1A_5—H1AD_5 109.7
Cl13—Cu14—Cu15 103.12 (10) N1A_5—C2A_5—C3A_5 116 (2)
Cl11—Cu14—Cu15 147.70 (9) N1A_5—C2A_5—C1A_5 108 (2)
Cu7—Cu14—Cu15 119.59 (7) C3A_5—C2A_5—C1A_5 99 (2)
Cu13—Cu14—Cu15 59.59 (5) N1A_5—C2A_5—H2A_5 111.2
S1_5—Cu15—S1_4 129.1 (7) C3A_5—C2A_5—H2A_5 111.2
S1_5—Cu15—Cl14 106.9 (8) C1A_5—C2A_5—H2A_5 111.2
S1_4—Cu15—Cl14 120.52 (11) O2A_5—C3A_5—O1A_5 128 (3)
S1_4—Cu15—S1A_5 129.8 (9) O2A_5—C3A_5—C2A_5 116 (3)
Cl14—Cu15—S1A_5 106.5 (9) O1A_5—C3A_5—C2A_5 116 (2)
S1_5—Cu15—Cu3 50.4 (11) C1_6—S1_6—Cu13 119.7 (6)
S1_4—Cu15—Cu3 103.52 (9) C1_6—S1_6—Cu7 98.0 (5)
Cl14—Cu15—Cu3 129.66 (10) Cu13—S1_6—Cu7 140.8 (3)
S1A_5—Cu15—Cu3 49.7 (13) C1_6—S1_6—Cu8 109.6 (6)
S1_5—Cu15—Cu13 102.8 (10) Cu13—S1_6—Cu8 94.8 (2)
S1_4—Cu15—Cu13 49.68 (10) Cu7—S1_6—Cu8 80.91 (17)
Cl14—Cu15—Cu13 105.18 (10) C1_6—S1_6—Cu14 104.4 (6)
S1A_5—Cu15—Cu13 104.0 (12) Cu13—S1_6—Cu14 82.22 (17)
Cu3—Cu15—Cu13 122.34 (6) Cu7—S1_6—Cu14 78.33 (16)
S1_5—Cu15—Cu12 102.6 (9) Cu8—S1_6—Cu14 142.2 (3)
S1_4—Cu15—Cu12 48.12 (9) C2_6—N1_6—H1A_6 109.5
Cl14—Cu15—Cu12 142.19 (10) C2_6—N1_6—H1B_6 109.5
S1A_5—Cu15—Cu12 102.4 (11) H1A_6—N1_6—H1B_6 109.5
Cu3—Cu15—Cu12 58.39 (5) C2_6—N1_6—H1C_6 109.5
Cu13—Cu15—Cu12 90.58 (6) H1A_6—N1_6—H1C_6 109.5
S1_5—Cu15—Cu14 47.1 (11) H1B_6—N1_6—H1C_6 109.5
S1_4—Cu15—Cu14 103.29 (11) C2_6—C1_6—S1_6 109.9 (11)
Cl14—Cu15—Cu14 100.56 (10) C2_6—C1_6—H1D_6 109.7
S1A_5—Cu15—Cu14 48.2 (13) S1_6—C1_6—H1D_6 109.7
Cu3—Cu15—Cu14 91.03 (6) C2_6—C1_6—H1E_6 109.7
Cu13—Cu15—Cu14 59.11 (6) S1_6—C1_6—H1E_6 109.7
Cu12—Cu15—Cu14 116.88 (6) H1D_6—C1_6—H1E_6 108.2
Cl13—Cu16—Cl12 116.04 (13) C1_6—C2_6—N1_6 105.8 (14)
Cl13—Cu16—Cl14 120.37 (12) C1_6—C2_6—C3_6 109.7 (13)
Cl12—Cu16—Cl14 117.17 (13) N1_6—C2_6—C3_6 103.0 (11)
Cl13—Cu16—Cl17 93.56 (10) C1_6—C2_6—H2_6 112.6
Cl12—Cu16—Cl17 108.38 (10) N1_6—C2_6—H2_6 112.6
Cl14—Cu16—Cl17 93.75 (10) C3_6—C2_6—H2_6 112.6
Cl13—Cu16—Cu13 93.21 (9) O1_6—C3_6—O2_6 128.3 (18)
Cl12—Cu16—Cu13 48.55 (7) O1_6—C3_6—C2_6 116.3 (11)
Cl14—Cu16—Cu13 102.38 (8) O2_6—C3_6—C2_6 115.4 (11)
Cl17—Cu16—Cu13 156.21 (9) H4A_6—O4_6—H4B_6 105.8 (3)
Cu20—Cl17—Cu17 77.44 (9) C1A_6—S1A_6—Cu13 75.8 (15)
Cu20—Cl17—Cu16 154.44 (13) C1A_6—S1A_6—Cu7 137 (2)
Cu17—Cl17—Cu16 84.78 (10) Cu13—S1A_6—Cu7 142.4 (15)
Cu18—Cl18—Cu17 82.21 (10) C1A_6—S1A_6—Cu8 124 (2)
Cu19—Cl19—Cu17 81.85 (10) Cu13—S1A_6—Cu8 95.0 (8)
Cu28—Cl20—Cu27 78.24 (9) Cu7—S1A_6—Cu8 81.2 (6)
Cu21—Cl21—Cu18 67.43 (8) C1A_6—S1A_6—Cu14 90.9 (17)
Cu28—Cl22—Cu21 88.70 (9) Cu13—S1A_6—Cu14 82.8 (7)
Cu28—Cl22—Cu32iv 78.91 (9) Cu7—S1A_6—Cu14 79.0 (6)
Cu21—Cl22—Cu32iv 146.01 (11) Cu8—S1A_6—Cu14 143.6 (15)
Cu29—Cl23—Cu28 83.99 (10) C2A_6—N1A_6—H1AA_6 109.5
Cu26—Cl24—Cu22 78.41 (9) C2A_6—N1A_6—H1AB_6 109.5
Cu30—Cl25—Cu26 76.07 (9) H1AA_6—N1A_6—H1AB_6 109.5
Cu30—Cl25—Cu26v 146.40 (12) C2A_6—N1A_6—H1AC_6 109.5
Cu26—Cl25—Cu26v 76.32 (9) H1AA_6—N1A_6—H1AC_6 109.5
Cu26—Cl27—Cu23 93.73 (11) H1AB_6—N1A_6—H1AC_6 109.5
Cu32—Cl30—Cu25 99.77 (11) C2A_6—C1A_6—S1A_6 106 (3)
Cu31—Cl31—Cu32 81.30 (10) C2A_6—C1A_6—Cu13 154 (3)
Cu31—Cl31—Cu28vi 148.72 (13) S1A_6—C1A_6—Cu13 58.4 (11)
Cu32—Cl31—Cu28vi 75.18 (9) C2A_6—C1A_6—H1BA_6 110.5
Cu24—Cl32—Cu32 81.82 (10) S1A_6—C1A_6—H1BA_6 110.5
Cl19—Cu17—Cl18 119.80 (12) Cu13—C1A_6—H1BA_6 63.0
Cl19—Cu17—Cl17 118.19 (11) C2A_6—C1A_6—H1BB_6 110.5
Cl18—Cu17—Cl17 116.48 (12) S1A_6—C1A_6—H1BB_6 110.5
Cl19—Cu17—Cl14 102.26 (10) Cu13—C1A_6—H1BB_6 95.5
Cl18—Cu17—Cl14 97.50 (10) H1BA_6—C1A_6—H1BB_6 108.7
Cl17—Cu17—Cl14 93.63 (10) N1A_6—C2A_6—C1A_6 101 (3)
Cl19—Cu17—Cu20 101.40 (9) N1A_6—C2A_6—C3A_6 142 (4)
Cl18—Cu17—Cu20 94.54 (9) C1A_6—C2A_6—C3A_6 104 (3)
Cl17—Cu17—Cu20 50.29 (7) N1A_6—C2A_6—H2A_6 101.6
Cl14—Cu17—Cu20 143.34 (9) C1A_6—C2A_6—H2A_6 101.6
Cl19—Cu17—Cu19 48.85 (7) C3A_6—C2A_6—H2A_6 101.6
Cl18—Cu17—Cu19 103.89 (8) O1A_6—C3A_6—O2A_6 129 (2)
Cl17—Cu17—Cu19 95.15 (8) O1A_6—C3A_6—C2A_6 115.2 (14)
Cl14—Cu17—Cu19 150.15 (8) O2A_6—C3A_6—C2A_6 115.3 (14)
Cu20—Cu17—Cu19 55.61 (4) C1_7—S1_7—Cu30 107.0 (3)
Cl19—Cu17—Cu18 96.70 (8) C1_7—S1_7—Cu29 119.8 (3)
Cl18—Cu17—Cu18 48.61 (7) Cu30—S1_7—Cu29 89.79 (10)
Cl17—Cu17—Cu18 101.84 (8) C1_7—S1_7—Cu22 101.1 (3)
Cl14—Cu17—Cu18 146.12 (8) Cu30—S1_7—Cu22 73.59 (8)
Cu20—Cu17—Cu18 55.87 (4) Cu29—S1_7—Cu22 138.90 (11)
Cu19—Cu17—Cu18 58.51 (4) C1_7—S1_7—Cu21 108.8 (3)
S1_11—Cu18—S1_9 123.85 (11) Cu30—S1_7—Cu21 136.47 (11)
S1_11—Cu18—Cl18 125.71 (12) Cu29—S1_7—Cu21 93.35 (10)
S1_9—Cu18—Cl18 107.75 (11) Cu22—S1_7—Cu21 75.88 (9)
S1_11—Cu18—Cl21 98.07 (9) C2_7—N1_7—H1A_7 109.5
S1_9—Cu18—Cl21 93.08 (9) C2_7—N1_7—H1B_7 109.5
Cl18—Cu18—Cl21 94.64 (10) H1A_7—N1_7—H1B_7 109.5
S1_11—Cu18—Cu20 101.28 (8) C2_7—N1_7—H1C_7 109.5
S1_9—Cu18—Cu20 50.72 (7) H1A_7—N1_7—H1C_7 109.5
Cl18—Cu18—Cu20 98.45 (9) H1B_7—N1_7—H1C_7 109.5
Cl21—Cu18—Cu20 143.74 (8) C2_7—C1_7—S1_7 116.2 (7)
S1_11—Cu18—Cu21 97.71 (8) C2_7—C1_7—H1AA_7 108.2
S1_9—Cu18—Cu21 49.99 (7) S1_7—C1_7—H1AA_7 108.2
Cl18—Cu18—Cu21 130.42 (9) C2_7—C1_7—H1AB_7 108.2
Cl21—Cu18—Cu21 52.36 (7) S1_7—C1_7—H1AB_7 108.2
Cu20—Cu18—Cu21 94.60 (6) H1AA_7—C1_7—H1AB_7 107.4
S1_11—Cu18—Cu19 50.05 (7) C1_7—C2_7—N1_7 112.5 (7)
S1_9—Cu18—Cu19 103.05 (8) C1_7—C2_7—C3_7 111.4 (9)
Cl18—Cu18—Cu19 106.13 (9) N1_7—C2_7—C3_7 109.6 (7)
Cl21—Cu18—Cu19 148.03 (7) C1_7—C2_7—H2_7 107.7
Cu20—Cu18—Cu19 57.48 (4) N1_7—C2_7—H2_7 107.7
Cu21—Cu18—Cu19 121.01 (6) C3_7—C2_7—H2_7 107.7
S1_11—Cu18—Cu17 101.91 (8) O1_7—C3_7—O2_7 127.9 (9)
S1_9—Cu18—Cu17 100.34 (8) O1_7—C3_7—C2_7 120.2 (9)
Cl18—Cu18—Cu17 49.18 (7) O2_7—C3_7—C2_7 111.9 (8)
Cl21—Cu18—Cu17 143.70 (8) C1_8—S1_8—Cu24 120.5 (4)
Cu20—Cu18—Cu17 59.92 (5) C1_8—S1_8—Cu27 101.0 (4)
Cu21—Cu18—Cu17 150.31 (6) Cu24—S1_8—Cu27 138.17 (14)
Cu19—Cu18—Cu17 60.32 (4) C1_8—S1_8—Cu29 112.0 (4)
S1_12—Cu19—Cl19 121.19 (10) Cu24—S1_8—Cu29 88.23 (11)
S1_12—Cu19—S1_11 125.74 (11) Cu27—S1_8—Cu29 80.61 (10)
Cl19—Cu19—S1_11 110.75 (11) C1_8—S1_8—Cu25 104.3 (4)
S1_12—Cu19—Cu20 52.02 (7) Cu24—S1_8—Cu25 86.31 (10)
Cl19—Cu19—Cu20 106.47 (8) Cu27—S1_8—Cu25 77.87 (9)
S1_11—Cu19—Cu20 100.58 (8) Cu29—S1_8—Cu25 140.61 (13)
S1_12—Cu19—Cu23 96.96 (8) C2_8—N1_8—H1A_8 109.5
Cl19—Cu19—Cu23 134.24 (9) C2_8—N1_8—H1B_8 109.5
S1_11—Cu19—Cu23 50.44 (7) H1A_8—N1_8—H1B_8 109.5
Cu20—Cu19—Cu23 117.31 (6) C2_8—N1_8—H1C_8 109.5
S1_12—Cu19—Cu18 105.59 (8) H1A_8—N1_8—H1C_8 109.5
Cl19—Cu19—Cu18 99.31 (8) H1B_8—N1_8—H1C_8 109.5
S1_11—Cu19—Cu18 48.44 (7) C2_8—C1_8—S1_8 113.3 (9)
Cu20—Cu19—Cu18 58.27 (4) C2_8—C1_8—H1AA_8 108.9
Cu23—Cu19—Cu18 92.90 (5) S1_8—C1_8—H1AA_8 108.9
S1_12—Cu19—Cu17 100.71 (8) C2_8—C1_8—H1AB_8 108.9
Cl19—Cu19—Cu17 49.31 (7) S1_8—C1_8—H1AB_8 108.9
S1_11—Cu19—Cu17 101.30 (8) H1AA_8—C1_8—H1AB_8 107.7
Cu20—Cu19—Cu17 60.49 (5) C1_8—C2_8—N1_8 110.4 (11)
Cu23—Cu19—Cu17 151.71 (6) C1_8—C2_8—C3_8 111.0 (11)
Cu18—Cu19—Cu17 61.16 (4) N1_8—C2_8—C3_8 111.9 (10)
S1_9—Cu20—S1_12 131.59 (10) C1_8—C2_8—H2_8 107.8
S1_9—Cu20—Cl17 121.93 (10) N1_8—C2_8—H2_8 107.8
S1_12—Cu20—Cl17 106.48 (9) C3_8—C2_8—H2_8 107.8
S1_9—Cu20—Cu19 111.22 (8) O1_8—C3_8—O2_8 121.3 (13)
S1_12—Cu20—Cu19 52.45 (8) O1_8—C3_8—C2_8 121.7 (12)
Cl17—Cu20—Cu19 103.60 (8) O2_8—C3_8—C2_8 116.9 (12)
S1_9—Cu20—Cu18 52.97 (8) C1_9—S1_9—Cu20 116.2 (3)
S1_12—Cu20—Cu18 111.47 (9) C1_9—S1_9—Cu27 110.3 (4)
Cl17—Cu20—Cu18 111.36 (9) Cu20—S1_9—Cu27 90.28 (10)
Cu19—Cu20—Cu18 64.24 (5) C1_9—S1_9—Cu18 107.3 (4)
S1_9—Cu20—Cu17 105.73 (9) Cu20—S1_9—Cu18 76.31 (9)
S1_12—Cu20—Cu17 103.85 (9) Cu27—S1_9—Cu18 142.24 (11)
Cl17—Cu20—Cu17 52.28 (8) C1_9—S1_9—Cu21 103.4 (3)
Cu19—Cu20—Cu17 63.90 (5) Cu20—S1_9—Cu21 138.21 (11)
Cu18—Cu20—Cu17 64.21 (5) Cu27—S1_9—Cu21 87.75 (10)
S1_9—Cu20—Cu25 98.59 (8) Cu18—S1_9—Cu21 80.08 (10)
S1_12—Cu20—Cu25 49.91 (8) C2_9—N1_9—H1A_9 109.5
Cl17—Cu20—Cu25 122.20 (9) C2_9—N1_9—H1B_9 109.5
Cu19—Cu20—Cu25 96.60 (5) H1A_9—N1_9—H1B_9 109.5
Cu18—Cu20—Cu25 126.17 (5) C2_9—N1_9—H1C_9 109.5
Cu17—Cu20—Cu25 153.01 (6) H1A_9—N1_9—H1C_9 109.5
S1_7—Cu21—S1_9 125.47 (10) H1B_9—N1_9—H1C_9 109.5
S1_7—Cu21—Cl22 103.97 (9) C2_9—C1_9—S1_9 115.2 (6)
S1_9—Cu21—Cl22 112.63 (10) C2_9—C1_9—H1D_9 108.5
S1_7—Cu21—Cl21 113.78 (10) S1_9—C1_9—H1D_9 108.5
S1_9—Cu21—Cl21 99.74 (10) C2_9—C1_9—H1DE_9 108.5
Cl22—Cu21—Cl21 98.17 (10) S1_9—C1_9—H1DE_9 108.5
S1_7—Cu21—Cu22 51.90 (7) H1D_9—C1_9—H1DE_9 107.5
S1_9—Cu21—Cu22 106.71 (8) C1_9—C2_9—C3_9 110.2 (7)
Cl22—Cu21—Cu22 140.56 (8) C1_9—C2_9—N1_9 113.5 (8)
Cl21—Cu21—Cu22 71.92 (7) C3_9—C2_9—N1_9 108.8 (8)
S1_7—Cu21—Cu18 113.33 (8) C1_9—C2_9—H2_9 108.1
S1_9—Cu21—Cu18 49.93 (8) C3_9—C2_9—H2_9 108.1
Cl22—Cu21—Cu18 141.89 (8) N1_9—C2_9—H2_9 108.1
Cl21—Cu21—Cu18 60.22 (7) O1_9—C3_9—O2_9 124.9 (9)
Cu22—Cu21—Cu18 66.55 (4) O1_9—C3_9—C2_9 116.5 (9)
S1_11—Cu22—S1_7 136.31 (10) O2_9—C3_9—C2_9 118.3 (10)
S1_11—Cu22—Cl24 117.62 (11) C1_10—S1_10—Cu31 102.0 (3)
S1_7—Cu22—Cl24 106.06 (10) C1_10—S1_10—Cu30 119.2 (3)
S1_11—Cu22—Cu30 112.01 (8) Cu31—S1_10—Cu30 138.57 (12)
S1_7—Cu22—Cu30 52.69 (7) C1_10—S1_10—Cu24 110.4 (4)
Cl24—Cu22—Cu30 103.69 (8) Cu31—S1_10—Cu24 79.16 (10)
S1_11—Cu22—Cu21 102.36 (8) Cu30—S1_10—Cu24 89.92 (11)
S1_7—Cu22—Cu21 52.22 (7) C1_10—S1_10—Cu23 107.6 (4)
Cl24—Cu22—Cu21 120.35 (8) Cu31—S1_10—Cu23 79.26 (10)
Cu30—Cu22—Cu21 99.50 (6) Cu30—S1_10—Cu23 84.02 (10)
S1_11—Cu22—Cu26 107.03 (8) Cu24—S1_10—Cu23 139.33 (12)
S1_7—Cu22—Cu26 99.29 (7) C2_10—N1_10—H1A_10 109.5
Cl24—Cu22—Cu26 50.68 (7) C2_10—N1_10—H1B_10 109.5
Cu30—Cu22—Cu26 61.91 (4) H1A_10—N1_10—H1B_10 109.5
Cu21—Cu22—Cu26 149.48 (6) C2_10—N1_10—H1C_10 109.5
S1_11—Cu22—Cu23 50.00 (7) H1A_10—N1_10—H1C_10 109.5
S1_7—Cu22—Cu23 110.93 (8) H1B_10—N1_10—H1C_10 109.5
Cl24—Cu22—Cu23 114.70 (8) C2_10—C1_10—S1_10 114.5 (6)
Cu30—Cu22—Cu23 64.71 (5) C2_10—C1_10—H1D_10 108.6
Cu21—Cu22—Cu23 124.92 (5) S1_10—C1_10—H1D_10 108.6
Cu26—Cu22—Cu23 71.40 (4) C2_10—C1_10—H1DE_10 108.6
S1_11—Cu23—S1_10 130.74 (11) S1_10—C1_10—H1DE_10 108.6
S1_11—Cu23—Cl27 107.60 (11) H1D_10—C1_10—H1DE_10 107.6
S1_10—Cu23—Cl27 106.22 (11) N1_10—C2_10—C3_10 106.6 (8)
S1_11—Cu23—Cl29 102.64 (11) N1_10—C2_10—C1_10 112.5 (8)
S1_10—Cu23—Cl29 105.62 (11) C3_10—C2_10—C1_10 109.3 (7)
Cl27—Cu23—Cl29 99.91 (11) N1_10—C2_10—H2_10 109.5
S1_11—Cu23—Cu31 110.46 (8) C3_10—C2_10—H2_10 109.5
S1_10—Cu23—Cu31 49.04 (7) C1_10—C2_10—H2_10 109.5
Cl27—Cu23—Cu31 141.71 (9) O1_10—C3_10—O2_10 125.8 (9)
Cl29—Cu23—Cu31 67.92 (9) O1_10—C3_10—C2_10 120.8 (10)
S1_11—Cu23—Cu19 50.49 (7) O2_10—C3_10—C2_10 113.4 (9)
S1_10—Cu23—Cu19 112.11 (8) C1_11—S1_11—Cu22 114.0 (3)
Cl27—Cu23—Cu19 140.89 (10) C1_11—S1_11—Cu18 113.2 (3)
Cl29—Cu23—Cu19 62.83 (8) Cu22—S1_11—Cu18 90.15 (10)
Cu31—Cu23—Cu19 67.52 (5) C1_11—S1_11—Cu23 105.6 (3)
S1_11—Cu23—Cu22 48.18 (7) Cu22—S1_11—Cu23 81.82 (9)
S1_10—Cu23—Cu22 96.99 (8) Cu18—S1_11—Cu23 140.22 (14)
Cl27—Cu23—Cu22 91.03 (8) C1_11—S1_11—Cu19 107.0 (3)
Cl29—Cu23—Cu22 150.82 (10) Cu22—S1_11—Cu19 138.06 (13)
Cu31—Cu23—Cu22 117.61 (6) Cu18—S1_11—Cu19 81.51 (9)
Cu19—Cu23—Cu22 91.82 (5) Cu23—S1_11—Cu19 79.07 (9)
S1_11—Cu23—Cu30 99.64 (8) C2_11—N1_11—H1A_11 109.5
S1_10—Cu23—Cu30 46.90 (7) C2_11—N1_11—H1B_11 109.5
Cl27—Cu23—Cu30 88.51 (8) H1A_11—N1_11—H1B_11 109.5
Cl29—Cu23—Cu30 152.44 (11) C2_11—N1_11—H1C_11 109.5
Cu31—Cu23—Cu30 89.21 (6) H1A_11—N1_11—H1C_11 109.5
Cu19—Cu23—Cu30 123.60 (6) H1B_11—N1_11—H1C_11 109.5
Cu22—Cu23—Cu30 53.64 (4) C2_11—C1_11—S1_11 116.1 (7)
S1_8—Cu24—S1_10 128.15 (11) C2_11—C1_11—H1AA_11 108.3
S1_8—Cu24—Cl32 122.91 (12) S1_11—C1_11—H1AA_11 108.3
S1_10—Cu24—Cl32 108.09 (11) C2_11—C1_11—H1AB_11 108.3
S1_8—Cu24—Cu31 104.05 (9) S1_11—C1_11—H1AB_11 108.3
S1_10—Cu24—Cu31 50.24 (7) H1AA_11—C1_11—H1AB_11 107.4
Cl32—Cu24—Cu31 104.50 (9) C3_11—C2_11—N1_11 107.5 (8)
S1_8—Cu24—Cu32 107.70 (9) C3_11—C2_11—C1_11 110.2 (10)
S1_10—Cu24—Cu32 97.64 (8) N1_11—C2_11—C1_11 113.3 (8)
Cl32—Cu24—Cu32 49.49 (7) C3_11—C2_11—H2_11 108.6
Cu31—Cu24—Cu32 62.58 (5) N1_11—C2_11—H2_11 108.6
S1_8—Cu25—S1_12 130.93 (11) C1_11—C2_11—H2_11 108.6
S1_8—Cu25—Cl30 103.93 (11) O1_11—C3_11—O2_11 121.8 (12)
S1_12—Cu25—Cl30 108.56 (10) O1_11—C3_11—C2_11 122.6 (10)
S1_8—Cu25—Cl28 105.84 (11) O2_11—C3_11—C2_11 115.0 (11)
S1_12—Cu25—Cl28 105.10 (11) C1_12—S1_12—Cu31 114.3 (3)
Cl30—Cu25—Cl28 97.69 (10) C1_12—S1_12—Cu20 109.0 (3)
S1_8—Cu25—Cu27 50.11 (7) Cu31—S1_12—Cu20 136.06 (11)
S1_12—Cu25—Cu27 109.11 (8) C1_12—S1_12—Cu19 115.8 (4)
Cl30—Cu25—Cu27 142.27 (10) Cu31—S1_12—Cu19 92.02 (11)
Cl28—Cu25—Cu27 70.49 (8) Cu20—S1_12—Cu19 75.54 (9)
S1_8—Cu25—Cu31 98.45 (8) C1_12—S1_12—Cu25 102.6 (4)
S1_12—Cu25—Cu31 47.78 (7) Cu31—S1_12—Cu25 82.12 (10)
Cl30—Cu25—Cu31 88.80 (8) Cu20—S1_12—Cu25 81.52 (10)
Cl28—Cu25—Cu31 152.41 (10) Cu19—S1_12—Cu25 139.87 (11)
Cu27—Cu25—Cu31 118.57 (6) C2_12—N1_12—H1A_12 109.5
S1_8—Cu25—Cu20 109.99 (8) C2_12—N1_12—H1B_12 109.5
S1_12—Cu25—Cu20 48.57 (7) H1A_12—N1_12—H1B_12 109.5
Cl30—Cu25—Cu20 146.00 (9) C2_12—N1_12—H1C_12 109.5
Cl28—Cu25—Cu20 71.12 (9) H1A_12—N1_12—H1C_12 109.5
Cu27—Cu25—Cu20 65.65 (5) H1B_12—N1_12—H1C_12 109.5
Cu31—Cu25—Cu20 88.57 (5) C2_12—C1_12—S1_12 114.9 (7)
Cl24—Cu26—Cl27 120.65 (11) C2_12—C1_12—H1AA_12 108.5
Cl24—Cu26—Cl25 118.76 (10) S1_12—C1_12—H1AA_12 108.5
Cl27—Cu26—Cl25 114.22 (11) C2_12—C1_12—H1AB_12 108.5
Cl24—Cu26—Cl25v 96.60 (9) S1_12—C1_12—H1AB_12 108.5
Cl27—Cu26—Cl25v 98.93 (10) H1AA_12—C1_12—H1AB_12 107.5
Cl25—Cu26—Cl25v 99.93 (9) N1_12—C2_12—C1_12 111.0 (8)
Cl24—Cu26—Cu30 98.60 (8) N1_12—C2_12—C3_12 109.5 (8)
Cl27—Cu26—Cu30 94.15 (9) C1_12—C2_12—C3_12 110.2 (9)
Cl25—Cu26—Cu30 51.27 (7) N1_12—C2_12—H2_12 108.7
Cl25v—Cu26—Cu30 151.19 (8) C1_12—C2_12—H2_12 108.7
Cl24—Cu26—Cu22 50.91 (6) C3_12—C2_12—H2_12 108.7
Cl27—Cu26—Cu22 94.55 (8) O1_12—C3_12—O2_12 126.1 (10)
Cl25—Cu26—Cu22 101.78 (7) O1_12—C3_12—C2_12 118.2 (10)
Cl25v—Cu26—Cu22 146.94 (8) O2_12—C3_12—C2_12 115.7 (9)
Cu30—Cu26—Cu22 55.85 (4) H1A_13—O1_13—H1B_13 112 (5)
Cl24—Cu26—Cu26v 101.19 (7)
Cu5—S1_1—C1_1—C2_1 173 (2) Cu13—S1A_6—C1A_6—C2A_6 −157 (3)
Cu10—S1_1—C1_1—C2_1 89 (3) Cu7—S1A_6—C1A_6—C2A_6 46 (4)
Cu8—S1_1—C1_1—C2_1 −10 (3) Cu8—S1A_6—C1A_6—C2A_6 −70 (3)
Cu6—S1_1—C1_1—C2_1 −108 (3) Cu14—S1A_6—C1A_6—C2A_6 121 (2)
S1_1—C1_1—C2_1—C3_1 166.7 (19) Cu7—S1A_6—C1A_6—Cu13 −157 (2)
S1_1—C1_1—C2_1—N1_1 −74 (3) Cu8—S1A_6—C1A_6—Cu13 86.5 (14)
C1_1—C2_1—C3_1—O1_1 140 (3) Cu14—S1A_6—C1A_6—Cu13 −82.4 (8)
N1_1—C2_1—C3_1—O1_1 19 (3) S1A_6—C1A_6—C2A_6—N1A_6 −81 (5)
C1_1—C2_1—C3_1—O2_1 −35 (3) Cu13—C1A_6—C2A_6—N1A_6 −131 (6)
N1_1—C2_1—C3_1—O2_1 −156 (2) S1A_6—C1A_6—C2A_6—C3A_6 128 (4)
Cu8—S1A_1—C1A_1—C2A_1 81 (6) Cu13—C1A_6—C2A_6—C3A_6 79 (7)
Cu6—S1A_1—C1A_1—C2A_1 −24 (7) N1A_6—C2A_6—C3A_6—O1A_6 77 (10)
Cu10—S1A_1—C1A_1—C2A_1 177 (5) C1A_6—C2A_6—C3A_6—O1A_6 −154 (4)
Cu5—S1A_1—C1A_1—C2A_1 −103 (6) N1A_6—C2A_6—C3A_6—O2A_6 −106 (10)
S1A_1—C1A_1—C2A_1—N1A_1 −78 (6) C1A_6—C2A_6—C3A_6—O2A_6 23 (4)
S1A_1—C1A_1—C2A_1—C3A_1 147 (5) Cu30—S1_7—C1_7—C2_7 110.9 (6)
C1A_1—C2A_1—C3A_1—O1A_1 107 (7) Cu29—S1_7—C1_7—C2_7 11.1 (8)
N1A_1—C2A_1—C3A_1—O1A_1 −25 (7) Cu22—S1_7—C1_7—C2_7 −173.0 (6)
C1A_1—C2A_1—C3A_1—O2A_1 −71 (8) Cu21—S1_7—C1_7—C2_7 −94.3 (6)
N1A_1—C2A_1—C3A_1—O2A_1 157 (4) S1_7—C1_7—C2_7—N1_7 −67.5 (9)
Cu5—S1_2—C1_2—C2_2 79.5 (10) S1_7—C1_7—C2_7—C3_7 169.0 (7)
Cu2—S1_2—C1_2—C2_2 −24.2 (11) C1_7—C2_7—C3_7—O1_7 129.1 (10)
Cu3—S1_2—C1_2—C2_2 −114.6 (9) N1_7—C2_7—C3_7—O1_7 4.0 (14)
Cu12—S1_2—C1_2—C2_2 161.2 (9) C1_7—C2_7—C3_7—O2_7 −50.7 (11)
S1_2—C1_2—C2_2—C3_2 163.3 (12) N1_7—C2_7—C3_7—O2_7 −175.7 (9)
S1_2—C1_2—C2_2—N1_2 −73.6 (15) Cu24—S1_8—C1_8—C2_8 −2.2 (11)
C1_2—C2_2—C3_2—O1_2 141 (2) Cu27—S1_8—C1_8—C2_8 −176.5 (8)
N1_2—C2_2—C3_2—O1_2 14 (3) Cu29—S1_8—C1_8—C2_8 99.3 (9)
C1_2—C2_2—C3_2—O2_2 −25 (3) Cu25—S1_8—C1_8—C2_8 −96.3 (9)
N1_2—C2_2—C3_2—O2_2 −152 (2) S1_8—C1_8—C2_8—N1_8 −71.9 (12)
Cu4—S1_3—C1_3—C2_3 −6.5 (11) S1_8—C1_8—C2_8—C3_8 163.4 (9)
Cu7—S1_3—C1_3—C2_3 86.9 (9) C1_8—C2_8—C3_8—O1_8 114.5 (17)
Cu2—S1_3—C1_3—C2_3 −88.6 (9) N1_8—C2_8—C3_8—O1_8 −9 (2)
Cu6—S1_3—C1_3—C2_3 −174.8 (8) C1_8—C2_8—C3_8—O2_8 −63.2 (18)
S1_3—C1_3—C2_3—N1_3 −64.4 (11) N1_8—C2_8—C3_8—O2_8 173.0 (14)
S1_3—C1_3—C2_3—C3_3 174.3 (8) Cu20—S1_9—C1_9—C2_9 −10.2 (10)
N1_3—C2_3—C3_3—O2_3 −3.6 (12) Cu27—S1_9—C1_9—C2_9 90.7 (8)
C1_3—C2_3—C3_3—O2_3 119.2 (11) Cu18—S1_9—C1_9—C2_9 −93.1 (8)
N1_3—C2_3—C3_3—O1_3 174.8 (8) Cu21—S1_9—C1_9—C2_9 −176.7 (7)
C1_3—C2_3—C3_3—O1_3 −62.4 (12) S1_9—C1_9—C2_9—C3_9 176.4 (8)
Cu15—S1_4—C1_4—C2_4 −3.7 (12) S1_9—C1_9—C2_9—N1_9 −61.3 (10)
Cu10—S1_4—C1_4—C2_4 177.8 (9) C1_9—C2_9—C3_9—O1_9 −57.1 (13)
Cu12—S1_4—C1_4—C2_4 92.3 (9) N1_9—C2_9—C3_9—O1_9 177.9 (9)
Cu13—S1_4—C1_4—C2_4 −94.7 (10) C1_9—C2_9—C3_9—O2_9 116.8 (11)
S1_4—C1_4—C2_4—C3_4 167.2 (10) N1_9—C2_9—C3_9—O2_9 −8.2 (12)
S1_4—C1_4—C2_4—N1_4 −70.6 (12) Cu31—S1_10—C1_10—C2_10 176.7 (7)
N1_4—C2_4—C3_4—O1_4 18.0 (18) Cu30—S1_10—C1_10—C2_10 −8.0 (10)
C1_4—C2_4—C3_4—O1_4 141.5 (14) Cu24—S1_10—C1_10—C2_10 93.9 (8)
N1_4—C2_4—C3_4—O2_4 −157.4 (12) Cu23—S1_10—C1_10—C2_10 −100.9 (8)
C1_4—C2_4—C3_4—O2_4 −33.9 (18) S1_10—C1_10—C2_10—N1_10 −61.7 (10)
Cu15—S1_5—C1_5—C2_5 −78 (3) S1_10—C1_10—C2_10—C3_10 −179.8 (7)
Cu14—S1_5—C1_5—C2_5 21 (4) N1_10—C2_10—C3_10—O1_10 −6.8 (12)
Cu3—S1_5—C1_5—C2_5 −164 (3) C1_10—C2_10—C3_10—O1_10 115.0 (10)
Cu4—S1_5—C1_5—C2_5 114 (3) N1_10—C2_10—C3_10—O2_10 175.3 (8)
S1_5—C1_5—C2_5—C3_5 161 (2) C1_10—C2_10—C3_10—O2_10 −62.9 (12)
S1_5—C1_5—C2_5—N1_5 −73 (3) Cu22—S1_11—C1_11—C2_11 73.4 (8)
C1_5—C2_5—C3_5—O1_5 −44 (3) Cu18—S1_11—C1_11—C2_11 −27.8 (9)
N1_5—C2_5—C3_5—O1_5 −170 (2) Cu23—S1_11—C1_11—C2_11 161.2 (7)
C1_5—C2_5—C3_5—O2_5 144 (3) Cu19—S1_11—C1_11—C2_11 −115.7 (7)
N1_5—C2_5—C3_5—O2_5 18 (3) S1_11—C1_11—C2_11—C3_11 162.7 (7)
S1A_5—C1A_5—C2A_5—N1A_5 −73 (3) S1_11—C1_11—C2_11—N1_11 −76.8 (10)
S1A_5—C1A_5—C2A_5—C3A_5 166 (2) N1_11—C2_11—C3_11—O1_11 −4.1 (18)
N1A_5—C2A_5—C3A_5—O2A_5 24 (4) C1_11—C2_11—C3_11—O1_11 119.8 (14)
C1A_5—C2A_5—C3A_5—O2A_5 139 (3) N1_11—C2_11—C3_11—O2_11 167.0 (12)
N1A_5—C2A_5—C3A_5—O1A_5 −158 (3) C1_11—C2_11—C3_11—O2_11 −69.1 (14)
C1A_5—C2A_5—C3A_5—O1A_5 −43 (3) Cu31—S1_12—C1_12—C2_12 83.5 (7)
Cu13—S1_6—C1_6—C2_6 −8.7 (14) Cu20—S1_12—C1_12—C2_12 −104.3 (7)
Cu7—S1_6—C1_6—C2_6 −177.8 (11) Cu19—S1_12—C1_12—C2_12 −21.6 (8)
Cu8—S1_6—C1_6—C2_6 99.0 (12) Cu25—S1_12—C1_12—C2_12 170.4 (6)
Cu14—S1_6—C1_6—C2_6 −97.9 (12) S1_12—C1_12—C2_12—N1_12 −69.9 (10)
S1_6—C1_6—C2_6—N1_6 −80.6 (15) S1_12—C1_12—C2_12—C3_12 168.6 (7)
S1_6—C1_6—C2_6—C3_6 168.9 (11) N1_12—C2_12—C3_12—O1_12 −3.2 (17)
C1_6—C2_6—C3_6—O1_6 129 (2) C1_12—C2_12—C3_12—O1_12 119.2 (13)
N1_6—C2_6—C3_6—O1_6 17 (3) N1_12—C2_12—C3_12—O2_12 175.4 (11)
C1_6—C2_6—C3_6—O2_6 −52 (3) C1_12—C2_12—C3_12—O2_12 −62.3 (14)
N1_6—C2_6—C3_6—O2_6 −165 (2)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1; (ii) −x, y, −z+1; (iii) −x+1/2, y+1/2, −z+1; (iv) −x+1/2, y+1/2, −z; (v) −x+1, y, −z; (vi) −x+1/2, y−1/2, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1_1—H1A_1···Cl6 0.91 2.73 3.554 (19) 151
N1_1—H1A_1···Cl16 0.91 2.66 3.148 (16) 115
N1_1—H1B_1···Cl3iii 0.91 2.81 3.42 (2) 126
N1A_1—H1AA_1···Cl7 0.91 2.74 3.34 (4) 125
N1A_1—H1AA_1···Cl9 0.91 2.54 3.28 (3) 138
N1_2—H1A_2···Cl4 0.91 2.78 3.395 (15) 126
N1_2—H1A_2···O2A_5iii 0.91 2.48 3.04 (2) 120
N1_2—H1C_2···Cl5 0.91 2.19 3.101 (15) 175
N1_3—H1A_3···Cl10 0.91 2.69 3.592 (9) 171
N1_3—H1B_3···O2_3 0.91 2.13 2.605 (10) 112
N1_3—H1C_3···Cl2 0.91 2.53 3.306 (8) 143
N1_3—H1C_3···Cl11 0.91 2.68 3.228 (9) 120
N1_4—H1B_4···Cl15 0.91 2.44 3.199 (10) 141
N1_4—H1B_4···S1_4 0.91 2.82 3.300 (10) 114
N1_5—H1B_5···O2_12 0.91 2.36 3.14 (3) 144
N1_5—H1C_5···Cl11 0.91 2.76 3.46 (2) 134
N1_5—H1C_5···Cl13 0.91 2.49 3.24 (2) 139
N1A_5—H1A2_5···Cl2 0.91 2.74 3.46 (2) 137
N1A_5—H1A2_5···Cl11 0.91 2.42 2.99 (2) 121
N1A_5—H1A2_5···S1A_5 0.91 2.68 3.22 (4) 119
N1A_5—H1A3_5···Cl4i 0.91 2.82 3.49 (3) 132
N1_6—H1B_6···O3_6 0.91 1.92 2.70 (3) 142
N1_6—H1C_6···Cl16 0.91 2.53 3.311 (16) 145
N1_6—H1C_6···S1_6 0.91 2.89 3.330 (16) 111
N1A_6—H1AC_6···Cl11 0.91 2.74 3.60 (7) 158
N1_7—H1B_7···Cl23 0.91 2.77 3.435 (9) 131
N1_7—H1B_7···Cl26 0.91 2.58 3.315 (9) 138
N1_7—H1C_7···O1_13 0.91 1.99 2.803 (12) 148
N1_8—H1C_8···Cl26 0.91 2.51 3.370 (12) 158
N1_8—H1C_8···S1_8 0.91 2.83 3.286 (13) 112
N1_9—H1A_9···Cl20 0.91 2.85 3.585 (9) 139
N1_9—H1A_9···O1_10iv 0.91 2.12 2.796 (11) 130
N1_9—H1B_9···O4_6 0.91 2.01 2.86 (3) 154
N1_9—H1C_9···Cl17 0.91 2.79 3.348 (9) 121
N1_9—H1C_9···Cl28 0.91 2.45 3.211 (9) 142
N1_10—H1B_10···Cl25 0.91 2.77 3.239 (9) 113
N1_10—H1B_10···Cl26 0.91 2.57 3.363 (8) 146
N1_10—H1C_10···O2_9vi 0.91 2.15 2.856 (12) 134
N1_11—H1A_11···O1_13v 0.91 2.08 2.971 (13) 167
N1_11—H1C_11···Cl21 0.91 2.61 3.362 (10) 141
N1_11—H1C_11···Cl24 0.91 2.61 3.235 (9) 126
N1_12—H1A_12···Cl31 0.91 2.92 3.387 (9) 113
N1_12—H1C_12···Cl29 0.91 2.44 3.316 (9) 161
O4_6—H4B_6···Cl12 0.84 (1) 2.89 (10) 3.32 (3) 114 (8)
O4_6—H4B_6···O3_6 0.84 (1) 1.76 (7) 2.51 (4) 148 (10)
O1_13—H1A_13···Cl25 0.82 (3) 2.97 (3) 3.501 (9) 125 (2)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1; (iii) −x+1/2, y+1/2, −z+1; (iv) −x+1/2, y+1/2, −z; (v) −x+1, y, −z; (vi) −x+1/2, y−1/2, −z.

Funding Statement

This work was funded by RFBR (grant No. 18-33-20072) grant .

References

  1. Aridomi, T., Igashira-Kamiyama, A. & Konno, T. (2008). Inorg. Chem. 47, 10202–10204. [DOI] [PubMed]
  2. Bruker (2017). APEX3 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.
  3. Chukanov, N. V. (2014). Infrared Spectra of Mineral Species: Extended Library. Dordrecht, Heidelberg, New York, London: Springer-Verlag GmbH.
  4. Cook, A. W., Jones, Z. R., Wu, G., Teat, S. J., Scott, S. L. & Hayton, T. W. (2019). Inorg. Chem. 58, 8739–8749. [DOI] [PubMed]
  5. Dehnen, S., Fenske, D. & Deveson, A. C. (1996). J. Clust Sci. 7, 351–369.
  6. Dehnen, S., Schäfer, A., Fenske, D. & Ahlrichs, R. (1994). Angew. Chem. Int. Ed. Engl. 33, 746–749.
  7. Dokken, K. M., Parsons, J. G., McClure, J. & Gardea-Torresdey, J. L. (2009). Inorg. Chim. Acta, 362, 395–401.
  8. Driessen, H., Haneef, M. I. J., Harris, G. W., Howlin, B., Khan, G. & Moss, D. S. (1989). J. Appl. Cryst. 22, 510–516.
  9. Dubler, E., Cathomas, N. & Jameson, G. B. (1986). Inorg. Chim. Acta, 123, 99–104.
  10. Eichhöfer, A., Buth, G., Lebedkin, S., Kühn, M. & Weigend, F. (2015). Inorg. Chem. 54, 9413–9422. [DOI] [PubMed]
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Khadka, C. B., Najafabadi, B. K., Hesari, M., Workentin, M. S. & Corrigan, J. F. (2013). Inorg. Chem. 52, 6798–6805. [DOI] [PubMed]
  13. Kretsinger, R. H., Uversky, V. N. & Permykov, E. A. (2013). Encyclopedia of Metalloproteins. Heidelberg: Springer.
  14. Langridge, R., Marvin, D. A., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F. & Hamilton, L. D. (1960). J. Mol. Biol. 2, 38–I, N12.
  15. Lennarz, W. J. & Lane, M. D. (2013). Encyclopedia of Biological Chemistry, 2nd ed. London: Academic Press.
  16. Louvain, N., Mercier, N. & Kurmoo, M. (2008). Eur. J. Inorg. Chem. pp. 1654–1660.
  17. Ma, L., Chen, W., Schatte, G., Wang, W., Joly, A. G., Huang, Y., Sammynaiken, R. & Hossu, M. (2014). J. Mater. Chem. C. 2, 4239–4246.
  18. Müller, P. (2009). Crystallogr. Rev. 15, 57–83.
  19. O’Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782–1789. [DOI] [PubMed]
  20. Parish, R. V., Salehi, Z. & Pritchard, R. G. (1997). Angew. Chem. Int. Ed. Engl. 36, 251–253.
  21. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  22. Prichard, R. G., Parish, R. V. & Salehi, Z. (1999). J. Chem. Soc. Dalton Trans. pp. 243–250.
  23. Salehi, Z., Parish, R. V. & Pritchard, R. G. (1997). J. Chem. Soc. Dalton Trans. pp. 4241–4246.
  24. Seko, H., Tsuge, K., Igashira-Kamiyama, A., Kawamoto, T. & Konno, T. (2010). Chem. Commun. 46, 1962–1964. [DOI] [PubMed]
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Sheldrick, G. M. (2016). SADABS. University of Göttingen, Germany.
  29. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  30. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  31. Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448–451.
  32. Yang, X.-X., Issac, I., Lebedkin, S., Kühn, M., Weigend, F., Fenske, D., Fuhr, O. & Eichhöfer, A. (2014). Chem. Commun. 50, 11043–11045. [DOI] [PubMed]
  33. Yukhnevich, G. V. (1973). Infrared Spectroscopy of Water. Moscow: Nauka (in Russian).

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002012/hb7953sup1.cif

e-77-00324-sup1.cif (6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002012/hb7953Isup2.hkl

e-77-00324-Isup2.hkl (1.8MB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002012/hb7953Isup4.cdx

Author's response to referees comments for previous submission ZL2796. DOI: 10.1107/S2056989021002012/hb7953sup3.txt

e-77-00324-sup3.txt (7.1KB, txt)

CCDC reference: 2064015

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES