Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 5;77(Pt 4):346–350. doi: 10.1107/S2056989021002383

Crystal structure and Hirshfeld surface analysis of 4-(4-chloro­phen­yl)-5-methyl-3-{4-[(2-methyl­phen­yl)meth­oxy]phen­yl}-1,2-oxazole

Abdullah Aydin a,*, Mehmet Akkurt b, Sumeyye Turanli c, Deniz Lengerli c, Erden Banoglu c, Nefise Dilek Ozcelik d
PMCID: PMC8025860  PMID: 33936755

In the crystal, the title mol­ecules are linked by inter­molecular C—H⋯N, C—H⋯Cl, C—H⋯π contacts and π–π stacking inter­actions. A Hirshfeld surface analysis was undertaken to qu­antify the inter­molecular inter­actions.

Keywords: crystal structure, vicinal diaryl isoxazole, C—H⋯π inter­actions, Hirshfeld surface analysis

Abstract

In the title compound, C24H20ClNO2, the mean planes of 4-chloro­phenyl, 2-methyl­phenyl and phenyl­ene rings make dihedral angles of 62.8 (2), 65.1 (3) and 15.1 (2)°, respectively, with the 5-methyl-1,2-oxazole ring. In the crystal, mol­ecules are linked by inter­molecular C—H⋯N, C—H⋯Cl, C—H⋯π contacts and π–π stacking inter­actions between the phenyl­ene groups. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (48.7%), H⋯C/C⋯H (22.2%), Cl⋯H/H⋯Cl (8.8%), H⋯O/O⋯H (8.2%) and H⋯N/N⋯H (5.1%) inter­actions.

Chemical context  

Azoles are five-membered heterocycles that have been widely used as promising scaffolds in designing novel therapeutics, in particular anti­cancer agents (Ahmad et al., 2018). Among them, isoxazole, a five-membered heterocycle with consecutive nitro­gen and oxygen atoms in the ring, is found to be a key structural component of many commercial drugs or drug candidates in clinical development (Barmade et al., 2016). Moreover, a number of vicinal diaryl isoxazoles reported in the literature exhibit anti­cancer and COX-2 inhibitory activities, such as luminesbip and valdexocib, respectively (Murumkar & Ghuge, 2018). One of the critical steps in rational drug design is obtaining knowledge of the structure of the new drug candidates, and single-crystal X-ray diffraction (SCXD) is one of the most powerful methods for gaining this fundamental information, which can be used to guide the drug-design studies in connection with other technologies such as pharmacophore model elaborations, 3D QSAR, docking, and de novo design. SCXD has thus become an essential tool for drug development to unambiguously determine the three-dimensional structures of mol­ecules, which eventually paves the way for rapid development of new mol­ecules (Wouters & Ooms, 2001). Moreover, during the drug-development process, another important issue lies in understanding the crystal packing of the active pharmaceutical ingredient (drug substance) for suitable formulation development. Since most drug mol­ecules comprise solid dosage forms in the crystalline state, it is imperative to truly understand the relationships between the crystal structures and the solid properties of pharmaceutically active substances, which helps the best form of an active pharmaceutical ingredient to be chosen for development into a drug product (Aitipamula & Vangala, 2017). Based on the above and our continuing inter­est in structural studies and biological applications of diaryl heterocycles (Banoglu et al., 2016; Çalışkan et al., 2011; Dündar et al., 2009; Eren et al., 2010; Ergun et al., 2010; Garscha et al., 2016; Levent et al., 2013; Pirol et al., 2014; Ünlü et al., 2007), we report herein the crystal structure and Hirshfeld surface analysis of the title compound.graphic file with name e-77-00346-scheme1.jpg

Structural commentary  

In the mol­ecule of the title compound (Fig. 1), the mean planes of 4-chloro­phenyl, 2-methyl­phenyl and phenyl­ene rings form dihedral angles of 62.8 (2), 65.1 (3) and 15.1 (2)°, respectively, with respect to the 5-methyl-1,2-oxazole ring. The 4-chloro­phenyl ring makes dihedral angles of 77.4 (3) and 66.38 (19)°, respectively, with the 2-methyl­phenyl and phenyl­ene rings, while the dihedral angle between the 2-methyl­phenyl and phenyl­ene rings is 80.0 (3)°. The C14—O2—C17—C18 torsion angle is 166.7 (4)°. The terminal 2-methyl­phenyl group is involved in intense thermal motion.

Figure 1.

Figure 1

Mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked by inter­molecular C—H⋯N, C—H⋯Cl and C—H⋯π contacts (Table 1, Fig. 2) and π–π inter­actions between inversion-related phenyl­ene rings [inter­centroid separation Cg3⋯Cg3(1 − x, 1 − y, 1 − z) = 3.958 (2) Å] (Fig. 3).

Table 1. Intermolecular contacts (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the O1/N1/C2–C4, C5–C10 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯N1i 0.97 2.68 3.395 (6) 131
C6—H6⋯Cg3ii 0.93 2.86 3.747 (5) 159
C19—H19⋯Cg1iii 0.93 2.77 3.614 (6) 151
C8—Cl1⋯Cg2iv 1.75 (1) 3.37 (1) 5.034 (4) 159 (1)

Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}.

Figure 2.

Figure 2

A view of the C—H⋯N and C—H⋯π inter­actions in the unit cell of the title compound. Dashed lines show short inter­molecular contacts.

Figure 3.

Figure 3

A view of the C—H⋯N and C—H⋯π and π–π inter­actions in the unit cell of the title compound. Dashed lines show short inter­molecular contacts.

Hirshfeld surface analysis  

Hirshfeld surface analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) of the title compound was carried out to investigate the location of atoms with potential to form hydrogen bonds and other inter­molecular contacts, and the qu­anti­tative ratio of these inter­actions. Crystal Explorer17.5 (Turner et al., 2017) was used to generate the Hirshfeld surfaces and two-dimensional fingerprint plots (Rohl et al., 2008). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional d norm surfaces mapped over a fixed colour scale of −0.0800 (red) to 1.5787 Å (blue) (Fig. 4).

Figure 4.

Figure 4

The Hirshfeld surface of the title compound mapped with d norm.

The red points, which represent closer contacts and negative d norm values on the surface, correspond to the C—H⋯N (C17—H17A⋯N1), C—H⋯Cl (C8—Cl1⋯H1C—C1) and C—H⋯π (C6—H6⋯phenyl­ene) inter­actions (Table 2). Except for the red spots, the overall surface mapped over d norm is white and blue, indicating that the distances between the contact atoms in inter­molecular contacts are nearly the same as the sum of their van der Waals radii or longer.

Table 2. Summary of selected van der Waals contacts (Å) involving H atoms in the title compound.

Contact Distance Symmetry operation
Cl1⋯H1C 3.04 x, {1\over 2} − y, {1\over 2} + z
N1⋯H17A 2.68 x, y, −1 + z
H1A⋯O1 2.74 2 − x, 1 − y, −z
H10⋯O2 2.72 1 − x, 1 − y, 1 − z
H6⋯C11 2.80 2 − x, 1 − y, 1 − z
H9⋯C21 2.94 1 − x, −{1\over 2} + y, {3\over 2} − z
H20⋯C9 3.05 1 − x, 1 − y, 2 − z
H22⋯H24C 2.48 x, {1\over 2} − y, − {1\over 2} + z

The shape-index of the Hirshfeld surface is a tool for visualizing the π–π stacking by the presence of adjacent red and blue triangles; if there are no such triangles, then there are no π–π inter­actions. The plot of the Hirshfeld surface mapped over shape-index clearly suggests that there are π–π inter­actions in the title compound (Fig. 5).

Figure 5.

Figure 5

Hirshfeld surface of the title compound plotted over shape-index.

Fig. 6(a) shows the total two-dimensional fingerprint plot providing information on the major and minor percentage contributions of the inter­atomic contacts to the Hirshfeld surface of the title compound. The blue colour refers to the frequency of occurrence of the (d i, d e) pair and the grey colour is the outline of the full fingerprint (Zaini et al., 2019). The fingerprint plots (Fig. 6 b) show that the H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (48.7%). The H⋯C/C⋯H, Cl⋯H/H⋯Cl, H⋯O/O⋯H and H⋯N/N⋯H contacts contribute 22.2, 8.8, 8.2 and 5.1%, respectively (Fig. 6 c–f). The remaining weaker contacts are listed in Table 3.

Figure 6.

Figure 6

The total two-dimensional fingerprint plot (a) and the relative contributions of various inter­actions to the Hirshfeld surface: (b) H⋯H, (c) H⋯C/C⋯H, (d) Cl⋯H/H⋯Cl, (e) H⋯O/O⋯H and (f) H⋯N/N⋯H.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface of the title compound.

Contact Percentage contribution
H⋯H 48.7
H⋯C/C⋯H 22.2
Cl⋯H/H⋯Cl 8.8
H⋯O/O⋯H 8.2
H⋯N/N⋯H 5.1
Cl⋯C/C⋯Cl 3.9
C⋯C 2.1
C⋯N/N⋯C 0.4
O⋯O 0.4
C⋯O/O⋯C 0.2

The large number of H⋯H, H⋯C/C⋯H, Cl⋯H/H⋯Cl, H⋯O/O⋯H and H⋯N/N⋯H inter­actions suggest that van der Waals inter­actions play the major roles in the crystal packing (Hathwar et al., 2015).

Database survey  

The closest related 1,2-oxazole compounds containing a halogen atom, but with different substituents at the aromatic rings are: ethyl 3-(4-chloro­phen­yl)-5-[(E)-2- (di­methyl­amino)­ethen­yl]-1,2-oxazole-4- carboxyl­ate [(I); Efimov et al., 2015], N-(2,4-di­fluoro­phen­yl)-5-methyl-1,2-oxazole-4-carboxamide hemihydrate [(II); Yu et al., 2012] and N-(2,6-di­chloro­phen­yl)-5-methyl-1,2-oxazole-4-carboxamide monohydrate [(III); Wang et al., 2011].

In compound (I), the asymmetric unit contains two mol­ecules, A and B, with different conformations. In mol­ecule A, the C=O group of the ester points away from the benzene ring [C—C—C=O = −170.8 (3)°], whereas in mol­ecule B, it points back towards the benzene ring [C—C—C=O = 17.9 (4)°]. The dihedral angles between the oxazole and benzene rings are also somewhat different [46.26 (13) and 41.59 (13)° for mol­ecules A and B, respectively]. Each mol­ecule features an intra­molecular C—H⋯O inter­action, which closes an S(6) ring. In the crystal, the B mol­ecules are linked into C(12) chains along the c-axis direction by weak C—H⋯Cl inter­actions. In the crystal of (II), the components are linked by O—H⋯N and N—H⋯O hydrogen bonds, where the water mol­ecule acts as both an H-atom donor and an acceptor, into a tape along the a-axis direction with an Inline graphic(16) graph-set motif. The water mol­ecule is located on a twofold rotation axis. In (III), the dihedral angle between the benzene and isoxazole rings is 59.10 (7)°. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network. The crystal structure is further stabilized by π-stacking inter­actions [inter­centroid distance = 3.804 (2) Å].

Synthesis and crystallization  

Step 1: To a solution of N-hy­droxy-4-[(2-methyl­benz­yl)­oxy]benzimidoyl chloride (275 mg, 1 mmol) in diethyl ether (6 ml) was added Et3N (139.4 µL, 1 mmol). The resulting mixture was stirred for 2 h in an ice bath, and the precipitate formed was filtered off. The filtrate was evaporated under vacuum to obtain the aryl­nitriloxide inter­mediate.

Step 2: To a solution of NaH (60% in mineral oil, 64 mg, 1.6 mmol) in dry THF (4 ml), 4-chloro­phenyl­acetone (168,6 mg, 1.0 mmol) was added dropwise, and stirred for 1 h under a nitro­gen atmosphere in an ice bath. At the end of the period, the aryl­nitriloxide inter­mediate was dissolved in dry THF (4 ml), and was added to the reaction mixture, then stirred at room temperature overnight. Upon completion of the reaction, aqueous ammonium chloride solution was added, and the product was extracted with EtOAc (2 × 50 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered and evaporated to dryness. The crude product was purified by automated-flash chromatography on silica gel (12 g) eluting with a gradient of 0 to 40% EtOAc in hexane. The obtained pure product was recrystallized from methanol. Crystals for structural study were obtained by slow cooling of the solution, yield 77%, m.p. 387.2–388.6 K.

1H NMR (400 MHz, CDCl3): δ 2.29 (3H, s), 2.39 (3H, s), 5.07 (2H, s), 7.05 (2H, d, J = 8.4 Hz), 7.15–7.25 (5H, m), 7.27 (2H, d, J = 8.8 Hz), 7.38 (1H, d, J = 7.6 Hz), 7.47 (2H, d, J = 8.4 Hz).

13C NMR (100 MHz, CDCl3): δ 11.21, 18.42, 67.98, 113.96, 114.97, 120.84, 125.77, 128.15, 128.59, 128.86, 129.43, 130.12, 131.44, 132.57, 134.58, 136.64, 159.49, 160.09, 166.93. HRMS (m/z): [M + H]+ calculated for C24H21ClNO2: 390.1261; found: 390.1263.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl). In the final refinement, three outliers (1 11 9, 2 16 7, Inline graphic 19 6) were omitted.

Table 4. Experimental details.

Crystal data
Chemical formula C24H20ClNO2
M r 389.86
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.5733 (10), 22.848 (2), 8.7151 (9)
β (°) 101.477 (4)
V3) 2063.3 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.17 × 0.13 × 0.11
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007)
T min, T max 0.598, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 45630, 3840, 3030
R int 0.064
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.099, 0.187, 1.25
No. of reflections 3840
No. of parameters 255
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.33

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXT2014/4 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002383/yk2147sup1.cif

e-77-00346-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002383/yk2147Isup2.hkl

e-77-00346-Isup2.hkl (306.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002383/yk2147Isup3.cml

CCDC reference: 2067449

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010 K120480 of the State of Planning Organization). The title compound was produced within the context of a research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK #215S015).

supplementary crystallographic information

Crystal data

C24H20ClNO2 F(000) = 816
Mr = 389.86 Dx = 1.255 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.5733 (10) Å Cell parameters from 9984 reflections
b = 22.848 (2) Å θ = 2.9–26.1°
c = 8.7151 (9) Å µ = 0.20 mm1
β = 101.477 (4)° T = 296 K
V = 2063.3 (4) Å3 Block, colourless
Z = 4 0.17 × 0.13 × 0.11 mm

Data collection

Bruker SMART BREEZE CCD diffractometer 3030 reflections with I > 2σ(I)
φ and ω scans Rint = 0.064
Absorption correction: multi-scan (SADABS; Bruker, 2007) θmax = 25.5°, θmin = 2.9°
Tmin = 0.598, Tmax = 0.745 h = −12→12
45630 measured reflections k = −27→27
3840 independent reflections l = −10→10

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.099 H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0303P)2 + 3.1816P] where P = (Fo2 + 2Fc2)/3
S = 1.25 (Δ/σ)max < 0.001
3840 reflections Δρmax = 0.29 e Å3
255 parameters Δρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9916 (5) 0.3972 (2) 0.0798 (6) 0.0786 (15)
H1A 1.073792 0.414990 0.079720 0.118*
H1B 0.949677 0.388351 −0.025762 0.118*
H1C 1.003929 0.361730 0.140061 0.118*
C2 0.9100 (4) 0.43821 (19) 0.1503 (5) 0.0575 (11)
C3 0.8681 (4) 0.43905 (16) 0.2861 (4) 0.0445 (9)
C4 0.7911 (4) 0.49060 (16) 0.2788 (4) 0.0477 (9)
C5 0.8951 (3) 0.39390 (15) 0.4106 (4) 0.0399 (8)
C6 1.0198 (4) 0.38314 (18) 0.4902 (5) 0.0559 (11)
H6 1.087573 0.404533 0.464626 0.067*
C7 1.0458 (4) 0.34153 (19) 0.6061 (5) 0.0601 (11)
H7 1.129976 0.334858 0.658977 0.072*
C8 0.9461 (4) 0.31025 (16) 0.6423 (4) 0.0505 (10)
C9 0.8221 (4) 0.31897 (17) 0.5654 (4) 0.0513 (10)
H9 0.755403 0.296826 0.590784 0.062*
C10 0.7965 (4) 0.36096 (17) 0.4494 (4) 0.0474 (9)
H10 0.712000 0.367117 0.396865 0.057*
C11 0.7223 (4) 0.51653 (15) 0.3940 (4) 0.0434 (9)
C12 0.7465 (4) 0.50001 (17) 0.5498 (5) 0.0534 (10)
H12 0.804645 0.469849 0.582691 0.064*
C13 0.6866 (4) 0.52715 (17) 0.6581 (5) 0.0560 (11)
H13 0.703823 0.515063 0.762061 0.067*
C14 0.6014 (4) 0.57204 (18) 0.6108 (4) 0.0511 (10)
C15 0.5757 (4) 0.5890 (2) 0.4563 (5) 0.0638 (12)
H15 0.517749 0.619299 0.423717 0.077*
C16 0.6351 (4) 0.5615 (2) 0.3503 (5) 0.0604 (11)
H16 0.616425 0.573436 0.246158 0.072*
C17 0.5646 (5) 0.5876 (2) 0.8714 (5) 0.0726 (14)
H17A 0.656655 0.583009 0.909755 0.087*
H17B 0.522468 0.550907 0.885738 0.087*
C18 0.5135 (4) 0.6354 (2) 0.9591 (4) 0.0599 (12)
C19 0.4002 (5) 0.6258 (3) 1.0119 (6) 0.0900 (17)
H19 0.356626 0.590511 0.988715 0.108*
C20 0.3513 (7) 0.6669 (5) 1.0973 (8) 0.130 (3)
H20 0.275977 0.659313 1.133673 0.156*
C21 0.4116 (11) 0.7181 (4) 1.1287 (9) 0.136 (4)
H21 0.377369 0.746428 1.185453 0.163*
C22 0.5229 (9) 0.7290 (3) 1.0780 (8) 0.117 (3)
H22 0.563766 0.764957 1.100443 0.140*
C23 0.5775 (6) 0.6873 (3) 0.9926 (6) 0.0797 (15)
C24 0.7025 (7) 0.6991 (3) 0.9434 (8) 0.134 (3)
H24A 0.769778 0.676652 1.007418 0.200*
H24B 0.722625 0.739980 0.955410 0.200*
H24C 0.695494 0.688090 0.835677 0.200*
Cl1 0.97763 (16) 0.25691 (6) 0.78820 (15) 0.0889 (5)
N1 0.7874 (4) 0.51849 (16) 0.1458 (4) 0.0666 (10)
O1 0.8631 (3) 0.48497 (14) 0.0621 (3) 0.0709 (9)
O2 0.5395 (3) 0.60330 (14) 0.7082 (3) 0.0668 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.092 (4) 0.084 (4) 0.071 (3) 0.014 (3) 0.042 (3) 0.013 (3)
C2 0.066 (3) 0.054 (2) 0.055 (2) 0.000 (2) 0.019 (2) 0.012 (2)
C3 0.049 (2) 0.043 (2) 0.041 (2) −0.0046 (17) 0.0083 (17) 0.0078 (17)
C4 0.058 (2) 0.045 (2) 0.040 (2) −0.0057 (18) 0.0081 (17) 0.0113 (17)
C5 0.049 (2) 0.0339 (18) 0.0374 (19) −0.0043 (16) 0.0101 (16) −0.0036 (15)
C6 0.051 (2) 0.058 (3) 0.057 (2) −0.014 (2) 0.0059 (19) 0.010 (2)
C7 0.056 (3) 0.062 (3) 0.056 (3) −0.002 (2) −0.005 (2) 0.010 (2)
C8 0.078 (3) 0.034 (2) 0.040 (2) 0.001 (2) 0.014 (2) 0.0018 (16)
C9 0.059 (3) 0.050 (2) 0.049 (2) −0.018 (2) 0.020 (2) 0.0019 (19)
C10 0.042 (2) 0.052 (2) 0.049 (2) −0.0019 (18) 0.0104 (17) 0.0035 (18)
C11 0.049 (2) 0.038 (2) 0.040 (2) −0.0029 (17) 0.0022 (16) 0.0068 (16)
C12 0.068 (3) 0.041 (2) 0.051 (2) 0.0125 (19) 0.011 (2) 0.0115 (18)
C13 0.078 (3) 0.049 (2) 0.040 (2) 0.012 (2) 0.009 (2) 0.0093 (18)
C14 0.051 (2) 0.056 (2) 0.043 (2) 0.0058 (19) −0.0006 (18) −0.0016 (19)
C15 0.064 (3) 0.072 (3) 0.048 (2) 0.028 (2) −0.006 (2) 0.006 (2)
C16 0.071 (3) 0.072 (3) 0.034 (2) 0.013 (2) −0.0016 (19) 0.009 (2)
C17 0.092 (4) 0.073 (3) 0.052 (3) 0.026 (3) 0.012 (2) 0.003 (2)
C18 0.058 (3) 0.080 (3) 0.037 (2) 0.022 (2) −0.0031 (19) 0.006 (2)
C19 0.074 (3) 0.134 (5) 0.059 (3) 0.015 (3) 0.004 (3) −0.013 (3)
C20 0.093 (5) 0.231 (10) 0.067 (4) 0.062 (6) 0.018 (4) −0.017 (6)
C21 0.174 (9) 0.150 (8) 0.073 (5) 0.103 (8) −0.004 (5) −0.019 (5)
C22 0.172 (8) 0.086 (4) 0.071 (4) 0.023 (5) −0.024 (5) −0.013 (3)
C23 0.088 (4) 0.085 (4) 0.055 (3) 0.011 (3) −0.011 (3) 0.000 (3)
C24 0.116 (6) 0.157 (7) 0.118 (6) −0.049 (5) 0.000 (4) 0.011 (5)
Cl1 0.1332 (12) 0.0644 (8) 0.0662 (8) 0.0031 (8) 0.0132 (8) 0.0303 (6)
N1 0.086 (3) 0.061 (2) 0.057 (2) 0.015 (2) 0.024 (2) 0.0205 (18)
O1 0.095 (2) 0.072 (2) 0.0546 (18) 0.0134 (18) 0.0346 (17) 0.0237 (16)
O2 0.073 (2) 0.083 (2) 0.0402 (16) 0.0342 (17) 0.0011 (14) 0.0025 (15)

Geometric parameters (Å, º)

C1—C2 1.487 (6) C13—H13 0.9300
C1—H1A 0.9600 C14—O2 1.371 (5)
C1—H1B 0.9600 C14—C15 1.376 (5)
C1—H1C 0.9600 C15—C16 1.369 (6)
C2—C3 1.344 (5) C15—H15 0.9300
C2—O1 1.351 (5) C16—H16 0.9300
C3—C4 1.426 (5) C17—O2 1.439 (5)
C3—C5 1.483 (5) C17—C18 1.494 (6)
C4—N1 1.317 (5) C17—H17A 0.9700
C4—C11 1.476 (5) C17—H17B 0.9700
C5—C10 1.381 (5) C18—C23 1.368 (7)
C5—C6 1.384 (5) C18—C19 1.383 (7)
C6—C7 1.375 (5) C19—C20 1.364 (9)
C6—H6 0.9300 C19—H19 0.9300
C7—C8 1.361 (6) C20—C21 1.334 (12)
C7—H7 0.9300 C20—H20 0.9300
C8—C9 1.363 (6) C21—C22 1.361 (11)
C8—Cl1 1.745 (4) C21—H21 0.9300
C9—C10 1.381 (5) C22—C23 1.402 (9)
C9—H9 0.9300 C22—H22 0.9300
C10—H10 0.9300 C23—C24 1.493 (8)
C11—C16 1.383 (5) C24—H24A 0.9600
C11—C12 1.383 (5) C24—H24B 0.9600
C12—C13 1.384 (5) C24—H24C 0.9600
C12—H12 0.9300 N1—O1 1.411 (4)
C13—C14 1.373 (5)
C2—C1—H1A 109.5 O2—C14—C13 124.7 (3)
C2—C1—H1B 109.5 O2—C14—C15 115.7 (3)
H1A—C1—H1B 109.5 C13—C14—C15 119.6 (4)
C2—C1—H1C 109.5 C16—C15—C14 120.2 (4)
H1A—C1—H1C 109.5 C16—C15—H15 119.9
H1B—C1—H1C 109.5 C14—C15—H15 119.9
C3—C2—O1 110.0 (4) C15—C16—C11 121.7 (4)
C3—C2—C1 133.8 (4) C15—C16—H16 119.1
O1—C2—C1 116.2 (4) C11—C16—H16 119.1
C2—C3—C4 104.9 (3) O2—C17—C18 108.0 (3)
C2—C3—C5 125.8 (4) O2—C17—H17A 110.1
C4—C3—C5 129.2 (3) C18—C17—H17A 110.1
N1—C4—C3 110.8 (3) O2—C17—H17B 110.1
N1—C4—C11 118.2 (3) C18—C17—H17B 110.1
C3—C4—C11 131.0 (3) H17A—C17—H17B 108.4
C10—C5—C6 118.1 (3) C23—C18—C19 119.4 (5)
C10—C5—C3 120.9 (3) C23—C18—C17 121.9 (5)
C6—C5—C3 121.0 (3) C19—C18—C17 118.6 (5)
C7—C6—C5 121.4 (4) C20—C19—C18 121.3 (7)
C7—C6—H6 119.3 C20—C19—H19 119.4
C5—C6—H6 119.3 C18—C19—H19 119.4
C8—C7—C6 118.9 (4) C21—C20—C19 119.9 (8)
C8—C7—H7 120.6 C21—C20—H20 120.0
C6—C7—H7 120.6 C19—C20—H20 120.0
C7—C8—C9 121.5 (4) C20—C21—C22 120.2 (8)
C7—C8—Cl1 119.4 (3) C20—C21—H21 119.9
C9—C8—Cl1 119.1 (3) C22—C21—H21 119.9
C8—C9—C10 119.4 (3) C21—C22—C23 121.5 (8)
C8—C9—H9 120.3 C21—C22—H22 119.3
C10—C9—H9 120.3 C23—C22—H22 119.3
C9—C10—C5 120.7 (4) C18—C23—C22 117.7 (6)
C9—C10—H10 119.7 C18—C23—C24 121.5 (6)
C5—C10—H10 119.7 C22—C23—C24 120.8 (7)
C16—C11—C12 117.1 (4) C23—C24—H24A 109.5
C16—C11—C4 120.2 (3) C23—C24—H24B 109.5
C12—C11—C4 122.6 (3) H24A—C24—H24B 109.5
C11—C12—C13 121.8 (4) C23—C24—H24C 109.5
C11—C12—H12 119.1 H24A—C24—H24C 109.5
C13—C12—H12 119.1 H24B—C24—H24C 109.5
C14—C13—C12 119.5 (4) C4—N1—O1 105.8 (3)
C14—C13—H13 120.3 C2—O1—N1 108.5 (3)
C12—C13—H13 120.3 C14—O2—C17 117.7 (3)
O1—C2—C3—C4 −0.5 (5) C12—C13—C14—O2 −177.9 (4)
C1—C2—C3—C4 −179.0 (5) C12—C13—C14—C15 0.7 (7)
O1—C2—C3—C5 177.6 (3) O2—C14—C15—C16 178.4 (4)
C1—C2—C3—C5 −0.9 (8) C13—C14—C15—C16 −0.3 (7)
C2—C3—C4—N1 0.2 (5) C14—C15—C16—C11 −0.3 (7)
C5—C3—C4—N1 −177.8 (4) C12—C11—C16—C15 0.5 (6)
C2—C3—C4—C11 −177.8 (4) C4—C11—C16—C15 −175.9 (4)
C5—C3—C4—C11 4.2 (7) O2—C17—C18—C23 −77.0 (5)
C2—C3—C5—C10 −115.9 (5) O2—C17—C18—C19 105.2 (5)
C4—C3—C5—C10 61.7 (5) C23—C18—C19—C20 −0.3 (8)
C2—C3—C5—C6 63.4 (6) C17—C18—C19—C20 177.7 (5)
C4—C3—C5—C6 −119.0 (5) C18—C19—C20—C21 1.3 (10)
C10—C5—C6—C7 −0.9 (6) C19—C20—C21—C22 −1.1 (12)
C3—C5—C6—C7 179.8 (4) C20—C21—C22—C23 −0.2 (11)
C5—C6—C7—C8 0.3 (7) C19—C18—C23—C22 −1.0 (7)
C6—C7—C8—C9 0.6 (6) C17—C18—C23—C22 −178.8 (4)
C6—C7—C8—Cl1 179.5 (3) C19—C18—C23—C24 177.7 (5)
C7—C8—C9—C10 −0.8 (6) C17—C18—C23—C24 −0.1 (7)
Cl1—C8—C9—C10 −179.8 (3) C21—C22—C23—C18 1.2 (9)
C8—C9—C10—C5 0.2 (6) C21—C22—C23—C24 −177.5 (6)
C6—C5—C10—C9 0.6 (6) C3—C4—N1—O1 0.2 (5)
C3—C5—C10—C9 180.0 (3) C11—C4—N1—O1 178.4 (3)
N1—C4—C11—C16 13.4 (6) C3—C2—O1—N1 0.6 (5)
C3—C4—C11—C16 −168.7 (4) C1—C2—O1—N1 179.4 (4)
N1—C4—C11—C12 −162.7 (4) C4—N1—O1—C2 −0.5 (5)
C3—C4—C11—C12 15.1 (6) C13—C14—O2—C17 −0.5 (6)
C16—C11—C12—C13 0.0 (6) C15—C14—O2—C17 −179.2 (4)
C4—C11—C12—C13 176.2 (4) C18—C17—O2—C14 166.7 (4)
C11—C12—C13—C14 −0.5 (7)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the O1/N1/C2–C4, C5–C10 and C11–C16 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C17—H17A···N1i 0.97 2.68 3.395 (6) 131
C6—H6···Cg3ii 0.93 2.86 3.747 (5) 159
C19—H19···Cg1iii 0.93 2.77 3.614 (6) 151
C8—Cl1···Cg2iv 1.75 (1) 3.37 (1) 5.034 (4) 159 (1)

Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, −y−1/2, z−1/2.

References

  1. Ahmad, K., Khan, M. K., Baig, M. H., Imran, M. & Gupta, G. K. (2018). Anticancer Agents Med. Chem. 18, 46–56. [DOI] [PubMed]
  2. Aitipamula, S. & Vangala, V. R. (2017). J. Indian Inst. Sci. 97, 227–243.
  3. Banoglu, E., Çelikoğlu, E., Völker, S., Olgaç, A., Gerstmeier, J., Garscha, U., Çalışkan, B., Schubert, U. S., Carotti, A., Macchiarulo, A. & Werz, O. (2016). Eur. J. Med. Chem. 113, 1–10. [DOI] [PubMed]
  4. Barmade, M. A., Murumkar, P. R., Sharma, M. K. & Yadav, M. R. (2016). Curr. Top. Med. Chem. 16, 2863–2883. [DOI] [PubMed]
  5. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Çalışkan, B., Luderer, S., Özkan, Y., Werz, O. & Banoglu, E. (2011). Eur. J. Med. Chem. 46, 5021–5033. [DOI] [PubMed]
  7. Dündar, Y., Ünlü, S., Banoğlu, E., Entrena, A., Costantino, G., Nunez, M. T., Ledo, F., Şahin, M. F. & Noyanalpan, N. (2009). Eur. J. Med. Chem. 44, 4785–4785. [DOI] [PubMed]
  8. Efimov, I., Slepukhin, P. & Bakulev, V. (2015). Acta Cryst. E71, o1028. [DOI] [PMC free article] [PubMed]
  9. Eren, G., Ünlü, S., Nuñez, M., Labeaga, L., Ledo, F., Entrena, A., Banoğlu, E., Costantino, G. & Şahin, M. F. (2010). Bioorg. Med. Chem. 18, 6367–6376. [DOI] [PubMed]
  10. Ergun, B. C., Nunez, M. T., Labeaga, L., Ledo, F., Darlington, J., Bain, G., Cakir, B. & Banoglu, E. (2010). Arzneim. Forsch. 60, 497–505. [DOI] [PubMed]
  11. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  12. Garscha, U., Voelker, S., Pace, S., Gerstmeier, J., Emini, B., Liening, S., Rossi, A., Weinigel, C., Rummler, S., Schubert, U. S., Scriba, G. K., Çelikoğlu, E., Çalışkan, B., Banoglu, E., Sautebin, L. & Werz, O. (2016). Biochem. Pharmacol. 119, 17–26. [DOI] [PubMed]
  13. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  14. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  15. Levent, S., Çalışkan, B., Çiftçi, M., Özkan, Y., Yenicesu, I., Ünver, H. & Banoglu, E. (2013). Eur. J. Med. Chem. 64, 42–53. [DOI] [PubMed]
  16. Murumkar, P. R. & Ghuge, R. B. (2018). Vicinal Diaryl Oxadiazoles, Oxazoles and Isoxazoles, In Vicinal Diaryl Substituted Heterocycles, edited by M. R. Yadav, P. R. Murumkar & R. B. Ghuge, pp. 277–303. Oxford: Elsevier.
  17. Pirol, Ş. C., Çalışkan, B., Durmaz, I., Atalay, R. & Banoglu, E. (2014). Eur. J. Med. Chem. 87, 140–149. [DOI] [PubMed]
  18. Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  22. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  23. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia.
  24. Ünlü, S., Banoglu, E., Ito, S., Niiya, T., Eren, G., Ökçelik, B. & Şahin, M. F. (2007). J. Enzyme Inhib. Med. Chem. 22, 351–361. [DOI] [PubMed]
  25. Wang, D.-C., Huang, L.-C., Liu, H.-Q., Peng, Y.-R. & Song, J.-S. (2011). Acta Cryst. E67, o3207. [DOI] [PMC free article] [PubMed]
  26. Wouters, C. & Ooms, F. (2001). Curr. Pharm. Des. 7, 529–545. [DOI] [PubMed]
  27. Yu, J.-G., Zhu, H.-X., Qiu, J.-K., Wang, D.-C. & Xu, H. (2012). Acta Cryst. E68, o2325. [DOI] [PMC free article] [PubMed]
  28. Zaini, M. F., Razak, I. A., Anis, M. Z. & Arshad, S. (2019). Acta Cryst. E75, 58–63. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002383/yk2147sup1.cif

e-77-00346-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002383/yk2147Isup2.hkl

e-77-00346-Isup2.hkl (306.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002383/yk2147Isup3.cml

CCDC reference: 2067449

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES