Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 5;77(Pt 4):360–365. doi: 10.1107/S2056989021002346

Crystal structure of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate

Ashwini Gumireddy a, Kevin DeBoyace a, Alexander Rupprecht b, Mohit Gupta a, Saloni Patel a, Patrick T Flaherty a, Peter L D Wildfong a,*
PMCID: PMC8025862  PMID: 33936758

A sterically congested piperazine derivative, tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate, was prepared using a modified Bruylants approach. Its novel chemistry with a synthetically useful second nitro­gen atom on the N-tert-butyl piperazine substructure generates a pharmacologically useful core.

Keywords: crystal structure, quaternary carbons, propargyl­amine

Abstract

The title sterically congested piperazine derivative, C20H27FN2O2, was prepared using a modified Bruylants approach. A search of the Cambridge Structural Database identified 51 compounds possessing an N-tert-butyl piperazine substructure. Of these only 14 were asymmetrically substituted on the piperazine ring and none with a synthetically useful second nitro­gen. Given the novel chemistry generating a pharmacologically useful core, determination of the crystal structure for this compound was necessary. The piperazine ring is present in a chair conformation with di-equatorial substitution. Of the two N atoms, one is sp 3 hybridized while the other is sp 2 hybridized. Inter­molecular inter­actions resulting from the crystal packing patterns were investigated using Hirshfeld surface analysis and fingerprint analysis. Directional weak hydrogen-bond-like inter­actions (C—H⋯O) and C—H⋯π inter­actions with the dispersion inter­actions as the major source of attraction are present in the crystal packing.

Chemical context  

In the course of designing novel sigma-2 ligands, it was necessary to synthesize 1-(2-methyl-4-phenyl­butan-2-yl)pip­erazines. These could be prepared in several steps from the corresponding alkyne 1 shown in Fig. 1. The challenge of synthesizing quaternary carbons (Wei et al., 2020; Liu et al., 2015; Volla et al., 2014; Fuji, 1993; Martin, 1980), particularly amine-bearing quaternary carbons (Zhu et al., 2019; Yeung et al., 2019; Xu et al., 2019; Velasco-Rubio et al., 2019; Vasu et al., 2019; Trost et al., 2019; Ling & Rivas, 2016; Hager et al., 2016; Clayden et al., 2011; Fu et al., 2008; Riant & Hannedouche, 2007), is well established. The presence of the N-gem-dimethyl group of 1 presented a significant synthetic challenge arising from steric congestion. Nucleophilic attack by an organometallic reagent into a transient 1-N-ethyl­idenepiperazinium has a literature precedent, but nucleophilic attack into the more sterically congested 1-N-propyl­idenepiperazinium inter­mediate by an alkynyl Grignard reagent is presented here for the first time. Four potential synthetic routes were identified including Katritzky benzotriazole trapping of an iminium (Monbaliu et al., 2013; Ingram et al., 2006; Katritzky, 1998; Katritzky et al., 1989, 1991, 2005; Katritzky & Rogovoy, 2003; Katritzky & Saczewski, 1990), a Bruylants (Bruylants, 1924) trapping of an iminium, sequential addition of two methyl groups into an amide, and rearrangement to the gem-dimethyl group. All in-house attempts at the Katritzky benzotriazole (Tang et al., 2013; Pierce et al., 2012; Albaladejo et al., 2012) or triazole (Prashad et al., 2005) reactions failed. A variation on the Bruylants reaction (Liu et al., 2014; Beaufort-Droal et al., 2006; Prashad et al., 2005; Kudzma et al., 1988; Bernardi et al., 2003) described herein was successful. The traditional Bruylants reaction captures a trapped iminium as the corres­ponding α-amino nitrile. In a subsequent reaction, the α-amino nitrile transiently forms an iminium that is then trapped with excess Grignard reagent. Conversion of the terminal alkyne 4 to the corresponding magnesiobromide acetyl­ide proceeded under established conditions. Attack of an alkynyl magnesium bromide into the transient iminium is precedented to yield tertiary carbon products. Generation of a quaternary carbon product in an analogous manner has not been described. A single paper details addition of a copper acetyl­ide into a Brulyants adduct (Tang et al., 2013). Given the pharmacological importance of this compound and its tractable synthesis with novel chemistry, careful structural characterization by X-ray crystallographic analysis was necessary. Optimization of this reaction, subsequent structural elaboration, and specific pharmacological relevance will be detailed in later publications.graphic file with name e-77-00360-scheme1.jpg

Figure 1.

Figure 1

Synthesis of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate (1) via Bruylants reaction (Firth et al., 2016).

Structural commentary  

The title compound, prepared from achiral reagents as a racemic mixture, crystallizes in the chiral monoclinic space group P21 with one mol­ecule in the asymmetric unit as shown in the Scheme and Fig. 2. No heavy atoms are present in the structure and data were collected using Mo Kα radiation. Thus, the absolute structure of the randomly chosen crystals could not be determined reliably (Parsons et al., 2013; Zhou et al., 2015). In the mol­ecule, the NC(=O)O group of the carbamate exists in resonance. The bond lengths between carbon and other atoms (Table 1) are in the expected ranges with the bond length between O1—C16 [1.211 (3) Å] being the shortest, followed by N2—C16 [1.336 (3) Å], O2—C16 [1.345 (3) Å], and F1—C1 [1.359 (3) Å] owing to the presence of the more electronegative atoms oxygen, nitro­gen and fluorine. The bond length between C1—C6 [1.351 (4) Å] is the shortest among all the bond lengths in the phenyl group, possibly due to the inductive effect of fluorine. The spatial distance between the extreme atoms of propargyl­amine groups (C7⋯N1) was observed to be 3.508 (3) Å, which is slightly longer than for the other reported propargyl­amines (3.372–3.478 Å; Marvelli et al., 2004; Sidorov et al., 1999, 2000), and possibly due to the open L-shaped structure of the mol­ecule. Also, the piperazine ring is shown in its most stable chair form conformation in Fig. 3, as evidenced by the bond angles (Table 1) between N1—C12—C13 [110.77 (19)°] and N2—C15—C14 [110.1 (2)°], which are close to the ideal bond angle of 109.5° for a chair conformation. The sum of the bond angles around N1 (335.73°) indicate sp 3 hybridization, while the sum of the bond angles around N2 (360°) indicates sp 2 hybridization. This is also evidenced by the tetra­gonal mol­ecular geometry of C12—N1—C9 [113.89 (18)°], C14—N1—C9 [113.48 (16)°], and C12—N1—C14 [108.36 (16)°] and the trigonal planar mol­ecular geometry of C16—N2—C15 [126.30 (19)°], C16—N2—C13 [120.9 (2)°], and C15—N2—C13 [112.8 (2)°]. The delocalization of the lone pair of N2 into the π bond of carbonyl group causes sp 2 hybridization of N2.

Figure 2.

Figure 2

30% probability ellipsoid plot for the crystal structure solution of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate. Hydrogen atoms are omitted for clarity.

Table 1. Selected geometric parameters (Å, °).

F1—C1 1.359 (3) N2—C16 1.336 (3)
O1—C16 1.211 (3) C1—C6 1.351 (4)
O2—C16 1.345 (3) C7⋯N1 3.508 (3)
       
C12—N1—C14 108.36 (16) C16—N2—C13 120.9 (2)
C12—N1—C9 113.89 (18) C15—N2—C13 112.8 (2)
C14—N1—C9 113.48 (16) N1—C12—C13 110.77 (19)
C16—N2—C15 126.30 (19) N2—C15—C14 110.1 (2)

Figure 3.

Figure 3

40% probability plot of the mol­ecular crystal structure solution of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate showing the l-shaped structure and the chair conformation of the piperazine ring.

Supra­molecular features  

Hirshfeld surface analysis and fingerprint analysis were performed using CrystalExplorer (Spackman & Jayatilaka, 2009, Spackman & McKinnon, 2002, McKinnon et al., 2007). In the absence of acidic hydrogen atoms, there cannot be any conventional hydrogen bonds; however, there are directional inter­actions present between C2—H2⋯O1 and C—H⋯π inter­actions between C19—H19⋯C1, as shown in the crystal packing along the a-axis (Fig. 4). These inter­actions are represented by the faint red spots between C2—H2⋯O1 and C19—H19⋯C1 on the Hirshfeld surface mapped over d norm in Fig. 5. The directional C2—H2⋯O1 [d(H⋯O) = 2.595 Å] present in the crystal packing could be weak C—H⋯O hydrogen-bond-like inter­actions (Desiraju & Steiner, 1999) and the C19—H19⋯C1 [d(C⋯H) = 2.804 Å] inter­actions could be C—H⋯π inter­actions with dispersion inter­actions as the major source of attraction. Fingerprint analysis (Fig. 6) complemented the Hirshfeld analysis by showing a minimal contact surface between O⋯H (3.1%) and F⋯H (5.4%), as shown in Fig. 6 b and Fig. 6 c. These could be the directional C—H⋯O inter­actions mentioned previously, and C—H⋯F close contacts attributed to the proximity of the F atom to the C—H⋯π inter­actions. Please see Table 2 for the inter­atomic contact distances. These data also suggested the absence of π–π stacking as C⋯C contacts contribute 0% of the Hirshfeld surfaces (Fig. 6 d).

Figure 4.

Figure 4

30% probability plot of crystal packing of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate viewed down the a axis showing weak hydrogen-bond-like inter­actions between C2—H2⋯O1 and C—H⋯π inter­actions between C19—H19⋯C1 due to dispersion inter­actions. Hydrogen atoms not involved in inter­molecular inter­actions are omitted for clarity.

Figure 5.

Figure 5

Hirshfeld surface for tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate mapped over d norm showing weak hydrogen-bond-like inter­actions between C2—H2⋯O1 and C—H⋯π inter­actions between C19—H19⋯C1.

Figure 6.

Figure 6

The two-dimensional fingerprint plots of tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate showing contributions from different contacts.

Table 2. Short inter­atomic contact distances (Å).

Contact Distance
C2—H2⋯O1 2.595
C19—H19⋯C1 2.804
C19—H19⋯F1 3.163

Database survey  

A search in the Cambridge Structural Database (Version 5.41 update of March 2020; (Groom et al., 2016)) for compounds possessing an N-tert-butyl piperazine substructure identified 51 compounds. These compounds were several variations of BuckyBall adducts, diketopiperazine derivatives, and ligands. There were only 14 compounds viz. DIYWAK (McDermott et al., 2008), HEHZOL (Legnani et al., 2012), HICYID, HICYOJ (Sinha et al., 2013b ), JIFHEO (Zhong et al., 2018), OFUDAW (Korotaev et al., 2012), PUYNUS (Jin & Liebscher, 2002), RIPWUJ (Bobeck et al., 2007), TILJIJ (Sinha et al., 2013a ), UPIBIF, UPIBOL (Wiedner & Vedejs, 2010), UYIHOB (Chen & Cao, 2017), WANTAJ (Golubev & Krasavin, 2017), and WINMAH (Brouant & Giorgi, 1995) that were asymmetrically substituted on the piperazine ring, and none with a synthetically useful second nitro­gen. All were effectively ‘non-inter­mediate’ compounds that could not reasonably serve for additional substitution at the second nitro­gen and none had alkyne substitutions. The quaternary carbon piperazines were explored by Sinha et al. (2013a ,b ) using an Ugi reaction; however, the present structure is the only compound containing an α,α-dimethyl carbon attached to an alkyne and an amine. This new methodology required the X-ray studies to confirm the generated structure. In summary, to the best of the authors’ knowledge, there is no published crystal structure like the title compound, for a mol­ecule containing asymmetrical substitutions on the piperazine ring, having a synthetically useful second nitro­gen, and an α,α-dimethyl carbon attached to an alkyne and an amine.

Synthesis and crystallization  

tert -Butyl 4-(2-cyano­propan-2-yl)piperazine-1-carboxyl­ate (3): Ethereal HCl (40.3 mL of a 2.0 M in Et2O, 80.6 mmol, 1.5 eq. titrated against standardized 1 N NaOH to a phenolphthalein pink end-point) was added dropwise to a stirred solution of tert-butyl piperazine-1-carboxyl­ate 2 (12.6 g, 53.7 mmol, 1.0 eq.) in MeOH (60 mL) and CH2Cl2 (60 mL) at 273 K under Argon. The resulting mixture was stirred at 273 K for 1 h, after which the solvent and excess HCl were removed under reduced pressure and the white residual solid was dissolved in water (150 mL). In a well-ventilated fume hood, solid NaCN (2.63 g, 53.7 mmol, 1.0 eq.) and then a solution of acetone (9.4 g, 11.8 mL, 161.2 mmol, 3.0 eq.) in water (20 mL) were added sequentially at room temperature (296 K). The resulting mixture was stirred at room temperature under air for an additional 48 h. Water (100 mL) was added and the mixture was extracted with EtOAc (3 × 100 mL) then NaCl (sat, aq.). The combined organic extracts were dried (MgSO4) and the solvent was removed under reduced pressure to give tert-butyl 4-(2-cyano­propan-2-yl)piperazine-1-carboxyl­ate 3 as a white crystalline solid, 11 g (64%). MP: 381.2 K (reported 381–383 K) matching the literature (Firth et al., 2016). 1H NMR (400 MHz, CDCl3: δ3.50 (dd, J = 4.8 Hz, 4H), 2.62 (dd, J = 4.8 Hz, 4H), 1.54 (s, 6H), 1.49 (s, 9H) matches literature (Firth et al., 2016).

Note: the aqueous extracts (pH > 10) were collected and the residual cyanide was oxidized to cyanate with sodium hypochlorite (Gerritsen & Margerum, 1990) and absence of a cyanide ion was confirmed with an MQuant™ Koening Cyanide test indicator from EM sciences.

tert -Butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carboxyl­ate (1):

A 250 mL flame-dried, round-bottom flask was cooled under argon and then charged with 1-ethynyl-4-fluoro­benzene 4 (1.98 g, 16.5mmol) in 50 mL of anhydrous THF. This solution was cooled with an external ice-bath. A commercial solution of methyl magnesium bromide (5.25 mL, 16.5 mmol) (Acros, ∼3.2 M in THF, assayed against anhydrous diphenyl acetic acid with 2 mg 1,10-phenanthroline as an indicator) was added with slow dropwise addition over 10 minutes. The inter­nal temperature was maintained between 274–275 K. This mixture was stirred at ice-bath temperature for an additional 20 minutes, which resulted in a pale-yellow solution. A solution of tert-butyl 4-(2-cyano­propan-2-yl)piperazine-1-carboxyl­ate 3 (Firth et al., 2016) (2.33 g, 9.2 mmol) in 25 mL THF was added dropwise to this mixture over 10 minutes; the inter­nal temperature was maintained between 274–275.3 K. This deep-yellow solution was permitted to stir with the external ice-bath slowly melting and rising to room temperature, while progress was monitored by TLC (R f of product at 0.6 1:1 H:EA, SiO2 plates, SWUV and I2 visualization). Following stirring for 12 h at 296 K, the crude reaction mixture was cooled to ice-bath temperature and the reaction was quenched with the addition of 10 mL of ice-cold water at a rate of addition that maintained the inter­nal temperature below 278 K. After quenching the organo-base, an additional 50 mL of water were added. Small aliquots of brine and ethanol were used, as required, to break the emulsion in the following extraction. This mixture was extracted with 3 × 20 mL of ethyl acetate, washed (3 × 10 mL H2O, 3 × 10 mL brine) dried (Na2SO4), deca­nted, and the solvent removed under reduced pressure to afford 30.6 g of a yellow solid. This was separated on 50 g of SiO2 with hexa­ne/ethyl acetate (1/1) as the eluent to yield tert-butyl 4-[4-(4-fluoro­phen­yl)-2-methyl­but-3-yn-2-yl]piperazine-1-carbox­yl­ate 1 as a white powder, 2.74 g (86.3%). This compound was recrystallized from ethyl acetate as colorless plates, having a melting point of 388.1 K. 1H NMR (400 MHz, chloro­form-d) δ 7.36 (dd, J = 8.2, 5.6 Hz, 2H), 6.96 (t, J = 8.5 Hz, 2H), 3.46 (s, 5H), 2.63 (s, 4H), 1.45 (s, 16H). HRMS: (C20H27FN2O2) calculated for [M + H]+ 347.2129, found 347.2127.

Refinement  

Crystal data, data collection, and structure refinement details are summarized in Table 3. H atoms were localized in a difference-Fourier map. C-bound H atoms were treated as riding, with C—H = 0.93, 0.96 or 0.97 Å, and with U iso(H) = 1.2U eq(C) for aromatic and 1.5U eq(C) for methyl groups.

Table 3. Experimental details.

Crystal data
Chemical formula C20H27FN2O2
M r 346.43
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 10.2576 (11), 9.5127 (10), 10.5318 (11)
β (°) 104.691 (2)
V3) 994.07 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.65 × 0.50 × 0.17
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Sheldrick, 2002)
T min, T max 0.704, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10640, 5058, 3662
R int 0.017
(sin θ/λ)max−1) 0.675
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.109, 1.04
No. of reflections 5058
No. of parameters 231
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.11

Computer programs: SMART and SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015) and CrystalMaker (Palmer, 2014).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002346/zl5007sup1.cif

e-77-00360-sup1.cif (328.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002346/zl5007Isup3.hkl

e-77-00360-Isup3.hkl (402.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002346/zl5007Isup3.cml

CCDC reference: 2067318

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We wish to acknowledge Gary Look, Nicholas J Izzo, and Gilbert Rishton for their useful suggestions and discussions on the chemistry portion of this work.

supplementary crystallographic information

Crystal data

C20H27FN2O2 F(000) = 372
Mr = 346.43 Dx = 1.157 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 10.2576 (11) Å Cell parameters from 3739 reflections
b = 9.5127 (10) Å θ = 2.9–23.9°
c = 10.5318 (11) Å µ = 0.08 mm1
β = 104.691 (2)° T = 293 K
V = 994.07 (18) Å3 Plate, colorless
Z = 2 0.65 × 0.50 × 0.17 mm

Data collection

Bruker SMART APEXII diffractometer 3662 reflections with I > 2σ(I)
φ and ω Scans scans Rint = 0.017
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) θmax = 28.7°, θmin = 2.0°
Tmin = 0.704, Tmax = 0.746 h = −13→13
10640 measured reflections k = −12→12
5058 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.0286P] where P = (Fo2 + 2Fc2)/3
5058 reflections (Δ/σ)max < 0.001
231 parameters Δρmax = 0.12 e Å3
1 restraint Δρmin = −0.11 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 1.18988 (19) 0.1239 (2) −0.11543 (15) 0.1037 (6)
O1 0.36605 (17) 0.51912 (19) 0.18415 (19) 0.0806 (5)
O2 0.51029 (17) 0.70053 (17) 0.25327 (19) 0.0744 (5)
N1 0.75069 (16) 0.3139 (2) 0.49328 (17) 0.0532 (4)
N2 0.54352 (19) 0.4993 (2) 0.3602 (3) 0.0786 (7)
C1 1.1321 (3) 0.1417 (3) −0.0138 (2) 0.0675 (6)
C2 1.1908 (2) 0.2311 (3) 0.0845 (2) 0.0657 (6)
H2 1.267513 0.281757 0.081485 0.079*
C3 1.1337 (2) 0.2446 (3) 0.1888 (2) 0.0607 (5)
H3 1.173183 0.304622 0.257504 0.073*
C4 1.0186 (2) 0.1709 (2) 0.1937 (2) 0.0551 (5)
C5 0.9617 (3) 0.0830 (3) 0.0901 (3) 0.0760 (7)
H5 0.884011 0.032892 0.090838 0.091*
C6 1.0188 (3) 0.0687 (4) −0.0148 (3) 0.0830 (8)
H6 0.980055 0.010008 −0.084752 0.100*
C7 0.9619 (2) 0.1869 (3) 0.3042 (2) 0.0623 (5)
C8 0.9197 (2) 0.1996 (3) 0.3994 (2) 0.0614 (5)
C9 0.8686 (2) 0.2172 (3) 0.5184 (2) 0.0594 (5)
C10 0.8289 (3) 0.0738 (3) 0.5623 (3) 0.0761 (7)
H10A 0.907916 0.016550 0.591129 0.114*
H10B 0.766913 0.028670 0.490045 0.114*
H10C 0.786779 0.086116 0.633205 0.114*
C11 0.9824 (3) 0.2766 (3) 0.6290 (2) 0.0766 (7)
H11A 1.053887 0.208928 0.652455 0.115*
H11B 0.948419 0.296461 0.704074 0.115*
H11C 1.016014 0.361555 0.599756 0.115*
C12 0.6330 (2) 0.2618 (2) 0.3960 (3) 0.0623 (5)
H12A 0.612475 0.167143 0.419119 0.075*
H12B 0.652638 0.258352 0.310685 0.075*
C13 0.5133 (2) 0.3551 (2) 0.3890 (3) 0.0758 (7)
H13A 0.437271 0.321130 0.321152 0.091*
H13B 0.488758 0.352041 0.472069 0.091*
C14 0.7810 (2) 0.4556 (2) 0.4548 (2) 0.0629 (6)
H14A 0.799613 0.452268 0.369024 0.075*
H14B 0.860821 0.490898 0.517127 0.075*
C15 0.6649 (2) 0.5530 (3) 0.4505 (3) 0.0753 (7)
H15A 0.650242 0.561673 0.537584 0.090*
H15B 0.685611 0.645571 0.422237 0.090*
C16 0.4649 (2) 0.5686 (2) 0.2590 (2) 0.0613 (5)
C17 0.4383 (3) 0.8005 (3) 0.1535 (2) 0.0719 (6)
C18 0.4377 (4) 0.7509 (5) 0.0174 (3) 0.1233 (14)
H18A 0.411731 0.827031 −0.043585 0.185*
H18B 0.374709 0.674936 −0.007262 0.185*
H18C 0.526238 0.719043 0.016399 0.185*
C19 0.2976 (3) 0.8232 (4) 0.1690 (3) 0.0933 (9)
H19A 0.255882 0.899276 0.113429 0.140*
H19B 0.301797 0.845773 0.258749 0.140*
H19C 0.245633 0.739092 0.144516 0.140*
C20 0.5234 (5) 0.9306 (4) 0.1912 (4) 0.1246 (14)
H20A 0.487111 1.005437 0.131485 0.187*
H20B 0.614143 0.911229 0.187209 0.187*
H20C 0.523167 0.958052 0.278851 0.187*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.1100 (12) 0.1444 (17) 0.0629 (8) 0.0197 (12) 0.0335 (8) −0.0031 (9)
O1 0.0619 (9) 0.0604 (10) 0.1066 (13) −0.0065 (8) −0.0025 (9) 0.0007 (9)
O2 0.0717 (10) 0.0445 (8) 0.0986 (12) −0.0040 (8) 0.0064 (9) 0.0062 (8)
N1 0.0502 (9) 0.0478 (9) 0.0611 (9) 0.0025 (7) 0.0132 (7) 0.0059 (8)
N2 0.0513 (10) 0.0470 (11) 0.1223 (17) −0.0065 (8) −0.0061 (11) 0.0149 (11)
C1 0.0731 (15) 0.0785 (16) 0.0515 (12) 0.0157 (13) 0.0170 (11) 0.0065 (11)
C2 0.0561 (12) 0.0724 (16) 0.0695 (14) 0.0003 (11) 0.0173 (11) −0.0018 (12)
C3 0.0586 (12) 0.0612 (13) 0.0615 (13) 0.0023 (10) 0.0136 (10) −0.0077 (10)
C4 0.0534 (11) 0.0551 (12) 0.0558 (11) 0.0101 (9) 0.0119 (9) 0.0081 (9)
C5 0.0692 (14) 0.0772 (17) 0.0781 (16) −0.0132 (13) 0.0125 (12) −0.0043 (13)
C6 0.0916 (19) 0.0891 (19) 0.0612 (14) −0.0063 (16) 0.0063 (13) −0.0167 (13)
C7 0.0591 (12) 0.0619 (13) 0.0654 (13) 0.0095 (10) 0.0151 (10) 0.0103 (10)
C8 0.0592 (12) 0.0600 (13) 0.0664 (13) 0.0088 (10) 0.0181 (10) 0.0108 (11)
C9 0.0569 (11) 0.0610 (13) 0.0618 (12) 0.0105 (10) 0.0176 (9) 0.0125 (10)
C10 0.0811 (16) 0.0624 (15) 0.0913 (18) 0.0187 (13) 0.0337 (14) 0.0265 (13)
C11 0.0660 (14) 0.095 (2) 0.0641 (14) 0.0166 (13) 0.0075 (11) 0.0112 (13)
C12 0.0601 (12) 0.0428 (10) 0.0788 (14) −0.0063 (9) 0.0080 (10) 0.0050 (10)
C13 0.0522 (12) 0.0513 (14) 0.115 (2) −0.0074 (10) 0.0041 (13) 0.0170 (13)
C14 0.0513 (11) 0.0507 (12) 0.0793 (14) −0.0079 (9) 0.0028 (10) 0.0037 (11)
C15 0.0606 (13) 0.0452 (12) 0.1076 (19) −0.0031 (10) −0.0019 (13) −0.0023 (12)
C16 0.0480 (11) 0.0445 (11) 0.0910 (16) 0.0004 (9) 0.0165 (11) −0.0030 (11)
C17 0.0970 (17) 0.0551 (13) 0.0653 (13) 0.0022 (13) 0.0237 (12) 0.0101 (11)
C18 0.165 (4) 0.137 (3) 0.084 (2) −0.021 (3) 0.063 (2) −0.012 (2)
C19 0.103 (2) 0.0772 (18) 0.098 (2) 0.0310 (18) 0.0233 (17) 0.0133 (16)
C20 0.168 (4) 0.0650 (19) 0.130 (3) −0.031 (2) 0.018 (3) 0.0250 (19)

Geometric parameters (Å, º)

F1—C1 1.359 (3) C10—H10C 0.9600
O1—C16 1.211 (3) C11—H11A 0.9600
O2—C16 1.345 (3) C11—H11B 0.9600
O2—C17 1.470 (3) C11—H11C 0.9600
N1—C12 1.457 (3) C12—C13 1.502 (3)
N1—C14 1.463 (3) C12—H12A 0.9700
N1—C9 1.489 (3) C12—H12B 0.9700
N2—C16 1.336 (3) C13—H13A 0.9700
N2—C15 1.454 (3) C13—H13B 0.9700
N2—C13 1.456 (3) C14—C15 1.501 (4)
C1—C6 1.351 (4) C14—H14A 0.9700
C1—C2 1.357 (4) C14—H14B 0.9700
C2—C3 1.376 (3) C15—H15A 0.9700
C2—H2 0.9300 C15—H15B 0.9700
C3—C4 1.385 (3) C17—C18 1.508 (4)
C3—H3 0.9300 C17—C19 1.508 (4)
C4—C5 1.381 (3) C17—C20 1.509 (4)
C4—C7 1.434 (3) C18—H18A 0.9600
C5—C6 1.382 (4) C18—H18B 0.9600
C5—H5 0.9300 C18—H18C 0.9600
C6—H6 0.9300 C19—H19A 0.9600
C7—C8 1.195 (3) C19—H19B 0.9600
C8—C9 1.486 (3) C19—H19C 0.9600
C9—C10 1.528 (4) C20—H20A 0.9600
C9—C11 1.532 (3) C20—H20B 0.9600
C10—H10A 0.9600 C20—H20C 0.9600
C10—H10B 0.9600
C16—O2—C17 121.26 (19) N1—C12—H12B 109.5
C12—N1—C14 108.36 (16) C13—C12—H12B 109.5
C12—N1—C9 113.89 (18) H12A—C12—H12B 108.1
C14—N1—C9 113.48 (16) N2—C13—C12 110.6 (2)
C16—N2—C15 126.30 (19) N2—C13—H13A 109.5
C16—N2—C13 120.9 (2) C12—C13—H13A 109.5
C15—N2—C13 112.8 (2) N2—C13—H13B 109.5
C6—C1—C2 122.8 (2) C12—C13—H13B 109.5
C6—C1—F1 118.4 (2) H13A—C13—H13B 108.1
C2—C1—F1 118.8 (2) N1—C14—C15 110.74 (18)
C1—C2—C3 118.1 (2) N1—C14—H14A 109.5
C1—C2—H2 120.9 C15—C14—H14A 109.5
C3—C2—H2 120.9 N1—C14—H14B 109.5
C2—C3—C4 121.5 (2) C15—C14—H14B 109.5
C2—C3—H3 119.3 H14A—C14—H14B 108.1
C4—C3—H3 119.3 N2—C15—C14 110.1 (2)
C5—C4—C3 118.0 (2) N2—C15—H15A 109.6
C5—C4—C7 121.9 (2) C14—C15—H15A 109.6
C3—C4—C7 120.1 (2) N2—C15—H15B 109.6
C4—C5—C6 120.7 (2) C14—C15—H15B 109.6
C4—C5—H5 119.6 H15A—C15—H15B 108.1
C6—C5—H5 119.6 O1—C16—N2 124.3 (2)
C1—C6—C5 118.8 (2) O1—C16—O2 125.2 (2)
C1—C6—H6 120.6 N2—C16—O2 110.50 (19)
C5—C6—H6 120.6 O2—C17—C18 110.9 (3)
C8—C7—C4 177.4 (2) O2—C17—C19 109.7 (2)
C7—C8—C9 179.2 (3) C18—C17—C19 112.0 (3)
C8—C9—N1 111.34 (17) O2—C17—C20 101.0 (2)
C8—C9—C10 109.5 (2) C18—C17—C20 111.7 (3)
N1—C9—C10 109.80 (17) C19—C17—C20 111.1 (3)
C8—C9—C11 108.59 (18) C17—C18—H18A 109.5
N1—C9—C11 109.55 (19) C17—C18—H18B 109.5
C10—C9—C11 108.0 (2) H18A—C18—H18B 109.5
C9—C10—H10A 109.5 C17—C18—H18C 109.5
C9—C10—H10B 109.5 H18A—C18—H18C 109.5
H10A—C10—H10B 109.5 H18B—C18—H18C 109.5
C9—C10—H10C 109.5 C17—C19—H19A 109.5
H10A—C10—H10C 109.5 C17—C19—H19B 109.5
H10B—C10—H10C 109.5 H19A—C19—H19B 109.5
C9—C11—H11A 109.5 C17—C19—H19C 109.5
C9—C11—H11B 109.5 H19A—C19—H19C 109.5
H11A—C11—H11B 109.5 H19B—C19—H19C 109.5
C9—C11—H11C 109.5 C17—C20—H20A 109.5
H11A—C11—H11C 109.5 C17—C20—H20B 109.5
H11B—C11—H11C 109.5 H20A—C20—H20B 109.5
N1—C12—C13 110.77 (19) C17—C20—H20C 109.5
N1—C12—H12A 109.5 H20A—C20—H20C 109.5
C13—C12—H12A 109.5 H20B—C20—H20C 109.5
C6—C1—C2—C3 1.7 (4) C16—N2—C13—C12 125.9 (3)
F1—C1—C2—C3 −177.9 (2) C15—N2—C13—C12 −53.4 (3)
C1—C2—C3—C4 −0.7 (3) N1—C12—C13—N2 56.6 (3)
C2—C3—C4—C5 −0.3 (3) C12—N1—C14—C15 60.9 (2)
C2—C3—C4—C7 179.7 (2) C9—N1—C14—C15 −171.60 (19)
C3—C4—C5—C6 0.5 (4) C16—N2—C15—C14 −125.5 (3)
C7—C4—C5—C6 −179.6 (2) C13—N2—C15—C14 53.7 (3)
C2—C1—C6—C5 −1.5 (4) N1—C14—C15—N2 −57.5 (3)
F1—C1—C6—C5 178.1 (2) C15—N2—C16—O1 178.3 (3)
C4—C5—C6—C1 0.4 (4) C13—N2—C16—O1 −0.9 (4)
C12—N1—C9—C8 64.1 (2) C15—N2—C16—O2 −2.3 (4)
C14—N1—C9—C8 −60.5 (2) C13—N2—C16—O2 178.6 (2)
C12—N1—C9—C10 −57.3 (2) C17—O2—C16—O1 1.8 (4)
C14—N1—C9—C10 178.12 (19) C17—O2—C16—N2 −177.7 (2)
C12—N1—C9—C11 −175.76 (19) C16—O2—C17—C18 −63.8 (3)
C14—N1—C9—C11 59.6 (2) C16—O2—C17—C19 60.4 (3)
C14—N1—C12—C13 −60.2 (2) C16—O2—C17—C20 177.7 (3)
C9—N1—C12—C13 172.46 (18)

Selected bond lengths (Å) and bond angles (°)

F1—C1 1.359 (3)
O1—C16 1.211 (3)
O2—C16 1.345 (3)
N2—C16 1.336 (3)
C1—C6 1.351 (4)
C7—N2 3.508
N1—C12—C13 110.77 (19)
N2—C15—C14 110.1 (2)
C12—N1—C9 113.89 (18)
C14—N1—C9 113.48 (16)
C12—N1—C14 108.36 (16)
C16—N2—C15 126.30 (19)
C16—N2—C13 120.9 (2)
C15—N2—C13 112.8 (2)

Funding Statement

This work was funded by Cognition Therapeutics grant 1R41AG052252-01 to Dr. Patrick T. Flaherty.

References

  1. Albaladejo, M. J., Alonso, F., Moglie, Y. & Yus, M. (2012). Eur. J. Org. Chem. pp. 3093–3104.
  2. Beaufort-Droal, V., Pereira, E., Théry, V. & Aitken, D. J. (2006). Tetrahedron, 62, 11948–11954.
  3. Bernardi, L., Bonini, B. F., Capitò, E., Dessole, G., Fochi, M., Comes-Franchini, M. & Ricci, A. (2003). Synlett, pp. 1778–1782.
  4. Bobeck, D. R., Warner, D. L. & Vedejs, E. (2007). J. Org. Chem. 72, 8506–8518. [DOI] [PMC free article] [PubMed]
  5. Brouant, P. & Giorgi, M. (1995). Acta Cryst. C51, 434–436.
  6. Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruylants, P. (1924). Bull. Soc. Chim. Belg. 33, 467–478.
  8. Chen, L. Z. & Cao, X. X. (2017). Chin. Chem. Lett. 28, 400–406.
  9. Clayden, J., Donnard, M., Lefranc, J. & Tetlow, D. J. (2011). Chem. Commun. 47, 4624–4639. [DOI] [PubMed]
  10. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
  11. Firth, J. D., O’Brien, P. & Ferris, L. (2016). J. Am. Chem. Soc. 138, 651–659. [DOI] [PubMed]
  12. Fu, P., Snapper, M. L. & Hoveyda, A. H. (2008). J. Am. Chem. Soc. 130, 5530–5541. [DOI] [PubMed]
  13. Fuji, K. (1993). Chem. Rev. 93, 2037–2066.
  14. Gerritsen, C. M. & Margerum, D. W. (1990). Inorg. Chem. 29, 2757–2762.
  15. Golubev, P. & Krasavin, M. (2017). Eur. J. Org. Chem. pp. 1740–1744.
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Hager, A., Vrielink, N., Hager, D., Lefranc, J. & Trauner, D. (2016). Nat. Prod. Rep. 33, 491–522. [DOI] [PubMed]
  18. Ingram, A. M., Stirling, K., Faulds, K., Moore, B. D. & Graham, D. (2006). Org. Biomol. Chem. 4, 2869–2873. [DOI] [PubMed]
  19. Jin, S. & Liebscher, J. (2002). Z. Naturforsch. Teil B, 57, 377–382.
  20. Katritzky, A. R. (1998). Synthesis, pp. 1421–1423.
  21. Katritzky, A. R., Najzarek, Z. & Dega-Szafran, Z. (1989). Synthesis, pp. 66–69.
  22. Katritzky, A. R., Rachwal, S. & Hitchings, G. J. (1991). Tetrahedron, 47, 2683–2732.
  23. Katritzky, A. R. & Rogovoy, B. V. (2003). Chem. Eur. J. 9, 4586–4593. [DOI] [PubMed]
  24. Katritzky, A. R. & Saczewski, F. (1990). Gazz. Chim. Ital. 120, 375–378.
  25. Katritzky, A. R., Yang, H. & Singh, S. K. (2005). J. Org. Chem. 70, 286–290. [DOI] [PubMed]
  26. Korotaev, V. Y., Barkov, A. Y., Slepukhin, P. A. & Sosnovskikh, V. Y. (2012). Russ. Chem. Bull. 61, 1750–1760.
  27. Kudzma, L. V., Spencer, H. K. & Severnak, S. A. (1988). Tetrahedron Lett. 29, 6827–6830.
  28. Legnani, L., Colombo, D., Villa, S., Meneghetti, F., Castellano, C., Gelain, A., Marinone Albini, F. & Toma, L. (2012). Eur. J. Org. Chem. pp. 5069–5074.
  29. Ling, T. & Rivas, F. (2016). Tetrahedron, 72, 6729–6777.
  30. Liu, Y., Han, S.-J., Liu, W.-B. & Stoltz, B. M. (2015). Acc. Chem. Res. 48, 740–751. [DOI] [PMC free article] [PubMed]
  31. Liu, Y., Prashad, M. & Shieh, W.-C. (2014). Org. Process Res. Dev. 18, 239–245.
  32. Martin, S. F. (1980). Tetrahedron, 36, 419–460.
  33. Marvelli, L., Mantovani, N., Marchi, A., Rossi, R., Brugnati, M., Peruzzini, M., Barbaro, P., de los Rios, I. & Bertolasi, V. (2004). Dalton Trans. pp. 713–722. [DOI] [PubMed]
  34. McDermott, B. P., Campbell, A. D. & Ertan, A. (2008). Synlett, 2008, 875–879.
  35. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  36. Monbaliu, J. M., Beagle, L. K., Hansen, F. K., Stevens, C. V., McArdle, C. & Katritzky, A. R. (2013). RSC Adv. 3, 4152–4155.
  37. Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.
  38. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  39. Pierce, C. J., Nguyen, M. & Larsen, C. H. (2012). Angew. Chem. Int. Ed. 51, 12289–12292. [DOI] [PubMed]
  40. Prashad, M., Liu, Y., Har, D., Repič, O. & Blacklock, T. J. (2005). Tetrahedron Lett. 46, 5455–5458.
  41. Riant, O. & Hannedouche, J. (2007). Org. Biomol. Chem. 5, 873–888. [DOI] [PubMed]
  42. Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
  43. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  44. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  45. Sidorov, A. A., Ponina, M. O., Deomidov, S. A., Nefedov, S. E., Fomina, I. G., Danilov, P. V., Novotortsev, V. M., Volkov, O. G., Ikorskii, V. N. & Eremenko, I. L. (1999). Russ. J. Inorg. Chem. 3, 345–359.
  46. Sidorov, A. A., Ponina, M. O., Deomidov, S. M., Novotortsev, V. M., Nefedov, S. E., Eremenko, I. L., Moiseev, I. I. & Demonceau, A. (2000). Chem. Commun. p. 1383.
  47. Sinha, M. K., Khoury, K., Herdtweck, E. & Dömling, A. (2013a). Chem. Eur. J. 19, 8048–8052. [DOI] [PMC free article] [PubMed]
  48. Sinha, M. K., Khoury, K., Herdtweck, E. & Dömling, A. (2013b). Org. & Biomol. Chem. 11, 4792–4796. [DOI] [PMC free article] [PubMed]
  49. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  50. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  51. Tang, X., Kuang, J. & Ma, S. (2013). Chem. Commun. 49, 8976–8978. [DOI] [PubMed]
  52. Trost, B. M., Tracy, J. S. & Lin, E. Y. (2019). ACS Catal. 9, 11082–11087.
  53. Vasu, D., Fuentes de Arriba, A. L., Leitch, J. A., de Gombert, A. & Dixon, D. J. (2019). Chem. Sci. 10, 3401–3407. [DOI] [PMC free article] [PubMed]
  54. Velasco-Rubio, A., Alexy, E. J., Yoritate, M., Wright, A. C. & Stoltz, B. M. (2019). Org. Lett. 21, 8962–8965. [DOI] [PubMed]
  55. Volla, C. M. R., Atodiresei, I. & Rueping, M. (2014). Chem. Rev. 114, 2390–2431. [DOI] [PubMed]
  56. Wei, Q., Cai, J., Hu, X.-D., Zhao, J., Cong, H., Zheng, C. & Liu, W.-B. (2020). ACS Catal. 10, 216–224.
  57. Wiedner, S. D. & Vedejs, E. (2010). Org. Lett. 12, 4030–4033. [DOI] [PMC free article] [PubMed]
  58. Xu, H., Huang, H., Zhao, C., Song, C. & Chang, J. (2019). Org. Lett. 21, 6457–6460. [DOI] [PubMed]
  59. Yeung, K., Talbot, F. J. T., Howell, G. P., Pulis, A. P. & Procter, D. J. (2019). ACS Catal. 9, 1655–1661.
  60. Zhong, W., Wang, J., Wei, X., Chen, Y., Fu, T., Xiang, Y., Huang, X., Tian, X., Xiao, Z., Zhang, W., Zhang, S., Long, L. & Wang, F. (2018). Org. Lett. 20, 4593–4596. [DOI] [PubMed]
  61. Zhou, S., Huang, H. & Huang, R. (2015). Acta Cryst. E71, o146–o147. [DOI] [PMC free article] [PubMed]
  62. Zhu, Q., Meng, B., Gu, C., Xu, Y., Chen, J., Lei, C. & Wu, X. (2019). Org. Lett. 21, 9985–9989. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002346/zl5007sup1.cif

e-77-00360-sup1.cif (328.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002346/zl5007Isup3.hkl

e-77-00360-Isup3.hkl (402.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002346/zl5007Isup3.cml

CCDC reference: 2067318

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES