Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 23;77(Pt 4):420–423. doi: 10.1107/S2056989021002863

Crystal structure of (E)-1-(3-benzyl-5-phenyl-1,3-thia­zol-2-yl­idene)-2-[(E)-1,2,3,4-tetra­hydro­naphthalen-1-yl­idene]hydrazin-1-ium bromide

Shaaban K Mohamed a,b,*, Sahar M I Elgarhy c, Alaa A Hassan b, Güneş Demirtaş d, Joel T Mague e, Youssef Ramli f,*
PMCID: PMC8025854  PMID: 33936769

In the crystal of the title mol­ecular salt, ion pairs are linked by C—H⋯Br and N—H⋯Br hydrogen bonds, which are connected into helical chains extending along the c-axis direction by weak, electrostatic S⋯Br inter­actions.

Keywords: crystal structure, di­hydro­naphthalene, thia­zole, hydrazinium salt, hydrogen bond

Abstract

In the title mol­ecular salt, C26H24N3S+·Br, the dihedral angles between the thia­zole ring and its attached phenyl and benzoyl rings are 54.81 (7) and 85.51 (7)°, respectively. In the crystal, ion pairs are linked by C—H⋯Br and N—H⋯Br hydrogen bonds and are connected into helical chains extending along the c-axis direction by weak, electrostatic S⋯Br inter­actions. A Hirshfeld surface analysis was performed, which showed the dominant role of H⋯H contacts (51.3%).

Chemical context  

Thia­zoles are a class of heterocyclic compounds found in many biologically active drugs such as sulfa­thia­zol (anti­microbial drug), ritonavir (anti­retroviral drug), abafungin (anti­fungal drug) and tiazofurin (anti­neoplastic drug) (Siddiqui et al., 2009). Other compounds containing the thia­zole or thia­zolyl moiety show numerous biological activities such as anti­microbial and anti­fungal (Vasu et al., 2013), anti-inflammatory (Singh et al., 2008), anti­cancer (Luzina et al., 2009), anti­hypertensive (Turan-Zitouni et al., 2000), anti-HIV (Rawal et al., 2008), anti­convulsant (Satoh et al., 2009) and anti­diabetic properties (Iino et al., 2009). As with many biologically active mol­ecules, the mol­ecular conformation adopted may have a significant effect on the activity which prompted an examination of the crystal structure of the title salt, C26H24N3S·Br, I (Fig. 1).graphic file with name e-77-00420-scheme1.jpg

Figure 1.

Figure 1

The title mol­ecule showing 50% probability ellipsoids.

Structural commentary  

As expected, the C11/C12/C13/N3/S1 thia­zole ring in I is almost planar (r.m.s. deviation = 0.0056 Å) and the mean planes of the C14–C19 and C21–C26 benzene rings are inclined to this plane by 54.81 (7) and 85.51 (7)°, respectively. The dihedral angle between the mean planes of the thia­zole and C2–C7 rings is 13.1 (1)°. A puckering analysis of the C1/C2/C7–C10 ring yielded the parameters Q = 0.499 (3) Å, θ = 58.6 (3)° and φ = 225.6 (3)°, indicating a half-chair conformation.

Supra­molecular features  

In the crystal, the S1⋯Br1 distance of 3.5017 (7) Å is some 0.15 Å less than the sum of the van der Waals radii and likely represents an electrostatic inter­action between the two atoms since S1 is near to the cationic charge. Over 200 structures having S⋯Br contacts of this length or shorter are present in the Cambridge Structural Database, two examples being reported by Auffinger et al. (2004) and Thompson & Richardson (1977). This inter­action, together with the N2—H2⋯Br1, C10—H10B⋯Br1, C20—H20B⋯Br1 and C26—H26⋯Br1 hydrogen bonds (Table 1) form helical chains extending along the c-axis direction (Fig. 2). It may be noted that the same bromide ion Br1(x, 1 − y, z − Inline graphic) accepts all the identified contacts. These [001] chains pack in the other two dimensions with normal van der Waals contacts (Fig. 3), in agreement with the results of the Hirshfeld surface analysis (vide infra).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Br1i 0.91 2.63 3.4633 (18) 152
C10—H10B⋯Br1i 0.99 2.88 3.837 (2) 164
C20—H20B⋯Br1i 0.99 2.84 3.7560 (19) 155
C26—H26⋯Br1i 0.95 2.90 3.730 (2) 146

Symmetry code: (i) x, -y+1, z-{\script{1\over 2}}.

Figure 2.

Figure 2

Detail of a supra­molecular chain viewed along the a-axis direction with C—H⋯Br and N—H⋯Br hydrogen bonds depicted by brown dashed lines. The short Br⋯S contact is depicted by a yellow dashed line.

Figure 3.

Figure 3

Packing seen along the c-axis direction giving an end view of the chains. Inter­molecular inter­actions are depicted as in Fig. 2.

Database survey  

A search of the Cambridge Structural Database (CSD, updated to Dec. 31, 2020; Groom, et al., 2016) using the fragment A yielded 30 hits of which 11 were considered similar to I. Among these, (Z)-1-[(2E)-3,4-diphenyl-2,3-di­hydro-1,3-thia­zol-2-yl­idene]-2-[1-(4-hy­droxy­phen­yl)ethyl­idene]hydra­zinium bromide unknown solvate (CSD refcode BOCROC; Mague, et al., 2014) and (E)-2-[(2-nitro­phen­yl)methyl­idene]-1-[(2Z)-4-phenyl-2,3-di­hydro-1,3-thia­zol-2-yl­idene]hydrazinium bromide (NUCLOO; Hassan et al., 2016) are the closest analogues and another similar compound is 2-{1-[(3,4-diphenyl-1,3-thia­zol-2(3H)-yl­idene)hydrazinyl­idene]eth­yl}pyridinium bromide monohydrate (QOCGIA; Akkurt et al., 2014). Key bond distances and angles for I and these three compounds are listed in supplementary Table 1. In the thia­zole ring there is little variation except for the N—C distance c in NUCLOO, which is marginally shorter than in the others, possibly due to the nitro­gen atom being unsubstituted. The most noticeable differences occur in the N—C and C=N distances d and e where the difference between the two is largest in QOCGIA where the absence of the positive charge on the nitro­gen atom bound to the thia­zole ring leads to a greater localization of the π-electron density in the C=N bond.graphic file with name e-77-00420-scheme2.jpg

Hirshfeld surface analysis  

The Hirshfeld surface for I was calculated using Crystal Explorer17 (Turner et al., 2017) following the procedures described by Tan et al. (2019). Fig. 4 a presents the Hirshfeld surface plotted over d norm with a second cation closest to the bromide ion also present, clearly showing the N—H⋯Br and C—H⋯Br inter­actions as well as the S1⋯Br1 short contact (dashed lines). The surface plotted over shape (Fig. 4 b) and curvature indices (Fig. 4 c) do not show much flat surface or evidence for π-stacking inter­actions, in agreement with the results given in Section 3. Fig. 5 presents fingerprint plots for all inter­molecular inter­actions (a) and resolved into all H⋯H contacts (b, 51.3%), H⋯C/C⋯H contacts (c, 21.9%), Br⋯H/H⋯Br contacts (d, 14.1%) and S⋯H/H⋯S contacts (d, 3.3%). The N⋯H/H⋯N contacts contribute only 1.3%.

Figure 4.

Figure 4

The Hirshfeld surface plotted over (a) d norm and (b) shape and (c) curvature indices.

Figure 5.

Figure 5

Fingerprint plots showing all (a) inter­actions and resolved into (b) H⋯H, (c) H⋯C/C⋯H, (d) Br⋯H/H⋯Br and (e) S⋯H/H⋯S contacts.

Synthesis and crystallization  

The title compound was prepared according to our previously reported method (Mohamed et al., 2013). Mono-crystals of I suitable for X-ray diffraction were obtained by recrystallization of the crude product from ethanol solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å) while that attached to nitro­gen was placed in a location derived from a difference map and its coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C26H24N3S+·Br
M r 490.45
Crystal system, space group Monoclinic, C c
Temperature (K) 150
a, b, c (Å) 14.5474 (7), 17.8777 (8), 9.0803 (4)
β (°) 108.773 (2)
V3) 2235.92 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.95
Crystal size (mm) 0.22 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.69, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 48057, 6797, 6460
R int 0.026
(sin θ/λ)max−1) 0.715
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.023, 0.052, 1.03
No. of reflections 6797
No. of parameters 280
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.22
Absolute structure Parsons et al. (2013)
Absolute structure parameter 0.0130 (18)

Computer programs: APEX3 and SAINT (Bruker, 2020), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021002863/hb7963sup1.cif

e-77-00420-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002863/hb7963Isup2.hkl

e-77-00420-Isup2.hkl (540.2KB, hkl)

Geometrical data for title compound and related phases. DOI: 10.1107/S2056989021002863/hb7963sup3.pdf

e-77-00420-sup3.pdf (93KB, pdf)

Supporting information file. DOI: 10.1107/S2056989021002863/hb7963Isup5.cml

CCDC reference: 2071135

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C26H24N3S+·Br F(000) = 1008
Mr = 490.45 Dx = 1.457 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 14.5474 (7) Å Cell parameters from 9847 reflections
b = 17.8777 (8) Å θ = 2.6–30.5°
c = 9.0803 (4) Å µ = 1.95 mm1
β = 108.773 (2)° T = 150 K
V = 2235.92 (18) Å3 Column, colourless
Z = 4 0.22 × 0.12 × 0.06 mm

Data collection

Bruker D8 QUEST PHOTON 3 diffractometer 6797 independent reflections
Radiation source: fine-focus sealed tube 6460 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 7.3910 pixels mm-1 θmax = 30.6°, θmin = 2.6°
φ and ω scans h = −20→20
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −25→25
Tmin = 0.69, Tmax = 0.89 l = −12→12
48057 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023 H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0262P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
6797 reflections Δρmax = 0.56 e Å3
280 parameters Δρmin = −0.22 e Å3
2 restraints Absolute structure: Parsons et al. (2013)
Primary atom site location: dual Absolute structure parameter: 0.0130 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while that attached to nitrogen was placed in a location derived from a difference map and its coordinates adjusted to give N—H = 0.91 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.44542 (2) 0.28839 (2) 0.58421 (2) 0.02486 (6)
S1 0.49752 (4) 0.46885 (3) 0.48367 (6) 0.02090 (10)
N1 0.62223 (12) 0.54541 (10) 0.3655 (2) 0.0209 (3)
N2 0.55946 (13) 0.59721 (10) 0.3976 (2) 0.0224 (4)
H2 0.543925 0.639353 0.338574 0.027*
N3 0.42532 (11) 0.59882 (9) 0.49354 (19) 0.0175 (3)
C1 0.68896 (14) 0.57005 (11) 0.3140 (2) 0.0200 (4)
C2 0.74987 (14) 0.51162 (12) 0.2755 (2) 0.0204 (4)
C3 0.72405 (16) 0.43611 (12) 0.2725 (3) 0.0253 (4)
H3 0.668268 0.422211 0.298899 0.030*
C4 0.77838 (18) 0.38168 (12) 0.2319 (3) 0.0292 (5)
H4 0.760010 0.330612 0.230188 0.035*
C5 0.86007 (17) 0.40157 (14) 0.1934 (3) 0.0307 (5)
H5 0.897430 0.364250 0.164362 0.037*
C6 0.88672 (17) 0.47585 (13) 0.1977 (3) 0.0307 (5)
H6 0.943027 0.489020 0.172126 0.037*
C7 0.83287 (15) 0.53211 (12) 0.2386 (3) 0.0247 (4)
C8 0.86140 (18) 0.61314 (13) 0.2398 (4) 0.0377 (6)
H8A 0.900626 0.620413 0.169772 0.045*
H8B 0.901484 0.627820 0.346198 0.045*
C9 0.77120 (19) 0.66194 (13) 0.1863 (3) 0.0335 (5)
H9A 0.732936 0.648836 0.077981 0.040*
H9B 0.790648 0.715091 0.188104 0.040*
C10 0.70864 (16) 0.65141 (12) 0.2911 (3) 0.0251 (4)
H10A 0.741830 0.674405 0.393677 0.030*
H10B 0.646075 0.677709 0.244715 0.030*
C11 0.49537 (14) 0.56397 (11) 0.4544 (2) 0.0181 (4)
C12 0.39810 (15) 0.47730 (11) 0.5475 (2) 0.0212 (4)
H12 0.368071 0.436044 0.579688 0.025*
C13 0.36779 (14) 0.54826 (10) 0.5468 (2) 0.0174 (4)
C14 0.28248 (14) 0.57165 (11) 0.5907 (2) 0.0181 (4)
C15 0.19406 (15) 0.53523 (12) 0.5184 (2) 0.0248 (4)
H15 0.189962 0.497890 0.442080 0.030*
C16 0.11274 (16) 0.55376 (13) 0.5583 (3) 0.0313 (5)
H16 0.052661 0.529488 0.508398 0.038*
C17 0.11875 (17) 0.60770 (13) 0.6709 (3) 0.0307 (5)
H17 0.062685 0.620568 0.697431 0.037*
C18 0.20603 (17) 0.64264 (12) 0.7444 (3) 0.0273 (5)
H18 0.210020 0.678992 0.822524 0.033*
C19 0.28772 (16) 0.62514 (11) 0.7051 (3) 0.0214 (4)
H19 0.347538 0.649539 0.756080 0.026*
C20 0.40757 (14) 0.68028 (11) 0.4697 (2) 0.0189 (4)
H20A 0.348715 0.693577 0.496169 0.023*
H20B 0.394775 0.692002 0.358296 0.023*
C21 0.49177 (14) 0.72801 (11) 0.5665 (2) 0.0188 (4)
C22 0.52950 (17) 0.72086 (12) 0.7273 (3) 0.0261 (4)
H22 0.505130 0.683350 0.778964 0.031*
C23 0.60270 (18) 0.76845 (15) 0.8124 (3) 0.0329 (5)
H23 0.627952 0.763814 0.922321 0.039*
C24 0.63909 (17) 0.82285 (15) 0.7369 (3) 0.0345 (5)
H24 0.689705 0.855074 0.795090 0.041*
C25 0.60187 (18) 0.82998 (14) 0.5785 (3) 0.0371 (6)
H25 0.626501 0.867479 0.527208 0.044*
C26 0.52811 (19) 0.78259 (12) 0.4922 (3) 0.0287 (5)
H26 0.502782 0.787744 0.382335 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03693 (11) 0.01870 (9) 0.02011 (9) 0.00145 (9) 0.01078 (7) 0.00129 (8)
S1 0.0231 (2) 0.0190 (2) 0.0225 (2) 0.00341 (19) 0.01004 (18) −0.00098 (19)
N1 0.0207 (8) 0.0209 (8) 0.0239 (8) 0.0026 (7) 0.0109 (7) −0.0022 (7)
N2 0.0229 (8) 0.0213 (9) 0.0274 (9) 0.0018 (7) 0.0144 (7) −0.0006 (7)
N3 0.0185 (8) 0.0170 (7) 0.0193 (8) −0.0005 (6) 0.0091 (6) −0.0005 (6)
C1 0.0196 (9) 0.0208 (9) 0.0195 (9) 0.0018 (8) 0.0061 (7) −0.0012 (7)
C2 0.0201 (9) 0.0220 (10) 0.0201 (9) 0.0036 (8) 0.0077 (8) −0.0008 (8)
C3 0.0248 (10) 0.0241 (10) 0.0297 (11) 0.0029 (8) 0.0123 (9) 0.0023 (8)
C4 0.0337 (12) 0.0202 (10) 0.0356 (12) 0.0037 (9) 0.0139 (10) −0.0005 (9)
C5 0.0297 (12) 0.0287 (11) 0.0356 (12) 0.0090 (9) 0.0130 (10) −0.0043 (9)
C6 0.0247 (11) 0.0332 (12) 0.0400 (13) 0.0041 (9) 0.0182 (10) −0.0003 (10)
C7 0.0222 (10) 0.0250 (10) 0.0297 (11) 0.0013 (8) 0.0122 (9) −0.0002 (9)
C8 0.0313 (13) 0.0271 (12) 0.0657 (18) −0.0026 (9) 0.0310 (13) −0.0010 (12)
C9 0.0422 (13) 0.0214 (10) 0.0471 (15) −0.0008 (10) 0.0288 (12) 0.0040 (10)
C10 0.0252 (11) 0.0198 (10) 0.0342 (12) 0.0015 (8) 0.0149 (9) −0.0004 (9)
C11 0.0194 (9) 0.0179 (9) 0.0169 (9) 0.0003 (7) 0.0058 (7) −0.0019 (7)
C12 0.0217 (9) 0.0209 (9) 0.0234 (10) −0.0016 (8) 0.0105 (8) −0.0014 (8)
C13 0.0187 (9) 0.0180 (9) 0.0165 (8) −0.0007 (7) 0.0069 (7) 0.0012 (7)
C14 0.0187 (9) 0.0174 (9) 0.0199 (9) 0.0005 (7) 0.0086 (7) 0.0039 (7)
C15 0.0245 (10) 0.0258 (11) 0.0250 (10) −0.0049 (8) 0.0094 (8) −0.0002 (8)
C16 0.0195 (10) 0.0370 (13) 0.0385 (13) −0.0060 (9) 0.0109 (9) 0.0022 (10)
C17 0.0252 (11) 0.0296 (12) 0.0441 (13) 0.0042 (9) 0.0205 (10) 0.0047 (10)
C18 0.0336 (12) 0.0206 (10) 0.0350 (12) 0.0037 (9) 0.0213 (10) 0.0013 (9)
C19 0.0229 (10) 0.0180 (9) 0.0255 (10) −0.0007 (8) 0.0110 (8) 0.0014 (8)
C20 0.0209 (9) 0.0167 (9) 0.0209 (9) 0.0008 (7) 0.0092 (8) 0.0008 (7)
C21 0.0203 (10) 0.0177 (9) 0.0203 (9) 0.0013 (7) 0.0094 (8) −0.0022 (7)
C22 0.0273 (11) 0.0310 (11) 0.0213 (10) 0.0025 (8) 0.0096 (9) 0.0025 (8)
C23 0.0305 (12) 0.0409 (13) 0.0233 (11) 0.0029 (10) 0.0031 (9) −0.0048 (10)
C24 0.0307 (12) 0.0338 (13) 0.0373 (13) −0.0052 (10) 0.0088 (10) −0.0148 (10)
C25 0.0446 (15) 0.0309 (13) 0.0370 (13) −0.0187 (11) 0.0151 (11) −0.0066 (10)
C26 0.0398 (13) 0.0245 (11) 0.0225 (11) −0.0089 (9) 0.0110 (10) −0.0032 (8)

Geometric parameters (Å, º)

S1—C11 1.720 (2) C10—H10B 0.9900
S1—C12 1.729 (2) C12—C13 1.342 (3)
N1—C1 1.283 (3) C12—H12 0.9500
N1—N2 1.396 (2) C13—C14 1.480 (3)
N2—C11 1.341 (3) C14—C19 1.396 (3)
N2—H2 0.9100 C14—C15 1.402 (3)
N3—C11 1.337 (2) C15—C16 1.384 (3)
N3—C13 1.419 (2) C15—H15 0.9500
N3—C20 1.483 (2) C16—C17 1.388 (3)
C1—C2 1.483 (3) C16—H16 0.9500
C1—C10 1.510 (3) C17—C18 1.379 (3)
C2—C3 1.399 (3) C17—H17 0.9500
C2—C7 1.402 (3) C18—C19 1.382 (3)
C3—C4 1.377 (3) C18—H18 0.9500
C3—H3 0.9500 C19—H19 0.9500
C4—C5 1.388 (3) C20—C21 1.519 (3)
C4—H4 0.9500 C20—H20A 0.9900
C5—C6 1.381 (3) C20—H20B 0.9900
C5—H5 0.9500 C21—C26 1.384 (3)
C6—C7 1.397 (3) C21—C22 1.391 (3)
C6—H6 0.9500 C22—C23 1.387 (3)
C7—C8 1.506 (3) C22—H22 0.9500
C8—C9 1.519 (4) C23—C24 1.389 (4)
C8—H8A 0.9900 C23—H23 0.9500
C8—H8B 0.9900 C24—C25 1.370 (4)
C9—C10 1.525 (3) C24—H24 0.9500
C9—H9A 0.9900 C25—C26 1.394 (3)
C9—H9B 0.9900 C25—H25 0.9500
C10—H10A 0.9900 C26—H26 0.9500
C11—S1—C12 89.42 (10) N2—C11—S1 121.16 (15)
C1—N1—N2 118.09 (17) C13—C12—S1 112.95 (15)
C11—N2—N1 111.65 (17) C13—C12—H12 123.5
C11—N2—H2 121.5 S1—C12—H12 123.5
N1—N2—H2 118.8 C12—C13—N3 112.01 (17)
C11—N3—C13 112.19 (16) C12—C13—C14 124.63 (17)
C11—N3—C20 122.06 (16) N3—C13—C14 123.33 (16)
C13—N3—C20 125.56 (15) C19—C14—C15 119.26 (19)
N1—C1—C2 115.06 (19) C19—C14—C13 122.95 (18)
N1—C1—C10 125.46 (19) C15—C14—C13 117.71 (18)
C2—C1—C10 119.48 (18) C16—C15—C14 119.9 (2)
C3—C2—C7 119.61 (19) C16—C15—H15 120.0
C3—C2—C1 120.48 (18) C14—C15—H15 120.0
C7—C2—C1 119.89 (19) C15—C16—C17 120.2 (2)
C4—C3—C2 120.9 (2) C15—C16—H16 119.9
C4—C3—H3 119.6 C17—C16—H16 119.9
C2—C3—H3 119.6 C18—C17—C16 120.1 (2)
C3—C4—C5 119.9 (2) C18—C17—H17 120.0
C3—C4—H4 120.1 C16—C17—H17 120.0
C5—C4—H4 120.1 C17—C18—C19 120.4 (2)
C6—C5—C4 119.7 (2) C17—C18—H18 119.8
C6—C5—H5 120.2 C19—C18—H18 119.8
C4—C5—H5 120.2 C18—C19—C14 120.1 (2)
C5—C6—C7 121.6 (2) C18—C19—H19 119.9
C5—C6—H6 119.2 C14—C19—H19 119.9
C7—C6—H6 119.2 N3—C20—C21 113.39 (16)
C6—C7—C2 118.4 (2) N3—C20—H20A 108.9
C6—C7—C8 121.2 (2) C21—C20—H20A 108.9
C2—C7—C8 120.42 (19) N3—C20—H20B 108.9
C7—C8—C9 110.03 (19) C21—C20—H20B 108.9
C7—C8—H8A 109.7 H20A—C20—H20B 107.7
C9—C8—H8A 109.7 C26—C21—C22 119.5 (2)
C7—C8—H8B 109.7 C26—C21—C20 118.49 (19)
C9—C8—H8B 109.7 C22—C21—C20 121.89 (19)
H8A—C8—H8B 108.2 C23—C22—C21 120.1 (2)
C8—C9—C10 110.9 (2) C23—C22—H22 120.0
C8—C9—H9A 109.5 C21—C22—H22 120.0
C10—C9—H9A 109.5 C22—C23—C24 120.1 (2)
C8—C9—H9B 109.5 C22—C23—H23 120.0
C10—C9—H9B 109.5 C24—C23—H23 120.0
H9A—C9—H9B 108.0 C25—C24—C23 119.9 (2)
C1—C10—C9 112.50 (18) C25—C24—H24 120.1
C1—C10—H10A 109.1 C23—C24—H24 120.1
C9—C10—H10A 109.1 C24—C25—C26 120.4 (2)
C1—C10—H10B 109.1 C24—C25—H25 119.8
C9—C10—H10B 109.1 C26—C25—H25 119.8
H10A—C10—H10B 107.8 C21—C26—C25 120.0 (2)
N3—C11—N2 125.43 (18) C21—C26—H26 120.0
N3—C11—S1 113.41 (14) C25—C26—H26 120.0
C1—N1—N2—C11 −178.27 (18) C11—S1—C12—C13 −0.65 (16)
N2—N1—C1—C2 −177.26 (17) S1—C12—C13—N3 0.0 (2)
N2—N1—C1—C10 2.7 (3) S1—C12—C13—C14 177.93 (15)
N1—C1—C2—C3 10.0 (3) C11—N3—C13—C12 0.9 (2)
C10—C1—C2—C3 −170.0 (2) C20—N3—C13—C12 176.04 (18)
N1—C1—C2—C7 −171.39 (19) C11—N3—C13—C14 −177.07 (18)
C10—C1—C2—C7 8.6 (3) C20—N3—C13—C14 −1.9 (3)
C7—C2—C3—C4 −0.8 (3) C12—C13—C14—C19 125.0 (2)
C1—C2—C3—C4 177.8 (2) N3—C13—C14—C19 −57.4 (3)
C2—C3—C4—C5 0.1 (3) C12—C13—C14—C15 −51.8 (3)
C3—C4—C5—C6 0.6 (4) N3—C13—C14—C15 125.9 (2)
C4—C5—C6—C7 −0.6 (4) C19—C14—C15—C16 1.5 (3)
C5—C6—C7—C2 −0.2 (4) C13—C14—C15—C16 178.37 (19)
C5—C6—C7—C8 −178.8 (2) C14—C15—C16—C17 −0.7 (3)
C3—C2—C7—C6 0.8 (3) C15—C16—C17—C18 −0.5 (4)
C1—C2—C7—C6 −177.8 (2) C16—C17—C18—C19 0.9 (4)
C3—C2—C7—C8 179.5 (2) C17—C18—C19—C14 −0.2 (3)
C1—C2—C7—C8 0.8 (3) C15—C14—C19—C18 −1.1 (3)
C6—C7—C8—C9 144.2 (2) C13—C14—C19—C18 −177.76 (19)
C2—C7—C8—C9 −34.4 (3) C11—N3—C20—C21 −64.4 (2)
C7—C8—C9—C10 58.8 (3) C13—N3—C20—C21 120.94 (19)
N1—C1—C10—C9 −163.3 (2) N3—C20—C21—C26 128.1 (2)
C2—C1—C10—C9 16.7 (3) N3—C20—C21—C22 −55.2 (2)
C8—C9—C10—C1 −50.3 (3) C26—C21—C22—C23 0.3 (3)
C13—N3—C11—N2 178.69 (19) C20—C21—C22—C23 −176.3 (2)
C20—N3—C11—N2 3.3 (3) C21—C22—C23—C24 −0.6 (4)
C13—N3—C11—S1 −1.4 (2) C22—C23—C24—C25 0.7 (4)
C20—N3—C11—S1 −176.74 (14) C23—C24—C25—C26 −0.5 (4)
N1—N2—C11—N3 −178.87 (18) C22—C21—C26—C25 −0.1 (4)
N1—N2—C11—S1 1.2 (2) C20—C21—C26—C25 176.6 (2)
C12—S1—C11—N3 1.18 (15) C24—C25—C26—C21 0.2 (4)
C12—S1—C11—N2 −178.90 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···Br1i 0.91 2.63 3.4633 (18) 152
C10—H10B···Br1i 0.99 2.88 3.837 (2) 164
C20—H20B···Br1i 0.99 2.84 3.7560 (19) 155
C26—H26···Br1i 0.95 2.90 3.730 (2) 146

Symmetry code: (i) x, −y+1, z−1/2.

Comparison of pertinent bond lengths and angles (Å, °)

Metric* I BOCROC NUCLOO QOCGIA
a 1.720 (2) 1.711 (4) 1.7182 (15) 1.740 (2)
b 1.729 (2) 1.740 (4) 1.7373 (15) 1.735 (3)
c 1.419 (2) 1.417 (5) 1.3974 (19) 1.414 (4)
d 1.337 (2) 1.341 (4) 1.3314 (19) 1.373 (4)
e 1.341 (3) 1.329 (5) 1.328 (2) 1.309 (3)
f 1.396 (2) 1.395 (4) 1.3806 (17) 1.381 (3)
g 1.283 (3) 1.275 (5) 1.280 (2) 1.293 (4)
h 121.16 (15) 123.0 (3) 124.94 (11) 126.51 (19)
i 125.43 (18) 123.8 (3) 122.85 (13) 122.3 (2)
j 111.65 (17) 114.9 (3) 117.49 (12) 109.4 (2)
k 118.09 (17) 115.5 (3) 114.40 (13) 116.0 (2)

*Key is A in Scheme 2.

Funding Statement

This work was funded by Tulane University grant .

References

  1. Akkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o478–o479. [DOI] [PMC free article] [PubMed]
  2. Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2020). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Hassan, A. A., Mohamed, S. K., Mohamed, N. K., El-Shaieb, K. M. A., Abdel-Aziz, A. T., Mague, J. T. & Akkurt, M. (2016). J. Sulfur Chem. 37, 162–175.
  7. Iino, T., Tsukahara, D., Kamata, K., Sasaki, K., Ohyama, S., Hosaka, H., Hasegawa, T., Chiba, M., Nagata, Y., Eiki, J.-I. & Nishimura, T. (2009). Bioorg. Med. Chem. 17, 2733–2743. [DOI] [PubMed]
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Luzina, E. L. & Popov, A. V. (2009). Eur. J. Med. Chem. 44, 4944–4953. [DOI] [PubMed]
  10. Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o647–o648. [DOI] [PMC free article] [PubMed]
  11. Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1324. [DOI] [PMC free article] [PubMed]
  12. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  13. Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & De Clercq, E. (2008). Eur. J. Med. Chem. 43, 2800–2806. [DOI] [PubMed]
  14. Satoh, A., Nagatomi, Y., Hirata, Y., Ito, S., Suzuki, G., Kimura, T., Maehara, S., Hikichi, H., Satow, A., Hata, M., Ohta, H. & Kawamoto, H. (2009). Bioorg. Med. Chem. Lett. 19, 5464–5468. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Siddiqui, N., Arshad, M. F., Ahsan, W. & Alam, M. S. (2009). Int. J. Pharm. Sci. Drug Res. 1, 136–143.
  19. Singh, N., Bhati, S. K. & Kumar, A. (2008). Eur. J. Med. Chem. 43, 2597–2609. [DOI] [PubMed]
  20. Thompson, D. M. & Richardson, M. F. (1977). Acta Cryst. B33, 324–328.
  21. Turan-Zitouni, G., Chevallet, P., Kiliç, F. S. & Erol, K. (2000). Eur. J. Med. Chem. 35, 635–641. [DOI] [PubMed]
  22. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
  23. Vasu, N., Goud, B. B., Kumari, Y. B. & Rajitha, B. (2013). Rasayan J. Chem. 6, 201–206.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021002863/hb7963sup1.cif

e-77-00420-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002863/hb7963Isup2.hkl

e-77-00420-Isup2.hkl (540.2KB, hkl)

Geometrical data for title compound and related phases. DOI: 10.1107/S2056989021002863/hb7963sup3.pdf

e-77-00420-sup3.pdf (93KB, pdf)

Supporting information file. DOI: 10.1107/S2056989021002863/hb7963Isup5.cml

CCDC reference: 2071135

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES