Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 12;77(Pt 4):378–382. doi: 10.1107/S2056989021002632

Crystal structure and Hirshfeld surface analysis of (Z)-3-methyl-4-(thio­phen-2-yl­methyl­idene)isoxazol-5(4H)-one

Rima Laroum a, Assia Benouatas b, Noudjoud Hamdouni b,*, Wissame Zemamouche b, Ali Boudjada b, Abdelmadjid Debache a
PMCID: PMC8025857  PMID: 33936761

The title compound, C9H7NO2S, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit with Z = 4.In the mol­ecular skeleton of title compound, the angle between mean planes of the two mol­ecules A and B is 4.09 (1)°. The two mol­ecules A and B are involved in inter­molecular C—H⋯O and C—H⋯N hydrogen bonds.

Keywords: crystal structure, π–π inter­actions, isoxazole, Hirshfeld surface

Abstract

The title compound, C9H7NO2S crystallizes with two independent mol­ecules (A and B) in the asymmetric unit with Z = 8. Both mol­ecules are almost planar with a dihedral angle between the isoxazole and thio­phen rings of 3.67 (2)° in mol­ecule A and 10.00 (1) ° in mol­ecule B. The packing of mol­ecules A and B is of an ABAB⋯ type along the b-axis direction, the configuration about the C=C bond is Z. In the crystal, the presence of C—H⋯O, C—H⋯ N and π–π inter­actions [centroid–centroid distances of 3.701 (2) and 3.766 (2) Å] link the mol­ecules into a three-dimensional architecture. An analysis of Hirshfeld surfaces shows the importance of C—H⋯O and C—H⋯N hydrogen bonds in the packing mechanism of the crystalline structure.

Chemical context  

Isoxazolones show some inter­esting biological properties. They are inhibitors of the factorization of tumor necrosis alpha (TNF-α) (Laughlin et al., 2005) and anti­microbial (Mazimba et al., 2014). They are used for the treatment of cerebrovascular disorders and as muscle relaxants. They are also herbicides (Tomita et al., 1977) and fungicides (Miyake et al., 2012). On other hand, isoxazolone derivatives constitute excellent inter­mediates for the synthesis of various heterocycles such as pyrido­pyrimidines (Tu et al., 2006), quinolines (Abbiati et al., 2003) and undergo various chemical transformations (Batra & Bhaduri, 1994). Some cyclo­addition reactions are also described and provide access to several types of polycycles (Badrey & Gomha, 2014). For these reasons, these compounds have been the subject of several investigations. The present method for their synthesis is a three-component polycondensation between an aromatic aldehyde, ethyl aceto­acetate and hydroxyl­amine hydro­chloride under different conditions and for our part we propose here the use of K2CO3, a food additive, tolerated in organic agriculture, very inexpensive, highly available and a safe catalyst, in an aqueous medium. In the present study, we report on the synthesis, mol­ecular and crystal structure together with a Hirshfeld surface analysis of the title isoxazole derivative.

Structural commentary  

The mol­ecular structure of the title compound is shown in (Fig. 1). It crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The mol­ecular structure adopts a Z-configuration about the C=C [1.354 (3) Å in mol­ecule A and 1.357 (3) Å in mol­ecule B] double bonds. graphic file with name e-77-00378-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level.

The bond lengths in the two mol­ecules are practically equal, while there are slight differences in bond angles; with for example C2—C3—C4 (mol­ecule A) and C11—C12—C13 (mol­ecule B) differing by 0.8 (2)°. Also, a slight difference of 0.3 (2)° is observed between the angles C2—C5—C6 and C11—C14—C15. In mol­ecule A, the angle between the normal of the mol­ecular plane (O2A/N1A/C1A–C3A) and the normal of the (S1A/C6A–C9A) plane is 3.67 (2)°. An important difference is observed in mol­ecule B, where the angle between the normal of the mol­ecular plane (O3B/N2B/C10B–C12B) and the normal of the (S2B/C15B–C18B) plane is 10.00 (1)°. In the mol­ecular skeleton, the angle between the mean planes of the mol­ecules A and B is 4.09 (1)°. Each of the two methyl groups, C4 and C13, has a C—H bond lying in the mean plane of the mol­ecular skeleton, and they are oriented toward the thio­phene group.

Supra­molecular features  

In the crystal, the structure consists of wavy layers containing mol­ecules of the same type, forming an alternated packing described by an ABAB⋯ sequence (Fig. 2). The mol­ecules form infinite chains along the b-axis direction. They are linked by offset π–π inter­actions: [Cg1⋯Cg2i = 3.701 (2) Å and Cg3⋯Cg4ii = 3.766 (2) Å where Cg1, Cg2, Cg3 and Cg4 are the centroids of the O2A/N1A/C1A–C3A, S2B/C15B–C18B, S1A/C6A–C9A and O3B/N2B/C10B–C12B rings, respectively; symmetry codes: (i) −x, Inline graphic + y, Inline graphic − z; (ii) −x, Inline graphic − y, Inline graphic + z]. The two mol­ecules A and B are involved in inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (Table 1).

Figure 2.

Figure 2

A view along the b axis of the crystal packing of the title compound (mol­ecule A in blue and mol­ecule B in red).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.93 2.51 3.387 (3) 156
C8—H8⋯N1ii 0.93 2.58 3.491 (5) 166
C13—H13c⋯N1iii 0.96 2.57 3.487 (4) 160

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}.

Analysis of the Hirshfeld surfaces  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were generated with CrystalExplorer (Turner et al., 2017). The analysis of Hirshfeld surface mapped over d norm is shown in (Fig. 3). The inter­actions between the corresponding donor and acceptor atoms are visualized as bright-red spots on both sides (zones 1, 2, 3 and 4) of the Hirshfeld surfaces (Fig. 3), corresponding to C17—H17⋯N2, C4—H4C⋯N2, C16—H16⋯O2 and C18—H18⋯O4 hydrogen bonds, respectively. Two other red spots exist, corresponding to C4—H4A⋯O inter­actions (Fig. 3, zone 5), are considered to be very weak inter­actions, comparing them to the van der Waals radii. The overall two-dimensional fingerprint plot of the structure and H⋯S/S⋯H, H⋯H, H⋯O/O⋯H, H⋯N/N⋯H and C⋯C contacts are illus­trated in Fig. 4 a–m). The H⋯H contacts, accounting for about 35.4% of the Hirshfeld surface (Fig. 4 b) represent the largest contribution and are seen in the fingerprint plot as a pair of shorts pikes at d e + d i = 2.2 Å; comparing this to van der Waals radius, we find the difference between them is about 1 Å, which means it is a very powerful inter­action. H⋯O/O⋯H contacts (Fig. 4 c) make a contribution of 28.7%, with a distinctive peak in the fingerprint plot at d e + d i = 2.4 Å; the van der Waals radius sum for this inter­action is about 2.7 Å.

Figure 3.

Figure 3

Two views of the Hirshfeld surface mapped over d norm.

Figure 4.

Figure 4

Two-dimensional finger print plots: (a) overall, and delineated into contributions from different contacts: (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯S/S⋯H, (e) H⋯N/N⋯H and (f) C⋯C.

The pair of short peaks at d e + d i = 3.1, i.e. almost equal to the sum of the van der Waals radius, in the fingerprint plot delineated into H⋯S/S⋯H contacts are indicative of short inter­atomic contacts in the crystal (6% contribution, Fig. 4 d). Although the H⋯N /N⋯H inter­actions have a notable contribution of 12% to the Hirshfeld surface (Fig. 4 e), their inter­atomic distances (d e + d i = 2.4 Å) are less than their van der Waals radius (2.7 Å), which means that it is a very strong inter­action in this structure. The presence of π–π stacking reflects the presence of C⋯C contacts (Fig. 4 f), which account for 7.9% of the Hirshfeld surface with d e + d i = 3.4 Å; the van der Waals radius is 3.4 Å, so we can confirm the presence of π–π stacking. Two further views of the Hirshfeld surface are shown in Fig. 5.

Figure 5.

Figure 5

Two views of the Hirshfeld surface mapped over d norm, with inter­actions to neighbouring mol­ecules shown as green dashed lines.

Database survey  

A search of the Cambridge Structural Database (CSD, v5.40, last update May 2019; Groom et al., 2016) for the (Z)-4-(thio­phen-2-yl­methyl­idene)isoxazol-5(4H)-one unit gave five hits: 4-(2-hydroxybenzyl­idene)-3-methyl­isoxazol-5(4H)-one (AJESAK; Cheng et al., 2009), 2-(naphthalen-1-yl)-4-(thio­phen-2-yl­methyl­idene)-1,3-oxazol-5(4H)-one (ERIXIN; Gündoğdu et al., 2011), (Z)-4-benzyl­idene-3-methyl­isoxazol-5(4H)-one (MBYIOZ01; Chandra et al., 2012), 2-methyl-4-(thio­phen-2-yl­methyl­idene)-1,3-oxazol-5(4H)-one (WOYPIL; Sharma et al., 2015) and (Z)-4-(4-hy­droxy­benzyl­idene)-3-methyl­isoxazol-5(4H)-one (VIDSAF; Zemamouche et al., 2018).

The asymmetric unit of the title compound contains two crystallographically independent mol­ecules, as found for ERIXIN and WOYPIL while in AJESAK, MBYIOZ01 and VIDSAF, there is only one mol­ecule per asymmetric unit. The configuration about the C=C bond is Z in all five compounds and in each mol­ecule, the oxazol and thio­phene rings are inclined to one another by 3.67 (2), 10.00 (1), 0.86 (9), 7.02 (8), 2.65 (16), 4.55 (15), 6.50 (1), 7.98 (8) and 3.18 (8)°, respectively.

In the crystal of WOYPIL, the individual mol­ecules are linked via C—H⋯O hydrogen bonds, forming ABAB chains along the [10Inline graphic] direction, similarly in the crystal of the title compound, the packing of mol­ecules A and B is of an ABAB⋯ type along the [100] direction. In our compound, the cohesion of the crystal is ensured by inter­actions of the type C—H⋯O, C—H⋯π and π–π [inter­centroid distances of 3.701 (2) and 3.766 (2) Å compared with 3.811 (2) and 3.889 (2) Å in ERIXIN and 3.767 (2) and 3.867 (2) Å in WOYPIL].

Synthesis and crystallization  

Thio­phene-2-carbaldehyde (C5H4OS, 1 mmol), hydroxyl­amine hydro­chloride (ClH4NO, 1 mmol), ethyl aceto­acetate (C6H10O3,1 mmol) and K2CO3 (5 mol%) were mixed in a 25 mL flask equipped with a magnetic stirrer. The mixture was refluxed in 5 mL of water for 3h (followed by TLC). When the reaction was judged to be finished, the mixture was gradually poured into ice-cold water. Stirring was maintained for a few minutes and the obtained solid was filtered and purified by crystallization from ethanol (yield 72%).

Refinement details  

Crystal data, data collection and structure refinement details for the title compound are summarized in Table 2. H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined as riding with U iso(H) = 1.2–1.5U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C9H7NO2S
M r 193.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 301
a, b, c (Å) 10.4660 (4), 12.1614 (5), 14.7636 (6)
β (°) 110.362 (1)
V3) 1761.71 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.31 × 0.20 × 0.10
 
Data collection
Diffractometer Agilent Technologies Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013))
T min, T max 0.758, 0.968
No. of measured, independent and observed [I > 2σ(I)] reflections 72470, 6743, 4110
R int 0.084
(sin θ/λ)max−1) 0.770
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.079, 0.239, 1.07
No. of reflections 6743
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.54

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002632/zn2002sup1.cif

e-77-00378-sup1.cif (394.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002632/zn2002Isup2.hkl

e-77-00378-Isup2.hkl (369.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002632/zn2002Isup3.cml

CCDC reference: 2069004

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Ferhat Abbas University of Setif for assistance with the data collection.

supplementary crystallographic information

Crystal data

C9H7NO2S F(000) = 800
Mr = 193.22 Dx = 1.457 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6745 reflections
a = 10.4660 (4) Å θ = 2.2–33.2°
b = 12.1614 (5) Å µ = 0.33 mm1
c = 14.7636 (6) Å T = 301 K
β = 110.362 (1)° Needle, white
V = 1761.71 (12) Å3 0.31 × 0.20 × 0.10 mm
Z = 8

Data collection

Agilent Technologies Xcalibur, Eos diffractometer 6743 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4110 reflections with I > 2σ(I)
Detector resolution: 8.02 pixels mm-1 Rint = 0.084
ω scans θmax = 33.2°, θmin = 2.2°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013)) h = −16→16
Tmin = 0.758, Tmax = 0.968 k = −18→18
72470 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1035P)2 + 1.1548P] where P = (Fo2 + 2Fc2)/3
6743 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.54 e Å3
0 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.50289 (8) 0.12735 (6) 0.55602 (6) 0.0497 (2)
S2 0.83062 (8) 0.29525 (7) 0.33090 (6) 0.0532 (2)
O4 0.6147 (3) 0.42483 (17) 0.34895 (19) 0.0640 (6)
O3 0.3944 (3) 0.40232 (18) 0.32977 (18) 0.0637 (6)
O2 0.9633 (2) 0.1945 (2) 0.58548 (19) 0.0614 (6)
O1 0.7799 (3) 0.09198 (18) 0.57358 (19) 0.0621 (6)
N1 0.9970 (3) 0.3094 (2) 0.5893 (2) 0.0568 (7)
C5 0.6521 (2) 0.32586 (19) 0.57740 (17) 0.0341 (5)
H5 0.644338 0.401627 0.582265 0.041*
C11 0.5024 (3) 0.2451 (2) 0.31621 (16) 0.0363 (5)
N2 0.2960 (3) 0.3124 (2) 0.3099 (2) 0.0592 (7)
C14 0.5970 (3) 0.1692 (2) 0.31523 (17) 0.0361 (5)
H14 0.563541 0.097687 0.305693 0.043*
C3 0.8908 (3) 0.3632 (2) 0.58677 (19) 0.0418 (6)
C16 0.8203 (3) 0.0795 (3) 0.3326 (2) 0.0465 (6)
H16 0.79039 0.007312 0.331323 0.056*
C15 0.7368 (3) 0.1771 (2) 0.32585 (17) 0.0364 (5)
C6 0.5301 (2) 0.2673 (2) 0.56833 (16) 0.0324 (4)
C9 0.3378 (3) 0.1419 (3) 0.5469 (2) 0.0550 (8)
H9 0.277609 0.083236 0.537456 0.066*
C10 0.5189 (3) 0.3637 (2) 0.3330 (2) 0.0465 (6)
C12 0.3616 (3) 0.2241 (2) 0.30278 (18) 0.0416 (6)
C7 0.4104 (3) 0.3206 (2) 0.56579 (19) 0.0418 (6)
H7 0.403306 0.39636 0.570886 0.05*
C2 0.7769 (2) 0.2927 (2) 0.58031 (17) 0.0355 (5)
C8 0.3026 (3) 0.2476 (3) 0.5548 (2) 0.0519 (7)
H8 0.216544 0.269318 0.553016 0.062*
C1 0.8307 (3) 0.1822 (2) 0.5786 (2) 0.0443 (6)
C13 0.2887 (3) 0.1175 (3) 0.2820 (2) 0.0532 (7)
H13A 0.350705 0.060565 0.279027 0.08*
H13B 0.253353 0.100902 0.332377 0.08*
H13C 0.214967 0.121852 0.221289 0.08*
C18 0.9717 (3) 0.2218 (3) 0.3399 (3) 0.0583 (8)
H18 1.053929 0.253953 0.343547 0.07*
C4 0.8928 (4) 0.4854 (3) 0.5881 (3) 0.0646 (9)
H4A 0.805554 0.512482 0.585866 0.097*
H4B 0.961917 0.510612 0.646195 0.097*
H4C 0.912103 0.512135 0.533023 0.097*
C17 0.9534 (3) 0.1117 (3) 0.3413 (3) 0.0566 (8)
H17 1.022934 0.061462 0.347417 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0513 (4) 0.0345 (3) 0.0660 (5) −0.0054 (3) 0.0238 (3) −0.0015 (3)
S2 0.0498 (4) 0.0494 (4) 0.0636 (5) −0.0118 (3) 0.0237 (3) −0.0100 (3)
O4 0.0809 (17) 0.0329 (10) 0.0859 (16) −0.0047 (11) 0.0387 (14) −0.0056 (10)
O3 0.0730 (16) 0.0448 (12) 0.0793 (15) 0.0232 (11) 0.0341 (13) 0.0034 (11)
O2 0.0423 (11) 0.0631 (14) 0.0834 (16) 0.0140 (10) 0.0278 (11) −0.0066 (12)
O1 0.0627 (14) 0.0389 (11) 0.0916 (17) 0.0077 (10) 0.0354 (13) −0.0033 (11)
N1 0.0374 (12) 0.0693 (18) 0.0679 (16) −0.0039 (12) 0.0237 (11) −0.0109 (13)
C5 0.0345 (11) 0.0299 (10) 0.0394 (11) 0.0009 (9) 0.0147 (9) −0.0022 (8)
C11 0.0417 (12) 0.0362 (12) 0.0331 (11) 0.0051 (10) 0.0157 (9) 0.0013 (9)
N2 0.0530 (15) 0.0618 (17) 0.0671 (16) 0.0191 (13) 0.0263 (13) 0.0006 (13)
C14 0.0374 (12) 0.0318 (11) 0.0422 (12) −0.0015 (9) 0.0176 (10) −0.0020 (9)
C3 0.0337 (12) 0.0526 (15) 0.0426 (12) −0.0043 (11) 0.0176 (10) −0.0049 (11)
C16 0.0339 (12) 0.0606 (17) 0.0494 (14) −0.0057 (12) 0.0203 (11) −0.0100 (12)
C15 0.0354 (12) 0.0373 (12) 0.0385 (11) −0.0018 (9) 0.0152 (9) −0.0033 (9)
C6 0.0322 (11) 0.0333 (11) 0.0336 (10) −0.0009 (8) 0.0139 (8) −0.0031 (8)
C9 0.0515 (17) 0.0628 (19) 0.0546 (16) −0.0228 (15) 0.0234 (14) −0.0033 (14)
C10 0.0633 (18) 0.0370 (13) 0.0442 (13) 0.0105 (12) 0.0250 (13) 0.0043 (10)
C12 0.0399 (13) 0.0478 (14) 0.0395 (12) 0.0097 (11) 0.0168 (10) 0.0036 (10)
C7 0.0351 (12) 0.0447 (14) 0.0470 (13) 0.0004 (10) 0.0159 (10) −0.0069 (11)
C2 0.0322 (11) 0.0377 (12) 0.0384 (11) −0.0002 (9) 0.0147 (9) −0.0011 (9)
C8 0.0327 (12) 0.072 (2) 0.0532 (15) −0.0035 (13) 0.0182 (11) −0.0082 (14)
C1 0.0399 (14) 0.0447 (14) 0.0525 (14) 0.0071 (11) 0.0212 (11) −0.0010 (11)
C13 0.0348 (13) 0.0605 (18) 0.0669 (18) 0.0018 (12) 0.0209 (13) −0.0016 (14)
C18 0.0392 (15) 0.068 (2) 0.070 (2) −0.0122 (14) 0.0218 (14) −0.0102 (16)
C4 0.0546 (19) 0.0530 (18) 0.093 (2) −0.0161 (15) 0.0339 (18) −0.0061 (17)
C17 0.0416 (15) 0.064 (2) 0.0678 (19) 0.0066 (14) 0.0238 (14) −0.0052 (15)

Geometric parameters (Å, º)

S1—C9 1.695 (3) C3—C4 1.487 (4)
S1—C6 1.725 (2) C16—C17 1.410 (4)
S2—C18 1.691 (4) C16—C15 1.457 (4)
S2—C15 1.727 (3) C16—H16 0.93
O4—C10 1.204 (4) C6—C7 1.399 (3)
O3—C10 1.370 (4) C9—C8 1.354 (5)
O3—N2 1.460 (4) C9—H9 0.93
O2—C1 1.365 (4) C12—C13 1.481 (4)
O2—N1 1.437 (4) C7—C8 1.400 (4)
O1—C1 1.210 (4) C7—H7 0.93
N1—C3 1.280 (4) C2—C1 1.460 (4)
C5—C2 1.354 (3) C8—H8 0.93
C5—C6 1.427 (3) C13—H13A 0.96
C5—H5 0.93 C13—H13B 0.96
C11—C14 1.357 (3) C13—H13C 0.96
C11—C12 1.440 (4) C18—C17 1.354 (5)
C11—C10 1.463 (4) C18—H18 0.93
N2—C12 1.299 (4) C4—H4A 0.96
C14—C15 1.420 (3) C4—H4B 0.96
C14—H14 0.93 C4—H4C 0.96
C3—C2 1.444 (4) C17—H17 0.93
C9—S1—C6 91.80 (14) N2—C12—C11 112.7 (3)
C18—S2—C15 91.80 (15) N2—C12—C13 119.5 (3)
C10—O3—N2 110.2 (2) C11—C12—C13 127.8 (2)
C1—O2—N1 109.8 (2) C6—C7—C8 112.8 (3)
C3—N1—O2 107.3 (2) C6—C7—H7 123.6
C2—C5—C6 132.6 (2) C8—C7—H7 123.6
C2—C5—H5 113.7 C5—C2—C3 126.2 (2)
C6—C5—H5 113.7 C5—C2—C1 130.3 (2)
C14—C11—C12 126.4 (2) C3—C2—C1 103.5 (2)
C14—C11—C10 129.0 (3) C9—C8—C7 112.3 (3)
C12—C11—C10 104.6 (2) C9—C8—H8 123.9
C12—N2—O3 106.3 (3) C7—C8—H8 123.9
C11—C14—C15 132.9 (2) O1—C1—O2 121.1 (3)
C11—C14—H14 113.6 O1—C1—C2 132.2 (3)
C15—C14—H14 113.6 O2—C1—C2 106.6 (2)
N1—C3—C2 112.8 (3) C12—C13—H13A 109.5
N1—C3—C4 120.2 (3) C12—C13—H13B 109.5
C2—C3—C4 127.0 (3) H13A—C13—H13B 109.5
C17—C16—C15 109.3 (3) C12—C13—H13C 109.5
C17—C16—H16 125.4 H13A—C13—H13C 109.5
C15—C16—H16 125.4 H13B—C13—H13C 109.5
C14—C15—C16 121.5 (2) C17—C18—S2 113.6 (2)
C14—C15—S2 127.6 (2) C17—C18—H18 123.2
C16—C15—S2 110.91 (19) S2—C18—H18 123.2
C7—C6—C5 122.3 (2) C3—C4—H4A 109.5
C7—C6—S1 109.93 (19) C3—C4—H4B 109.5
C5—C6—S1 127.71 (18) H4A—C4—H4B 109.5
C8—C9—S1 113.2 (2) C3—C4—H4C 109.5
C8—C9—H9 123.4 H4A—C4—H4C 109.5
S1—C9—H9 123.4 H4B—C4—H4C 109.5
O4—C10—O3 120.8 (3) C18—C17—C16 114.4 (3)
O4—C10—C11 133.0 (3) C18—C17—H17 122.8
O3—C10—C11 106.1 (3) C16—C17—H17 122.8
C1—O2—N1—C3 1.2 (3) O3—N2—C12—C13 −179.7 (2)
C10—O3—N2—C12 0.6 (3) C14—C11—C12—N2 178.3 (3)
C12—C11—C14—C15 179.0 (3) C10—C11—C12—N2 −0.4 (3)
C10—C11—C14—C15 −2.7 (5) C14—C11—C12—C13 −2.2 (4)
O2—N1—C3—C2 −0.5 (3) C10—C11—C12—C13 179.2 (3)
O2—N1—C3—C4 −179.0 (3) C5—C6—C7—C8 178.9 (2)
C11—C14—C15—C16 173.0 (3) S1—C6—C7—C8 0.4 (3)
C11—C14—C15—S2 −8.0 (4) C6—C5—C2—C3 177.9 (2)
C17—C16—C15—C14 179.2 (2) C6—C5—C2—C1 −2.6 (5)
C17—C16—C15—S2 0.0 (3) N1—C3—C2—C5 179.3 (3)
C18—S2—C15—C14 −178.4 (2) C4—C3—C2—C5 −2.3 (5)
C18—S2—C15—C16 0.7 (2) N1—C3—C2—C1 −0.3 (3)
C2—C5—C6—C7 −179.2 (3) C4—C3—C2—C1 178.1 (3)
C2—C5—C6—S1 −0.9 (4) S1—C9—C8—C7 1.8 (4)
C9—S1—C6—C7 0.5 (2) C6—C7—C8—C9 −1.4 (4)
C9—S1—C6—C5 −177.9 (2) N1—O2—C1—O1 179.3 (3)
C6—S1—C9—C8 −1.3 (3) N1—O2—C1—C2 −1.4 (3)
N2—O3—C10—O4 −179.7 (3) C5—C2—C1—O1 0.6 (6)
N2—O3—C10—C11 −0.8 (3) C3—C2—C1—O1 −179.8 (3)
C14—C11—C10—O4 0.8 (5) C5—C2—C1—O2 −178.6 (3)
C12—C11—C10—O4 179.4 (3) C3—C2—C1—O2 1.0 (3)
C14—C11—C10—O3 −177.9 (2) C15—S2—C18—C17 −1.2 (3)
C12—C11—C10—O3 0.7 (3) S2—C18—C17—C16 1.5 (4)
O3—N2—C12—C11 −0.1 (3) C15—C16—C17—C18 −0.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···O4i 0.93 2.51 3.387 (3) 156
C8—H8···N1ii 0.93 2.58 3.491 (5) 166
C13—H13c···N1iii 0.96 2.57 3.487 (4) 160

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x−1, −y+1/2, z−1/2.

References

  1. Abbiati, G., Beccalli, E. M., Broggini, G. & Zoni, C. (2003). Tetrahedron, 59, 9887–9893.
  2. Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  3. Badrey, M. G. & Gomha, S. M. (2014). Int. J. Pharm. Sci. 6, 236–239.
  4. Batra, S. & Bhaduri, A. P. (1994). Indian Inst. Sci. 74, 213–226.
  5. Chandra, N., Srikantamurthy, N., Jeyaseelan, S., Umesha, K. B., Palani, K. & Mahendra, M. (2012). Acta Cryst. E68, o3091. [DOI] [PMC free article] [PubMed]
  6. Cheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gündoğdu, C., Alp, S., Ergün, Y., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o1321–o1322. [DOI] [PMC free article] [PubMed]
  10. Laughlin, S. K., Clark, M. P., Djung, J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J. & Janusz, M. J. (2005). Bioorg. Med. Chem. Lett. 15, 2399–2403. [DOI] [PubMed]
  11. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  12. Mazimba, O., Wale, K., Loeto, D. & Kwape, T. (2014). Bioorg. Med. Chem. 22, 6564–6569. [DOI] [PubMed]
  13. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  14. Miyake, T., Yagasaki, Y. & Kagabu, S. J. (2012). J. Pestic. Sci. 37, 89–94.
  15. Sharma, P., Subbulakshmi, K. N., Narayana, B., Byrappa, K. & Kant, R. (2015). Acta Cryst. E71, o123–o124. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  19. Tomita, K., Murakami, T. & Yamazaki, Y. (1977). US patent 4044018 A.
  20. Tu, S., Zhang, J., Jia, R., Jiang, B., Zhang, Y. & Jiang, H. (2006). Org. Biomol. Chem. 5, 1450–1453. [DOI] [PubMed]
  21. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  22. Zemamouche, W., Laroun, R., Hamdouni, N., Brihi, O., Boudjada, A. & Debache, A. (2018). Acta Cryst. E74, 926–930. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002632/zn2002sup1.cif

e-77-00378-sup1.cif (394.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002632/zn2002Isup2.hkl

e-77-00378-Isup2.hkl (369.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002632/zn2002Isup3.cml

CCDC reference: 2069004

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES