Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 19;77(Pt 4):402–405. doi: 10.1107/S2056989021002577

First crystal structure of a Pigment Red 52 compound: DMSO solvate hydrate of the monosodium salt

Lukas Tapmeyer a, Daniel Eisenbeil a, Michael Bolte a, Martin U Schmidt a,*
PMCID: PMC8025858  PMID: 33936765

The crystal structure of a DMSO monosolvate monohydrate of a previously unknown monosodium salt of the industrial inter­mediate Pigment Red 52 (P.R.52) with the formula Na+[C18H12ClN2O6S]·H2O·C2H6OS. The compound was obtained by in-house synthesis. The crystals have triclinic symmetry at 173 K. The crystal structure is built up by Na—O chains, which arrange the anions in polar/non-polar double layers.

Keywords: crystal structure determination, organic pigment, solvate, hydrate

Abstract

Pigment Red 52, Na2[C18H11ClN2O6S], is an industrially produced hydrazone-laked pigment. It serves as an inter­mediate in the synthesis of the corresponding Ca2+ and Mn2+ salts, which are used commercially for printing inks and lacquers. Hitherto, no crystal structure of any salt of Pigment Red 52 is known. Now, single crystals have been obtained of a dimethyl sulfoxide solvate hydrate of the monosodium salt of Pigment Red 52, namely, monosodium 2-[2-(3-carb­oxy-2-oxo-1,2-di­hydro­naphthalen-1-yl­idene)hydrazin-1-yl]-5-chloro-4-methyl­benz­ene­sulfonate dimethyl sulfoxide monosolvate monohydrate, Na+·C18H12ClN2O6S·H2O·C2H6OS, obtained from in-house synthesized Pigment Red 52. The crystal structure was determined by single-crystal X-ray diffraction at 173 K. In this monosodium salt, the SO3 group is deprotonated, whereas the COOH group is protonated. The residues form chains via ionic inter­actions and hydrogen bonds. The chains are arranged in polar/non-polar double layers.

Chemical context  

Pigment Red 52 (P.R.52, Na2[C18H11N2ClO6S]), is produced industrially as an inter­mediate in the synthesis of Pigment Red 52:1 (Ca[C18H11N2ClO6S]) and Pigment Red 52:2 (Mn[C18H11N2ClO6S]) (Czajkowski et al., 1980; Hunger & Schmidt, 2018). P.R.52:1 and P.R.52:2 are used for the colouration of printing inks and lacquers (Hunger & Schmidt, 2018). No crystal structures of P.R.52, or of its various metal salts, have previously been determined. Pigment Red 48 is an isomer of P.R.52, differing by mutual exchange of CH3 and Cl substituents. Recently, the crystal structures of two hydrates of the monosodium salt of P.R.48 have been published (Tapmeyer et al., 2020). Correspondingly, similar monosodium hydrate phases could also be expected for P.R.52. Hitherto, nothing has been known about the existence of a monosodium salt of P.R.52 or its hydrates or solvates. In attempts to crystallize P.R.52 from di­methyl­sulfoxide, single crystals were obtained, which turned out to be a mono-DMSO solvate monohydrate of the monosodium salt of P.R.52:1. The crystal structure was determined by X-ray analysis.

Structural commentary  

Pigment Red 52 monosodium salt DMSO monosolvate monohydrate crystallizes in the triclinic space group P Inline graphic with one pigment anion, one sodium cation, one mol­ecule of DMSO and one water mol­ecule in the asymmetric unit (Fig. 1).graphic file with name e-77-00402-scheme1.jpg

Figure 1.

Figure 1

A perspective view of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

The pigment exhibits the hydrazone tautomeric form, like all industrial hydrazone pigments (formerly known as ‘azo pigments’) (Gilli et al., 2005; Schmidt et al., 2008; Hunger & Schmidt, 2018). The N—H group forms two intra­molecular [Inline graphic(6)] N—H⋯O hydrogen bonds (Table 1). The sulfonate group is deprotonated, whereas the carb­oxy­lic group is protonated. The protonation site is unambiguously determined by the difference electron density, from the S—O and C—O bond lengths in the SO3 and COOH groups, and from the hydrogen-bond pattern. Intra­molecular and inter­molecular bond lengths and angles are in the usual ranges. The organic anion is nearly planar, with an RMSD of 0.553 Å for all non-hydrogen atoms, except for the oxygen atoms of the sulfonate group. The dihedral angle between the naphthyl moiety and the phenyl ring is 9.84 (16)°.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.82 (4) 2.14 (4) 2.747 (3) 131 (3)
N1—H1⋯O4 0.82 (4) 1.84 (4) 2.532 (4) 141 (4)
O6—H6⋯O1S 0.92 (5) 1.67 (5) 2.575 (4) 168 (4)
O1W—H1WA⋯O5i 0.80 (5) 2.33 (5) 2.944 (3) 134 (4)
O1W—H1WA⋯O1S i 0.80 (5) 2.48 (5) 3.138 (5) 140 (4)
O1W—H1WB⋯O3 0.84 (6) 2.11 (6) 2.942 (3) 176 (5)

Symmetry code: (i) x+1, y, z.

The carb­oxy­lic acid group is coplanar with the naphthyl moiety [dihedral angle of 1.2 (5)°, see Fig. 1]. This coplanarity is a peculiarity, as in most other related structures, the COOH group is rotated out of the naphthyl plane (Table 2).

Table 2. Angles (°) of the C–COO(H) plane to the mean plane of the carbon skeleton of the β-oxynaphthoic acid moiety.

Refcode Salt Solvate / Hydrate |Angle|
BIHNUCa Ca[C17H10N2O6ClS]2 2 DMF 0.09
GUNZAT Na[C18H12ClN2O6S] 2 H2O 2.43
FAWQUR Ca[C18H12N2O6S]   22.5
KAQSAW Ca[C17H8Cl2N2O6S] 2 H2O 23.3
FAWQIF Ca[C18H14N2O7S] 2 H2O 26.3
GUNZEX Na[C18H12ClN2O6S] 1 H2O 28.6
BOGDUZa Dy[C13H7N5O3][BONA]b 2 DMF, 2 H2O 36.6
FAWQOL Ca[C18H12N2O6S] 1 H2O 37.7
BOGFIPa Eu[C13H7N5O3][BONA]b DMF, 4 H2O 39.0
BOGFAHa Tb[C13H7N5O3][BONA]b DMF, 4 H2O 39.0
BOGFELa Sm[C13H7N5O3][BONA]b DMF, 4 H2O 39.1

Notes: (a) This is not a pigment with a Colour Index number; (b) BONA = β-oxynaphthoic acid.

Supra­molecular features  

The protonated carboxyl oxygen atom of the COOH group donates a hydrogen bond to the DMSO mol­ecule (Table 1). The other carboxyl oxygen atom accepts a hydrogen bond from the water mol­ecule and additionally coordinates to the sodium ion. The sodium ion is sixfold coordinated to one oxygen atom of the COOH group, the carbonyl group, an oxygen atom of the sulfonate group, and two water mol­ecules (one belonging to the same asymmetric unit, the other one transformed by −x, 1 − y, −z). The sixth coordination site is occupied by an O atom of a sulfonate group of a neighbouring anion, generated by the symmetry operation −1 + x, y, z. The coordination polyhedron is a distorted octa­hedron. The crystal packing is characterized by chains built via Na—O coordinations, running along the a-axis direction (Fig. 2). Within this chain, the phenyl ring is π-stacked above the O=C—C=N—N—H moiety of a symmetry-equivalent anion (1 + x, y, z) with the shortest distance C6⋯C12 of 3.303 (5) Å. The N–NH unit is stacked above the naphthyl-COOH group with the shortest distance N1⋯C21 (1 + x, y, z) of 3.304 (4) Å (Fig. 3).

Figure 2.

Figure 2

Packing diagram viewed approximately along [100].

Figure 3.

Figure 3

π-stacking of two anions, one drawn with full bonds and the other one with open bonds.

Database survey  

For Pigment Red 52 and its derivatives, this is the first crystal structure published. Some closely related structures are compared in Table 2, viz. bis­[6-chloro-3-(3-carb­oxy-2-oxo­anthracenylidenehydrazono)benzene­sulfonato]­bis­(di­methyl­formamide)­calcium (BIHNUC; Kennedy et al., 2004), [4-(4,6-di­chloro-2-sulfophen­yl)azo-3-hy­droxy-2-naphtho­ato]di­aqua­calcium (KAQSAW; Kennedy et al., 2000), {3-carb­oxy-1-[2-(5-chloro-4-methyl-2-sulfophen­yl)diazen-2-ium-1-yl]naphthalen-2-olato}di­aqua­sodium, {3-carb­oxy-1-[2-(5-chloro-4-methyl-2-sulfophen­yl)diazen-2-ium-1-yl]naphthalen-2-olato}-aqua-sodium (GUNZAT and GUNZEX, respectively; Tapmeyer et al., 2020), {3-carb­oxy-1-[2-(4-methyl-2-sulfophen­yl)diazen-2-ium-1-yl]naphthalen-2-olato}calcium, {2-[2-(3-carb­oxy-2-oxy-1-naphth­yl)diazenium­yl]-5-methyl­benzene­sulfonato}­tri­aqua­calcium, {2-[2-(3-carb­oxy-2-hy­droxy-1-naphth­yl)diazenium­yl]-5-methyl­benzene­sulfonato}­aqua­calcium (FAWQUR, FAWQIF and FAWQOL, respectively; Bekö et al., 2012a ,b ), bis­(3-oxido-4-[(1H-1,2,4-triazol-3-yl)diazen­yl]naphthalene-2-carboxyl­ato)bis­(3-hy­droxy­naphthalene-2-carboxyl­ato)tetra­kis­(aqua)­didysprosium(III) N,N-di­methyl­formamide solvate, bis­{3-oxido-4-[(1H-1,2,4-triazol-3-yl)diazen­yl]naphthalene-2-carboxyl­ato}bis­(3-hy­droxy­naphthalene-2-carboxyl­ato)tetra­kis­(aqua)­dieuropium(III) N,N-di­methyl­formamide solvate, bis­{3-oxido-4-[(1H-1,2,4-triazol-3-yl)diazen­yl]naphthalene-2-carboxyl­ato}bis­(3-hy­droxy­naphthalene-2-carboxyl­ato)tetra­kis­(aqua)­diterbium(III) N,N-di­methyl­formamide solvate, bis­(3-oxido-4-[(1H-1,2,4-triazol-3-yl)diazen­yl]naphthalene-2-carboxyl­ato)bis­(3-hy­droxy­naphthalene-2-carboxyl­ato)tetra­kis­(aqua)­disamarium(III) N,N-di­methyl­formamide solvate (BOGDUZ, BOGFIP, BOGFAH and BOGFEL, respectively; Xie et al., 2019).

Synthesis and crystallization  

The title compound was obtained by recrystallization experiments of in-house synthesized P.R.52.

Synthesis of Pigment Red 52  

2-Amino-5-chloro-p-toluene­sulfonic acid (22.15 g, 0.1 mol) was dissolved with sodium hydroxide (6.4 g) in water (500 ml). The temperature was set at 278 K and concentrated hydro­chloric acid (40 ml) as well as sodium nitrite (7.2 g) in water (100 ml) were added. The suspension was stirred for 30 min. The suspension was treated with amido­sulfonic acid until all excess nitrous acid was destroyed. The suspension was then added dropwise to a solution of β-oxynaphthoic acid (18.8 g, 0.1 mol) with NaOH (20.1 g) in water (550 ml). The pH was kept at alkaline conditions, around 11 to 9, maintained by the addition of 2 M NaOH solution as required, and the temperature was maintained at 278 K. When the dropwise addition of the suspension was finished, the solution was allowed to accommodate to room temperature and subsequently heated to 353 K for half an hour. The red suspension was then neutralized with 2 M HCl, filtered off and the obtained red powder was washed with water and dried at 323 K. The yield of the crude product was about 98%, but X-ray powder diffraction revealed the presence of some sodium chloride as impurity.

Crystallization of the title compound  

The crude in-house synthesized P.R.52 (0.59 g) was dissolved in DMSO (60 ml). The solution was transferred to a glass vessel, which in turn was placed into a further, larger vessel with water (100 ml). The outer vessel was closed with a plastic lid and stored for 20 days at room temperature, allowing the water to diffuse into the DMSO via the gas phase. Single crystals of the title compound were picked from the solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms bonded to C were refined using a riding model with C—H = 0.95 Å and with U iso(H) = 1.2U eq(C) or with Cmeth­yl—H = 0.98 Å and with U iso(H) = 1.5U eq(C). The methyl group attached to the phenyl ring was allowed to rotate but not to tip. The H atoms bonded to N and O were found in the difference-Fourier synthesis and freely refined.

Table 3. Experimental details.

Crystal data
Chemical formula Na+·C18H12ClN2O6S·C2H6OS·H2O
M r 538.94
Crystal system, space group Triclinic, P\overline{1}
Temperature (K) 173
a, b, c (Å) 5.7347 (4), 10.9336 (8), 18.4692 (12)
α, β, γ (°) 104.844 (5), 97.478 (5), 95.404 (6)
V3) 1100.00 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.23 × 0.09 × 0.02
 
Data collection
Diffractometer STOE IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001)
T min, T max 0.445, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14981, 3864, 2992
R int 0.049
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.098, 1.08
No. of reflections 3864
No. of parameters 324
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.33

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXT (Sheldrick, 2015a ), SHELXL and XP (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002577/yk2145sup1.cif

e-77-00402-sup1.cif (618.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002577/yk2145Isup2.hkl

e-77-00402-Isup2.hkl (308KB, hkl)

CCDC reference: 2068733

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

Na+·C18H12ClN2O6S·C2H6OS·H2O Z = 2
Mr = 538.94 F(000) = 556
Triclinic, P1 Dx = 1.627 Mg m3
a = 5.7347 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.9336 (8) Å Cell parameters from 12767 reflections
c = 18.4692 (12) Å θ = 3.4–27.4°
α = 104.844 (5)° µ = 0.44 mm1
β = 97.478 (5)° T = 173 K
γ = 95.404 (6)° Needle, red
V = 1100.00 (14) Å3 0.23 × 0.09 × 0.02 mm

Data collection

STOE IPDS II two-circle diffractometer 2992 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray source Rint = 0.049
ω scans θmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan (X-Area; Stoe & Cie, 2001) h = −6→6
Tmin = 0.445, Tmax = 1.000 k = −12→12
14981 measured reflections l = −21→21
3864 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.0815P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3864 reflections Δρmax = 0.27 e Å3
324 parameters Δρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.33825 (14) 0.84822 (8) 0.39943 (5) 0.0267 (2)
S1 0.52780 (13) 0.72725 (7) 0.20025 (4) 0.01767 (18)
N1 0.4274 (5) 0.5113 (2) 0.28158 (16) 0.0202 (6)
H1 0.327 (7) 0.519 (3) 0.248 (2) 0.030 (10)*
N2 0.3632 (4) 0.4232 (2) 0.31510 (14) 0.0190 (6)
O1 0.5585 (4) 0.8648 (2) 0.21703 (13) 0.0255 (5)
O2 0.2857 (4) 0.6713 (2) 0.19634 (12) 0.0233 (5)
O3 0.6302 (4) 0.6669 (2) 0.13374 (12) 0.0233 (5)
O4 0.0393 (4) 0.4384 (2) 0.19077 (13) 0.0304 (6)
O5 −0.3920 (4) 0.3586 (2) 0.10391 (13) 0.0289 (5)
O6 −0.6211 (4) 0.2111 (2) 0.13512 (14) 0.0318 (6)
H6 −0.722 (8) 0.211 (4) 0.092 (3) 0.053 (13)*
C1 0.6441 (5) 0.5895 (3) 0.30879 (17) 0.0182 (6)
C2 0.7033 (5) 0.6915 (3) 0.27795 (17) 0.0176 (6)
C3 0.9189 (5) 0.7691 (3) 0.30758 (17) 0.0195 (7)
H3 0.961076 0.838914 0.287912 0.023*
C4 1.0722 (5) 0.7460 (3) 0.36520 (18) 0.0192 (7)
C5 1.0206 (5) 0.6441 (3) 0.39538 (17) 0.0197 (7)
C6 0.8039 (5) 0.5675 (3) 0.36633 (17) 0.0198 (7)
H6A 0.763355 0.497883 0.386333 0.024*
C7 1.1910 (6) 0.6171 (3) 0.45670 (19) 0.0250 (7)
H7A 1.190008 0.680328 0.505018 0.038*
H7B 1.351237 0.621942 0.443631 0.038*
H7C 1.142866 0.531421 0.461406 0.038*
C11 0.1537 (5) 0.3519 (3) 0.29167 (17) 0.0189 (6)
C12 −0.0153 (6) 0.3617 (3) 0.22721 (18) 0.0220 (7)
C13 −0.2443 (5) 0.2803 (3) 0.20857 (18) 0.0200 (7)
C14 −0.2928 (6) 0.1985 (3) 0.25062 (18) 0.0206 (7)
H14 −0.441828 0.145890 0.237181 0.025*
C15 −0.1318 (6) 0.1870 (3) 0.31425 (17) 0.0198 (7)
C16 −0.1975 (6) 0.1025 (3) 0.35634 (18) 0.0232 (7)
H16 −0.349077 0.052284 0.342594 0.028*
C17 −0.0435 (6) 0.0924 (3) 0.41705 (19) 0.0277 (8)
H17 −0.088209 0.034856 0.445145 0.033*
C18 0.1790 (6) 0.1664 (3) 0.4379 (2) 0.0289 (8)
H18 0.284455 0.158951 0.480198 0.035*
C19 0.2474 (6) 0.2504 (3) 0.39741 (19) 0.0259 (7)
H19 0.399428 0.300111 0.411918 0.031*
C20 0.0923 (5) 0.2620 (3) 0.33504 (18) 0.0201 (7)
C21 −0.4220 (5) 0.2885 (3) 0.14433 (18) 0.0204 (7)
Na1 −0.0772 (2) 0.53586 (12) 0.09912 (7) 0.0231 (3)
S2 −1.06094 (15) 0.18210 (8) −0.06033 (5) 0.0275 (2)
O1S −0.8734 (5) 0.1866 (3) 0.00506 (17) 0.0598 (9)
C1S −1.0132 (7) 0.0551 (4) −0.1364 (2) 0.0370 (9)
H1S1 −1.131988 0.047817 −0.181088 0.055*
H1S2 −0.854081 0.072376 −0.148510 0.055*
H1S3 −1.027239 −0.024884 −0.121697 0.055*
C2S −1.3286 (7) 0.1091 (4) −0.0416 (2) 0.0360 (9)
H2S1 −1.457635 0.103949 −0.083129 0.054*
H2S2 −1.308418 0.022976 −0.037569 0.054*
H2S3 −1.367318 0.160165 0.006106 0.054*
O1W 0.2484 (4) 0.4817 (3) 0.02986 (13) 0.0235 (5)
H1WA 0.288 (8) 0.415 (5) 0.034 (3) 0.056 (15)*
H1WB 0.359 (9) 0.536 (5) 0.058 (3) 0.065 (16)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0170 (4) 0.0301 (4) 0.0295 (5) −0.0030 (3) −0.0035 (3) 0.0075 (3)
S1 0.0161 (4) 0.0210 (4) 0.0164 (4) 0.0031 (3) 0.0008 (3) 0.0066 (3)
N1 0.0148 (13) 0.0246 (14) 0.0211 (15) −0.0007 (11) −0.0017 (12) 0.0093 (11)
N2 0.0185 (14) 0.0214 (13) 0.0176 (14) 0.0037 (11) 0.0022 (11) 0.0062 (11)
O1 0.0285 (13) 0.0213 (11) 0.0253 (13) 0.0036 (9) −0.0013 (10) 0.0067 (9)
O2 0.0157 (11) 0.0332 (12) 0.0229 (12) 0.0025 (9) 0.0006 (9) 0.0123 (10)
O3 0.0200 (11) 0.0314 (12) 0.0184 (12) 0.0077 (9) 0.0034 (9) 0.0052 (9)
O4 0.0238 (12) 0.0412 (14) 0.0280 (13) −0.0070 (10) −0.0064 (10) 0.0218 (11)
O5 0.0265 (13) 0.0308 (12) 0.0299 (14) −0.0025 (10) −0.0044 (10) 0.0159 (11)
O6 0.0218 (13) 0.0412 (14) 0.0291 (14) −0.0110 (11) −0.0098 (11) 0.0162 (11)
C1 0.0155 (15) 0.0198 (15) 0.0182 (16) 0.0020 (12) 0.0033 (12) 0.0029 (12)
C2 0.0182 (15) 0.0204 (15) 0.0151 (16) 0.0044 (12) 0.0030 (12) 0.0058 (12)
C3 0.0182 (16) 0.0214 (16) 0.0183 (16) 0.0019 (13) 0.0039 (13) 0.0042 (12)
C4 0.0111 (15) 0.0246 (16) 0.0196 (17) 0.0013 (12) 0.0021 (12) 0.0024 (13)
C5 0.0189 (16) 0.0232 (16) 0.0170 (17) 0.0061 (13) 0.0027 (13) 0.0043 (13)
C6 0.0177 (16) 0.0221 (15) 0.0186 (17) 0.0001 (12) 0.0006 (13) 0.0055 (13)
C7 0.0213 (17) 0.0307 (17) 0.0221 (18) 0.0036 (14) −0.0033 (14) 0.0087 (14)
C11 0.0159 (16) 0.0232 (15) 0.0161 (16) 0.0010 (12) 0.0016 (12) 0.0038 (12)
C12 0.0231 (17) 0.0230 (16) 0.0204 (17) 0.0039 (13) 0.0017 (13) 0.0072 (13)
C13 0.0192 (16) 0.0214 (15) 0.0190 (17) 0.0030 (12) 0.0020 (13) 0.0053 (13)
C14 0.0187 (16) 0.0185 (15) 0.0213 (17) −0.0008 (12) 0.0024 (13) 0.0012 (13)
C15 0.0239 (16) 0.0181 (15) 0.0161 (16) 0.0031 (12) 0.0019 (13) 0.0031 (12)
C16 0.0259 (17) 0.0212 (16) 0.0219 (18) 0.0018 (13) 0.0021 (14) 0.0062 (13)
C17 0.0328 (19) 0.0266 (17) 0.0269 (19) 0.0037 (15) 0.0038 (15) 0.0140 (14)
C18 0.034 (2) 0.0289 (18) 0.0237 (19) 0.0048 (15) −0.0024 (15) 0.0103 (14)
C19 0.0214 (17) 0.0296 (17) 0.0257 (18) 0.0018 (14) −0.0024 (14) 0.0095 (14)
C20 0.0222 (16) 0.0198 (15) 0.0188 (17) 0.0057 (13) 0.0036 (13) 0.0051 (12)
C21 0.0196 (16) 0.0198 (15) 0.0180 (17) −0.0020 (13) −0.0003 (13) 0.0016 (13)
Na1 0.0209 (6) 0.0316 (7) 0.0194 (7) 0.0071 (5) 0.0034 (5) 0.0104 (5)
S2 0.0263 (5) 0.0274 (4) 0.0254 (5) −0.0001 (3) −0.0056 (4) 0.0073 (4)
O1S 0.0366 (16) 0.098 (3) 0.0368 (17) −0.0043 (16) −0.0163 (13) 0.0204 (17)
C1S 0.030 (2) 0.038 (2) 0.039 (2) −0.0021 (16) 0.0134 (17) 0.0039 (17)
C2S 0.033 (2) 0.046 (2) 0.029 (2) 0.0064 (17) 0.0096 (17) 0.0072 (17)
O1W 0.0214 (12) 0.0267 (13) 0.0211 (13) 0.0055 (11) 0.0001 (10) 0.0051 (10)

Geometric parameters (Å, º)

Cl1—C4 1.744 (3) C12—C13 1.463 (5)
S1—O1 1.445 (2) C13—C14 1.358 (4)
S1—O2 1.449 (2) C13—C21 1.487 (4)
S1—O3 1.461 (2) C14—C15 1.437 (4)
S1—C2 1.792 (3) C14—H14 0.9500
N1—N2 1.321 (4) C15—C16 1.407 (4)
N1—C1 1.395 (4) C15—C20 1.408 (5)
N1—H1 0.82 (4) C16—C17 1.369 (5)
N2—C11 1.324 (4) C16—H16 0.9500
O2—Na1 2.614 (3) C17—C18 1.396 (5)
O3—Na1i 2.353 (2) C17—H17 0.9500
O4—C12 1.244 (4) C18—C19 1.384 (5)
O4—Na1 2.283 (2) C18—H18 0.9500
O5—C21 1.215 (4) C19—C20 1.402 (4)
O5—Na1 2.548 (3) C19—H19 0.9500
O6—C21 1.320 (4) Na1—O1Wii 2.408 (3)
O6—H6 0.92 (5) Na1—O1W 2.432 (3)
C1—C6 1.395 (4) Na1—S2iii 3.3866 (15)
C1—C2 1.410 (4) Na1—Na1ii 3.782 (2)
C2—C3 1.392 (4) S2—O1S 1.496 (3)
C3—C4 1.380 (4) S2—C1S 1.774 (4)
C3—H3 0.9500 S2—C2S 1.778 (4)
C4—C5 1.393 (4) C1S—H1S1 0.9800
C5—C6 1.390 (4) C1S—H1S2 0.9800
C5—C7 1.504 (4) C1S—H1S3 0.9800
C6—H6A 0.9500 C2S—H2S1 0.9800
C7—H7A 0.9800 C2S—H2S2 0.9800
C7—H7B 0.9800 C2S—H2S3 0.9800
C7—H7C 0.9800 O1W—H1WA 0.80 (5)
C11—C20 1.464 (4) O1W—H1WB 0.84 (6)
C11—C12 1.467 (4)
O1—S1—O2 113.86 (13) C17—C18—H18 119.7
O1—S1—O3 112.63 (13) C18—C19—C20 119.9 (3)
O2—S1—O3 112.10 (13) C18—C19—H19 120.0
O1—S1—C2 105.64 (13) C20—C19—H19 120.0
O2—S1—C2 107.23 (13) C19—C20—C15 119.1 (3)
O3—S1—C2 104.56 (13) C19—C20—C11 122.1 (3)
N2—N1—C1 119.8 (3) C15—C20—C11 118.8 (3)
N2—N1—H1 115 (3) O5—C21—O6 122.3 (3)
C1—N1—H1 125 (3) O5—C21—C13 124.8 (3)
N1—N2—C11 120.3 (3) O6—C21—C13 112.9 (3)
S1—O2—Na1 141.39 (13) O4—Na1—O3iv 111.35 (10)
S1—O3—Na1i 140.63 (13) O4—Na1—O1Wii 149.04 (11)
C12—O4—Na1 147.7 (2) O3iv—Na1—O1Wii 85.77 (8)
C21—O5—Na1 137.0 (2) O4—Na1—O1W 94.69 (9)
C21—O6—H6 112 (3) O3iv—Na1—O1W 151.14 (10)
N1—C1—C6 120.5 (3) O1Wii—Na1—O1W 77.20 (9)
N1—C1—C2 120.0 (3) O4—Na1—O5 67.73 (8)
C6—C1—C2 119.5 (3) O3iv—Na1—O5 83.28 (8)
C3—C2—C1 118.4 (3) O1Wii—Na1—O5 90.04 (9)
C3—C2—S1 116.2 (2) O1W—Na1—O5 119.38 (10)
C1—C2—S1 125.3 (2) O4—Na1—O2 68.36 (8)
C4—C3—C2 120.8 (3) O3iv—Na1—O2 98.90 (8)
C4—C3—H3 119.6 O1Wii—Na1—O2 136.49 (9)
C2—C3—H3 119.6 O1W—Na1—O2 78.79 (9)
C3—C4—C5 121.9 (3) O5—Na1—O2 133.44 (8)
C3—C4—Cl1 118.0 (2) O4—Na1—S2iii 137.82 (8)
C5—C4—Cl1 120.1 (2) O3iv—Na1—S2iii 71.38 (6)
C6—C5—C4 117.2 (3) O1Wii—Na1—S2iii 71.14 (7)
C6—C5—C7 121.1 (3) O1W—Na1—S2iii 81.06 (7)
C4—C5—C7 121.8 (3) O5—Na1—S2iii 149.09 (7)
C5—C6—C1 122.2 (3) O2—Na1—S2iii 69.67 (6)
C5—C6—H6A 118.9 O4—Na1—Na1ii 126.76 (9)
C1—C6—H6A 118.9 O3iv—Na1—Na1ii 121.08 (8)
C5—C7—H7A 109.5 O1Wii—Na1—Na1ii 38.83 (6)
C5—C7—H7B 109.5 O1W—Na1—Na1ii 38.37 (6)
H7A—C7—H7B 109.5 O5—Na1—Na1ii 108.42 (8)
C5—C7—H7C 109.5 O2—Na1—Na1ii 109.67 (7)
H7A—C7—H7C 109.5 S2iii—Na1—Na1ii 72.20 (4)
H7B—C7—H7C 109.5 O1S—S2—C1S 105.97 (19)
N2—C11—C20 116.4 (3) O1S—S2—C2S 106.36 (19)
N2—C11—C12 123.4 (3) C1S—S2—C2S 97.93 (17)
C20—C11—C12 120.2 (3) O1S—S2—Na1iii 103.09 (14)
O4—C12—C13 122.4 (3) C1S—S2—Na1iii 109.51 (13)
O4—C12—C11 119.5 (3) C2S—S2—Na1iii 131.85 (13)
C13—C12—C11 118.1 (3) S2—C1S—H1S1 109.5
C14—C13—C12 119.5 (3) S2—C1S—H1S2 109.5
C14—C13—C21 120.7 (3) H1S1—C1S—H1S2 109.5
C12—C13—C21 119.8 (3) S2—C1S—H1S3 109.5
C13—C14—C15 123.9 (3) H1S1—C1S—H1S3 109.5
C13—C14—H14 118.1 H1S2—C1S—H1S3 109.5
C15—C14—H14 118.1 S2—C2S—H2S1 109.5
C16—C15—C20 119.9 (3) S2—C2S—H2S2 109.5
C16—C15—C14 120.5 (3) H2S1—C2S—H2S2 109.5
C20—C15—C14 119.6 (3) S2—C2S—H2S3 109.5
C17—C16—C15 120.1 (3) H2S1—C2S—H2S3 109.5
C17—C16—H16 119.9 H2S2—C2S—H2S3 109.5
C15—C16—H16 119.9 Na1ii—O1W—Na1 102.80 (9)
C16—C17—C18 120.3 (3) Na1ii—O1W—H1WA 111 (3)
C16—C17—H17 119.9 Na1—O1W—H1WA 111 (3)
C18—C17—H17 119.9 Na1ii—O1W—H1WB 128 (4)
C19—C18—C17 120.7 (3) Na1—O1W—H1WB 100 (3)
C19—C18—H18 119.7 H1WA—O1W—H1WB 103 (5)
C1—N1—N2—C11 177.3 (3) Na1—O4—C12—C11 −172.1 (3)
O1—S1—O2—Na1 109.0 (2) N2—C11—C12—O4 1.6 (5)
O3—S1—O2—Na1 −20.3 (2) C20—C11—C12—O4 −179.9 (3)
C2—S1—O2—Na1 −134.49 (19) N2—C11—C12—C13 −178.0 (3)
O1—S1—O3—Na1i 118.6 (2) C20—C11—C12—C13 0.4 (4)
O2—S1—O3—Na1i −111.4 (2) O4—C12—C13—C14 179.9 (3)
C2—S1—O3—Na1i 4.4 (2) C11—C12—C13—C14 −0.4 (4)
N2—N1—C1—C6 6.2 (4) O4—C12—C13—C21 −0.5 (5)
N2—N1—C1—C2 −173.9 (3) C11—C12—C13—C21 179.2 (3)
N1—C1—C2—C3 178.7 (3) C12—C13—C14—C15 0.7 (5)
C6—C1—C2—C3 −1.5 (4) C21—C13—C14—C15 −178.9 (3)
N1—C1—C2—S1 −3.8 (4) C13—C14—C15—C16 178.2 (3)
C6—C1—C2—S1 176.0 (2) C13—C14—C15—C20 −1.0 (5)
O1—S1—C2—C3 −37.7 (3) C20—C15—C16—C17 −0.5 (5)
O2—S1—C2—C3 −159.4 (2) C14—C15—C16—C17 −179.7 (3)
O3—S1—C2—C3 81.4 (2) C15—C16—C17—C18 0.4 (5)
O1—S1—C2—C1 144.8 (3) C16—C17—C18—C19 −0.2 (5)
O2—S1—C2—C1 23.0 (3) C17—C18—C19—C20 0.2 (5)
O3—S1—C2—C1 −96.2 (3) C18—C19—C20—C15 −0.3 (5)
C1—C2—C3—C4 0.7 (4) C18—C19—C20—C11 178.3 (3)
S1—C2—C3—C4 −177.0 (2) C16—C15—C20—C19 0.5 (4)
C2—C3—C4—C5 0.9 (5) C14—C15—C20—C19 179.7 (3)
C2—C3—C4—Cl1 −179.8 (2) C16—C15—C20—C11 −178.2 (3)
C3—C4—C5—C6 −1.6 (4) C14—C15—C20—C11 1.0 (4)
Cl1—C4—C5—C6 179.1 (2) N2—C11—C20—C19 −0.8 (4)
C3—C4—C5—C7 178.3 (3) C12—C11—C20—C19 −179.4 (3)
Cl1—C4—C5—C7 −1.0 (4) N2—C11—C20—C15 177.8 (3)
C4—C5—C6—C1 0.8 (4) C12—C11—C20—C15 −0.7 (4)
C7—C5—C6—C1 −179.1 (3) Na1—O5—C21—O6 173.8 (2)
N1—C1—C6—C5 −179.4 (3) Na1—O5—C21—C13 −5.9 (5)
C2—C1—C6—C5 0.8 (4) C14—C13—C21—O5 −179.7 (3)
N1—N2—C11—C20 −176.5 (3) C12—C13—C21—O5 0.8 (5)
N1—N2—C11—C12 2.0 (4) C14—C13—C21—O6 0.6 (4)
Na1—O4—C12—C13 7.6 (6) C12—C13—C21—O6 −178.9 (3)

Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z; (iii) −x−1, −y+1, −z; (iv) x−1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.82 (4) 2.14 (4) 2.747 (3) 131 (3)
N1—H1···O4 0.82 (4) 1.84 (4) 2.532 (4) 141 (4)
O6—H6···O1S 0.92 (5) 1.67 (5) 2.575 (4) 168 (4)
O1W—H1WA···O5i 0.80 (5) 2.33 (5) 2.944 (3) 134 (4)
O1W—H1WA···O1Si 0.80 (5) 2.48 (5) 3.138 (5) 140 (4)
O1W—H1WB···O3 0.84 (6) 2.11 (6) 2.942 (3) 176 (5)

Symmetry code: (i) x+1, y, z.

References

  1. Bekö, S. L., Hammer, S. M. & Schmidt, M. U. (2012a). Angew. Chem. Int. Ed. 51, 4735–4738. [DOI] [PubMed]
  2. Bekö, S. L., Hammer, S. M. & Schmidt, M. U. (2012b). Angew. Chem. 124, 4814–4818.
  3. Czajkowski, W. (1980). Dyes Pigments, 1, 17–25.
  4. Gilli, P., Bertolasi, V., Pretto, L., Antonov, L. & Gilli, G. (2005). J. Am. Chem. Soc. 127, 638–640. [DOI] [PubMed]
  5. Hunger, K. & Schmidt, M. U. (2018). Industrial Organic Pigments: Production, Properties, Applications. Weinheim: Wiley-VCH.
  6. Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). Chem. Eur. J. 10, 4606–4615. [DOI] [PubMed]
  7. Kennedy, A. R., McNair, C., Smith, W. E., Chisholm, G. & Teat, S. J. (2000). Angew. Chem. Int. Ed. 39, 638–640. [DOI] [PubMed]
  8. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  9. Schmidt, M. U., Brüning, J., Wirth, D. & Bolte, M. (2008). Acta Cryst. C64, o474–o477. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  12. Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
  13. Tapmeyer, L., Hill, S., Bolte, M. & Hützler, W. M. (2020). Acta Cryst. C76, 716–722. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Xie, S.-F., Huang, L.-Q., Zhong, L., Lai, B.-L., Yang, M., Chen, W.-B., Zhang, Y.-Q. & Dong, W. (2019). Inorg. Chem. 58, 5914–5921. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002577/yk2145sup1.cif

e-77-00402-sup1.cif (618.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002577/yk2145Isup2.hkl

e-77-00402-Isup2.hkl (308KB, hkl)

CCDC reference: 2068733

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES