Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 19;77(Pt 4):406–411. doi: 10.1107/S2056989021002735

Structural characterization of quaternary selenites of tungsten(VI), A 2W3SeO12 (A = NH4, Cs, Rb, K or Tl)

Vineela Balisetty a, Kanamaluru Vidyasagar a,*
PMCID: PMC8025859  PMID: 33936766

The quaternary A 2W3SeO12 (A = NH4, Cs, Rb, K or Tl) selenites have been prepared in the form of single crystals by hydro­thermal and novel solid-state reactions. They were characterized by X-ray diffraction, thermal and spectroscopic studies. All of them have a hexa­gonal tungsten oxide (HTO) related [W3SeO12]2− anionic framework with pyramidally coordinated Se4+ ions.

Keywords: single-crystal X-ray structure, quaternary selenite, tungsten

Abstract

The quaternary A 2W3SeO12 (A = NH4, Cs, Rb, K or Tl) selenites have been prepared in the form of single crystals by hydro­thermal and novel solid-state reactions. They were characterized by X-ray diffraction, thermal and spectroscopic studies. All of them have a hexa­gonal tungsten oxide (HTO) related [W3SeO12]2− anionic framework with pyramidally coordinated Se4+ ions. The known A 2W3SeO12 (A = NH4, Cs or Rb) compounds are isostructural with the Cs2W3TeO12 compound and have a non-centrosymmetric layered structure containing intra-layer Se—O bonds. The new compound K2W3SeO12(α) is isostructural with the K2W3TeO12 compound and has a centrosymmetric three-dimensional structure containing inter­layer Se—O bonds. It is inferred that the new Tl2W3SeO12 compound has the same three-dimensional structure as K2W3SeO12(α).

Chemical context  

Non-centrosymmetric (NCS) compounds are widely studied as they have potentially useful symmetry-dependent properties such as piezoelectricity, ferroelectricity and second-order non-linear optical (NLO) behaviour (Halasyamani & Poeppelmeier 1998). Many crystalline selenites and tellurites containing d 0 transition-metal ions such as V5+, Mo6+, W6+ are non-centrosymmetric compounds. The solid-state chemistry of these oxides is inter­esting from the point of view of both structural diversity and second harmonic generation (SHG) activity. They have two types of second-order Jahn–Teller (SOJT) distortion. One is the distorted octa­hedral coordination of the d 0 transition-metal ion and the other is pyramidal, disphenoidal and square-pyramidal coordinations of Se4+ and Te4+, which have stereoactive lone pairs. Both SOJT distortions lead to acentric coordination environments that are conducive for NCS structures (Halasyamani 2004). For example, Cs2Mo3TeO12 (Vidyavathy Balraj & Vidyasagar, 1998) and YVSe2O8 (Kim et al., 2014) have non-centrosymmetric layered structures with these SOJT distortions and exhibit SHG activity. It needs to be mentioned that quaternary selenites and tellurites containing d 0 transition-metal ions, such as YVTe2O8 (Kim et al., 2014), are also known to have centrosymmetric structures and exhibit no SHG activity.

A 2Mo3SeO12 (A = NH4, Cs, Rb, Tl) (Harrison et al., 1994; Dussack et al., 1996; Chang et al., 2010), A 2W3SeO12 (A = NH4, Cs, Rb, K) (Harrison et al., 1995; Huang et al., 2014a ,b ) and Na2W3SeO12·2H2O (Nguyen & Halasyamani 2013), A 2Mo3TeO12 (A = Cs, NH4) (Vidyavathy Balraj & Vidyasagar 1998), A 2W3TeO12 (A = K, Rb and Cs) (Goodey et al., 2003; Zhao et al., 2015) are the 14 quaternary selenites and tellurites of hexa­valent molybdenum and tungsten that have hexa­gonal tungsten oxide (HTO) related [M 3 XO12]2− (M = Mo, W; X = Se, Te) anionic frameworks with pyramidally coordinated Se4+ and Te4+ ions. The single-crystal X-ray structures were determined for all except for the A 2W3SeO12 (A = NH4, Cs, Rb) compounds, which were synthesized in polycrystalline form by the hydro­thermal method; the structures of the (NH4)2W3SeO12 and Cs2W3SeO12 compounds were determined by powder neutron diffraction (Harrison et al., 1995). K2W3TeO12 has a centrosymmetric three-dimensional structure (Goodey et al., 2003), whereas all of the others exhibit a non-centrosymmetric two-dimensional structure and show SHG response. It is noteworthy that the tellurites were synthesized by both hydro­thermal and solid-state reactions, whereas the selenites were synthesized only by the hydro­thermal method.

Ag2Mo3SeO12 (Ling & Albrecht-Schmitt 2007), Li2Mo3TeO12 (Oh et al., 2018) and A 4Mo6Te2O24·6H2O (A = Rb, K) (Vidyavathy Balraj & Vidyasagar 1998) compounds are quaternary selenite and tellurites of molybdenum, whose [Mo3 XO12]2− (X = Se, Te) anionic framework structures are not related to HTO. They have centrosymmetric layered and zero-dimensional structures and contain pyramidally coordinated Se4+ and pyramidally and disphenoidally coordinated Te4+ ions.

In this context, the structural characterization of new and known quaternary A 2W3SeO12 (A = NH4, Cs, Rb, K, Tl) selenites of tungsten(VI) by single-crystal X-ray diffraction was considered necessary for their complete structural study and, therefore, was undertaken. This report is concerned with crystal growth by solid-state reactions and structural characterization of the known compounds A 2W3SeO12 [A = NH4 (1), Cs (2) and Rb (3)] and new compounds K2W3SeO12 () and Tl2W3SeO12 (5).

Structural commentary  

The structures of compounds 15 are of two types, which contain a hexa­gonal tungsten oxide (HTO) related [W3SeO12]2− anionic framework. (NH4)2W3SeO12 (1), Cs2W3SeO12 (2) and Rb2W3SeO12 (3) crystallize in the P63 space group and have the structure of Cs2W3TeO12 (Zhao et al., 2015). They contain ammonium/caesium/rubidium ions between non-centrosymmetric HTO-related [W3SeO12]2− layers, which have only intra-layer type Se—O bonds. The absolute structure configuration of the rubidium compound (3) is the inverse of that of the ammonium (1) and caesium (2) compounds.

As an illustrative example, the structure of Rb2W3SeO12 (3) is discussed. Its asymmetric unit content of Rb2/3WTe1/3O4 has two, one, one and four crystallographically distinct rubidium, tungsten, selenium and oxygen atoms, respectively. The tungsten atom is octa­hedrally coordinated to the apical O1 and O2 atoms and two each of equatorial O3 and O4 atoms (Fig. 1). The WO6 octa­hedron resides near the threefold rotation axis located at the Wyckoff site 2a and shares its two cis O3 equatorial oxygen atoms with two such octa­hedra to form a W3O15 moiety. Such trinuclear moieties are connected to one another through sharing of equatorial O4 atoms, forming a hexa­gonal–tungsten–oxide (HTO) layer of composition WO4 or W3O12. In other words, the HTO layer of WO4 is formed from the sharing of four equatorial O3 and O4 atoms of every WO6 octa­hedron with four such octa­hedra. The HTO layer of WO4 has three-ring holes made of either O3 or O4 atoms and six-ring holes made of alternating O3 and O4 atoms. The selenium atom resides on a threefold rotation axis located at the 2a site and has a pyramidal coordination of C 3V symmetry, with three equivalent Se—O1 bonds. Thus, only three-ring holes of O3 are capped on one side of the layer, by bonding of the selenium atom to apical O1 oxygen atoms, to give rise to an asymmetric (W3SeO12)2− layer. These layers are stacked, as shown in Fig. 1, along the crystallographic c-axis direction in the ABAB… fashion because adjacent layers are rotated with respect to each other such that the six-ring hole of one layer is above the uncapped three-ring hole of the next layer. As the other apical oxygen O2 atoms are not bonded to selenium, the Se—O bonding is described as intra-layer bonding and, therefore, the structure is two-dimensional. The pyramidal SeO3 moieties and the lone-pair of electrons of Se4+ are respectively parallel and perpendicular to the HTO layers of WO4. The selenites 15 of the present study are found to contain the same staggered stacking of the HTO-related WO4 layers.

Figure 1.

Figure 1

Polyhedral representation of (left) the unit-cell structure viewed along the a axis and (right) a (W3SeO12)2− layer along with the Rb+ counter-cations, viewed along the c axis, of Rb2W3SeO12 (3). A W3O15 moiety with a pyramidal selenium atom is indicated by a dashed red line and the net dipole directions of the WO6 octa­hedra and pyramidal SeO3 are shown.

K2W3SeO12 (β) was reported (Huang et al., 2014a ,b ) to be obtained under hydro­thermal conditions and found to contain similar non-centrosymmetric HTO-related [W3SeO12]2− layers with intra-layer Se—O bonds. On the other hand, K2W3SeO12 () of the present study was prepared by solid-state reaction and is isostructural with the reported K2W3TeO12 (Goodey et al., 2003). Its centrosymmetric, three-dimensional HTO-related [W3SeO12]2− framework contains inter-layer Se—O bonds (Fig. 2) and its asymmetric unit has one formula unit. The three W1—W3 atoms are octa­hedrally coordinated to six apical O1–O6 and six equatorial O7–O12 oxygen atoms. The three WO6 octa­hedra in the trinuclear W1W2W3O15 moieties share equatorial O7–O9 oxygen atoms and these moieties are connected to one another through the other equatorial O10–O12 oxygen atoms to form the WO4 layer. The Se atom forms inter­layer Se—O bonds, by bonding to the apical O7, O10 and O12 oxygen atoms of W1W2W3O15 moieties of adjacent HTO layers (Fig. 2) and thus the [W3SeO12]2− framework is three-dimensional in nature.

Figure 2.

Figure 2

Polyhedral representation of (left) the unit-cell structure viewed along the −a axis and (right) a segment of the (W3SeO12)2− structure along with the K+ counter-cations, viewed along the −b axis, of K2W3SeO12 (). A W1W2W3O15 moiety with pyramidal selenium is indicated by a dashed red line and the net dipole directions of octa­hedral WO6 and pyramidal SeO3 are shown.

Tl2W3SeO12 (5) has an ortho­rhom­bic unit cell with a o = 11.5962 (10) Å, b o = 12.7206 (5) Å and c o = 7.2362 (9) Å. The structure refinements in the non-centrosymmetric Pna21 and centrosymmetric Pnam space groups led to the respective structure agreement factor values of 6.37% and 15.98%; the structure refinements were unsatisfactory, mostly due to X-ray absorption. Its single crystal X-ray structure solution model is found to be same as the three-dimensional structure of K2W3SeO12 () and its observed powder XRD pattern (Figure S1b in the supporting information) agrees reasonably with the one simulated on the basis of this model structure. Moreover, the powder XRD patterns and unit-cell parameters of these two compounds are similar. The ortho­rhom­bic unit-cell parameters of the thallium (5) compound are related to the monoclinic unit-cell parameters of the potassium (4 α) compound as follows: a ob m, b oc m, c oa m and α o = 90° ≃ β m. The single-crystal X-ray data for the thallium compound (5) in the centrosymmetric P21/n space group, corresponding to the potassium compound (4 α), led to the same structure model and a high value of 19.18% for the structure-agreement factor. It is inferred from these observations that the Tl2W3SeO12 compound (5) has the same three-dimensional structure as K2W3SeO12 ().

In the structurally characterized compounds 1 of the present study, the WO6 octa­hedra have C 3 distortion as three W—O bonds are <1.9 Å long and their three trans W—O bonds are >1.9 Å long; the values of WO6 intra­octa­hedral distortions (Halasyamani 2004), Δd, are calculated to be in the 0.73–0.86 range (Table S1). The Se4+ ions have pyramidal coordination. The W—O and Se—O bond-length values are in the 1.703 (17)–2.184 (9) Å and 1.695 (10)–1.739 (10) Å ranges, respectively. The ammonium and alkali metal ions are found to be six- to nine-coordinated (Figure S2), when the cut-off value of 3.6 Å is considered for N⋯O non-bonding distances and A—O bond lengths. The calculated values (Brese & O’Keeffe 1991) of bond-valence sums for W6+, Se4+ and monovalent alkali metal ions are in the 6.079–6.283, 3.807–3.975 and 0.060–1.275 ranges, respectively. The respective values of 3.210, 3.322 and 3.207 Å for the shortest inter­layer O⋯O non-bonding distances of compounds 13 with intra-layer Se—O bonds are significantly higher than the corresponding value of 2.563 Å for compound with inter­layer Se—O bonds.

The net dipole moment values for the WO6 and SeO3 polyhedra were calculated by vector summation of the dipole moments (Maggard et al., 2003; Ok & Halasyamani 2005; Galy et al., 1975) of six W—O bonds and three Se—O bonds and found to be in the 0.79–1.85 D and 5.73–9.13 D ranges, respectively (Tables S1–S3). The net dipole for the WO6 octa­hedron points towards the triangular face of three oxygen atoms with W—O bonds >1.9 Å long, whereas the net dipoles for the SeO3 polyhedra point opposite to the lone pair of electrons of selenium. In compounds 13, as shown for Rb2W3SeO12 (3) in Fig. 1, the intra-layer SeO3 dipole is oriented along the c-axis direction and perpendicular to the HTO layer. For the WO6 octa­hedra, the net dipole moment components along the a and b axes cancel one another, whereas the c-axis component is anti­parallel and additive to the net dipole moment of pyramidal SeO3. In the case of centrosymmetric three-dimensional K2W3SeO12 (), as shown in Fig. 2, the net dipole moments of the WO6 and SeO3 polyhedra macroscopically cancel one another and result in a zero net dipole moment.

The solid state UV–Visible absorption spectra (Fig. 3) of compounds 15 reveal that their band gap values are in the range 2.7–3.5 eV (Kubelka & Munk, 1931). The additional absorption edge observed for the Tl2W3SeO12 compound (5) corresponds to band gap value of 2.0 eV. When compared to Cs2W3SeO12 (2), the corresponding Cs2W3TeO12 tellurite (Zhao et al., 2015) has a lower band gap of 2.89 eV.

Figure 3.

Figure 3

Solid state UV–visible absorption spectra for the A 2W3SeO12 [A = NH4 (1), Cs (2), Rb (3), K () and Tl (5)] compounds.

Rb2W3SeO12 (3), K2W3SeO12 () and Tl2W3SeO12 (5) undergo thermal decompositions and give rise to endothermic peaks at ∼600, ∼575 and ∼575°C and their respective observed weight losses of 10.0%, 12.3% and 9.0% compare well with those calculated for the loss of SeO2 (Figure S3). The other endothermic peaks at ∼850 and 750°C could not be assigned. It was reported (Harrison et al., 1995) that a similar thermal loss of SeO2 occurs in a single step between 500 and 600°C for Cs2W3SeO12 (2) and in two steps at 350 and 450°C for (NH4)2W3SeO12 (1). When compared to the tungsten selenites 15, analogous A 2W3TeO12 (A = K, Rb, Cs) tellurites of tungsten (Goodey et al., 2003; Zhao et al., 2015) and A 2Mo3SeO12 (A = Rb, Tl) selenites of molybdenum (Chang et al., 2010) undergo single-step thermal decomposition at higher and lower temperatures of >700 and 300°C, respectively.

Syntheses and crystallization  

Cs2CO3 (Alfa Aesar), Rb2CO3 (Alfa Aesar), TlNO3 (Sigma Aldrich), H2WO4 (Sigma Aldrich), SeO2 (Sigma Aldrich), NH4Cl (Sarabhai M Chemicals) of >99% purity, NH4OH (Fischer Scientific) of 25% dilution, WO3 and Tl2WO4 were used for the synthesis and crystal growth of compounds 15. WO3 was obtained by heating H2WO4 in the open air. Tl2WO4 was prepared by heating a stoichiometric mixture of TlNO3 and H2WO4. Teflon-lined stainless steel acid digestion vessels of 23 mL capacity were employed for the hydro­thermal reactions.

The reactants and their qu­anti­ties, the temperature and duration of heating and the yields of products for the synthesis and crystal growth of compounds 15 are presented in Table S4. The ammonium compound (1) was synthesized by the hydro­thermal method, with or without NH4Cl as mineralizer. The other four compounds (25) were obtained by solid-state reactions. The reactant mixtures were heated first in the open air and later in evacuated sealed silica ampoules. After the reaction, the solid product contents were washed with water to dissolve away the excess SeO2.

The hydro­thermal and solid-state synthetic methods enabled the growth and isolation of single crystals of compounds 15. The utilization of excess SeO2 as flux in the novel solid-state synthetic procedure facilitated the growth of single crystals of compounds 25. The powder XRD patterns of compounds 15 are presented in Figures S1a and S1b. (NH4)2W3SeO12 (1), Rb2W3SeO12 (3) and Tl2W3SeO12 (5) were obtained as homogeneous phases, as their observed powder XRD patterns compare reasonably well with the simulated ones. The powder XRD patterns of Cs2W3SeO12 (2), Rb2W3SeO12 (3) and K2W3SeO12 () contained two or three additional reflections of <10% intensity due to WO3 or an unidentified phase; however, the homogeneous polycrystalline sample of Rb2W3SeO12 (3) could be obtained (Figure S1b), under a different set of solid-state synthetic conditions mentioned in Table S4. Cs2W3SeO12 (2) was prepared in polycrystalline form by the reported hydro­thermal method (Harrison et al., 1995). It is evident from the scanning electron micrographs (Figure S4) that crystallites of compounds 1 and 2 have a hexa­gonal prism shape and compounds 35 have block-shaped morphologies. The EDXA analyses confirmed the expected ratios of metal contents for all compounds 15.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. The crystals of the ammonium (1) and rubidium (3) compounds are twinned by merohedry (Spek 2020) by the [−1 0 0 1 1 0 0 0 − 1] and [1 0 0 − 1 −1 0 0 0 − 1] twin laws and their twinned lattices are generated through twofold rotation of the primary lattices about the [120] direction and the b axis, respectively. The crystal of the potassium () compound is twinned by pseudo-merohedry (Spek 2020) by the twin law [−1 0 0 0 − 1 0 0 0 1] and the twinned lattice is generated through twofold rotation of the primary lattice about the c axis, as the value of the β angle of its monoclinic system is very close to 90°. The respective values of refined batch scale factor for the ammonium (1), rubidium (3) and potassium () compounds are 0.029, 0.192 and 0.385. The hydrogen atoms of the NH4 + ions in the ammonium compound (1) were not located in the difference-Fourier maps but are included in the formula. The final difference-Fourier maps did not show any chemically significant features and the Fourier difference peaks with an electron density of >1 e Å−3 were found to be ghosts. No reasonable structure solutions and refinements in the centrosymmetric P63/m space group were found for compounds 13.

Table 1. Experimental details.

  1 2 3 4
Crystal data
Chemical formula (NH4)2W3SeO12 Cs2W3SeO12 Rb2W3SeO12 K2W3SeO12
M r 858.59 1088.33 993.40 900.66
Crystal system, space group Hexagonal, P63 Hexagonal, P63 Hexagonal, P63 Monoclinic, P21/n
Temperature (K) 297 293 293 293
a, b, c (Å) 7.2303 (3), 7.2303 (3), 12.1491 (5) 7.2580 (3), 7.2580 (3), 12.5291 (5) 7.2380 (1), 7.2380 (1), 12.1115 (3) 7.2310 (2), 11.4863 (4), 12.6486 (4)
α, β, γ (°) 90, 90, 120 90, 90, 120 90, 90, 120 90, 90.096 (2), 90
V3) 550.03 (5) 571.59 (5) 549.50 (2) 1050.56 (6)
Z 2 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 34.67 39.63 43.49 37.09
Crystal size (mm) 0.10 × 0.10 × 0.05 0.10 × 0.08 × 0.05 0.10 × 0.05 × 0.05 0.08 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.129, 0.276 0.110, 0.242 0.098, 0.220 0.155, 0.524
No. of measured, independent and observed [I > 2σ(I)] reflections 14419, 1079, 1069 2825, 831, 730 3497, 675, 654 26562, 4026, 3456
R int 0.049 0.058 0.033 0.073
(sin θ/λ)max−1) 0.702 0.643 0.666 0.770
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.023, 0.052, 1.27 0.029, 0.054, 1.02 0.018, 0.033, 1.06 0.032, 0.105, 1.15
No. of reflections 1079 831 675 4026
No. of parameters 57 56 57 165
No. of restraints 1 13 7 24
H-atom treatment H-atom parameters not defined
Δρmax, Δρmin (e Å−3) 2.63, −2.37 1.90, −1.65 0.90, −1.14 3.94, −3.11
Absolute structure Flack x determined using 492 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 297 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 182 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)  
Absolute structure parameter 0.015 (13) 0.00 (3) −0.08 (3)

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXT (Sheldrick, 2015a ), SHELXL2013 (Sheldrick, 2015b ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Pennington, 1999) and SHELXL97 (Sheldrick, 2008).

The powder X-ray diffraction (XRD) patterns of compounds 15 were recorded on a Bruker D8 Advanced powder X-ray diffractometer using Cu Kα (λ = 1.5418 Å) radiation. The monophasic nature of each of these compounds was verified by comparing their powder XRD patterns with those simulated, using Mercury (Macrae et al., 2020), on the basis of their single crystal X-ray structures.

Supplementary Material

Crystal structure: contains datablock(s) global, NH42W3SeO121, Cs2W3SeO122, Rb2W3SeO123, K2W3SeO124. DOI: 10.1107/S2056989021002735/ru2074sup1.cif

e-77-00406-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) NH42W3SeO121. DOI: 10.1107/S2056989021002735/ru2074NH42W3SeO121sup2.hkl

Supporting information file. DOI: 10.1107/S2056989021002735/ru2074sup6.pdf

e-77-00406-sup6.pdf (805KB, pdf)

Rietveld powder data: contains datablock(s) NH42W3SeO121. DOI: 10.1107/S2056989021002735/ru2074NH42W3SeO121sup7.rtv

Structure factors: contains datablock(s) Cs2W3SeO122. DOI: 10.1107/S2056989021002735/ru2074Cs2W3SeO122sup3.hkl

Rietveld powder data: contains datablock(s) Cs2W3SeO122. DOI: 10.1107/S2056989021002735/ru2074Cs2W3SeO122sup8.rtv

Structure factors: contains datablock(s) Rb2W3SeO123. DOI: 10.1107/S2056989021002735/ru2074Rb2W3SeO123sup4.hkl

Rietveld powder data: contains datablock(s) Rb2W3SeO123. DOI: 10.1107/S2056989021002735/ru2074Rb2W3SeO123sup9.rtv

Rietveld powder data: contains datablock(s) K2W3SeO124. DOI: 10.1107/S2056989021002735/ru2074K2W3SeO124sup10.rtv

Structure factors: contains datablock(s) K2W3SeO124. DOI: 10.1107/S2056989021002735/ru2074K2W3SeO124sup5.hkl

CCDC references: 2000910, 2000899, 2000898, 2000897

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Miss Rintu Robert helped immensely by redoing the single-crystal X-ray structure determinations and some of the crystal growth experiments. We thank Mrs S. Srividya and Mr V. Ramkumar of the Department of Chemistry for the powder and single-crystal X-ray data collection, respectively. The X-ray powder diffractometer in the Department of Chemistry of the IIT Madras was purchased with financial assistance, received under the FIST scheme (SR/FST/CSI-158/2007), from the SERC Division of the Department of Science and Technology, Ministry of Science and Technology, Government of India. We thank the Departments of Chemistry, Physics and SAIF of the IIT Madras for the powder and single-crystal X-ray data, SEM, EDXA and thermal studies.

supplementary crystallographic information

Diammonium tritungsten selenite (NH42W3SeO121). Crystal data

(NH4)2W3SeO12 Dx = 5.184 Mg m3
Mr = 858.59 Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63 Cell parameters from 7856 reflections
a = 7.2303 (3) Å θ = 3.3–30.4°
c = 12.1491 (5) Å µ = 34.67 mm1
V = 550.03 (5) Å3 T = 297 K
Z = 2 Block, colourless
F(000) = 748 0.10 × 0.10 × 0.05 mm

Diammonium tritungsten selenite (NH42W3SeO121). Data collection

Bruker APEXII CCD diffractometer 1069 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.049
φ and ω scans θmax = 30.0°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −10→10
Tmin = 0.129, Tmax = 0.276 k = −10→10
14419 measured reflections l = −17→17
1079 independent reflections

Diammonium tritungsten selenite (NH42W3SeO121). Refinement

Refinement on F2 w = 1/[σ2(Fo2) + (0.0097P)2 + 8.3615P] where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full (Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.023 Δρmax = 2.63 e Å3
wR(F2) = 0.052 Δρmin = −2.37 e Å3
S = 1.27 Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1079 reflections Extinction coefficient: 0.0100 (5)
57 parameters Absolute structure: Flack x determined using 492 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.015 (13)
H-atom parameters not defined

Diammonium tritungsten selenite (NH42W3SeO121). Special details

Experimental. Single crystals of compounds 1–5 were obtained along with the polycrystalline sample and the crystals were hand-picked for XRD study and mounted on thin glass fibres with epoxy glue and optically aligned on a Bruker APEXII charge-coupled device X-ray diffractometer using a digital camera. Intensity data were measured at 25 °C using Mo Kα (λ = 0.7103 Å) radiation. APEX II software (Bruker AXS) was used for preliminary determination of the cell constants and data collection control. The determination of integral intensities and global refinement were performed using SAINT-plus (Bruker AXS). A semi-empirical absorption correction was subsequently applied using SADABS. Space group determination, structure solution and least-squares refinement were carried out using SHELXTL (Sheldrick 2008) program. DIAMOND 3.0 (PENNINGTON 1999) and ORTEP-3 (Farrugia 1997) for windows were the graphic programs employed to draw the structures. The structures were solved by direct methods and refined by full matrix least squares on F2.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component twin

Diammonium tritungsten selenite (NH42W3SeO121). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.333333 0.666667 0.115 (3) 0.042 (8)
N2 0.666667 0.333333 0.237 (2) 0.025 (5)
W 0.19142 (6) 0.33979 (5) 0.40000 (10) 0.00766 (15)
Se 0.000000 0.000000 0.16680 (15) 0.0102 (5)
O1 0.1264 (15) 0.2465 (16) 0.2271 (7) 0.0134 (17)
O2 0.4083 (16) 0.1964 (16) 0.0370 (8) 0.0137 (18)
O3 0.2494 (12) 0.1188 (12) 0.4103 (12) 0.0101 (19)
O4 0.0850 (15) 0.5365 (14) 0.3526 (8) 0.0111 (16)

Diammonium tritungsten selenite (NH42W3SeO121). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.052 (13) 0.052 (13) 0.023 (14) 0.026 (7) 0.000 0.000
N2 0.025 (8) 0.025 (8) 0.024 (12) 0.012 (4) 0.000 0.000
W 0.0069 (2) 0.00476 (19) 0.0108 (2) 0.00250 (14) −0.0007 (3) −0.0006 (3)
Se 0.0091 (5) 0.0091 (5) 0.0124 (12) 0.0045 (2) 0.000 0.000
O1 0.013 (4) 0.010 (4) 0.015 (4) 0.005 (4) −0.004 (3) 0.001 (3)
O2 0.010 (4) 0.013 (5) 0.016 (4) 0.004 (4) −0.001 (3) 0.002 (3)
O3 0.006 (3) 0.006 (3) 0.019 (5) 0.003 (2) −0.002 (5) 0.005 (5)
O4 0.011 (4) 0.004 (4) 0.018 (4) 0.004 (3) −0.003 (3) −0.002 (3)

Diammonium tritungsten selenite (NH42W3SeO121). Geometric parameters (Å, º)

W—O2i 1.722 (10) W—O1 2.184 (9)
W—O3 1.848 (8) Se—O1iii 1.709 (10)
W—O4ii 1.874 (9) Se—O1 1.709 (10)
W—O3iii 1.985 (8) Se—O1iv 1.709 (10)
W—O4 2.010 (9)
O2i—W—O3 99.2 (6) O3—W—O1 84.5 (5)
O2i—W—O4ii 99.3 (5) O4ii—W—O1 86.0 (4)
O3—W—O4ii 96.7 (4) O3iii—W—O1 80.7 (5)
O2i—W—O3iii 93.4 (6) O4—W—O1 81.0 (4)
O3—W—O3iii 89.7 (4) O1iii—Se—O1 102.9 (4)
O4ii—W—O3iii 164.6 (5) O1iii—Se—O1iv 102.9 (4)
O2i—W—O4 94.7 (4) O1—Se—O1iv 102.9 (4)
O3—W—O4 164.5 (5) Se—O1—W 130.9 (5)
O4ii—W—O4 87.8 (6) W—O3—Wiv 149.1 (5)
O3iii—W—O4 82.6 (4) Wv—O4—W 132.5 (5)
O2i—W—O1 173.1 (4)

Symmetry codes: (i) xy, x, z+1/2; (ii) −y+1, xy+1, z; (iii) −y, xy, z; (iv) −x+y, −x, z; (v) −x+y, −x+1, z.

Dicaesium tritungsten selenite (Cs2W3SeO122). Crystal data

Cs2W3SeO12 Dx = 6.323 Mg m3
Mr = 1088.33 Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63 Cell parameters from 706 reflections
a = 7.2580 (3) Å θ = 3.6–26.3°
c = 12.5291 (5) Å µ = 39.63 mm1
V = 571.59 (5) Å3 T = 293 K
Z = 2 Block, colourless
F(000) = 924 0.10 × 0.08 × 0.05 mm

Dicaesium tritungsten selenite (Cs2W3SeO122). Data collection

Bruker APEXII CCD diffractometer 730 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.058
phi and ω scans θmax = 27.2°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −6→8
Tmin = 0.110, Tmax = 0.242 k = −9→9
2825 measured reflections l = −16→14
831 independent reflections

Dicaesium tritungsten selenite (Cs2W3SeO122). Refinement

Refinement on F2 w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full (Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.029 Δρmax = 1.90 e Å3
wR(F2) = 0.054 Δρmin = −1.65 e Å3
S = 1.02 Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
831 reflections Extinction coefficient: 0.0081 (4)
56 parameters Absolute structure: Flack x determined using 297 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
13 restraints Absolute structure parameter: 0.00 (3)

Dicaesium tritungsten selenite (Cs2W3SeO122). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dicaesium tritungsten selenite (Cs2W3SeO122). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cs1 0.333333 0.666667 0.0902 (2) 0.0269 (9)
Cs2 0.666667 0.333333 0.22953 (19) 0.0143 (7)
W 0.14949 (10) 0.33884 (11) 0.39443 (8) 0.0056 (2)
Se 0.000000 0.000000 0.1700 (2) 0.0058 (7)
O1 0.125 (2) 0.250 (2) 0.2270 (11) 0.007 (3)
O2 0.401 (2) 0.207 (2) 0.0265 (14) 0.015 (3)
O3 0.2495 (18) 0.1279 (17) 0.4056 (14) 0.008 (3)
O4 0.088 (2) 0.549 (2) 0.3529 (11) 0.010 (3)

Dicaesium tritungsten selenite (Cs2W3SeO122). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cs1 0.0277 (13) 0.0277 (13) 0.0251 (16) 0.0139 (6) 0.000 0.000
Cs2 0.0160 (10) 0.0160 (10) 0.0110 (13) 0.0080 (5) 0.000 0.000
W 0.0048 (4) 0.0031 (4) 0.0083 (4) 0.0016 (3) 0.0004 (5) −0.0001 (5)
Se 0.0066 (9) 0.0066 (9) 0.0042 (18) 0.0033 (5) 0.000 0.000
O1 0.013 (8) 0.004 (7) 0.002 (6) 0.004 (7) 0.000 (6) −0.001 (6)
O2 0.015 (8) 0.011 (9) 0.020 (9) 0.007 (7) −0.010 (7) 0.003 (7)
O3 0.008 (3) 0.008 (3) 0.009 (3) 0.0042 (18) 0.0001 (14) −0.0003 (14)
O4 0.009 (3) 0.009 (3) 0.010 (3) 0.0050 (19) 0.0000 (14) −0.0001 (14)

Dicaesium tritungsten selenite (Cs2W3SeO122). Geometric parameters (Å, º)

Cs1—O1i 3.132 (15) Cs2—O4ii 3.066 (14)
Cs1—O1 3.132 (15) Cs2—O3vi 3.427 (13)
Cs1—O1ii 3.132 (15) Cs2—O3 3.427 (13)
Cs1—O3iii 3.497 (15) Cs2—O3vii 3.427 (13)
Cs1—O3iv 3.497 (15) Cs2—O1vii 3.667 (13)
Cs1—O3v 3.497 (15) Cs2—O1 3.667 (13)
Cs1—O4i 3.634 (14) Cs2—O1vi 3.667 (13)
Cs1—O4ii 3.634 (14) W—O2x 1.703 (17)
Cs1—O4 3.634 (14) W—O3xi 1.840 (11)
Cs1—O2i 3.695 (14) W—O4 1.863 (13)
Cs1—O2ii 3.695 (14) W—O4ii 2.000 (13)
Cs1—O2 3.695 (14) W—O3 2.000 (10)
Cs2—O2 3.044 (16) W—O1 2.176 (14)
Cs2—O2vi 3.044 (16) Se—O1xi 1.723 (15)
Cs2—O2vii 3.044 (16) Se—O1 1.724 (15)
Cs2—O4viii 3.066 (14) Se—O1ix 1.724 (15)
Cs2—O4ix 3.066 (14)
O1i—Cs1—O1 92.9 (4) O4ii—Cs2—O1vi 143.4 (3)
O1i—Cs1—O1ii 92.9 (4) O3vi—Cs2—O1vi 45.0 (3)
O1—Cs1—O1ii 92.9 (4) O3—Cs2—O1vi 97.0 (3)
O1i—Cs1—O3iii 74.6 (3) O3vii—Cs2—O1vi 127.0 (3)
O1—Cs1—O3iii 132.9 (3) O1vii—Cs2—O1vi 119.992 (7)
O1ii—Cs1—O3iii 132.1 (3) O1—Cs2—O1vi 119.993 (8)
O1i—Cs1—O3iv 132.1 (3) O2x—W—O3xi 97.7 (8)
O1—Cs1—O3iv 74.6 (3) O2x—W—O4 98.5 (7)
O1ii—Cs1—O3iv 132.9 (3) O3xi—W—O4 96.6 (5)
O3iii—Cs1—O3iv 81.0 (4) O2x—W—O4ii 93.8 (6)
O1i—Cs1—O3v 132.9 (3) O3xi—W—O4ii 167.0 (7)
O1—Cs1—O3v 132.1 (3) O4—W—O4ii 87.4 (8)
O1ii—Cs1—O3v 74.6 (3) O2x—W—O3 92.3 (7)
O3iii—Cs1—O3v 81.0 (4) O3xi—W—O3 89.9 (7)
O3iv—Cs1—O3v 81.0 (4) O4—W—O3 166.5 (7)
O1i—Cs1—O4i 48.2 (3) O4ii—W—O3 83.7 (5)
O1—Cs1—O4i 81.9 (3) O2x—W—O1 172.7 (6)
O1ii—Cs1—O4i 47.2 (3) O3xi—W—O1 85.8 (7)
O3iii—Cs1—O4i 116.3 (3) O4—W—O1 87.5 (6)
O3iv—Cs1—O4i 156.5 (3) O4ii—W—O1 82.1 (5)
O3v—Cs1—O4i 115.9 (3) O3—W—O1 81.2 (6)
O1i—Cs1—O4ii 81.9 (3) O2x—W—Cs2xii 123.2 (5)
O1—Cs1—O4ii 47.2 (3) O3xi—W—Cs2xii 57.3 (4)
O1ii—Cs1—O4ii 48.2 (3) O4—W—Cs2xii 46.0 (4)
O3iii—Cs1—O4ii 156.5 (3) O4ii—W—Cs2xii 120.1 (4)
O3iv—Cs1—O4ii 115.9 (3) O3—W—Cs2xii 132.2 (4)
O3v—Cs1—O4ii 116.3 (3) O1—W—Cs2xii 64.1 (3)
O4i—Cs1—O4ii 43.1 (4) O2x—W—Cs1xiii 59.3 (5)
O1i—Cs1—O4 47.2 (3) O3xi—W—Cs1xiii 53.6 (5)
O1—Cs1—O4 48.2 (3) O4—W—Cs1xiii 68.7 (4)
O1ii—Cs1—O4 81.9 (3) O4ii—W—Cs1xiii 138.9 (4)
O3iii—Cs1—O4 115.9 (3) O3—W—Cs1xiii 124.3 (4)
O3iv—Cs1—O4 116.3 (3) O1—W—Cs1xiii 127.4 (3)
O3v—Cs1—O4 156.5 (3) Cs2xii—W—Cs1xiii 65.81 (5)
O4i—Cs1—O4 43.1 (4) O2x—W—Cs2 114.7 (5)
O4ii—Cs1—O4 43.1 (4) O3xi—W—Cs2 127.9 (4)
O1i—Cs1—O2i 57.5 (4) O4—W—Cs2 116.1 (4)
O1—Cs1—O2i 91.3 (3) O4ii—W—Cs2 40.4 (4)
O1ii—Cs1—O2i 150.4 (4) O3—W—Cs2 51.3 (4)
O3iii—Cs1—O2i 43.5 (3) O1—W—Cs2 58.5 (3)
O3iv—Cs1—O2i 76.4 (3) Cs2xii—W—Cs2 120.63 (6)
O3v—Cs1—O2i 122.2 (4) Cs1xiii—W—Cs2 173.49 (5)
O4i—Cs1—O2i 104.7 (4) O2x—W—Cs1 138.0 (6)
O4ii—Cs1—O2i 121.5 (3) O3xi—W—Cs1 116.2 (5)
O4—Cs1—O2i 79.1 (3) O4—W—Cs1 55.9 (4)
O1i—Cs1—O2ii 91.3 (3) O4ii—W—Cs1 56.4 (4)
O1—Cs1—O2ii 150.4 (4) O3—W—Cs1 110.6 (5)
O1ii—Cs1—O2ii 57.5 (4) O1—W—Cs1 43.4 (4)
O3iii—Cs1—O2ii 76.4 (3) Cs2xii—W—Cs1 65.44 (3)
O3iv—Cs1—O2ii 122.2 (4) Cs1xiii—W—Cs1 122.50 (3)
O3v—Cs1—O2ii 43.5 (3) Cs2—W—Cs1 63.41 (3)
O4i—Cs1—O2ii 79.1 (3) O2x—W—Cs1xiv 54.8 (5)
O4ii—Cs1—O2ii 104.7 (4) O3xi—W—Cs1xiv 120.7 (4)
O4—Cs1—O2ii 121.5 (3) O4—W—Cs1xiv 134.5 (4)
O2i—Cs1—O2ii 115.47 (19) O4ii—W—Cs1xiv 62.2 (4)
O1i—Cs1—O2 150.4 (4) O3—W—Cs1xiv 48.1 (4)
O1—Cs1—O2 57.5 (4) O1—W—Cs1xiv 117.9 (3)
O1ii—Cs1—O2 91.3 (3) Cs2xii—W—Cs1xiv 177.46 (4)
O3iii—Cs1—O2 122.2 (4) Cs1xiii—W—Cs1xiv 111.82 (6)
O3iv—Cs1—O2 43.5 (3) Cs2—W—Cs1xiv 61.72 (4)
O3v—Cs1—O2 76.4 (3) Cs1—W—Cs1xiv 117.06 (2)
O4i—Cs1—O2 121.5 (3) O1xi—Se—O1 104.0 (5)
O4ii—Cs1—O2 79.1 (3) O1xi—Se—O1ix 104.0 (5)
O4—Cs1—O2 104.7 (4) O1—Se—O1ix 104.0 (5)
O2i—Cs1—O2 115.47 (19) O1xi—Se—Cs2xv 58.6 (4)
O2ii—Cs1—O2 115.47 (19) O1—Se—Cs2xv 145.4 (5)
O2—Cs2—O2vi 56.8 (5) O1ix—Se—Cs2xv 58.6 (4)
O2—Cs2—O2vii 56.8 (5) O1xi—Se—Cs2 145.4 (5)
O2vi—Cs2—O2vii 56.8 (5) O1—Se—Cs2 58.6 (4)
O2—Cs2—O4viii 153.5 (4) O1ix—Se—Cs2 58.6 (4)
O2vi—Cs2—O4viii 101.6 (4) Cs2xv—Se—Cs2 116.99 (3)
O2vii—Cs2—O4viii 99.6 (4) O1xi—Se—Cs2xii 58.6 (4)
O2—Cs2—O4ix 101.6 (4) O1—Se—Cs2xii 58.6 (4)
O2vi—Cs2—O4ix 99.6 (4) O1ix—Se—Cs2xii 145.4 (5)
O2vii—Cs2—O4ix 153.5 (4) Cs2xv—Se—Cs2xii 116.99 (3)
O4viii—Cs2—O4ix 96.8 (3) Cs2—Se—Cs2xii 116.99 (3)
O2—Cs2—O4ii 99.6 (4) O1xi—Se—Cs1xv 37.9 (5)
O2vi—Cs2—O4ii 153.5 (4) O1—Se—Cs1xv 122.6 (4)
O2vii—Cs2—O4ii 101.6 (4) O1ix—Se—Cs1xv 122.6 (4)
O4viii—Cs2—O4ii 96.8 (3) Cs2xv—Se—Cs1xv 64.012 (17)
O4ix—Cs2—O4ii 96.8 (3) Cs2—Se—Cs1xv 176.68 (9)
O2—Cs2—O3vi 139.0 (3) Cs2xii—Se—Cs1xv 64.014 (17)
O2vi—Cs2—O3vi 96.8 (4) O1xi—Se—Cs1 122.6 (4)
O2vii—Cs2—O3vi 137.8 (3) O1—Se—Cs1 37.9 (5)
O4viii—Cs2—O3vi 50.0 (3) O1ix—Se—Cs1 122.6 (4)
O4ix—Cs2—O3vi 48.2 (3) Cs2xv—Se—Cs1 176.68 (9)
O4ii—Cs2—O3vi 109.7 (4) Cs2—Se—Cs1 64.013 (17)
O2—Cs2—O3 96.8 (4) Cs2xii—Se—Cs1 64.013 (17)
O2vi—Cs2—O3 137.8 (3) Cs1xv—Se—Cs1 114.79 (4)
O2vii—Cs2—O3 139.0 (3) O1xi—Se—Cs1xvi 122.6 (4)
O4viii—Cs2—O3 109.7 (4) O1—Se—Cs1xvi 122.6 (4)
O4ix—Cs2—O3 50.0 (3) O1ix—Se—Cs1xvi 37.9 (5)
O4ii—Cs2—O3 48.2 (3) Cs2xv—Se—Cs1xvi 64.014 (17)
O3vi—Cs2—O3 83.0 (4) Cs2—Se—Cs1xvi 64.013 (17)
O2—Cs2—O3vii 137.8 (3) Cs2xii—Se—Cs1xvi 176.68 (9)
O2vi—Cs2—O3vii 139.0 (3) Cs1xv—Se—Cs1xvi 114.79 (4)
O2vii—Cs2—O3vii 96.8 (4) Cs1—Se—Cs1xvi 114.79 (4)
O4viii—Cs2—O3vii 48.2 (3) Se—O1—W 129.4 (8)
O4ix—Cs2—O3vii 109.7 (4) Se—O1—Cs1 122.3 (6)
O4ii—Cs2—O3vii 50.0 (3) W—O1—Cs1 108.1 (5)
O3vi—Cs2—O3vii 83.0 (4) Se—O1—Cs2 97.7 (5)
O3—Cs2—O3vii 83.0 (4) W—O1—Cs2 91.2 (4)
O2—Cs2—O1vii 114.5 (4) Cs1—O1—Cs2 83.4 (3)
O2vi—Cs2—O1vii 95.0 (4) Se—O1—Cs2xii 97.7 (5)
O2vii—Cs2—O1vii 58.5 (4) W—O1—Cs2xii 83.6 (4)
O4viii—Cs2—O1vii 47.1 (3) Cs1—O1—Cs2xii 83.4 (3)
O4ix—Cs2—O1vii 143.4 (3) Cs2—O1—Cs2xii 163.5 (5)
O4ii—Cs2—O1vii 83.8 (3) Wxvii—O2—Cs2 159.8 (9)
O3vi—Cs2—O1vii 97.0 (3) Wxvii—O2—Cs1 97.3 (5)
O3—Cs2—O1vii 127.0 (3) Cs2—O2—Cs1 84.1 (4)
O3vii—Cs2—O1vii 45.0 (3) Wxvii—O2—Cs1xvi 103.6 (6)
O2—Cs2—O1 58.5 (4) Cs2—O2—Cs1xvi 82.6 (3)
O2vi—Cs2—O1 114.5 (4) Cs1—O2—Cs1xvi 152.0 (6)
O2vii—Cs2—O1 95.0 (4) Wix—O3—W 148.6 (7)
O4viii—Cs2—O1 143.4 (3) Wix—O3—Cs2 95.8 (5)
O4ix—Cs2—O1 83.8 (3) W—O3—Cs2 101.6 (5)
O4ii—Cs2—O1 47.1 (3) Wix—O3—Cs1xiv 101.4 (5)
O3vi—Cs2—O1 127.0 (3) W—O3—Cs1xiv 106.7 (5)
O3—Cs2—O1 45.0 (3) Cs2—O3—Cs1xiv 81.5 (2)
O3vii—Cs2—O1 97.0 (3) W—O4—Wi 135.7 (8)
O1vii—Cs2—O1 119.993 (7) W—O4—Cs2xii 108.0 (5)
O2—Cs2—O1vi 95.0 (4) Wi—O4—Cs2xii 114.6 (5)
O2vi—Cs2—O1vi 58.5 (4) W—O4—Cs1 99.0 (5)
O2vii—Cs2—O1vi 114.5 (4) Wi—O4—Cs1 96.3 (5)
O4viii—Cs2—O1vi 83.8 (3) Cs2xii—O4—Cs1 84.8 (3)
O4ix—Cs2—O1vi 47.1 (3)

Symmetry codes: (i) −x+y, −x+1, z; (ii) −y+1, xy+1, z; (iii) y, −x+y+1, z−1/2; (iv) xy, x, z−1/2; (v) −x+1, −y+1, z−1/2; (vi) −y+1, xy, z; (vii) −x+y+1, −x+1, z; (viii) x+1, y, z; (ix) −x+y, −x, z; (x) xy, x, z+1/2; (xi) −y, xy, z; (xii) x−1, y, z; (xiii) −x, −y+1, z+1/2; (xiv) −x+1, −y+1, z+1/2; (xv) x−1, y−1, z; (xvi) x, y−1, z; (xvii) y, −x+y, z−1/2.

Dirubidium tritungsten selenite (Rb2W3SeO123). Crystal data

Rb2W3SeO12 Dx = 6.004 Mg m3
Mr = 993.40 Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63 Cell parameters from 19378 reflections
a = 7.2380 (1) Å θ = 3.3–28.2°
c = 12.1115 (3) Å µ = 43.49 mm1
V = 549.50 (2) Å3 T = 293 K
Z = 2 Block, colourless
F(000) = 852 0.10 × 0.05 × 0.05 mm

Dirubidium tritungsten selenite (Rb2W3SeO123). Data collection

Bruker APEXII CCD diffractometer 654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
phi and ω scans θmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −9→8
Tmin = 0.098, Tmax = 0.220 k = −8→9
3497 measured reflections l = −11→16
675 independent reflections

Dirubidium tritungsten selenite (Rb2W3SeO123). Refinement

Refinement on F2 w = 1/[σ2(Fo2) + (0.0065P)2 + 2.2061P] where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full (Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.018 Δρmax = 0.90 e Å3
wR(F2) = 0.033 Δρmin = −1.14 e Å3
S = 1.06 Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
675 reflections Extinction coefficient: 0.0058 (2)
57 parameters Absolute structure: Flack x determined using 182 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
7 restraints Absolute structure parameter: −0.08 (3)

Dirubidium tritungsten selenite (Rb2W3SeO123). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component twin

Dirubidium tritungsten selenite (Rb2W3SeO123). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rb1 0.666667 0.333333 0.8979 (2) 0.0389 (9)
Rb2 0.333333 0.666667 0.77053 (18) 0.0181 (6)
W 0.80778 (6) 0.66034 (6) 0.60562 (3) 0.00482 (12)
Se 1.000000 1.000000 0.83669 (14) 0.0057 (4)
O1 0.8727 (15) 0.7523 (15) 0.7767 (6) 0.0106 (18)
O2 0.5942 (14) 0.8028 (15) 0.9677 (7) 0.0106 (17)
O3 0.7494 (12) 0.8784 (12) 0.5928 (8) 0.0084 (16)
O4 0.9117 (13) 0.4617 (13) 0.6512 (6) 0.0069 (15)

Dirubidium tritungsten selenite (Rb2W3SeO123). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rb1 0.0433 (13) 0.0433 (13) 0.0300 (16) 0.0216 (7) 0.000 0.000
Rb2 0.0202 (9) 0.0202 (9) 0.0139 (11) 0.0101 (4) 0.000 0.000
W 0.0036 (2) 0.0027 (2) 0.00779 (17) 0.00128 (19) 0.0005 (4) −0.0003 (3)
Se 0.0062 (5) 0.0062 (5) 0.0047 (10) 0.0031 (3) 0.000 0.000
O1 0.016 (5) 0.008 (5) 0.010 (4) 0.008 (4) 0.003 (4) 0.003 (4)
O2 0.002 (4) 0.011 (5) 0.015 (4) 0.000 (4) −0.003 (3) −0.004 (4)
O3 0.007 (3) 0.006 (4) 0.012 (5) 0.004 (3) 0.000 (4) 0.001 (4)
O4 0.0065 (18) 0.0069 (19) 0.0077 (18) 0.0038 (12) −0.0003 (12) −0.0002 (12)

Dirubidium tritungsten selenite (Rb2W3SeO123). Geometric parameters (Å, º)

Rb1—O1i 3.009 (9) Rb2—O4i 3.012 (8)
Rb1—O1 3.009 (9) Rb2—O3 3.382 (8)
Rb1—O1ii 3.009 (9) Rb2—O3vi 3.382 (8)
Rb1—O4ii 3.360 (8) Rb2—O3vii 3.382 (8)
Rb1—O4i 3.360 (8) Rb2—W 3.9926 (11)
Rb1—O4 3.360 (8) Rb2—Wvii 3.9926 (11)
Rb1—O3iii 3.518 (9) Rb2—Wvi 3.9926 (11)
Rb1—O3iv 3.518 (9) W—O2x 1.726 (8)
Rb1—O3v 3.518 (9) W—O3 1.833 (8)
Rb1—W 4.094 (2) W—O4i 1.860 (8)
Rb1—Wi 4.094 (2) W—O4 2.005 (8)
Rb1—Wii 4.094 (2) W—O3xi 2.011 (8)
Rb2—O2 2.894 (8) W—O1 2.155 (8)
Rb2—O2vi 2.894 (8) Se—O1ix 1.714 (9)
Rb2—O2vii 2.894 (8) Se—O1 1.714 (9)
Rb2—O4viii 3.012 (8) Se—O1xi 1.714 (9)
Rb2—O4ix 3.012 (8)
O1i—Rb1—O1 98.2 (2) O4ix—Rb2—O3vii 111.8 (2)
O1i—Rb1—O1ii 98.2 (2) O4i—Rb2—O3vii 48.78 (18)
O1—Rb1—O1ii 98.2 (2) O3—Rb2—O3vii 83.8 (2)
O1i—Rb1—O4ii 51.2 (2) O3vi—Rb2—O3vii 83.8 (2)
O1—Rb1—O4ii 88.0 (2) O2—Rb2—W 89.89 (19)
O1ii—Rb1—O4ii 50.2 (2) O2vi—Rb2—W 147.69 (19)
O1i—Rb1—O4i 50.2 (2) O2vii—Rb2—W 113.3 (2)
O1—Rb1—O4i 51.2 (2) O4viii—Rb2—W 114.82 (16)
O1ii—Rb1—O4i 88.0 (2) O4ix—Rb2—W 75.92 (16)
O4ii—Rb1—O4i 46.7 (2) O4i—Rb2—W 26.34 (16)
O1i—Rb1—O4 88.0 (2) O3—Rb2—W 27.21 (13)
O1—Rb1—O4 50.2 (2) O3vi—Rb2—W 105.50 (16)
O1ii—Rb1—O4 51.2 (2) O3vii—Rb2—W 70.55 (14)
O4ii—Rb1—O4 46.7 (2) O2—Rb2—Wvii 147.69 (19)
O4i—Rb1—O4 46.7 (2) O2vi—Rb2—Wvii 113.3 (2)
O1i—Rb1—O3iii 130.6 (2) O2vii—Rb2—Wvii 89.89 (19)
O1—Rb1—O3iii 130.6 (2) O4viii—Rb2—Wvii 26.34 (16)
O1ii—Rb1—O3iii 71.3 (2) O4ix—Rb2—Wvii 114.82 (16)
O4ii—Rb1—O3iii 114.97 (19) O4i—Rb2—Wvii 75.92 (16)
O4i—Rb1—O3iii 159.4 (2) O3—Rb2—Wvii 105.50 (16)
O4—Rb1—O3iii 115.6 (2) O3vi—Rb2—Wvii 70.55 (14)
O1i—Rb1—O3iv 130.6 (2) O3vii—Rb2—Wvii 27.21 (13)
O1—Rb1—O3iv 71.3 (2) W—Rb2—Wvii 97.16 (4)
O1ii—Rb1—O3iv 130.6 (2) O2—Rb2—Wvi 113.3 (2)
O4ii—Rb1—O3iv 159.4 (2) O2vi—Rb2—Wvi 89.89 (19)
O4i—Rb1—O3iv 115.6 (2) O2vii—Rb2—Wvi 147.69 (19)
O4—Rb1—O3iv 115.0 (2) O4viii—Rb2—Wvi 75.92 (16)
O3iii—Rb1—O3iv 79.9 (2) O4ix—Rb2—Wvi 26.34 (16)
O1i—Rb1—O3v 71.3 (2) O4i—Rb2—Wvi 114.82 (16)
O1—Rb1—O3v 130.6 (2) O3—Rb2—Wvi 70.55 (14)
O1ii—Rb1—O3v 130.6 (2) O3vi—Rb2—Wvi 27.21 (13)
O4ii—Rb1—O3v 115.6 (2) O3vii—Rb2—Wvi 105.50 (16)
O4i—Rb1—O3v 114.97 (19) W—Rb2—Wvi 97.16 (4)
O4—Rb1—O3v 159.4 (2) Wvii—Rb2—Wvi 97.16 (4)
O3iii—Rb1—O3v 79.9 (2) O2x—W—O3 98.3 (4)
O3iv—Rb1—O3v 79.9 (2) O2x—W—O4i 99.3 (4)
O1i—Rb1—W 76.74 (18) O3—W—O4i 97.5 (3)
O1—Rb1—W 30.77 (17) O2x—W—O4 93.8 (4)
O1ii—Rb1—W 79.82 (18) O3—W—O4 166.2 (4)
O4ii—Rb1—W 57.35 (14) O4i—W—O4 87.0 (5)
O4i—Rb1—W 26.63 (15) O2x—W—O3xi 91.7 (5)
O4—Rb1—W 29.14 (14) O3—W—O3xi 90.0 (4)
O3iii—Rb1—W 142.01 (14) O4i—W—O3xi 165.5 (4)
O3iv—Rb1—W 102.05 (14) O4—W—O3xi 83.0 (3)
O3v—Rb1—W 138.07 (13) O2x—W—O1 172.2 (4)
O1i—Rb1—Wi 30.77 (17) O3—W—O1 85.6 (4)
O1—Rb1—Wi 79.82 (18) O4i—W—O1 86.8 (3)
O1ii—Rb1—Wi 76.74 (17) O4—W—O1 81.6 (3)
O4ii—Rb1—Wi 26.63 (14) O3xi—W—O1 81.4 (4)
O4i—Rb1—Wi 29.14 (15) O2x—W—Rb2 123.2 (3)
O4—Rb1—Wi 57.35 (14) O3—W—Rb2 57.5 (3)
O3iii—Rb1—Wi 138.07 (13) O4i—W—Rb2 45.9 (2)
O3iv—Rb1—Wi 142.01 (14) O4—W—Rb2 120.2 (2)
O3v—Rb1—Wi 102.05 (14) O3xi—W—Rb2 133.0 (3)
W—Rb1—Wi 51.57 (3) O1—W—Rb2 64.6 (2)
O1i—Rb1—Wii 79.82 (18) O2x—W—Rb1 135.6 (3)
O1—Rb1—Wii 76.73 (17) O3—W—Rb1 118.2 (3)
O1ii—Rb1—Wii 30.77 (17) O4i—W—Rb1 54.1 (2)
O4ii—Rb1—Wii 29.14 (15) O4—W—Rb1 54.7 (2)
O4i—Rb1—Wii 57.35 (14) O3xi—W—Rb1 111.4 (3)
O4—Rb1—Wii 26.63 (14) O1—W—Rb1 45.6 (3)
O3iii—Rb1—Wii 102.05 (14) Rb2—W—Rb1 66.84 (2)
O3iv—Rb1—Wii 138.07 (13) O2x—W—Rb1xii 59.3 (3)
O3v—Rb1—Wii 142.01 (14) O3—W—Rb1xii 53.8 (3)
W—Rb1—Wii 51.57 (3) O4i—W—Rb1xii 70.4 (2)
Wi—Rb1—Wii 51.57 (3) O4—W—Rb1xii 139.6 (2)
O2—Rb2—O2vi 58.6 (3) O3xi—W—Rb1xii 123.7 (2)
O2—Rb2—O2vii 58.6 (3) O1—W—Rb1xii 127.9 (3)
O2vi—Rb2—O2vii 58.6 (3) Rb2—W—Rb1xii 66.06 (5)
O2—Rb2—O4viii 153.0 (2) Rb1—W—Rb1xii 123.06 (2)
O2vi—Rb2—O4viii 97.5 (2) O2x—W—Rb2xiii 113.1 (3)
O2vii—Rb2—O4viii 99.5 (3) O3—W—Rb2xiii 128.1 (3)
O2—Rb2—O4ix 97.5 (2) O4i—W—Rb2xiii 115.7 (2)
O2vi—Rb2—O4ix 99.5 (2) O4—W—Rb2xiii 39.5 (2)
O2vii—Rb2—O4ix 153.0 (2) O3xi—W—Rb2xiii 50.7 (2)
O4viii—Rb2—O4ix 98.91 (18) O1—W—Rb2xiii 59.5 (2)
O2—Rb2—O4i 99.5 (2) Rb2—W—Rb2xiii 122.13 (5)
O2vi—Rb2—O4i 153.0 (2) Rb1—W—Rb2xiii 64.26 (2)
O2vii—Rb2—O4i 97.5 (2) Rb1xii—W—Rb2xiii 171.73 (3)
O4viii—Rb2—O4i 98.91 (18) O1ix—Se—O1 103.3 (3)
O4ix—Rb2—O4i 98.91 (18) O1ix—Se—O1xi 103.3 (3)
O2—Rb2—O3 95.1 (2) O1—Se—O1xi 103.3 (3)
O2vi—Rb2—O3 138.5 (3) Se—O1—W 130.6 (5)
O2vii—Rb2—O3 137.5 (3) Se—O1—Rb1 125.7 (4)
O4viii—Rb2—O3 111.8 (2) W—O1—Rb1 103.7 (3)
O4ix—Rb2—O3 48.78 (18) Wxiv—O2—Rb2 159.3 (5)
O4i—Rb2—O3 51.09 (19) W—O3—Wix 148.3 (5)
O2—Rb2—O3vi 137.5 (3) W—O3—Rb2 95.3 (3)
O2vi—Rb2—O3vi 95.1 (2) Wix—O3—Rb2 101.9 (3)
O2vii—Rb2—O3vi 138.5 (2) W—O3—Rb1xii 101.4 (3)
O4viii—Rb2—O3vi 48.78 (18) Wix—O3—Rb1xii 107.3 (3)
O4ix—Rb2—O3vi 51.09 (19) Rb2—O3—Rb1xii 81.68 (17)
O4i—Rb2—O3vi 111.8 (2) Wii—O4—W 134.3 (4)
O3—Rb2—O3vi 83.8 (2) Wii—O4—Rb2xiii 107.7 (3)
O2—Rb2—O3vii 138.5 (2) W—O4—Rb2xiii 115.5 (3)
O2vi—Rb2—O3vii 137.5 (3) Wii—O4—Rb1 99.3 (3)
O2vii—Rb2—O3vii 95.1 (2) W—O4—Rb1 96.2 (3)
O4viii—Rb2—O3vii 51.09 (19) Rb2xiii—O4—Rb1 88.54 (18)

Symmetry codes: (i) −y+1, xy, z; (ii) −x+y+1, −x+1, z; (iii) y, −x+y, z+1/2; (iv) xy+1, x, z+1/2; (v) −x+1, −y+1, z+1/2; (vi) −y+1, xy+1, z; (vii) −x+y, −x+1, z; (viii) x−1, y, z; (ix) −x+y+1, −x+2, z; (x) xy+1, x, z−1/2; (xi) −y+2, xy+1, z; (xii) −x+1, −y+1, z−1/2; (xiii) x+1, y, z; (xiv) y, −x+y+1, z+1/2.

Dipotassium tritungsten selenite (K2W3SeO124). Crystal data

K2W3SeO12 F(000) = 1559
Mr = 900.66 Dx = 5.694 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.2310 (2) Å Cell parameters from 9566 reflections
b = 11.4863 (4) Å θ = 3.2–33.2°
c = 12.6486 (4) Å µ = 37.09 mm1
β = 90.096 (2)° T = 293 K
V = 1050.56 (6) Å3 Block, colourless
Z = 4 0.08 × 0.05 × 0.02 mm

Dipotassium tritungsten selenite (K2W3SeO124). Data collection

Bruker APEXII CCD diffractometer 3456 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.073
phi and ω scans θmax = 33.2°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −11→11
Tmin = 0.155, Tmax = 0.524 k = −17→17
26562 measured reflections l = −19→19
4026 independent reflections

Dipotassium tritungsten selenite (K2W3SeO124). Refinement

Refinement on F2 24 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0554P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032 (Δ/σ)max < 0.001
wR(F2) = 0.105 Δρmax = 3.94 e Å3
S = 1.15 Δρmin = −3.11 e Å3
4026 reflections Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
165 parameters Extinction coefficient: 0.00176 (12)

Dipotassium tritungsten selenite (K2W3SeO124). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component twin

Dipotassium tritungsten selenite (K2W3SeO124). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 0.2501 (5) 0.4522 (3) 0.9115 (3) 0.0223 (6)
K2 0.2548 (5) 0.0822 (3) 0.8952 (3) 0.0234 (7)
W1 0.22893 (7) 0.79646 (4) 0.08433 (4) 0.00612 (10)
W2 0.01720 (7) 0.75074 (4) 0.82437 (4) 0.00629 (11)
W3 0.50663 (8) 0.75947 (4) 0.84420 (4) 0.00583 (11)
Se 0.25041 (19) 0.49742 (10) 0.17926 (9) 0.0078 (2)
O1 0.2536 (13) 0.6087 (8) 0.0913 (8) 0.0164 (19)
O2 0.2387 (16) 0.9444 (8) 0.0619 (7) 0.016 (2)
O3 0.0634 (14) 0.4225 (9) 0.1258 (9) 0.013 (2)
O4 0.0680 (14) 0.8954 (9) 0.7993 (9) 0.014 (2)
O5 0.4324 (14) 0.4206 (9) 0.1236 (8) 0.012 (2)
O6 0.4376 (14) 0.8956 (9) 0.8021 (9) 0.015 (2)
O7 0.0615 (15) 0.7625 (9) 0.9781 (9) 0.012 (2)
O8 0.2548 (14) 0.6902 (7) 0.8102 (7) 0.0093 (16)
O9 0.4378 (15) 0.7668 (9) 0.9828 (8) 0.0100 (19)
O10 0.9354 (14) 0.7050 (10) 0.6903 (8) 0.014 (2)
O11 0.7529 (15) 0.7855 (8) 0.8637 (7) 0.0096 (16)
O12 0.0599 (14) 0.7924 (9) 0.1938 (8) 0.0110 (19)

Dipotassium tritungsten selenite (K2W3SeO124). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.0208 (14) 0.0264 (14) 0.0197 (14) 0.0030 (13) −0.0020 (17) 0.0005 (13)
K2 0.0269 (17) 0.0211 (14) 0.0223 (16) 0.0007 (14) −0.0005 (14) 0.0060 (12)
W1 0.00737 (19) 0.00678 (18) 0.00421 (17) 0.00057 (16) −0.00022 (19) 0.00021 (17)
W2 0.0049 (2) 0.0084 (2) 0.0056 (2) −0.0003 (2) −0.00087 (18) 0.00082 (15)
W3 0.0047 (2) 0.0074 (2) 0.0054 (2) 0.00025 (19) 0.00025 (19) −0.00006 (16)
Se 0.0090 (5) 0.0065 (4) 0.0078 (5) 0.0005 (4) −0.0003 (5) 0.0003 (4)
O1 0.017 (2) 0.016 (2) 0.016 (2) 0.0001 (10) 0.0001 (10) 0.0005 (10)
O2 0.030 (6) 0.006 (4) 0.012 (4) 0.001 (4) −0.005 (4) 0.002 (3)
O3 0.008 (4) 0.010 (4) 0.021 (5) 0.002 (4) −0.009 (4) −0.002 (4)
O4 0.013 (2) 0.014 (2) 0.014 (2) 0.0003 (10) 0.0000 (10) 0.0001 (10)
O5 0.011 (4) 0.010 (4) 0.016 (5) 0.003 (4) 0.003 (4) 0.003 (4)
O6 0.013 (5) 0.005 (4) 0.025 (6) 0.000 (4) −0.002 (4) 0.008 (4)
O7 0.012 (2) 0.012 (2) 0.011 (2) 0.0002 (10) −0.0004 (10) 0.0002 (10)
O8 0.003 (4) 0.010 (4) 0.015 (4) 0.003 (4) −0.003 (4) −0.001 (3)
O9 0.010 (2) 0.010 (2) 0.010 (2) −0.0002 (10) 0.0005 (10) −0.0004 (10)
O10 0.006 (4) 0.026 (6) 0.008 (5) 0.005 (4) −0.004 (3) 0.000 (4)
O11 0.008 (4) 0.011 (4) 0.009 (4) −0.002 (4) −0.003 (4) −0.004 (3)
O12 0.007 (4) 0.019 (5) 0.007 (4) 0.006 (4) 0.000 (3) 0.001 (4)

Dipotassium tritungsten selenite (K2W3SeO124). Geometric parameters (Å, º)

K1—O3i 2.726 (10) K2—W1ii 3.993 (4)
K1—O5ii 2.757 (11) W1—O2 1.724 (9)
K1—O1iii 2.899 (10) W1—O7x 1.849 (11)
K1—O5iii 3.009 (11) W1—O12 1.849 (10)
K1—O8 3.019 (9) W1—O10xi 2.005 (10)
K1—O4iv 3.046 (11) W1—O9x 2.013 (11)
K1—O3iii 3.050 (12) W1—O1 2.166 (9)
K1—O6iv 3.091 (12) W2—O4 1.731 (11)
K1—Seiii 3.427 (4) W2—O8 1.863 (10)
K1—Seii 3.835 (4) W2—O10xii 1.870 (10)
K1—Sei 3.839 (3) W2—O7 1.975 (11)
K1—W2 3.975 (3) W2—O11xii 2.016 (11)
K2—O2v 2.639 (9) W2—O3i 2.167 (10)
K2—O6vi 2.780 (11) W3—O6 1.726 (10)
K2—O4vi 2.809 (11) W3—O11 1.822 (11)
K2—O10vii 2.861 (11) W3—O9 1.825 (11)
K2—O8iv 2.879 (9) W3—O12xiii 2.031 (10)
K2—O12i 2.918 (10) W3—O8 2.032 (10)
K2—O9viii 3.213 (11) W3—O5ii 2.153 (10)
K2—O7ix 3.316 (12) Se—O1 1.695 (10)
K2—O11viii 3.408 (9) Se—O5 1.735 (10)
K2—W2iv 3.767 (3) Se—O3 1.739 (10)
K2—W1i 3.775 (4)
O3i—K1—O5ii 112.6 (3) O12—W1—K2i 49.0 (3)
O3i—K1—O1iii 79.3 (3) O10xi—W1—K2i 130.3 (3)
O5ii—K1—O1iii 78.0 (3) O9x—W1—K2i 143.4 (3)
O3i—K1—O5iii 125.5 (3) O1—W1—K2i 116.2 (3)
O5ii—K1—O5iii 81.0 (3) O2—W1—K2ii 68.2 (4)
O1iii—K1—O5iii 51.1 (3) O7x—W1—K2ii 137.1 (4)
O3i—K1—O8 57.2 (3) O12—W1—K2ii 125.4 (3)
O5ii—K1—O8 56.1 (3) O10xi—W1—K2ii 42.7 (3)
O1iii—K1—O8 76.8 (3) O9x—W1—K2ii 53.0 (3)
O5iii—K1—O8 118.8 (3) O1—W1—K2ii 105.6 (3)
O3i—K1—O4iv 108.8 (3) K2i—W1—K2ii 137.13 (9)
O5ii—K1—O4iv 67.2 (3) O2—W1—K2xiv 26.6 (3)
O1iii—K1—O4iv 144.7 (3) O7x—W1—K2xiv 76.9 (3)
O5iii—K1—O4iv 124.4 (3) O12—W1—K2xiv 119.5 (3)
O8—K1—O4iv 79.5 (3) O10xi—W1—K2xiv 111.4 (3)
O3i—K1—O3iii 81.0 (3) O9x—W1—K2xiv 74.1 (3)
O5ii—K1—O3iii 124.9 (3) O1—W1—K2xiv 145.5 (3)
O1iii—K1—O3iii 51.3 (3) K2i—W1—K2xiv 77.64 (8)
O5iii—K1—O3iii 52.3 (2) K2ii—W1—K2xiv 73.29 (8)
O8—K1—O3iii 118.9 (3) O4—W2—O8 98.3 (4)
O4iv—K1—O3iii 161.2 (3) O4—W2—O10xii 99.8 (5)
O3i—K1—O6iv 66.2 (3) O8—W2—O10xii 95.6 (4)
O5ii—K1—O6iv 109.6 (3) O4—W2—O7 94.6 (5)
O1iii—K1—O6iv 145.0 (3) O8—W2—O7 88.4 (4)
O5iii—K1—O6iv 160.9 (3) O10xii—W2—O7 164.3 (5)
O8—K1—O6iv 79.9 (3) O4—W2—O11xii 93.2 (4)
O4iv—K1—O6iv 51.6 (3) O8—W2—O11xii 166.7 (4)
O3iii—K1—O6iv 124.0 (3) O10xii—W2—O11xii 88.9 (4)
O3i—K1—Seiii 95.2 (2) O7—W2—O11xii 84.0 (4)
O5ii—K1—Seiii 94.6 (2) O4—W2—O3i 172.6 (4)
O1iii—K1—Seiii 29.60 (19) O8—W2—O3i 86.2 (4)
O5iii—K1—Seiii 30.4 (2) O10xii—W2—O3i 85.5 (4)
O8—K1—Seiii 106.4 (2) O7—W2—O3i 79.6 (4)
O4iv—K1—Seiii 153.9 (2) O11xii—W2—O3i 81.6 (4)
O3iii—K1—Seiii 30.43 (19) O4—W2—K2xv 105.4 (4)
O6iv—K1—Seiii 153.6 (2) O8—W2—K2xv 48.1 (3)
O3i—K1—Seii 130.7 (3) O10xii—W2—K2xv 47.6 (3)
O5ii—K1—Seii 24.1 (2) O7—W2—K2xv 133.7 (3)
O1iii—K1—Seii 97.7 (2) O11xii—W2—K2xv 134.4 (3)
O5iii—K1—Seii 82.7 (2) O3i—W2—K2xv 82.0 (3)
O8—K1—Seii 74.0 (2) O4—W2—K1 142.1 (3)
O4iv—K1—Seii 50.4 (2) O8—W2—K1 46.7 (3)
O3iii—K1—Seii 134.5 (2) O10xii—W2—K1 98.2 (3)
O6iv—K1—Seii 100.5 (2) O7—W2—K1 73.6 (3)
Seiii—K1—Seii 105.89 (9) O11xii—W2—K1 120.3 (3)
O3i—K1—Sei 23.8 (2) O3i—W2—K1 40.7 (3)
O5ii—K1—Sei 131.1 (2) K2xv—W2—K1 64.86 (8)
O1iii—K1—Sei 98.5 (2) O4—W2—K1xv 40.9 (4)
O5iii—K1—Sei 134.1 (2) O8—W2—K1xv 76.3 (3)
O8—K1—Sei 75.4 (2) O10xii—W2—K1xv 68.4 (3)
O4iv—K1—Sei 100.3 (2) O7—W2—K1xv 127.3 (3)
O3iii—K1—Sei 82.19 (19) O11xii—W2—K1xv 117.0 (3)
O6iv—K1—Sei 50.05 (19) O3i—W2—K1xv 146.4 (3)
Seiii—K1—Sei 105.76 (9) K2xv—W2—K1xv 64.97 (7)
Seii—K1—Sei 140.87 (10) K1—W2—K1xv 120.66 (4)
O3i—K1—W2 31.2 (2) O6—W3—O11 100.1 (4)
O5ii—K1—W2 81.4 (2) O6—W3—O9 100.1 (5)
O1iii—K1—W2 71.7 (2) O11—W3—O9 97.5 (5)
O5iii—K1—W2 122.4 (2) O6—W3—O12xiii 91.8 (5)
O8—K1—W2 26.7 (2) O11—W3—O12xiii 89.3 (4)
O4iv—K1—W2 97.2 (2) O9—W3—O12xiii 165.0 (4)
O3iii—K1—W2 98.9 (2) O6—W3—O8 91.8 (4)
O6iv—K1—W2 75.8 (2) O11—W3—O8 165.4 (4)
Seiii—K1—W2 98.21 (8) O9—W3—O8 88.6 (4)
Seii—K1—W2 100.71 (8) O12xiii—W3—O8 81.8 (4)
Sei—K1—W2 52.29 (5) O6—W3—O5ii 171.1 (4)
O2v—K2—O6vi 84.1 (3) O11—W3—O5ii 86.1 (4)
O2v—K2—O4vi 82.2 (3) O9—W3—O5ii 85.3 (4)
O6vi—K2—O4vi 57.1 (3) O12xiii—W3—O5ii 81.8 (4)
O2v—K2—O10vii 129.3 (4) O8—W3—O5ii 81.2 (4)
O6vi—K2—O10vii 81.2 (3) O6—W3—K1 135.8 (3)
O4vi—K2—O10vii 126.1 (3) O11—W3—K1 124.0 (3)
O2v—K2—O8iv 168.0 (3) O9—W3—K1 73.4 (3)
O6vi—K2—O8iv 87.8 (3) O12xiii—W3—K1 91.6 (3)
O4vi—K2—O8iv 85.9 (3) O8—W3—K1 45.4 (2)
O10vii—K2—O8iv 57.6 (3) O5ii—W3—K1 38.9 (3)
O2v—K2—O12i 124.7 (4) O6—W3—K2xv 95.1 (4)
O6vi—K2—O12i 126.0 (3) O11—W3—K2xv 129.0 (3)
O4vi—K2—O12i 80.6 (3) O9—W3—K2xv 127.2 (3)
O10vii—K2—O12i 102.8 (3) O12xiii—W3—K2xv 41.6 (3)
O8iv—K2—O12i 54.6 (3) O8—W3—K2xv 40.4 (3)
O2v—K2—O9viii 88.4 (3) O5ii—W3—K2xv 75.9 (3)
O6vi—K2—O9viii 106.9 (3) K1—W3—K2xv 61.03 (7)
O4vi—K2—O9viii 162.1 (3) O6—W3—K2viii 88.1 (4)
O10vii—K2—O9viii 51.2 (3) O11—W3—K2viii 54.1 (3)
O8iv—K2—O9viii 102.5 (3) O9—W3—K2viii 47.8 (3)
O12i—K2—O9viii 117.2 (3) O12xiii—W3—K2viii 142.7 (3)
O2v—K2—O7ix 84.6 (3) O8—W3—K2viii 135.5 (3)
O6vi—K2—O7ix 161.5 (3) O5ii—W3—K2viii 100.7 (3)
O4vi—K2—O7ix 106.7 (3) K1—W3—K2viii 113.79 (7)
O10vii—K2—O7ix 117.3 (3) K2xv—W3—K2viii 174.68 (8)
O8iv—K2—O7ix 100.8 (3) O1—Se—O5 96.1 (5)
O12i—K2—O7ix 51.9 (3) O1—Se—O3 97.5 (5)
O9viii—K2—O7ix 87.4 (3) O5—Se—O3 100.4 (4)
O2v—K2—O11viii 63.4 (3) O1—Se—K1x 57.7 (3)
O6vi—K2—O11viii 137.0 (3) O5—Se—K1x 61.4 (3)
O4vi—K2—O11viii 135.9 (3) O3—Se—K1x 62.7 (4)
O10vii—K2—O11viii 97.6 (3) O1—Se—K1ii 71.1 (3)
O8iv—K2—O11viii 127.9 (3) O5—Se—K1ii 40.5 (3)
O12i—K2—O11viii 96.4 (3) O3—Se—K1ii 133.7 (4)
O9viii—K2—O11viii 48.8 (3) K1x—Se—K1ii 74.10 (9)
O7ix—K2—O11viii 46.8 (3) O1—Se—K1i 72.8 (3)
O2v—K2—W2iv 156.5 (3) O5—Se—K1i 132.1 (4)
O6vi—K2—W2iv 82.8 (2) O3—Se—K1i 39.3 (3)
O4vi—K2—W2iv 106.6 (2) K1x—Se—K1i 74.24 (9)
O10vii—K2—W2iv 28.8 (2) K1ii—Se—K1i 140.87 (10)
O8iv—K2—W2iv 28.8 (2) Se—O1—W1 141.0 (6)
O12i—K2—W2iv 78.7 (2) Se—O1—K1x 92.7 (4)
O9viii—K2—W2iv 76.9 (2) W1—O1—K1x 125.8 (4)
O7ix—K2—W2iv 112.5 (2) W1—O2—K2xiv 136.4 (5)
O11viii—K2—W2iv 115.99 (18) Se—O3—W2i 123.4 (5)
O2v—K2—W1i 97.2 (3) Se—O3—K1i 116.9 (5)
O6vi—K2—W1i 139.0 (2) W2i—O3—K1i 108.1 (4)
O4vi—K2—W1i 82.3 (2) Se—O3—K1x 86.8 (4)
O10vii—K2—W1i 124.7 (2) W2i—O3—K1x 118.7 (4)
O8iv—K2—W1i 83.2 (2) K1i—O3—K1x 99.0 (3)
O12i—K2—W1i 28.6 (2) W2—O4—K2xvi 139.1 (5)
O9viii—K2—W1i 114.1 (2) W2—O4—K1xv 117.3 (5)
O7ix—K2—W1i 29.32 (19) K2xvi—O4—K1xv 90.3 (3)
O11viii—K2—W1i 76.0 (2) Se—O5—W3ii 124.5 (5)
W2iv—K2—W1i 105.51 (8) Se—O5—K1ii 115.3 (5)
O2v—K2—W1ii 101.5 (3) W3ii—O5—K1ii 111.7 (4)
O6vi—K2—W1ii 81.5 (2) Se—O5—K1x 88.2 (4)
O4vi—K2—W1ii 138.0 (2) W3ii—O5—K1x 112.0 (4)
O10vii—K2—W1ii 28.4 (2) K1ii—O5—K1x 99.0 (3)
O8iv—K2—W1ii 85.9 (2) W3—O6—K2xvi 134.9 (6)
O12i—K2—W1ii 125.5 (2) W3—O6—K1xv 125.9 (5)
O9viii—K2—W1ii 30.0 (2) K2xvi—O6—K1xv 90.0 (3)
O7ix—K2—W1ii 115.2 (2) W1iii—O7—W2 146.6 (6)
O11viii—K2—W1ii 78.6 (2) W1iii—O7—K2ix 89.2 (4)
W2iv—K2—W1ii 57.20 (5) W2—O7—K2ix 113.7 (4)
W1i—K2—W1ii 137.13 (9) W2—O8—W3 131.3 (5)
O2—W1—O7x 96.6 (5) W2—O8—K2xv 103.1 (4)
O2—W1—O12 100.1 (5) W3—O8—K2xv 112.3 (4)
O7x—W1—O12 96.1 (4) W2—O8—K1 106.6 (4)
O2—W1—O10xi 95.0 (5) W3—O8—K1 106.0 (3)
O7x—W1—O10xi 166.0 (5) K2xv—O8—K1 89.6 (3)
O12—W1—O10xi 89.5 (4) W3—O9—W1iii 145.8 (6)
O2—W1—O9x 91.8 (5) W3—O9—K2viii 107.3 (4)
O7x—W1—O9x 89.5 (4) W1iii—O9—K2viii 96.9 (4)
O12—W1—O9x 166.1 (4) W2xvii—O10—W1xiii 147.4 (6)
O10xi—W1—O9x 82.3 (4) W2xvii—O10—K2xviii 103.6 (4)
O2—W1—O1 169.9 (4) W1xiii—O10—K2xviii 109.0 (4)
O7x—W1—O1 82.7 (4) W3—O11—W2xvii 149.4 (5)
O12—W1—O1 89.9 (4) W3—O11—K2viii 100.2 (4)
O10xi—W1—O1 84.4 (4) W2xvii—O11—K2viii 109.0 (4)
O9x—W1—O1 78.2 (4) W1—O12—W3xi 146.7 (5)
O2—W1—K2i 71.7 (4) W1—O12—K2i 102.4 (4)
O7x—W1—K2i 61.4 (3) W3xi—O12—K2i 110.9 (4)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1; (iv) −x+1/2, y−1/2, −z+3/2; (v) x, y−1, z+1; (vi) x, y−1, z; (vii) −x+3/2, y−1/2, −z+3/2; (viii) −x+1, −y+1, −z+2; (ix) −x, −y+1, −z+2; (x) x, y, z−1; (xi) x−1/2, −y+3/2, z−1/2; (xii) x−1, y, z; (xiii) x+1/2, −y+3/2, z+1/2; (xiv) x, y+1, z−1; (xv) −x+1/2, y+1/2, −z+3/2; (xvi) x, y+1, z; (xvii) x+1, y, z; (xviii) −x+3/2, y+1/2, −z+3/2.

References

  1. Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  2. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chang, H. Y., Kim, S. W. & Halasyamani, P. S. (2010). Chem. Mater. 22, 3241–3250.
  4. Dussack, L. L., Harrison, W. T. A. & Jacobson, A. J. (1996). Mater. Res. Bull. 31, 249–255.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Galy, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142–159.
  7. Goodey, J., Min Ok, K., Broussard, J., Hofmann, C., Escobedo, F. V. & Halasyamani, P. S. (2003). J. Solid State Chem. 175, 3–12.
  8. Halasyamani, P. S. (2004). Chem. Mater. 16, 3586–3592.
  9. Halasyamani, P. S. & Poeppelmeier, K. R. (1998). Chem. Mater. 10, 2753–2769.
  10. Harrison, W. T. A., Dussack, L. L. & Jacobson, A. J. (1994). Inorg. Chem. 33, 6043–6049. [DOI] [PubMed]
  11. Harrison, W. T. A., Dussack, L. L., Vogt, T. & Jacobson, A. J. (1995). J. Solid State Chem. 120, 112–120.
  12. Huang, Y., Chen, X. & Qin, J. (2014a). Faming Zhuanli Shenqing 1–8.
  13. Huang, Y., Meng, X. & Qin, J. (2014b). Chin. J. Inorg. Chem. 30, 179–184.
  14. Kim, Y. H., Lee, D. W. & Ok, K. M. (2014). Inorg. Chem. 53, 1250–1256. [DOI] [PubMed]
  15. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  16. Kubelka, F. & Munk, P. (1931). Z. Tech. Phys. 12, 593–601.
  17. Ling, J. & Albrecht-Schmitt, T. E. (2007). J. Solid State Chem. 180, 1601–1607.
  18. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  19. Maggard, P. A., Nault, T. S., Stern, C. L. & Poeppelmeier, K. R. (2003). J. Solid State Chem. 175, 27–33.
  20. Nguyen, S. D. & Halasyamani, P. S. (2013). Inorg. Chem. 52, 2637–2647. [DOI] [PubMed]
  21. Oh, S. J., Lim, S. J., You, T. S. & Ok, K. M. (2018). Chem. Eur. J. 24, 6712–6716. [DOI] [PubMed]
  22. Ok, K. M. & Halasyamani, P. S. (2005). Inorg. Chem. 44, 3919–3925. [DOI] [PubMed]
  23. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  24. Pennington, W. T. (1999). J. Appl. Cryst. 32, 1028–1029.
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  29. Vidyavathy Balraj, V. & Vidyasagar, K. (1998). Inorg. Chem. 37, 4764–4774. [DOI] [PubMed]
  30. Zhao, P., Cong, H., Tian, X., Sun, Y., Zhang, C., Xia, S., Gao, Z. & Tao, X. (2015). Cryst. Growth Des. 15, 4484–4489.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, NH42W3SeO121, Cs2W3SeO122, Rb2W3SeO123, K2W3SeO124. DOI: 10.1107/S2056989021002735/ru2074sup1.cif

e-77-00406-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) NH42W3SeO121. DOI: 10.1107/S2056989021002735/ru2074NH42W3SeO121sup2.hkl

Supporting information file. DOI: 10.1107/S2056989021002735/ru2074sup6.pdf

e-77-00406-sup6.pdf (805KB, pdf)

Rietveld powder data: contains datablock(s) NH42W3SeO121. DOI: 10.1107/S2056989021002735/ru2074NH42W3SeO121sup7.rtv

Structure factors: contains datablock(s) Cs2W3SeO122. DOI: 10.1107/S2056989021002735/ru2074Cs2W3SeO122sup3.hkl

Rietveld powder data: contains datablock(s) Cs2W3SeO122. DOI: 10.1107/S2056989021002735/ru2074Cs2W3SeO122sup8.rtv

Structure factors: contains datablock(s) Rb2W3SeO123. DOI: 10.1107/S2056989021002735/ru2074Rb2W3SeO123sup4.hkl

Rietveld powder data: contains datablock(s) Rb2W3SeO123. DOI: 10.1107/S2056989021002735/ru2074Rb2W3SeO123sup9.rtv

Rietveld powder data: contains datablock(s) K2W3SeO124. DOI: 10.1107/S2056989021002735/ru2074K2W3SeO124sup10.rtv

Structure factors: contains datablock(s) K2W3SeO124. DOI: 10.1107/S2056989021002735/ru2074K2W3SeO124sup5.hkl

CCDC references: 2000910, 2000899, 2000898, 2000897

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES