Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 5;77(Pt 4):341–345. doi: 10.1107/S2056989021002280

Crystal structures of 4-bromo-2-formyl-1-tosyl-1H-pyrrole, (E)-4-bromo-2-(2-nitro­vin­yl)-1-tosyl-1H-pyrrole and 6-(4-bromo-1-tosyl­pyrrol-2-yl)-4,4-dimethyl-5-nitro­hexan-2-one

Christopher J Kingsbury a, Harry C Sample a, Mathias O Senge a,*
PMCID: PMC8025855  PMID: 33936754

Crystal structures of three substituted N-tosyl­pyrrole compounds are reported; these compounds show a variety of ‘weak’ inter­molecular inter­actions owing to different substitution patterns and supra­molecular arrangements. The benefits of collecting crystal structure data to extreme resolution (0.5 Å) are discussed.

Keywords: crystal structure, pyrrole, chemical inter­mediates, high-resolution

Abstract

The crystal structures of three inter­mediate compounds in the synthesis of 8-bromo-2,3,4,5-tetra­hydro-1,3,3-tri­methyl­dipyrrin are reported; 4-bromo-2-formyl-1-tosyl-1H-pyrrole, C12H10BrNO3S, (E)-4-bromo-2-(2-nitro­vin­yl)-1-tosyl-1H-pyrrole, C13H11BrN2O4S, and 6-(4-bromo-1-tosyl­pyrrol-2-yl)-4,4-dimethyl-5-nitro­hexan-2-one, C19H23BrN2O5S. The compounds show multitudinous inter­molecular C—H⋯O inter­actions, with bond distances and angle consistent in the series and within expectations, as well as varied packing types. The merits of collecting data beyond the standard resolution usually reported for small mol­ecules are discussed.

Chemical context  

Dipyrrins – 2,2′-dipyrromethenes – are mol­ecular building blocks for multi-pyrrole fluoro­phores such as BODIPYs and porphyrins (e.g., Boyle et al., 1999) employed as ligands in medicinal and materials chemistry (e.g., Hohlfeld et al., 2021) made through facile condensation reactions, and widely exploited in chemistry. Partially reduced analogues of dipyrrins, containing one pyrrole and one pyrroline unit, are conceptually similar to chlorins – e.g. chloro­phylls – where reduction of a macrocycle bond introduces electronic and photophysical changes (Senge et al., 2014). Synthetic chlorins are produced throught these inter­mediates by stepwise formation of a pyrroline ring (Taniguchi & Lindsey, 2017), pioneered by Battersby and coworkers (Dutton et al., 1983) and refined by Lindsey and coworkers (Laha et al., 2006). The compounds presented here are inter­mediates in the synthesis of derivatives of tetra­hydro­dipyrrin 4, a versatile precursor that can be formed in high yield from inexpensive reagents.

Structural commentary  

The crystal structures of 1, 2, and 3 (see Scheme and Fig. 1) each display an isolated mol­ecule with no solvate included, with Z = 2 (for 2) and Z = 4 (for 1 and 3). Each mol­ecular structure shows a 2-substituted-4-bromo-1-tosyl-1H-pyrrole, with the 2-substitution as an aldehyde (1, R = CHO), a 2-nitro­vinyl [2, R = (E)-(CH)2NO2] and a 3,3-dimethyl-2-nitro­hexan-5-one substituent (3). The pyrrole fragment presents approximately consistent inter­nal bond distances throughout this series, as demonstrated in Table 1. The pyrrole and tosyl groups adopt a consistent conformational structure with N—S and N—C bond torsion angles each at approximately 90°, as discussed in the Database survey section.graphic file with name e-77-00341-scheme1.jpg

Figure 1.

Figure 1

ORTEP plots of the mol­ecular units in the crystal structures of compounds 1, 2 and 3. Displacement ellipsoids (non-H) are presented at the 50% probability level, with H atoms presented as spheres of fixed radius (0.2 Å).

Table 1. Bond distances (Å) in the shared pyrrole fragment of compounds 1, 2 and 3 .

Bond 1 2 3
N1—C2 1.404 (2) 1.399 (4) 1.4054 (7)
C2—C3 1.377 (3) 1.381 (5) 1.3692 (7)
C3—C4 1.410 (3) 1.414 (5) 1.4226 (8)
C4—C5 1.368 (3) 1.361 (5) 1.3613 (8)
C5—N1 1.378 (3) 1.381 (4) 1.3942 (7)
N1—S 1.7002 (16) 1.698 (3) 1.6808 (5)
C4—Br 1.879 (2) 1.881 (3) 1.8727 (5)

Compound 1 crystallizes in the chiral space group P212121; although this compound exhibits no individual chiral atom centre, the pyrrole and toluene­sulfonyl groups can have many possible orientations, with positive and negative rotation around the N—S bond breaking hypothetical reflection symmetry. The demands of the space-group symmetry of P212121 with Z′ = 1 are such that only one of these conformations is found in the unit cell. A Flack parameter of −0.016 (2), although anomalously low, strongly suggests that this individual crystal consists only of this pseudo-atropisomer. No evidence of any barrier to inversion is implied in solution, and enrichment of a preferred orientation in the solid state for this inter­mediate, without similar packing observed for other compounds here, underscores the difficulty in predicting solid-state conformations.

Compound 2 shows comparatively larger displacement ellipsoids than compounds 1 and 3, but excellent agreement between observations and model, simply without the excessive-resolution data. Compound 3 is the only compound in this series to exhibit a chiral centre – both enanti­omers exist within the unit cell, as this is a conglomerate structure (Viedma et al., 2015). Both stereoisomers will form identical cyclized (oxidised) products upon conversion to compound 4 or similar species.

Supra­molecular features  

Each example reported here has a different mode of inter­actions with neighbouring mol­ecules, with no consistent packing in the crystalline solid state. With a lack of heteroatom-bound protons, the solid-state architectures of each of these compounds lack traditional protic structure-directing mortar. Common features are the traditionally overlooked inter­molecular C—H⋯O and C—H⋯Br inter­actions, from the H atoms on the pyrrolyl, vinyl and aryl units to oxygen atoms in the sulfonyl, nitro or ketone moieties. This type of inter­action is assisted by the partial charge separation in these components (Steiner, 2002).

Individual mol­ecules of compound 1 stack directly on top of one another down the crystallographic a-axis direction, and show a C—H⋯O chelate to mol­ecules in an adjacent stack (Table 2), related by the 21 screw coincident with the a axis. This inter­action is shown in Fig. 2. Compound 2 shows coplanar inter­molecular inter­actions of the nitro­vinyl­pyrrole unit (Table 3), in which short contacts can be observed as a C—H⋯O pseudo-chelate (3.36 and 3.30 Å, C⋯O), as well as C—H⋯Br (3.84 Å) inter­actions at the limit of notability. These two inter­actions serve to form ribbon-like arrangements, which propagate coincident with the crystallographic axes [2Inline graphic0] vector. Compound 3 demonstrates C—H⋯O (3.28 and 3.29 Å, C⋯O) and C—H⋯Br (3.88 Å) close-contact inter­actions; due to the length, these are likely superficial rather than structure directing.

Table 2. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O11 0.95 2.38 2.994 (3) 122
C5—H5⋯O10i 0.95 2.55 3.423 (2) 153
C13—H13⋯O10i 0.95 2.56 3.470 (3) 160

Symmetry code: (i) x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1.

Figure 2.

Figure 2

Inter­molecular C—H⋯O inter­actions which control the inter­molecular packing of compound 1. Displacement ellipsoids are shown at 50% for non-H atoms. Four equivalent mol­ecules – in red, orange, green and blue – are related by a 21 screw coincident with the a axis.

Table 3. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O10i 0.95 2.37 3.297 (5) 166
C7—H7⋯O10i 0.95 2.41 3.360 (5) 174
C6—H6⋯O12 0.95 2.29 2.963 (4) 127

Symmetry code: (i) -x, -y+2, -z+1.

In each of the compounds reported here, a multitude of unremarkable inter­actions around the van der Waals limit are observed to constrain individual mol­ecules. The presence of C—H⋯O inter­actions would likely be unremarkable if not for the chelate motif – these so-called weak inter­actions can be far stronger with partial charge separation, such as in a sulfonyl, and when occurring at multiple preorganized sites simultaneously (Kingsbury et al., 2019). Collection of multiple crystal structures along the synthetic pathway of organic compounds is, we believe, good practice to assist data science investigations, and offers potential insight into the electronic structure of inter­mediates (Senge & Smith, 2005).

Database survey  

A search of the Cambridge Structural Database (CSD v 2020.3; Groom et al., 2016) revealed 37 closely related structures with the 2-carbo-4-halo-pyrrole substructure. These structures can be divided into BODIPYs and analogues (13/37), other isolated organic mol­ecules (23/37), including inter­mediates in the total synthesis of (±)-sceptrin, and a lone Cu coordination complex.

A similar compound HULBIA, a bis­(meth­oxy)methyl derivative of 3 has been reported (Krayer et al., 2009). The presence of a protecting group at the pyrrole N atom is critical in the performance of metal-catalysed reactions; similar 2-substituted-4-halogenated pyrroles have been formed with different N-substitution of N-Boc (UJADUF; Merkul et al., 2009), with an aesthetic seven-membered cycle (PYAZPC; Flippen & Gilardi, 1974), and a simple methyl group (FONHOG; Zeng et al., 2005). The non-tosyl­ated iodo-analogue of 1 (HILTOM; Davis et al., 2007) has been reported previously.

A data analysis of a further 851 structures with an N-benzene­sulfonyl-pyrrole substructure shows that the component torsional angles (in the range of 0–90°), critcal in determining the solid-state conformation, each tend toward 90°. These values are consistent with our observations of an approximately adjacent-faces-of-a-cube arrangement of these two components. A Ramachandran-style plot illustrating the structural confluence of these two torsion angles is shown in Fig. 3, with the three compounds presented here highlighted in red.

Figure 3.

Figure 3

Ramachandran-style plot of torsion angles (°) of central S—C and S—N bonds within N-benzene­sulfonyl­pyrrole substructures of crystal structures in the CSD v2020.3 (n = 851). Compounds 1, 2 and 3 are highlighted in red within the main orientation cluster.

Synthesis and crystallization  

The synthesis of these compounds has been previously reported (Krayer et al., 2009). Crystals of the compounds 1, 2 and 3 were grown by hot recrystallization from ethyl acetate/hexane mixture (1) or iso­propanol (2) or slow evaporation of aceto­nitrile (3).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4.

Table 4. Experimental details.

  1 2 3
Crystal data
Chemical formula C12H10BrNO3S C13H11BrN2O4S C19H23BrN2O5S
M r 328.18 371.21 471.36
Crystal system, space group Orthorhombic, P212121 Triclinic, P\overline{1} Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 4.8436 (5), 13.9149 (13), 18.5479 (17) 6.8904 (4), 8.3224 (4), 12.8763 (7) 7.7375 (2), 15.9728 (3), 16.7621 (3)
α, β, γ (°) 90, 90, 90 83.423 (3), 80.393 (3), 85.693 (3) 90, 93.055 (1), 90
V3) 1250.1 (2) 722.06 (7) 2068.68 (8)
Z 4 2 4
Radiation type Mo Kα Cu Kα Mo Kα
μ (mm−1) 3.45 5.40 2.12
Crystal size (mm) 0.20 × 0.09 × 0.06 0.08 × 0.06 × 0.01 0.61 × 0.56 × 0.55
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.616, 0.746 0.544, 0.753 0.669, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 23296, 3972, 3714 7190, 2617, 2378 226885, 18433, 15578
R int 0.028 0.042 0.031
(sin θ/λ)max−1) 0.725 0.602 1.021
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.021, 0.045, 1.04 0.049, 0.142, 1.05 0.027, 0.076, 1.11
No. of reflections 3972 2617 18433
No. of parameters 164 191 257
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.38 0.80, −0.63 0.69, −0.72
Absolute structure Flack x determined using 1452 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.016 (2)

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), shelXle (Hübschle et al., 2011) and publCIF (Westrip, 2010).

The collection of high-resolution data (to 0.7 Å for 1 and 0.5 Å for 3, with Mo Kα) appears to have an effect on the quality of the structure solution and refinement. Residual electron density at the centre of each bond is apparent, as shown in Fig. 4; displacement ellipsoids are small. This additional data allows for bond distances to be determined at greater precision, as indicated in Table 1, and for the time involved in collection of this data to be extended artificially by 3–4 times. While unnecessary, this additional precision merits collection on crystals of sufficient quality when shorter collections are inconvenient. The suppression of presumably non-thermal character of displacement ellipsoids, such as that shown in compound 2, implies that the true thermal character at cryogenic temperatures is able to be better identified in high-resolution structures, though this could be the coincident effect of additional redundancy.

Figure 4.

Figure 4

Residual electron density in the high-resolution data structure of 3; isosurface at 0.4 e Å−3 (+ve in green, -ve in red). H atoms omitted from view. This plot shows residual positive electron density at the centre point of a significant fraction of the C—C bonds.

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, 3. DOI: 10.1107/S2056989021002280/tx2036sup1.cif

e-77-00341-sup1.cif (7.3MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021002280/tx20361sup2.hkl

e-77-00341-1sup2.hkl (316.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002280/tx20361sup5.cml

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021002280/tx20362sup3.hkl

e-77-00341-2sup3.hkl (209.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002280/tx20362sup6.cml

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989021002280/tx20363sup4.hkl

e-77-00341-3sup4.hkl (1.4MB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002280/tx20363sup7.cml

CCDC references: 2065359, 2065358, 2065357

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

4-Bromo-1-[(4-methylbenzene)sulfonyl]pyrrole-2-carbaldehyde (1). Crystal data

C12H10BrNO3S Dx = 1.744 Mg m3
Mr = 328.18 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9913 reflections
a = 4.8436 (5) Å θ = 2.9–31.4°
b = 13.9149 (13) Å µ = 3.45 mm1
c = 18.5479 (17) Å T = 100 K
V = 1250.1 (2) Å3 Rod, colourless
Z = 4 0.20 × 0.09 × 0.06 mm
F(000) = 656

4-Bromo-1-[(4-methylbenzene)sulfonyl]pyrrole-2-carbaldehyde (1). Data collection

Bruker APEXII CCD diffractometer 3714 reflections with I > 2σ(I)
φ and ω scans Rint = 0.028
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 31.0°, θmin = 1.8°
Tmin = 0.616, Tmax = 0.746 h = −7→6
23296 measured reflections k = −20→19
3972 independent reflections l = −20→26

4-Bromo-1-[(4-methylbenzene)sulfonyl]pyrrole-2-carbaldehyde (1). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021 H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0201P)2 + 0.4002P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3972 reflections Δρmax = 0.34 e Å3
164 parameters Δρmin = −0.38 e Å3
0 restraints

4-Bromo-1-[(4-methylbenzene)sulfonyl]pyrrole-2-carbaldehyde (1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-Bromo-1-[(4-methylbenzene)sulfonyl]pyrrole-2-carbaldehyde (1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.03533 (5) 0.95495 (2) 0.67018 (2) 0.02243 (6)
N1 0.5067 (3) 0.73027 (11) 0.66274 (9) 0.0138 (3)
C2 0.5792 (4) 0.72511 (15) 0.73590 (11) 0.0167 (4)
C3 0.7636 (4) 0.79838 (15) 0.74892 (11) 0.0181 (4)
H3 0.847177 0.813140 0.793908 0.022*
C4 0.8059 (4) 0.84751 (15) 0.68338 (10) 0.0163 (4)
C5 0.6504 (4) 0.80452 (15) 0.63092 (11) 0.0153 (4)
H5 0.642846 0.822553 0.581559 0.018*
C6 0.4882 (5) 0.65241 (16) 0.78783 (11) 0.0226 (4)
H6 0.357430 0.605380 0.773252 0.027*
O7 0.5766 (4) 0.65095 (14) 0.84935 (8) 0.0334 (4)
S9 0.30100 (10) 0.65428 (4) 0.61513 (3) 0.01313 (9)
O10 0.2261 (3) 0.70813 (11) 0.55234 (7) 0.0167 (3)
O11 0.0978 (3) 0.62059 (10) 0.66500 (8) 0.0175 (3)
C12 0.5188 (4) 0.55963 (13) 0.59054 (10) 0.0135 (3)
C13 0.6698 (4) 0.56650 (15) 0.52637 (11) 0.0170 (4)
H13 0.653329 0.621364 0.496191 0.020*
C14 0.8442 (5) 0.49124 (16) 0.50790 (12) 0.0187 (4)
H14 0.947090 0.494838 0.464384 0.022*
C15 0.8716 (4) 0.41035 (16) 0.55192 (12) 0.0182 (4)
C16 0.7162 (5) 0.40561 (16) 0.61547 (12) 0.0189 (4)
H16 0.731639 0.350655 0.645586 0.023*
C17 0.5402 (5) 0.47959 (14) 0.63526 (11) 0.0168 (4)
H17 0.436014 0.475763 0.678556 0.020*
C18 1.0659 (5) 0.33074 (16) 0.53061 (12) 0.0236 (5)
H18A 1.020615 0.308589 0.481867 0.035*
H18B 1.047418 0.277176 0.564571 0.035*
H18C 1.256213 0.354656 0.531514 0.035*

4-Bromo-1-[(4-methylbenzene)sulfonyl]pyrrole-2-carbaldehyde (1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02171 (10) 0.01959 (10) 0.02598 (10) −0.00630 (9) 0.00443 (8) −0.00624 (9)
N1 0.0142 (8) 0.0138 (7) 0.0134 (7) −0.0004 (6) −0.0005 (7) −0.0014 (6)
C2 0.0185 (10) 0.0186 (10) 0.0128 (8) 0.0029 (8) −0.0004 (7) −0.0026 (7)
C3 0.0192 (10) 0.0193 (10) 0.0159 (9) 0.0014 (8) −0.0004 (8) −0.0050 (8)
C4 0.0146 (9) 0.0150 (9) 0.0194 (10) −0.0004 (8) 0.0021 (7) −0.0045 (7)
C5 0.0149 (9) 0.0155 (10) 0.0155 (9) 0.0010 (7) 0.0012 (7) 0.0009 (7)
C6 0.0289 (12) 0.0209 (10) 0.0182 (9) −0.0009 (10) −0.0002 (9) −0.0004 (8)
O7 0.0507 (12) 0.0331 (9) 0.0166 (7) −0.0048 (9) −0.0060 (7) 0.0037 (7)
S9 0.0118 (2) 0.0141 (2) 0.0135 (2) 0.00034 (18) −0.00095 (17) −0.00007 (17)
O10 0.0166 (7) 0.0179 (7) 0.0154 (7) 0.0011 (6) −0.0039 (5) 0.0015 (6)
O11 0.0135 (7) 0.0210 (7) 0.0181 (7) −0.0011 (5) 0.0031 (6) 0.0006 (6)
C12 0.0123 (8) 0.0125 (9) 0.0156 (8) 0.0001 (7) −0.0010 (7) −0.0015 (6)
C13 0.0172 (10) 0.0170 (10) 0.0168 (9) 0.0011 (8) −0.0007 (7) 0.0005 (7)
C14 0.0177 (10) 0.0218 (10) 0.0165 (9) 0.0008 (8) 0.0005 (8) −0.0040 (8)
C15 0.0148 (9) 0.0182 (10) 0.0215 (10) 0.0007 (8) −0.0070 (7) −0.0068 (8)
C16 0.0191 (10) 0.0168 (10) 0.0208 (10) 0.0015 (8) −0.0056 (8) 0.0012 (8)
C17 0.0166 (9) 0.0167 (9) 0.0170 (9) −0.0011 (8) −0.0015 (8) 0.0014 (7)
C18 0.0202 (11) 0.0226 (11) 0.0280 (11) 0.0045 (9) −0.0076 (9) −0.0094 (9)

4-Bromo-1-[(4-methylbenzene)sulfonyl]pyrrole-2-carbaldehyde (1). Geometric parameters (Å, º)

Br1—C4 1.879 (2) C12—C17 1.393 (3)
N1—C5 1.378 (3) C12—C13 1.400 (3)
N1—C2 1.404 (2) C13—C14 1.388 (3)
N1—S9 1.7002 (16) C13—H13 0.9500
C2—C3 1.377 (3) C14—C15 1.397 (3)
C2—C6 1.465 (3) C14—H14 0.9500
C3—C4 1.410 (3) C15—C16 1.400 (3)
C3—H3 0.9500 C15—C18 1.506 (3)
C4—C5 1.368 (3) C16—C17 1.386 (3)
C5—H5 0.9500 C16—H16 0.9500
C6—O7 1.219 (3) C17—H17 0.9500
C6—H6 0.9500 C18—H18A 0.9800
S9—O11 1.4296 (15) C18—H18B 0.9800
S9—O10 1.4316 (15) C18—H18C 0.9800
S9—C12 1.7481 (19)
C5—N1—C2 109.04 (16) C17—C12—C13 121.47 (18)
C5—N1—S9 122.66 (14) C17—C12—S9 119.47 (15)
C2—N1—S9 128.08 (14) C13—C12—S9 119.05 (15)
C3—C2—N1 107.09 (18) C14—C13—C12 118.42 (19)
C3—C2—C6 126.25 (19) C14—C13—H13 120.8
N1—C2—C6 126.58 (19) C12—C13—H13 120.8
C2—C3—C4 107.59 (18) C13—C14—C15 121.4 (2)
C2—C3—H3 126.2 C13—C14—H14 119.3
C4—C3—H3 126.2 C15—C14—H14 119.3
C5—C4—C3 108.74 (19) C16—C15—C14 118.6 (2)
C5—C4—Br1 125.50 (16) C16—C15—C18 121.5 (2)
C3—C4—Br1 125.75 (15) C14—C15—C18 119.9 (2)
C4—C5—N1 107.52 (17) C17—C16—C15 121.2 (2)
C4—C5—H5 126.2 C17—C16—H16 119.4
N1—C5—H5 126.2 C15—C16—H16 119.4
O7—C6—C2 121.4 (2) C16—C17—C12 118.81 (19)
O7—C6—H6 119.3 C16—C17—H17 120.6
C2—C6—H6 119.3 C12—C17—H17 120.6
O11—S9—O10 121.57 (9) C15—C18—H18A 109.5
O11—S9—N1 105.75 (9) C15—C18—H18B 109.5
O10—S9—N1 104.20 (9) H18A—C18—H18B 109.5
O11—S9—C12 109.72 (9) C15—C18—H18C 109.5
O10—S9—C12 109.57 (9) H18A—C18—H18C 109.5
N1—S9—C12 104.50 (9) H18B—C18—H18C 109.5
C5—N1—C2—C3 1.4 (2) C5—N1—S9—C12 90.92 (17)
S9—N1—C2—C3 176.08 (15) C2—N1—S9—C12 −83.10 (19)
C5—N1—C2—C6 −175.5 (2) O11—S9—C12—C17 −21.53 (19)
S9—N1—C2—C6 −0.8 (3) O10—S9—C12—C17 −157.39 (16)
N1—C2—C3—C4 −0.7 (2) N1—S9—C12—C17 91.45 (17)
C6—C2—C3—C4 176.3 (2) O11—S9—C12—C13 158.96 (16)
C2—C3—C4—C5 −0.3 (2) O10—S9—C12—C13 23.10 (19)
C2—C3—C4—Br1 179.24 (16) N1—S9—C12—C13 −88.05 (17)
C3—C4—C5—N1 1.2 (2) C17—C12—C13—C14 −0.2 (3)
Br1—C4—C5—N1 −178.37 (14) S9—C12—C13—C14 179.33 (16)
C2—N1—C5—C4 −1.6 (2) C12—C13—C14—C15 −0.3 (3)
S9—N1—C5—C4 −176.62 (14) C13—C14—C15—C16 0.7 (3)
C3—C2—C6—O7 −0.9 (4) C13—C14—C15—C18 −179.1 (2)
N1—C2—C6—O7 175.5 (2) C14—C15—C16—C17 −0.6 (3)
C5—N1—S9—O11 −153.29 (16) C18—C15—C16—C17 179.2 (2)
C2—N1—S9—O11 32.69 (19) C15—C16—C17—C12 0.2 (3)
C5—N1—S9—O10 −24.06 (18) C13—C12—C17—C16 0.2 (3)
C2—N1—S9—O10 161.93 (17) S9—C12—C17—C16 −179.26 (16)

4-Bromo-1-[(4-methylbenzene)sulfonyl]pyrrole-2-carbaldehyde (1). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O11 0.95 2.38 2.994 (3) 122
C5—H5···O10i 0.95 2.55 3.423 (2) 153
C13—H13···O10i 0.95 2.56 3.470 (3) 160

Symmetry code: (i) x+1/2, −y+3/2, −z+1.

(E)-4-bromo-2-(2-nitrovinyl)-1-tosyl-1H-pyrrole (2). Crystal data

C13H11BrN2O4S Z = 2
Mr = 371.21 F(000) = 372
Triclinic, P1 Dx = 1.707 Mg m3
a = 6.8904 (4) Å Cu Kα radiation, λ = 1.54178 Å
b = 8.3224 (4) Å Cell parameters from 4853 reflections
c = 12.8763 (7) Å θ = 3.5–68.2°
α = 83.423 (3)° µ = 5.40 mm1
β = 80.393 (3)° T = 100 K
γ = 85.693 (3)° Plate, colourless
V = 722.06 (7) Å3 0.08 × 0.06 × 0.01 mm

(E)-4-bromo-2-(2-nitrovinyl)-1-tosyl-1H-pyrrole (2). Data collection

Bruker APEXII CCD diffractometer 2378 reflections with I > 2σ(I)
φ and ω scans Rint = 0.042
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 68.2°, θmin = 3.5°
Tmin = 0.544, Tmax = 0.753 h = −6→8
7190 measured reflections k = −9→9
2617 independent reflections l = −15→15

(E)-4-bromo-2-(2-nitrovinyl)-1-tosyl-1H-pyrrole (2). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.1118P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2617 reflections Δρmax = 0.80 e Å3
191 parameters Δρmin = −0.63 e Å3
0 restraints

(E)-4-bromo-2-(2-nitrovinyl)-1-tosyl-1H-pyrrole (2). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-4-bromo-2-(2-nitrovinyl)-1-tosyl-1H-pyrrole (2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.78111 (5) 0.59378 (4) 0.35381 (3) 0.0425 (2)
N1 0.6292 (5) 0.7256 (3) 0.6502 (2) 0.0384 (6)
C2 0.4649 (5) 0.7946 (4) 0.6072 (3) 0.0358 (7)
C3 0.4914 (5) 0.7634 (4) 0.5026 (3) 0.0392 (7)
H3 0.405169 0.797263 0.452898 0.047*
C4 0.6723 (5) 0.6710 (4) 0.4840 (3) 0.0388 (7)
C5 0.7544 (6) 0.6478 (4) 0.5740 (3) 0.0397 (7)
H5 0.875264 0.589067 0.582710 0.048*
C6 0.3020 (5) 0.8827 (4) 0.6651 (3) 0.0381 (7)
H6 0.306219 0.898197 0.736623 0.046*
C7 0.1474 (6) 0.9425 (5) 0.6225 (3) 0.0437 (8)
H7 0.141618 0.927123 0.551082 0.052*
N8 −0.0128 (5) 1.0308 (4) 0.6821 (3) 0.0447 (7)
O9 −0.0096 (4) 1.0452 (4) 0.7764 (2) 0.0499 (6)
O10 −0.1458 (5) 1.0858 (5) 0.6356 (3) 0.0706 (10)
S11 0.66335 (12) 0.69881 (8) 0.77875 (6) 0.0366 (2)
O12 0.5680 (4) 0.8370 (3) 0.8260 (2) 0.0435 (6)
O13 0.8708 (4) 0.6635 (3) 0.7737 (2) 0.0429 (6)
C14 0.5375 (5) 0.5261 (4) 0.8327 (2) 0.0338 (6)
C15 0.3465 (6) 0.5434 (4) 0.8867 (3) 0.0469 (8)
H15 0.283748 0.647790 0.895024 0.056*
C16 0.2498 (6) 0.4049 (5) 0.9280 (3) 0.0503 (9)
H16 0.118816 0.415207 0.964877 0.060*
C17 0.3389 (6) 0.2510 (4) 0.9171 (3) 0.0408 (7)
C18 0.5283 (5) 0.2385 (4) 0.8610 (3) 0.0395 (7)
H18 0.589695 0.134135 0.851045 0.047*
C19 0.6306 (5) 0.3744 (4) 0.8189 (3) 0.0386 (7)
H19 0.761277 0.364040 0.781580 0.046*
C20 0.2280 (6) 0.1045 (4) 0.9648 (3) 0.0480 (9)
H20A 0.123086 0.091657 0.924079 0.072*
H20B 0.169992 0.118266 1.038312 0.072*
H20C 0.318724 0.007925 0.963164 0.072*

(E)-4-bromo-2-(2-nitrovinyl)-1-tosyl-1H-pyrrole (2). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0488 (3) 0.0434 (3) 0.0347 (3) −0.00224 (17) −0.00398 (17) −0.00571 (16)
N1 0.0524 (17) 0.0278 (13) 0.0348 (14) −0.0006 (11) −0.0084 (12) −0.0016 (10)
C2 0.0443 (18) 0.0255 (14) 0.0371 (17) −0.0049 (12) −0.0072 (14) 0.0015 (12)
C3 0.0442 (18) 0.0341 (16) 0.0370 (17) −0.0033 (13) −0.0016 (14) −0.0004 (12)
C4 0.0500 (19) 0.0289 (15) 0.0360 (16) −0.0051 (13) −0.0024 (14) −0.0020 (12)
C5 0.0501 (19) 0.0293 (15) 0.0381 (17) 0.0016 (12) −0.0031 (14) −0.0046 (12)
C6 0.050 (2) 0.0284 (14) 0.0339 (16) −0.0054 (13) −0.0027 (14) −0.0009 (12)
C7 0.0436 (19) 0.0496 (19) 0.0376 (18) −0.0050 (15) −0.0016 (14) −0.0091 (14)
N8 0.0443 (17) 0.0466 (16) 0.0444 (18) −0.0048 (13) −0.0077 (14) −0.0066 (13)
O9 0.0517 (15) 0.0545 (16) 0.0429 (15) −0.0010 (12) −0.0034 (12) −0.0102 (11)
O10 0.0581 (19) 0.099 (3) 0.057 (2) 0.0186 (18) −0.0181 (15) −0.0192 (18)
S11 0.0507 (5) 0.0251 (4) 0.0345 (4) −0.0034 (3) −0.0070 (3) −0.0042 (3)
O12 0.0654 (16) 0.0265 (11) 0.0396 (13) −0.0012 (10) −0.0100 (11) −0.0060 (9)
O13 0.0526 (14) 0.0363 (12) 0.0413 (13) −0.0081 (10) −0.0100 (11) −0.0034 (9)
C14 0.0437 (17) 0.0263 (14) 0.0310 (15) −0.0010 (12) −0.0031 (12) −0.0058 (11)
C15 0.058 (2) 0.0318 (16) 0.0441 (19) 0.0063 (14) 0.0081 (16) −0.0039 (13)
C16 0.048 (2) 0.0415 (19) 0.054 (2) 0.0007 (15) 0.0134 (17) −0.0068 (15)
C17 0.053 (2) 0.0368 (17) 0.0328 (16) −0.0071 (14) −0.0052 (14) −0.0055 (12)
C18 0.0484 (19) 0.0274 (15) 0.0425 (18) −0.0015 (12) −0.0042 (14) −0.0074 (13)
C19 0.0405 (17) 0.0292 (15) 0.0460 (18) 0.0002 (12) −0.0062 (14) −0.0062 (13)
C20 0.061 (2) 0.0407 (18) 0.0410 (19) −0.0146 (16) −0.0006 (16) −0.0045 (14)

(E)-4-bromo-2-(2-nitrovinyl)-1-tosyl-1H-pyrrole (2). Geometric parameters (Å, º)

Br1—C4 1.881 (3) S11—O13 1.430 (3)
N1—C5 1.381 (4) S11—C14 1.748 (3)
N1—C2 1.399 (4) C14—C15 1.387 (5)
N1—S11 1.698 (3) C14—C19 1.389 (4)
C2—C3 1.381 (5) C15—C16 1.383 (6)
C2—C6 1.441 (5) C15—H15 0.9500
C3—C4 1.414 (5) C16—C17 1.390 (5)
C3—H3 0.9500 C16—H16 0.9500
C4—C5 1.361 (5) C17—C18 1.385 (5)
C5—H5 0.9500 C17—C20 1.503 (5)
C6—C7 1.318 (6) C18—C19 1.386 (5)
C6—H6 0.9500 C18—H18 0.9500
C7—N8 1.439 (5) C19—H19 0.9500
C7—H7 0.9500 C20—H20A 0.9800
N8—O10 1.210 (5) C20—H20B 0.9800
N8—O9 1.237 (4) C20—H20C 0.9800
S11—O12 1.428 (2)
C5—N1—C2 109.1 (3) O12—S11—C14 109.60 (15)
C5—N1—S11 120.8 (2) O13—S11—C14 109.53 (15)
C2—N1—S11 129.0 (2) N1—S11—C14 104.67 (14)
C3—C2—N1 107.6 (3) C15—C14—C19 121.5 (3)
C3—C2—C6 128.1 (3) C15—C14—S11 119.5 (2)
N1—C2—C6 124.2 (3) C19—C14—S11 119.0 (3)
C2—C3—C4 106.5 (3) C16—C15—C14 118.3 (3)
C2—C3—H3 126.8 C16—C15—H15 120.8
C4—C3—H3 126.8 C14—C15—H15 120.8
C5—C4—C3 109.6 (3) C15—C16—C17 121.9 (4)
C5—C4—Br1 125.7 (3) C15—C16—H16 119.1
C3—C4—Br1 124.7 (3) C17—C16—H16 119.1
C4—C5—N1 107.2 (3) C18—C17—C16 118.1 (3)
C4—C5—H5 126.4 C18—C17—C20 122.2 (3)
N1—C5—H5 126.4 C16—C17—C20 119.7 (3)
C7—C6—C2 122.4 (4) C17—C18—C19 121.7 (3)
C7—C6—H6 118.8 C17—C18—H18 119.1
C2—C6—H6 118.8 C19—C18—H18 119.1
C6—C7—N8 121.2 (4) C18—C19—C14 118.4 (3)
C6—C7—H7 119.4 C18—C19—H19 120.8
N8—C7—H7 119.4 C14—C19—H19 120.8
O10—N8—O9 123.7 (3) C17—C20—H20A 109.5
O10—N8—C7 116.7 (3) C17—C20—H20B 109.5
O9—N8—C7 119.6 (3) H20A—C20—H20B 109.5
O12—S11—O13 121.14 (15) C17—C20—H20C 109.5
O12—S11—N1 106.10 (14) H20A—C20—H20C 109.5
O13—S11—N1 104.39 (15) H20B—C20—H20C 109.5
C5—N1—C2—C3 −1.8 (3) C2—N1—S11—O13 −165.3 (3)
S11—N1—C2—C3 −169.3 (2) C5—N1—S11—C14 −86.7 (3)
C5—N1—C2—C6 178.8 (3) C2—N1—S11—C14 79.6 (3)
S11—N1—C2—C6 11.2 (5) O12—S11—C14—C15 17.3 (3)
N1—C2—C3—C4 1.4 (3) O13—S11—C14—C15 152.4 (3)
C6—C2—C3—C4 −179.2 (3) N1—S11—C14—C15 −96.2 (3)
C2—C3—C4—C5 −0.5 (4) O12—S11—C14—C19 −163.7 (3)
C2—C3—C4—Br1 179.7 (2) O13—S11—C14—C19 −28.6 (3)
C3—C4—C5—N1 −0.5 (4) N1—S11—C14—C19 82.9 (3)
Br1—C4—C5—N1 179.2 (2) C19—C14—C15—C16 0.6 (6)
C2—N1—C5—C4 1.4 (4) S11—C14—C15—C16 179.6 (3)
S11—N1—C5—C4 170.2 (2) C14—C15—C16—C17 0.3 (7)
C3—C2—C6—C7 2.4 (6) C15—C16—C17—C18 −1.5 (6)
N1—C2—C6—C7 −178.3 (3) C15—C16—C17—C20 179.2 (4)
C2—C6—C7—N8 −179.7 (3) C16—C17—C18—C19 1.9 (6)
C6—C7—N8—O10 177.7 (4) C20—C17—C18—C19 −178.8 (3)
C6—C7—N8—O9 −3.0 (6) C17—C18—C19—C14 −1.0 (5)
C5—N1—S11—O12 157.4 (3) C15—C14—C19—C18 −0.2 (5)
C2—N1—S11—O12 −36.3 (3) S11—C14—C19—C18 −179.2 (3)
C5—N1—S11—O13 28.4 (3)

(E)-4-bromo-2-(2-nitrovinyl)-1-tosyl-1H-pyrrole (2). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O10i 0.95 2.37 3.297 (5) 166
C7—H7···O10i 0.95 2.41 3.360 (5) 174
C6—H6···O12 0.95 2.29 2.963 (4) 127

Symmetry code: (i) −x, −y+2, −z+1.

6-(4-bromo-1-tosylpyrrol-2-yl)-4,4-dimethyl-5-nitrohexan-2-one (3). Crystal data

C19H23BrN2O5S F(000) = 968
Mr = 471.36 Dx = 1.513 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.7375 (2) Å Cell parameters from 9692 reflections
b = 15.9728 (3) Å θ = 2.8–46.1°
c = 16.7621 (3) Å µ = 2.12 mm1
β = 93.055 (1)° T = 100 K
V = 2068.68 (8) Å3 Block, colorless
Z = 4 0.61 × 0.56 × 0.55 mm

6-(4-bromo-1-tosylpyrrol-2-yl)-4,4-dimethyl-5-nitrohexan-2-one (3). Data collection

Bruker APEXII CCD diffractometer 15578 reflections with I > 2σ(I)
φ and ω scans Rint = 0.031
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 46.5°, θmin = 1.8°
Tmin = 0.669, Tmax = 0.749 h = −15→15
226885 measured reflections k = −32→32
18433 independent reflections l = −34→34

6-(4-bromo-1-tosylpyrrol-2-yl)-4,4-dimethyl-5-nitrohexan-2-one (3). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.375P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.006
18433 reflections Δρmax = 0.69 e Å3
257 parameters Δρmin = −0.72 e Å3
0 restraints

6-(4-bromo-1-tosylpyrrol-2-yl)-4,4-dimethyl-5-nitrohexan-2-one (3). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

6-(4-bromo-1-tosylpyrrol-2-yl)-4,4-dimethyl-5-nitrohexan-2-one (3). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.22008 (2) 0.57357 (2) 0.01021 (2) 0.01695 (2)
N1 0.17070 (6) 0.42535 (3) 0.20251 (3) 0.01145 (6)
C3 0.37857 (7) 0.44721 (3) 0.11798 (3) 0.01261 (7)
H3 0.483498 0.444262 0.091152 0.015*
N8 0.44371 (8) 0.23904 (3) 0.11422 (3) 0.01693 (8)
C2 0.33880 (7) 0.40180 (3) 0.18381 (3) 0.01093 (6)
C4 0.23457 (7) 0.49959 (3) 0.09697 (3) 0.01208 (7)
O9 0.57359 (9) 0.27017 (4) 0.08769 (4) 0.02494 (10)
C5 0.10853 (7) 0.48676 (3) 0.14928 (3) 0.01247 (7)
H5 −0.000347 0.514227 0.149476 0.015*
C6 0.45096 (7) 0.33876 (3) 0.22754 (3) 0.01219 (7)
H6A 0.434437 0.344148 0.285479 0.015*
H6B 0.573549 0.351849 0.218744 0.015*
C7 0.41499 (7) 0.24784 (3) 0.20244 (3) 0.01148 (7)
H7 0.290618 0.235381 0.210853 0.014*
O10 0.33578 (10) 0.19916 (4) 0.07358 (3) 0.02730 (12)
C11 0.52787 (7) 0.18170 (3) 0.24936 (3) 0.01285 (7)
C12 0.51170 (9) 0.09560 (4) 0.20840 (4) 0.01678 (9)
H12A 0.566845 0.052934 0.243202 0.025*
H12B 0.568869 0.097269 0.157640 0.025*
H12C 0.389085 0.081793 0.198271 0.025*
C13 0.71998 (8) 0.20658 (4) 0.25676 (5) 0.01915 (10)
H13A 0.786783 0.161943 0.284110 0.029*
H13B 0.732997 0.258568 0.287538 0.029*
H13C 0.762620 0.215080 0.203347 0.029*
C14 0.46432 (8) 0.17737 (4) 0.33473 (3) 0.01491 (8)
H14A 0.542953 0.139094 0.365724 0.018*
H14B 0.479873 0.233710 0.358656 0.018*
C15 0.28132 (9) 0.14997 (4) 0.34817 (4) 0.01594 (8)
O16 0.18406 (7) 0.12067 (4) 0.29612 (3) 0.02047 (8)
C17 0.22683 (13) 0.16059 (6) 0.43234 (5) 0.02768 (15)
H17A 0.322919 0.145112 0.469905 0.042*
H17B 0.127148 0.124460 0.440913 0.042*
H17C 0.194909 0.219124 0.441078 0.042*
S18 0.05660 (2) 0.39646 (2) 0.28052 (2) 0.01139 (2)
O19 −0.11952 (6) 0.41232 (3) 0.25512 (3) 0.01581 (7)
O20 0.11448 (7) 0.31396 (3) 0.30178 (3) 0.01737 (7)
C21 0.11675 (7) 0.46504 (3) 0.35854 (3) 0.01230 (7)
C22 0.04515 (8) 0.54520 (4) 0.35859 (4) 0.01510 (8)
H22 −0.032923 0.562991 0.316297 0.018*
C23 0.09053 (9) 0.59848 (4) 0.42186 (4) 0.01861 (9)
H23 0.043057 0.653310 0.422446 0.022*
C24 0.20469 (9) 0.57294 (4) 0.48466 (4) 0.01888 (10)
C25 0.27117 (9) 0.49166 (5) 0.48363 (4) 0.01981 (10)
H25 0.346580 0.473194 0.526648 0.024*
C26 0.22901 (8) 0.43731 (4) 0.42083 (4) 0.01686 (9)
H26 0.275760 0.382327 0.420358 0.020*
C27 0.25660 (13) 0.63236 (6) 0.55124 (5) 0.02910 (16)
H27A 0.286189 0.600523 0.600043 0.044*
H27B 0.160185 0.670287 0.560580 0.044*
H27C 0.357263 0.665022 0.536490 0.044*

6-(4-bromo-1-tosylpyrrol-2-yl)-4,4-dimethyl-5-nitrohexan-2-one (3). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01729 (3) 0.02109 (3) 0.01259 (2) 0.00044 (2) 0.00191 (2) 0.00605 (2)
N1 0.01097 (14) 0.01251 (15) 0.01104 (14) 0.00102 (11) 0.00231 (11) 0.00178 (11)
C3 0.01252 (17) 0.01266 (16) 0.01295 (17) 0.00042 (13) 0.00361 (13) 0.00055 (13)
N8 0.0264 (2) 0.01156 (16) 0.01297 (17) 0.00279 (15) 0.00230 (16) 0.00011 (13)
C2 0.01090 (15) 0.00970 (15) 0.01232 (16) 0.00022 (12) 0.00189 (12) −0.00041 (12)
C4 0.01302 (17) 0.01289 (17) 0.01043 (16) −0.00009 (13) 0.00146 (13) 0.00130 (13)
O9 0.0316 (3) 0.0223 (2) 0.0222 (2) 0.00315 (19) 0.0137 (2) 0.00241 (17)
C5 0.01182 (16) 0.01417 (17) 0.01151 (17) 0.00155 (13) 0.00149 (13) 0.00201 (13)
C6 0.01206 (16) 0.00977 (15) 0.01461 (18) 0.00011 (12) −0.00042 (13) −0.00072 (13)
C7 0.01306 (16) 0.00962 (15) 0.01172 (16) 0.00006 (12) 0.00023 (13) −0.00016 (12)
O10 0.0448 (3) 0.0210 (2) 0.01518 (19) −0.0039 (2) −0.0072 (2) −0.00253 (16)
C11 0.01313 (17) 0.01012 (16) 0.01516 (19) 0.00026 (13) −0.00073 (14) 0.00104 (13)
C12 0.0209 (2) 0.01018 (17) 0.0193 (2) 0.00159 (16) 0.00143 (18) −0.00047 (15)
C13 0.01240 (18) 0.0166 (2) 0.0282 (3) 0.00095 (16) −0.00065 (18) 0.00158 (19)
C14 0.0173 (2) 0.01399 (18) 0.01306 (18) −0.00250 (15) −0.00284 (15) 0.00117 (14)
C15 0.0216 (2) 0.01344 (18) 0.01275 (18) −0.00542 (16) 0.00065 (16) 0.00065 (14)
O16 0.0214 (2) 0.0228 (2) 0.01716 (18) −0.01001 (16) 0.00056 (15) −0.00288 (15)
C17 0.0392 (4) 0.0296 (3) 0.0148 (2) −0.0130 (3) 0.0068 (2) −0.0009 (2)
S18 0.01086 (4) 0.01178 (4) 0.01174 (5) −0.00151 (3) 0.00243 (3) 0.00137 (3)
O19 0.01000 (13) 0.02075 (17) 0.01676 (17) −0.00281 (12) 0.00140 (12) 0.00022 (13)
O20 0.02110 (18) 0.01187 (14) 0.01957 (18) 0.00005 (13) 0.00506 (15) 0.00389 (13)
C21 0.01169 (16) 0.01488 (18) 0.01041 (16) −0.00063 (13) 0.00135 (13) 0.00141 (13)
C22 0.01588 (19) 0.01612 (19) 0.01330 (18) 0.00146 (15) 0.00080 (15) −0.00038 (15)
C23 0.0214 (2) 0.0188 (2) 0.0158 (2) −0.00135 (19) 0.00307 (18) −0.00325 (17)
C24 0.0201 (2) 0.0256 (3) 0.01121 (19) −0.0081 (2) 0.00354 (16) −0.00192 (17)
C25 0.0190 (2) 0.0281 (3) 0.01208 (19) −0.0051 (2) −0.00187 (17) 0.00301 (18)
C26 0.0164 (2) 0.0205 (2) 0.01350 (19) 0.00019 (17) −0.00121 (16) 0.00393 (16)
C27 0.0358 (4) 0.0369 (4) 0.0150 (2) −0.0168 (3) 0.0046 (2) −0.0071 (2)

6-(4-bromo-1-tosylpyrrol-2-yl)-4,4-dimethyl-5-nitrohexan-2-one (3). Geometric parameters (Å, º)

Br1—C4 1.8727 (5) C13—H13C 0.9800
N1—C5 1.3942 (7) C14—C15 1.5103 (9)
N1—C2 1.4054 (7) C14—H14A 0.9900
N1—S18 1.6808 (5) C14—H14B 0.9900
C3—C2 1.3692 (7) C15—O16 1.2150 (8)
C3—C4 1.4226 (8) C15—C17 1.5036 (10)
C3—H3 0.9500 C17—H17A 0.9800
N8—O9 1.2258 (9) C17—H17B 0.9800
N8—O10 1.2275 (8) C17—H17C 0.9800
N8—C7 1.5135 (7) S18—O19 1.4285 (5)
C2—C6 1.4954 (7) S18—O20 1.4307 (5)
C4—C5 1.3613 (8) S18—C21 1.7499 (6)
C5—H5 0.9500 C21—C26 1.3944 (8)
C6—C7 1.5333 (7) C21—C22 1.3951 (8)
C6—H6A 0.9900 C22—C23 1.3902 (9)
C6—H6B 0.9900 C22—H22 0.9500
C7—C11 1.5571 (7) C23—C24 1.3984 (10)
C7—H7 1.0000 C23—H23 0.9500
C11—C13 1.5372 (8) C24—C25 1.3970 (11)
C11—C12 1.5392 (8) C24—C27 1.5033 (10)
C11—C14 1.5392 (8) C25—C26 1.3898 (10)
C12—H12A 0.9800 C25—H25 0.9500
C12—H12B 0.9800 C26—H26 0.9500
C12—H12C 0.9800 C27—H27A 0.9800
C13—H13A 0.9800 C27—H27B 0.9800
C13—H13B 0.9800 C27—H27C 0.9800
C5—N1—C2 109.72 (4) H13B—C13—H13C 109.5
C5—N1—S18 120.89 (4) C15—C14—C11 120.01 (5)
C2—N1—S18 129.11 (4) C15—C14—H14A 107.3
C2—C3—C4 107.72 (5) C11—C14—H14A 107.3
C2—C3—H3 126.1 C15—C14—H14B 107.3
C4—C3—H3 126.1 C11—C14—H14B 107.3
O9—N8—O10 123.76 (6) H14A—C14—H14B 106.9
O9—N8—C7 118.87 (6) O16—C15—C17 121.55 (6)
O10—N8—C7 117.35 (6) O16—C15—C14 123.66 (6)
C3—C2—N1 106.76 (4) C17—C15—C14 114.78 (6)
C3—C2—C6 127.03 (5) C15—C17—H17A 109.5
N1—C2—C6 126.21 (5) C15—C17—H17B 109.5
C5—C4—C3 109.30 (5) H17A—C17—H17B 109.5
C5—C4—Br1 125.45 (4) C15—C17—H17C 109.5
C3—C4—Br1 125.24 (4) H17A—C17—H17C 109.5
C4—C5—N1 106.47 (5) H17B—C17—H17C 109.5
C4—C5—H5 126.8 O19—S18—O20 121.24 (3)
N1—C5—H5 126.8 O19—S18—N1 104.58 (3)
C2—C6—C7 114.27 (4) O20—S18—N1 106.03 (3)
C2—C6—H6A 108.7 O19—S18—C21 108.85 (3)
C7—C6—H6A 108.7 O20—S18—C21 108.86 (3)
C2—C6—H6B 108.7 N1—S18—C21 106.24 (2)
C7—C6—H6B 108.7 C26—C21—C22 121.51 (5)
H6A—C6—H6B 107.6 C26—C21—S18 119.41 (5)
N8—C7—C6 108.79 (4) C22—C21—S18 119.02 (4)
N8—C7—C11 108.84 (4) C23—C22—C21 118.56 (6)
C6—C7—C11 114.54 (4) C23—C22—H22 120.7
N8—C7—H7 108.2 C21—C22—H22 120.7
C6—C7—H7 108.2 C22—C23—C24 121.30 (6)
C11—C7—H7 108.2 C22—C23—H23 119.4
C13—C11—C12 108.80 (5) C24—C23—H23 119.4
C13—C11—C14 106.98 (5) C25—C24—C23 118.69 (6)
C12—C11—C14 110.62 (5) C25—C24—C27 120.79 (7)
C13—C11—C7 112.29 (5) C23—C24—C27 120.51 (7)
C12—C11—C7 110.53 (4) C26—C25—C24 121.21 (6)
C14—C11—C7 107.56 (4) C26—C25—H25 119.4
C11—C12—H12A 109.5 C24—C25—H25 119.4
C11—C12—H12B 109.5 C25—C26—C21 118.72 (6)
H12A—C12—H12B 109.5 C25—C26—H26 120.6
C11—C12—H12C 109.5 C21—C26—H26 120.6
H12A—C12—H12C 109.5 C24—C27—H27A 109.5
H12B—C12—H12C 109.5 C24—C27—H27B 109.5
C11—C13—H13A 109.5 H27A—C27—H27B 109.5
C11—C13—H13B 109.5 C24—C27—H27C 109.5
H13A—C13—H13B 109.5 H27A—C27—H27C 109.5
C11—C13—H13C 109.5 H27B—C27—H27C 109.5
H13A—C13—H13C 109.5
C4—C3—C2—N1 0.72 (6) C12—C11—C14—C15 −58.53 (7)
C4—C3—C2—C6 −179.65 (5) C7—C11—C14—C15 62.27 (6)
C5—N1—C2—C3 −1.40 (6) C11—C14—C15—O16 9.44 (9)
S18—N1—C2—C3 −175.24 (4) C11—C14—C15—C17 −171.28 (6)
C5—N1—C2—C6 178.97 (5) C5—N1—S18—O19 27.62 (5)
S18—N1—C2—C6 5.13 (8) C2—N1—S18—O19 −159.14 (5)
C2—C3—C4—C5 0.21 (7) C5—N1—S18—O20 156.84 (5)
C2—C3—C4—Br1 −179.12 (4) C2—N1—S18—O20 −29.92 (6)
C3—C4—C5—N1 −1.05 (6) C5—N1—S18—C21 −87.44 (5)
Br1—C4—C5—N1 178.27 (4) C2—N1—S18—C21 85.80 (5)
C2—N1—C5—C4 1.52 (6) O19—S18—C21—C26 144.02 (5)
S18—N1—C5—C4 175.95 (4) O20—S18—C21—C26 9.94 (6)
C3—C2—C6—C7 −96.18 (6) N1—S18—C21—C26 −103.86 (5)
N1—C2—C6—C7 83.39 (7) O19—S18—C21—C22 −33.26 (5)
O9—N8—C7—C6 45.57 (7) O20—S18—C21—C22 −167.34 (5)
O10—N8—C7—C6 −135.92 (6) N1—S18—C21—C22 78.86 (5)
O9—N8—C7—C11 −79.85 (6) C26—C21—C22—C23 1.22 (9)
O10—N8—C7—C11 98.66 (6) S18—C21—C22—C23 178.44 (5)
C2—C6—C7—N8 59.57 (6) C21—C22—C23—C24 −0.29 (10)
C2—C6—C7—C11 −178.41 (5) C22—C23—C24—C25 −1.06 (10)
N8—C7—C11—C13 76.03 (6) C22—C23—C24—C27 178.05 (6)
C6—C7—C11—C13 −45.96 (7) C23—C24—C25—C26 1.54 (10)
N8—C7—C11—C12 −45.66 (6) C27—C24—C25—C26 −177.57 (7)
C6—C7—C11—C12 −167.66 (5) C24—C25—C26—C21 −0.65 (10)
N8—C7—C11—C14 −166.52 (4) C22—C21—C26—C25 −0.76 (9)
C6—C7—C11—C14 71.48 (6) S18—C21—C26—C25 −177.96 (5)
C13—C11—C14—C15 −176.89 (5)

Funding Statement

This work was funded by H2020 Marie Sklodowska-Curie Actions grant 764837 to Mathias O. Senge.

References

  1. Boyle, R. W., Brückner, C., Posakony, J., James, B. R. & Dolphin, D. (1999). Org. Synth. 76, 287–287.
  2. Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Davis, R. A., Carroll, A. R., Quinn, R. J., Healy, P. C. & White, A. R. (2007). Acta Cryst. E63, o4076.
  4. Dutton, C. J., Fookes, C. J. R. & Battersby, A. R. (1983). J. Chem. Soc. Chem. Commun. pp. 1237–1238.
  5. Flippen, J. L. & Gilardi, R. D. (1974). Cryst. Struct. Commun. 3, 623–627.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hohlfeld, B. F., Gitter, B., Kingsbury, C. J., Flanagan, K. J., Steen, D., Wieland, G. D., Kulak, N., Senge, M. O. & Wiehe, A. (2021). Chem. Eur. J. https://doi.org/10.1002/chem.202004776.
  8. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  9. Kingsbury, C. J., Abrahams, B. F., Auckett, J. E., Chevreau, H., Dharma, A. D., Duyker, S., He, Q., Hua, C., Hudson, T. A., Murray, K. S., Phonsri, W., Peterson, V. K., Robson, R. & White, K. F. (2019). Chem. Eur. J. 25, 5222–5234. [DOI] [PubMed]
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Krayer, M., Balasubramanian, T., Ruzié, C., Ptaszek, M., Cramer, D. L., Taniguchi, M. & Lindsey, J. S. (2009). J. Porphyrins Phthalocyanines, 13, 1098–1110.
  12. Laha, J. K., Muthiah, C., Taniguchi, M., McDowell, B. E., Ptaszek, M. & Lindsey, J. S. (2006). J. Org. Chem. 71, 4092–4102. [DOI] [PubMed]
  13. Merkul, E., Boersch, C., Frank, W. & Müller, T. J. J. (2009). Org. Lett. 11, 2269–2272. [DOI] [PubMed]
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Senge, M. O., Ryan, A. A., Letchford, K. A., MacGowan, S. A. & Mielke, T. (2014). Symmetry, 6, 781–843.
  16. Senge, M. O. & Smith, K. M. (2005). Acta Cryst. C61, o537–o541. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
  20. Taniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344–535. [DOI] [PubMed]
  21. Viedma, C., Coquerel, G. & Cintas, P. (2015). Crystallization of Chiral Molecules. In Handbook of Crystal Growth, vol. 2, edited by T. Nishinaga, pp. 951–1002. Tokyo: Elsevier.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  23. Zeng, X.-C., Gu, J., Xu, S.-H., Li, Y.-X. & Liu, P.-R. (2005). Acta Cryst. E61, o1805–o1806.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, 3. DOI: 10.1107/S2056989021002280/tx2036sup1.cif

e-77-00341-sup1.cif (7.3MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021002280/tx20361sup2.hkl

e-77-00341-1sup2.hkl (316.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002280/tx20361sup5.cml

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021002280/tx20362sup3.hkl

e-77-00341-2sup3.hkl (209.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002280/tx20362sup6.cml

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989021002280/tx20363sup4.hkl

e-77-00341-3sup4.hkl (1.4MB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002280/tx20363sup7.cml

CCDC references: 2065359, 2065358, 2065357

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES