Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 26;77(Pt 4):424–427. doi: 10.1107/S2056989021002954

Crystal structure and Hirshfeld surface analysis of trans-2,5-di­methyl­piperazine-1,4-diium tetra­chlorido­cobaltate(II)

Meriem Landolsi a, Sonia Abid a,*
PMCID: PMC8025852  PMID: 33936770

In the title mol­ecular salt, (C6H16N2)[CoCl4], the complete dication is generated by crystallographic inversion symmetry and the piperazine ring adopts a chair conformation with the pendant methyl groups in equatorial orientations. The complete dianion is generated by crystallographic twofold symmetry. In the crystal, the (C6H16N2)2+ and [CoCl4]2− ions are linked by N—H⋯Cl and C—H⋯Cl hydrogen bonds, thereby forming a two-dimensional supra­molecular network.

Keywords: crystal structure, tetra­chlorido­cobaltate(II) salt, Hirshfeld surface analysis

Abstract

In the title mol­ecular salt, (C6H16N2)[CoCl4], the complete dication is generated by crystallographic inversion symmetry and the piperazine ring adopts a chair conformation with the pendant methyl groups in equatorial orientations. The complete dianion is generated by crystallographic twofold symmetry. In the crystal, the (C6H16N2)2+ and [CoCl4]2− ions are linked by N—H⋯Cl and C—H⋯Cl hydrogen bonds, thereby forming a two-dimensional supra­molecular network. The Hirshfeld surface analysis and fingerprint plots reveal that the largest contributions to the crystal stability come from H⋯Cl/Cl⋯H (68.4%) and H⋯H (27.4%) contacts.

Chemical context  

Tetra­chloro­cobalt/copper (II) salts with organic cations, such as (C6H10N3)2[CoCl4] (Titi et al. 2020), [(CH3)2NH2]2[CoCl4] (Pietraszko et al. 2006) and (C7H7N2S)2[CuCl4] (Vishwakarma et al. 2017) have received attention due to their potential applications in the electronic, magnetic, optical and anti­microbial fields. In these materials, the negative charge on the inorganic complex ion is balanced by the organic groups, which usually act as structure-directing agents by the formation of N—H⋯Cl hydrogen bonds and significantly affect the structure and dimensionality of the supra­molecular network.graphic file with name e-77-00424-scheme1.jpg

As an extension of these studies, we now describe the synthesis, structure and Hirshfeld surface analysis of the title mol­ecular salt, (I).

Structural commentary  

The asymmetric unit of (I) comprises half of a trans-2,5-di­methyl­piperazine-1,4-dium cation and a half tetra­chlorido­cobaltate anion (Fig. 1). The cation and anion are completed by crystallographic inversion and twofold symmetry, respectively. In the organic species, the N—C and C—C bond lengths vary from 1.490 (2) to 1.513 (2) Å and the angles C—C—C, N—C—C and C—N—C range from 109.15 (14) to 113.54 (15)°. These data are in agreement with those reported in other salts of the trans-2,5-di­methyl­piperazine-1,4-diium cation (Gatfaoui et al., 2014; Ben Mleh et al., 2016). The Co2+ ion in (I) has a tetra­hedral geometry, with Cl—Co—Cl angles ranging from 103.32 (2) to 116.57 (3)°. The average length of the Co—Cl bonds, 2.27 Å, is close to that observed in similar complexes (Tahenti et al., 2020; Zhang et al., 2005; Zeller et al., 2005).

Figure 1.

Figure 1

The mol­ecular structure of (I) with displacement ellipsoids set to 50% probability and hydrogen bonds shown as dashed lines. Symmetry codes: (i) −x + 1, y, −z + Inline graphic; (ii) −x + 2, −y + 1, −z + 1.

Supra­molecular features  

In the crystal of (I), adjacent anions are inter­connected by the cations via N—H⋯Cl hydrogen bonds and C—H⋯Cl inter­actions (Table 1) to form a layer built up from the organic and inorganic species, lying parallel to (101) (Fig. 2). The hydrogen bonds engage the chloride ions of the [CoCl4]2– tetra­hedron, producing four types of graph-set motifs on the basis of Etter’s notation (Etter et al., 1990; Bernstein et al., 1995). The isolated mol­ecules can be described by the elementary graph-set descriptors Ead (n) (Daszkiewicz, 2012). The graph-set descriptor of the pattern can be easily obtained by the summation of elementary Ead (n) graph-sets of isolated ions and mol­ecules. In the case of (I), the elementary graph-sets can be collected (Fig. 3) as follows:

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.89 2.30 3.1777 (2) 171
N1—H1B⋯Cl1 0.89 2.65 3.2594 (2) 126
N1—H1B⋯Cl2 0.89 2.49 3.2631 (2) 145
C1—H1C⋯Cl2ii 0.97 2.82 3.7065 (2) 153

Symmetry codes: (i) -x+2, y, -z+{\script{3\over 2}}; (ii) -x+1, -y+1, -z+1.

Figure 2.

Figure 2

(a) Crystal packing in the structure of (I) along the crystallographic a axis. (b) View of a supra­molecular layer along the b-axis direction.

Figure 3.

Figure 3

Hydrogen-bonding inter­actions between cations and anions showing the ring patterns of weak inter­actions formed by N—H⋯Cl/C—H⋯Cl links.

E 0 1 (1) + E 2 0 (3) = Inline graphic (4)

2E 0 2 (3) + 2E 1 0 (1) = Inline graphic (8)

E 0 2 (3) + E 2 0 (5) = Inline graphic (8)

2E 1 0 (1) + 2E 0 2 (4) = Inline graphic (10).

Hirshfeld surface analysis  

To further understand the different inter­actions and contacts in the crystal of (I), its Hirshfeld surface (HS) (McKinnon et al., 2004) was calculated. The d norm surface (Fig. 4) and the associated two-dimensional fingerprint plots (see supporting information) were calculated using CrystalExplorer 3.1 (Wolff et al., 2013; Spackman & Jayatilaka, 2009). This figure shows the areas mapped in the range from −0.480 to 1.048 of the asymmetric ion-pair surrounded by neighboring ions where we can see some of the closest inter­molecular contacts. The large dark-red spots on the HS indicate close contact inter­actions, which are primarily responsible for significant hydrogen-bond contacts. The fingerprint plots indicate that the most important inter­actions are H⋯Cl/Cl⋯H, which cover a HS range of 68.4% and appear as two shape-symmetric spikes in the two-dimensional fingerprint maps (where d id e ∼1.4 Å). It should be also noted that the the van der Waals radii of the hydrogen and chlorine atoms are 1.20 and 1.75 Å, respectively. The H⋯H contacts represent the second most abundant inter­actions with 27.4% of the total Hirshfeld surface, including a short H⋯H contact near 2.4 Å (where d id e ∼1.2 Å), represented by a cluster of points accumulated on the diagonal of the graph. Other contacts including Cl⋯Cl and Co⋯H/H⋯Co have negligible contributions (respectively 2.7% and 1.5%). It can be concluded that the Cl⋯H/H⋯Cl inter­actions dominate in the title compound.

Figure 4.

Figure 4

Hirshfeld surface of (I) mapped over d norm and the two-dimensional fingerprint plot for all inter­actions.

Synthesis and crystallization  

A 1:1 mixture of trans-2,5-di­methyl­piperazine and cobalt(II) chloride hexa­hydrate was dissolved in a solution of concentrated hydro­chloric acid and the resulting solution was magnetically stirred for 1 h. After two weeks of evaporation, dark-blue prismatic crystals of (I) had formed, which were recovered by filtration and dried in air.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The N-bound and C-bound hydrogen atoms were positioned geometrically and treated as riding atoms: N—H = 0.86 Å, C—H = 0.96 Å with U iso(H) = 1.2U eq(N,C).

Table 2. Experimental details.

Crystal data
Chemical formula C6H16N2 2+·Cl4Co2−
M r 316.94
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 7.6431 (3), 11.9347 (6), 14.0058 (7)
β (°) 95.519 (4)
V3) 1271.66 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.15
Crystal size (mm) 0.15 × 0.10 × 0.08
 
Data collection
Diffractometer Agilent SuperNova, Single source at offset, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent 2014)
T min, T max 0.816, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4627, 1546, 1370
R int 0.029
(sin θ/λ)max−1) 0.685
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.074, 1.08
No. of reflections 1546
No. of parameters 60
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.59

Computer programs: CrysAlis PRO (Agilent, 2014), SIR92 (Altomare et al., 1994), SHELXL2017/1 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006) and ORTEP-III (Burnett & Johnson, 1996).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002954/hb7971sup1.cif

e-77-00424-sup1.cif (13.5KB, cif)

Two-dimensional fingerprint plots. DOI: 10.1107/S2056989021002954/hb7971sup3.pdf

e-77-00424-sup3.pdf (385.9KB, pdf)

CCDC reference: 1831453

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like thank Professor Shu Hua Zhang from Guilin University of Technology for collecting the XRD data.

supplementary crystallographic information

Crystal data

C6H16N22+·Cl4Co2 F(000) = 644
Mr = 316.94 Dx = 1.655 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 7.6431 (3) Å Cell parameters from 2258 reflections
b = 11.9347 (6) Å θ = 4.1–29.0°
c = 14.0058 (7) Å µ = 2.15 mm1
β = 95.519 (4)° T = 293 K
V = 1271.66 (10) Å3 Prism, blue
Z = 4 0.15 × 0.10 × 0.08 mm

Data collection

Agilent SuperNova, Single source at offset, Eos diffractometer 1370 reflections with I > 2σ(I)
Detector resolution: 16.0233 pixels mm-1 Rint = 0.029
ω scans θmax = 29.1°, θmin = 3.4°
Absorption correction: multi-scan (CrysAlisPro; Agilent 2014) h = −10→9
Tmin = 0.816, Tmax = 1.000 k = −15→15
4627 measured reflections l = −18→13
1546 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.515P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.027
1546 reflections Δρmax = 0.27 e Å3
60 parameters Δρmin = −0.59 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.500000 0.52995 (3) 0.750000 0.02694 (13)
Cl1 0.74705 (6) 0.42227 (4) 0.77647 (3) 0.03237 (14)
Cl2 0.54849 (7) 0.62944 (5) 0.61790 (4) 0.04332 (16)
N1 0.9250 (2) 0.51194 (13) 0.58839 (11) 0.0276 (3)
H1A 1.015221 0.493869 0.630538 0.033*
H1B 0.833857 0.527625 0.621121 0.033*
C1 0.8798 (2) 0.41357 (16) 0.52524 (14) 0.0290 (4)
H1C 0.774246 0.429831 0.483440 0.035*
H1D 0.856092 0.349324 0.564406 0.035*
C2 1.0282 (2) 0.38575 (15) 0.46508 (13) 0.0272 (4)
H2 1.130901 0.361989 0.507561 0.033*
C3 0.9775 (3) 0.29268 (17) 0.39440 (16) 0.0404 (5)
H3A 0.947344 0.226813 0.428597 0.061*
H3B 0.878228 0.315843 0.351734 0.061*
H3C 1.074621 0.276353 0.358031 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.02007 (18) 0.0374 (2) 0.0236 (2) 0.000 0.00304 (14) 0.000
Cl1 0.0239 (2) 0.0401 (3) 0.0327 (3) 0.00345 (18) 0.00040 (18) 0.00462 (18)
Cl2 0.0334 (3) 0.0564 (3) 0.0408 (3) 0.0047 (2) 0.0073 (2) 0.0198 (2)
N1 0.0252 (7) 0.0368 (8) 0.0217 (8) −0.0012 (6) 0.0072 (6) 0.0004 (6)
C1 0.0262 (9) 0.0337 (10) 0.0279 (10) −0.0075 (7) 0.0065 (7) −0.0013 (7)
C2 0.0253 (8) 0.0307 (9) 0.0255 (9) 0.0012 (7) 0.0023 (7) 0.0026 (7)
C3 0.0450 (11) 0.0375 (11) 0.0394 (12) −0.0026 (9) 0.0074 (10) −0.0076 (9)

Geometric parameters (Å, º)

Co1—Cl2i 2.2588 (5) C1—C2 1.513 (2)
Co1—Cl2 2.2588 (5) C1—H1C 0.9700
Co1—Cl1 2.2846 (5) C1—H1D 0.9700
Co1—Cl1i 2.2847 (5) C2—C3 1.513 (3)
N1—C1 1.490 (2) C2—H2 0.9800
N1—C2ii 1.494 (2) C3—H3A 0.9600
N1—H1A 0.8900 C3—H3B 0.9600
N1—H1B 0.8900 C3—H3C 0.9600
Cl2i—Co1—Cl2 116.57 (3) N1—C1—H1D 109.4
Cl2i—Co1—Cl1 111.157 (19) C2—C1—H1D 109.4
Cl2—Co1—Cl1 103.324 (18) H1C—C1—H1D 108.0
Cl2i—Co1—Cl1i 103.325 (18) N1ii—C2—C1 109.15 (14)
Cl2—Co1—Cl1i 111.155 (19) N1ii—C2—C3 109.31 (16)
Cl1—Co1—Cl1i 111.54 (3) C1—C2—C3 111.50 (16)
C1—N1—C2ii 113.54 (15) N1ii—C2—H2 108.9
C1—N1—H1A 108.9 C1—C2—H2 108.9
C2ii—N1—H1A 108.9 C3—C2—H2 108.9
C1—N1—H1B 108.9 C2—C3—H3A 109.5
C2ii—N1—H1B 108.9 C2—C3—H3B 109.5
H1A—N1—H1B 107.7 H3A—C3—H3B 109.5
N1—C1—C2 111.10 (14) C2—C3—H3C 109.5
N1—C1—H1C 109.4 H3A—C3—H3C 109.5
C2—C1—H1C 109.4 H3B—C3—H3C 109.5
C2ii—N1—C1—C2 56.5 (2) N1—C1—C2—C3 −174.91 (16)
N1—C1—C2—N1ii −54.0 (2)

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl1iii 0.89 2.30 3.1777 (2) 171
N1—H1B···Cl1 0.89 2.65 3.2594 (2) 126
N1—H1B···Cl2 0.89 2.49 3.2631 (2) 145
C1—H1C···Cl2iv 0.97 2.82 3.7065 (2) 153

Symmetry codes: (iii) −x+2, y, −z+3/2; (iv) −x+1, −y+1, −z+1.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Ben Mleh, C., Roisnel, T. & Marouani, H. (2016). Acta Cryst. E72, 593–596. [DOI] [PMC free article] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  7. Daszkiewicz, M. (2012). Struct. Chem. 23, 307–313.
  8. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  9. Gatfaoui, S., Roisnel, T., Dhaouadi, H. & Marouani, H. (2014). Acta Cryst. E70, o725. [DOI] [PMC free article] [PubMed]
  10. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  11. Pietraszko, A., Kirpichnikova, L. F., Sheleg, A. U. & Yachkovsky, A. Ya. (2006). Crystallogr. Rep. 51, 34–36.
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  14. Tahenti, M., Gatfaoui, S., Issaoui, N., Roisnel, T. & Marouani, H. (2020). J. Mol. Struct. 1207, 1–5.
  15. Titi, A., Warad, I., Tillard, M., Touzani, R., Messali, M., El Kodadi, M., Eddike, D. & Zarrouk, A. (2020). J. Mol. Struct. 1217, 128422.
  16. Vishwakarma, A. K., Kumari, R., Ghalsasi, P. S. & Arulsamy, N. (2017). J. Mol. Struct. 1141, 93–98.
  17. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2013). Crystal Explorer. University of Western Australia.
  18. Zeller, A., Herdtweck, E. & Strassner, T. (2005). Acta Cryst. C61, m46–m47. [DOI] [PubMed]
  19. Zhang, H., Fang, L. & Yuan, R. (2005). Acta Cryst. E61, m677–m678.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002954/hb7971sup1.cif

e-77-00424-sup1.cif (13.5KB, cif)

Two-dimensional fingerprint plots. DOI: 10.1107/S2056989021002954/hb7971sup3.pdf

e-77-00424-sup3.pdf (385.9KB, pdf)

CCDC reference: 1831453

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES