Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 19;77(Pt 4):416–419. doi: 10.1107/S2056989021002838

‘Foxtrot’ fumarate: a water-soluble salt of N,N-di­allyl-5-methoxytryptamine (5-MeO-DALT)

Duyen N K Pham a, Vamshikrishna Reddy Sammeta a, Andrew R Chadeayne b, James A Golen a, David R Manke a,*
PMCID: PMC8025863  PMID: 33936768

The synthesis and solid-state structure of the fumarate salt of the synthetic psychedelic 5-meth­oxy-N,N-di­allyl­tryptamine (5-MeO-DALT) is reported.

Keywords: crystal structure, tryptamines, indoles, hydrogen bonding

Abstract

The title compound, bis­(N,N-diallyl-5-meth­oxy­tryptammonium) (5-MeO-DALT) fumarate (systematic name: bis­{N-[2-(5-meth­oxy-1H-indol-3-yl)eth­yl]- N-(prop-2-en-1-yl)prop-2-en-1-aminium} (E)-but-2-enedioate), 2C17H23N2O+·C4H2O4 2−, has a single tryptammonium cation and half of a fumarate dianion in the asymmetric unit. The tryptammonium and fumarate ions are held together in one-dimensional chains by a series of N—H⋯O hydrogen bonds. These chains are combinations of R 4 4(22) rings, and C 2 2(14) and C 4 4(28) parallel chains along [111].

Chemical context  

Psychotropic compounds have gained a lot of attention in recent years for their potential as therapeutics to treat depression, anxiety, post-traumatic stress disorder, and addiction, among other disorders (Nichols & Hendricks, 2020). 5-Meth­oxy-N,N-di­methyl­tryptamine (5-MeO-DMT) is a naturally occurring tryptamine found in the parotid gland of some toads, and this compound has been explored for its clinical effects in treating mood disorders (Davis et al., 2018). 5-MeO-DMT is highly active at the serotonin (5-hy­droxy­tryptamine, 5-HT) 2A receptor, which is the origin of its psychotropic activity. It can be administered via inhalation or injection, but does not function as a psychedelic when consumed orally (Weil & Davis, 1994). A recent report described the synthesis of a water-soluble succinate salt of 5-MeO-DMT (Sherwood et al., 2020).graphic file with name e-77-00416-scheme1.jpg

5-Meth­oxy-N,N-di­allyl­tryptamine (5-MeO-DALT) is a synthetic analogue of 5-MeO-DMT, which was synthesized in 2004 by Alexander Shulgin (Shulgin & Shulgin, 2016). The compound has potential as a therapeutic because it has a quick onset and rapid drop-off relative to other psychotropic tryptamines (Corkery et al., 2012). Unlike 5-MeO-DMT, 5-MeO-DALT demonstrates activity when consumed orally, further improving its potential as a drug candidate. 5-MeO-DALT shows activity at a number of serotonin receptors, including 5-HT1A, 5-HT1D, 5-HT2A, 5-HT2B, 5-HT6 and 5-HT7 (Cozzi & Daley, 2016). As this class of mol­ecules become more significant in the treatment of mood disorders, it is important to have analytically pure, well-characterized, crystalline material to study the unique impact of individual compounds from the diverse range of compounds. It is also important to explore the effects of analytically pure combinations of these compounds to explore potential entourage effects. To best administer these compounds orally active, water-soluble crystalline materials are ideal. To that end, we set out to synthesize a water-soluble salt of 5-MeO-DALT, and report the synthesis and structure of bis­(5-meth­oxy-N,N-di­allyl­tryptammonium) fumarate herein.

Structural commentary  

The asymmetric unit of bis­(5-meth­oxy-N,N-di­allyl­tryptammonium) fumarate contains one tryptammonium cation and one half of a fumarate dianion (Fig. 1). The cation possesses a near planar indole ring, with a mean deviation from planarity of 0.011 Å. The meth­oxy group is turned slightly away from this plane, with a C2—C3—O1—C17 torsion angle of −13.9 (2)°. The ethyl­amino group is turned away from this plane, with a C7—C8—C9—C10 torsion angle of −103.9 (2)°. The second half of the fumarate dianion is generated by inversion, and the dianion is near planar, with a mean deviation from planarity of 0.057 Å. The carboxyl­ate unit is delocalized, with C—O distances of 1.271 (2) and 1.240 (2) Å. The nature of this salt allows for it to have high solubility in water, while the freebase does not.

Figure 1.

Figure 1

The mol­ecular structure of bis­(5-meth­oxy-N,N-di­allyl­tryptammonium) fumarate, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Symmetry code: (i) −x, 1 − y, −z.

Supra­molecular features  

The tryptammonium cation and the fumarate dianion are linked together in the asymmetric unit through an N—H⋯O hydrogen bond between the ammonium nitro­gen and a carboxyl­ate oxygen (Table 1, Fig. 2). The indole nitro­gen also exhibits an N—H⋯O hydrogen bond with another symmetry generated fumarate dianion. Two tryptammonium cations and two fumarate dianions are joined together through the N—H⋯O hydrogen bonds to form rings with graph-set notation Inline graphic(22) (Etter et al., 1990). The rings are joined together by two parallel chains along [111]. These chains have graph-set notation Inline graphic(14) and Inline graphic(28). The chains and rings are shown in Fig. 3. The hydrogen bond donor–acceptor distances of 2.5669 (16) Å and 2.7729 (17) Å indicate strong hydrogen bonds, with the N2—H2⋯O3 bond being stronger due to a charged donor and acceptor (Desiraju & Steiner, 2001).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.87 (1) 1.91 (1) 2.7729 (17) 175 (2)
N2—H2⋯O3 0.90 (1) 1.68 (1) 2.5669 (16) 171 (2)

Symmetry code: (i) -x+1, -y+2, -z+1.

Figure 2.

Figure 2

The crystal packing of bis­(5-meth­oxy-N,N-di­allyl­tryptammonium) fumarate, viewed along the b axis. The N—H⋯O hydrogen bonds (Table 1) are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Figure 3.

Figure 3

The hydrogen-bonding network along [111], which consists of Inline graphic(22) rings that are joined together by two parallel Inline graphic(14) and Inline graphic(28) chains. The three components described in graph-set notation and the combined chain are shown. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Hydrogen bonds are shown as dashed lines.

Database survey  

The structure of the freebase of 5-MeO-DALT has previously been reported (CCDC 1995802; Chadeayne et al., 2020d ). The other tryptamine fumarate salts reported are those of 4-hy­droxy-N-methyl-N-iso­propyl­tryptamine (4-HO-MiPT) (TUFQAP; Chadeayne et al., 2020a ), norpsilocin (4-HO-NMT) (MULXEZ; Chadeayne et al., 2020b ), 4-acet­oxy-N,N-di­methyl­tryptamine (4-AcO-DMT) (XOFDOO; Chadeayne, Golen & Manke, 2019a ) and 4-hy­droxy-N,N-di-n-propyl­tryptamine (4-HO-DPT) (WUCGAF; Chadeayne, Pham et al., 2019b ). There have also been a number of hydro­fumarate tryptamine salts reported, namely those of 4-AcO-DMT (HOCJUH; Chadeayne, Golen & Manke, 2019b ), N-methyl-N-iso­propyl­tryptamine (MiPT) and 4-HO-MiPT (RONSOF and RONSUL; Chadeayne, Pham et al., 2019a ), N-ethyl-N-n-propyl­tryptamine (EPT) and N-methyl-N-allyl­tryptamine (MALT) (GUPBOL and GUPBUR; Chadeayne et al., 2020c ). The MALT structure is the only other structure of an N-allyl tryptamine reported. There are a number of other 5-O-substituted tryptamines whose structures have been reported, including bufotenine (BUFTEN; Falkenberg, 1972), 5-MeO-DMT hydro­chloride (MOTYPT; Falkenberg & Carlström, 1971), 5-meth­oxy­tryptamine (MXTRUP; Quarles et al., 1974), 5-MeO-DMT and 5-meth­oxy­mono­methyl­tryptamine (QQQAGY and QQQAHA; Bergin et al., 1968). Three 2-Me-substituted 5-MeO-tryptamines were recently reported (CCDC 2058143, 2058144, 2058145; Pham et al. 2021).

Synthesis and crystallization  

110 mg of 5-MeO-DALT freebase were dissolved in 10 mL of methanol and 47 mg of fumaric acid was added and refluxed overnight. 129 mg (82% yield) of white powder was obtained upon removal of solvent in vacuo. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an aqueous solution. The product was analysed by 1H NMR and 13C NMR. 1H NMR (400 MHz, D2O): δ 7.44 (d, J = 8.8 Hz, 1 H, ArH), 7.27 (s, 1 H, ArH), 7.10 (d, J = 2.3 Hz, 1 H, ArH), 6.94 (dd, J = 8.8, 2.4 Hz, 1 H, ArH), 6.67 (s, 2 H, CH), 5.91–5.81 (m, 2 H, CH), 5.62–5.56 (m, 4 H, CH 2), 3.87 (s, 3 H, CH 3), 3.79 (d, J = 7.2 Hz, 4 H, CH 2), 3.42–3.38 (m, 2 H, CH 2), 3.17–3.13 (m, 2 H, CH 2); 13C NMR (100 MHz, D2O): δ 172.1 (COO), 152.7 (CH), 135.3 (ArC), 132.5 (ArC), 127.22 (ArC), 127.20 (ArC), 126.2 (ArC), 125.8 (ArC), 113.7 (ArC), 112.6 (ArC), 108.9 (CH=CH2), 101.3 (CH=CH2), 56.8 (AkC), 55.7 (AkC), 52.2 (AkC), 20.4 (AkC).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms on the indole nitro­gen (H1), and the amine (H2), were found in a difference-Fourier map and were refined isotropically, using DFIX restraints with N—H distances of 0.87 (1) Å. Isotropic displacement parameters were set to 1.2U eq of the parent nitro­gen atom. All other hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å). Isotropic displacement parameters were set to 1.2U eq (CH,CH2) or 1.5U eq (CH3).

Table 2. Experimental details.

Crystal data
Chemical formula C17H23N2O+·0.5C4H2O4 2−
M r 328.40
Crystal system, space group Triclinic, P\overline{1}
Temperature (K) 297
a, b, c (Å) 7.8791 (7), 9.2908 (7), 13.5352 (11)
α, β, γ (°) 108.081 (3), 104.365 (3), 95.903 (3)
V3) 894.87 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.34 × 0.28 × 0.22
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018)
T min, T max 0.711, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 27913, 3383, 2788
R int 0.035
(sin θ/λ)max−1) 0.611
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.114, 1.05
No. of reflections 3383
No. of parameters 226
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.16

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT2014 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002838/ey2005sup1.cif

e-77-00416-sup1.cif (816.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002838/ey2005Isup2.hkl

e-77-00416-Isup2.hkl (270KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002838/ey2005Isup3.cml

CCDC reference: 2070873

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

supplementary crystallographic information

Crystal data

C17H23N2O+·0.5C4H2O42 Z = 2
Mr = 328.40 F(000) = 352
Triclinic, P1 Dx = 1.219 Mg m3
a = 7.8791 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.2908 (7) Å Cell parameters from 9847 reflections
c = 13.5352 (11) Å θ = 2.7–25.7°
α = 108.081 (3)° µ = 0.08 mm1
β = 104.365 (3)° T = 297 K
γ = 95.903 (3)° Block, orange
V = 894.87 (13) Å3 0.34 × 0.28 × 0.22 mm

Data collection

Bruker D8 Venture CMOS diffractometer 2788 reflections with I > 2σ(I)
φ and ω scans Rint = 0.035
Absorption correction: multi-scan (SADABS; Bruker, 2018) θmax = 25.7°, θmin = 2.7°
Tmin = 0.711, Tmax = 0.745 h = −9→9
27913 measured reflections k = −11→11
3383 independent reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.266P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3383 reflections Δρmax = 0.26 e Å3
226 parameters Δρmin = −0.16 e Å3
2 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.32558 (15) 0.59832 (14) 0.09859 (10) 0.0582 (3)
O2 0.21841 (18) 0.81313 (14) 0.10656 (11) 0.0675 (4)
O1 0.7398 (2) 0.32650 (13) 0.56660 (10) 0.0647 (4)
N1 0.7725 (2) 0.95161 (15) 0.70532 (10) 0.0491 (3)
H1 0.773 (2) 1.0212 (17) 0.7654 (10) 0.058 (5)*
N2 0.63718 (16) 0.74775 (14) 0.22313 (9) 0.0392 (3)
H2 0.5248 (15) 0.704 (2) 0.1812 (15) 0.078 (6)*
C1 0.77565 (19) 0.72996 (16) 0.57820 (11) 0.0372 (3)
C2 0.7682 (2) 0.57053 (17) 0.53501 (11) 0.0412 (3)
H2A 0.774806 0.524400 0.464848 0.049*
C3 0.7507 (2) 0.48447 (17) 0.59951 (12) 0.0453 (4)
C4 0.7447 (2) 0.55271 (19) 0.70629 (13) 0.0503 (4)
H4 0.735505 0.491381 0.748234 0.060*
C5 0.7522 (2) 0.70801 (19) 0.74980 (12) 0.0494 (4)
H5 0.747839 0.753096 0.820581 0.059*
C6 0.7667 (2) 0.79678 (17) 0.68493 (11) 0.0420 (3)
C7 0.7879 (2) 0.98335 (18) 0.61541 (12) 0.0460 (4)
H7 0.795238 1.080810 0.609612 0.055*
C8 0.79099 (19) 0.85197 (16) 0.53544 (11) 0.0386 (3)
C9 0.80805 (19) 0.83539 (17) 0.42450 (11) 0.0400 (3)
H9A 0.894016 0.770455 0.409345 0.048*
H9B 0.852886 0.936130 0.423723 0.048*
C10 0.63041 (19) 0.76520 (17) 0.33583 (11) 0.0386 (3)
H10A 0.587159 0.664307 0.336960 0.046*
H10B 0.544568 0.829401 0.352776 0.046*
C11 0.7478 (2) 0.63509 (19) 0.18188 (13) 0.0508 (4)
H11A 0.750182 0.632850 0.110119 0.061*
H11B 0.869410 0.668790 0.229759 0.061*
C12 0.6761 (3) 0.4763 (2) 0.17570 (15) 0.0624 (5)
H12 0.555703 0.436157 0.138805 0.075*
C13 0.7660 (4) 0.3904 (3) 0.2168 (2) 0.0886 (7)
H13A 0.886868 0.425891 0.254358 0.106*
H13B 0.710420 0.292544 0.209010 0.106*
C14 0.6880 (2) 0.90039 (18) 0.21243 (12) 0.0501 (4)
H14A 0.623177 0.972370 0.248743 0.060*
H14B 0.814472 0.939713 0.249493 0.060*
C17 0.7066 (3) 0.2475 (2) 0.45399 (15) 0.0660 (5)
H17A 0.673648 0.138566 0.438067 0.099*
H17B 0.812447 0.268352 0.433750 0.099*
H17C 0.611040 0.282080 0.413694 0.099*
C15 0.6516 (3) 0.8949 (2) 0.09796 (13) 0.0570 (4)
H15 0.538880 0.845917 0.049925 0.068*
C16 0.7676 (3) 0.9543 (3) 0.06119 (18) 0.0783 (6)
H16A 0.881409 1.004033 0.107318 0.094*
H16B 0.737080 0.947286 −0.011317 0.094*
C19 0.02229 (19) 0.57392 (16) 0.00887 (11) 0.0392 (3)
H19 −0.063089 0.621325 −0.022769 0.047*
C18 0.2012 (2) 0.67065 (17) 0.07656 (11) 0.0416 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0431 (6) 0.0573 (7) 0.0615 (7) −0.0031 (5) −0.0059 (5) 0.0244 (6)
O2 0.0745 (9) 0.0416 (7) 0.0662 (8) −0.0010 (6) 0.0246 (7) −0.0080 (6)
O1 0.1008 (10) 0.0379 (6) 0.0513 (7) 0.0104 (6) 0.0145 (7) 0.0174 (5)
N1 0.0683 (9) 0.0402 (7) 0.0320 (6) 0.0074 (6) 0.0156 (6) 0.0039 (5)
N2 0.0384 (7) 0.0423 (7) 0.0301 (6) 0.0001 (5) 0.0070 (5) 0.0083 (5)
C1 0.0399 (7) 0.0378 (7) 0.0291 (6) 0.0026 (6) 0.0067 (6) 0.0096 (6)
C2 0.0487 (8) 0.0389 (8) 0.0314 (7) 0.0058 (6) 0.0097 (6) 0.0086 (6)
C3 0.0518 (9) 0.0386 (8) 0.0404 (8) 0.0040 (7) 0.0070 (7) 0.0137 (6)
C4 0.0587 (10) 0.0528 (10) 0.0397 (8) 0.0012 (7) 0.0100 (7) 0.0231 (7)
C5 0.0597 (10) 0.0556 (10) 0.0299 (7) 0.0036 (8) 0.0138 (7) 0.0127 (7)
C6 0.0478 (8) 0.0411 (8) 0.0308 (7) 0.0040 (6) 0.0094 (6) 0.0073 (6)
C7 0.0574 (9) 0.0367 (8) 0.0388 (8) 0.0033 (7) 0.0097 (7) 0.0115 (6)
C8 0.0423 (8) 0.0369 (7) 0.0311 (7) 0.0015 (6) 0.0064 (6) 0.0097 (6)
C9 0.0420 (8) 0.0421 (8) 0.0323 (7) 0.0006 (6) 0.0077 (6) 0.0132 (6)
C10 0.0393 (7) 0.0416 (8) 0.0316 (7) 0.0020 (6) 0.0111 (6) 0.0096 (6)
C11 0.0533 (9) 0.0577 (10) 0.0385 (8) 0.0129 (8) 0.0176 (7) 0.0089 (7)
C12 0.0685 (12) 0.0557 (11) 0.0576 (11) 0.0183 (9) 0.0149 (9) 0.0133 (9)
C13 0.0978 (18) 0.0812 (16) 0.0977 (17) 0.0381 (14) 0.0339 (14) 0.0358 (14)
C14 0.0596 (10) 0.0456 (9) 0.0391 (8) −0.0012 (7) 0.0108 (7) 0.0134 (7)
C17 0.0925 (15) 0.0400 (9) 0.0539 (10) 0.0135 (9) 0.0097 (10) 0.0099 (8)
C15 0.0681 (11) 0.0579 (10) 0.0403 (8) 0.0039 (8) 0.0085 (8) 0.0191 (8)
C16 0.1000 (17) 0.0871 (15) 0.0617 (12) 0.0149 (13) 0.0341 (12) 0.0381 (11)
C19 0.0391 (7) 0.0439 (7) 0.0314 (7) 0.0085 (6) 0.0087 (6) 0.0097 (6)
C18 0.0472 (8) 0.0436 (8) 0.0272 (7) 0.0006 (7) 0.0120 (6) 0.0049 (6)

Geometric parameters (Å, º)

O3—C18 1.2709 (19) C9—H9B 0.9700
O2—C18 1.2400 (19) C9—C10 1.5224 (19)
O1—C3 1.3817 (19) C10—H10A 0.9700
O1—C17 1.414 (2) C10—H10B 0.9700
N1—H1 0.865 (9) C11—H11A 0.9700
N1—C6 1.372 (2) C11—H11B 0.9700
N1—C7 1.368 (2) C11—C12 1.494 (3)
N2—H2 0.897 (9) C12—H12 0.9300
N2—C10 1.4982 (17) C12—C13 1.282 (3)
N2—C11 1.494 (2) C13—H13A 0.9300
N2—C14 1.494 (2) C13—H13B 0.9300
C1—C2 1.402 (2) C14—H14A 0.9700
C1—C6 1.4073 (19) C14—H14B 0.9700
C1—C8 1.431 (2) C14—C15 1.488 (2)
C2—H2A 0.9300 C17—H17A 0.9600
C2—C3 1.375 (2) C17—H17B 0.9600
C3—C4 1.402 (2) C17—H17C 0.9600
C4—H4 0.9300 C15—H15 0.9300
C4—C5 1.367 (2) C15—C16 1.297 (3)
C5—H5 0.9300 C16—H16A 0.9300
C5—C6 1.394 (2) C16—H16B 0.9300
C7—H7 0.9300 C19—C19i 1.312 (3)
C7—C8 1.364 (2) C19—H19 0.9300
C8—C9 1.5025 (19) C19—C18 1.491 (2)
C9—H9A 0.9700
C3—O1—C17 116.62 (13) N2—C10—H10A 108.6
C6—N1—H1 127.5 (13) N2—C10—H10B 108.6
C7—N1—H1 123.8 (13) C9—C10—H10A 108.6
C7—N1—C6 108.60 (12) C9—C10—H10B 108.6
C10—N2—H2 103.9 (13) H10A—C10—H10B 107.5
C11—N2—H2 105.0 (13) N2—C11—H11A 109.3
C11—N2—C10 113.75 (12) N2—C11—H11B 109.3
C14—N2—H2 109.2 (13) H11A—C11—H11B 107.9
C14—N2—C10 111.74 (11) C12—C11—N2 111.77 (14)
C14—N2—C11 112.46 (13) C12—C11—H11A 109.3
C2—C1—C6 119.75 (13) C12—C11—H11B 109.3
C2—C1—C8 133.20 (13) C11—C12—H12 117.1
C6—C1—C8 107.05 (12) C13—C12—C11 125.7 (2)
C1—C2—H2A 121.0 C13—C12—H12 117.1
C3—C2—C1 118.00 (13) C12—C13—H13A 120.0
C3—C2—H2A 121.0 C12—C13—H13B 120.0
O1—C3—C4 114.40 (14) H13A—C13—H13B 120.0
C2—C3—O1 123.88 (14) N2—C14—H14A 108.8
C2—C3—C4 121.71 (14) N2—C14—H14B 108.8
C3—C4—H4 119.5 H14A—C14—H14B 107.6
C5—C4—C3 121.06 (14) C15—C14—N2 114.01 (13)
C5—C4—H4 119.5 C15—C14—H14A 108.8
C4—C5—H5 121.0 C15—C14—H14B 108.8
C4—C5—C6 118.05 (14) O1—C17—H17A 109.5
C6—C5—H5 121.0 O1—C17—H17B 109.5
N1—C6—C1 107.68 (13) O1—C17—H17C 109.5
N1—C6—C5 130.91 (14) H17A—C17—H17B 109.5
C5—C6—C1 121.41 (14) H17A—C17—H17C 109.5
N1—C7—H7 124.8 H17B—C17—H17C 109.5
C8—C7—N1 110.47 (14) C14—C15—H15 118.1
C8—C7—H7 124.8 C16—C15—C14 123.87 (18)
C1—C8—C9 125.93 (13) C16—C15—H15 118.1
C7—C8—C1 106.20 (13) C15—C16—H16A 120.0
C7—C8—C9 127.88 (14) C15—C16—H16B 120.0
C8—C9—H9A 109.2 H16A—C16—H16B 120.0
C8—C9—H9B 109.2 C19i—C19—H19 118.0
C8—C9—C10 112.05 (12) C19i—C19—C18 124.09 (18)
H9A—C9—H9B 107.9 C18—C19—H19 118.0
C10—C9—H9A 109.2 O3—C18—C19 116.27 (13)
C10—C9—H9B 109.2 O2—C18—O3 125.12 (14)
N2—C10—C9 114.87 (11) O2—C18—C19 118.62 (15)
O1—C3—C4—C5 −179.30 (16) C6—C1—C8—C9 178.77 (14)
N1—C7—C8—C1 0.28 (18) C7—N1—C6—C1 −1.02 (18)
N1—C7—C8—C9 −179.37 (14) C7—N1—C6—C5 179.81 (17)
N2—C11—C12—C13 −128.3 (2) C7—C8—C9—C10 −103.93 (18)
N2—C14—C15—C16 −130.4 (2) C8—C1—C2—C3 −179.20 (15)
C1—C2—C3—O1 179.27 (15) C8—C1—C6—N1 1.18 (17)
C1—C2—C3—C4 −1.5 (2) C8—C1—C6—C5 −179.56 (14)
C1—C8—C9—C10 76.48 (19) C8—C9—C10—N2 179.04 (12)
C2—C1—C6—N1 −178.59 (13) C10—N2—C11—C12 61.28 (17)
C2—C1—C6—C5 0.7 (2) C10—N2—C14—C15 −164.89 (14)
C2—C1—C8—C7 178.83 (16) C11—N2—C10—C9 65.56 (16)
C2—C1—C8—C9 −1.5 (3) C11—N2—C14—C15 65.76 (18)
C2—C3—C4—C5 1.4 (3) C14—N2—C10—C9 −63.11 (17)
C3—C4—C5—C6 −0.2 (3) C14—N2—C11—C12 −170.43 (13)
C4—C5—C6—N1 178.27 (16) C17—O1—C3—C2 −13.9 (2)
C4—C5—C6—C1 −0.8 (2) C17—O1—C3—C4 166.81 (16)
C6—N1—C7—C8 0.46 (19) C19i—C19—C18—O3 14.9 (3)
C6—C1—C2—C3 0.5 (2) C19i—C19—C18—O2 −165.31 (18)
C6—C1—C8—C7 −0.89 (17)

Symmetry code: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2ii 0.87 (1) 1.91 (1) 2.7729 (17) 175 (2)
N2—H2···O3 0.90 (1) 1.68 (1) 2.5669 (16) 171 (2)

Symmetry code: (ii) −x+1, −y+2, −z+1.

Funding Statement

This work was funded by National Science Foundation, Directorate for Mathematical and Physical Sciences grant CHE-1429086.

References

  1. Bergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.
  2. Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902. [DOI] [PMC free article] [PubMed]
  4. Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/
  5. Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316–1320. [DOI] [PMC free article] [PubMed]
  6. Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x191469.
  7. Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514–517. [DOI] [PMC free article] [PubMed]
  8. Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589–593. [DOI] [PMC free article] [PubMed]
  9. Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020c). Acta Cryst. E76, 1201–1205. [DOI] [PMC free article] [PubMed]
  10. Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020d). IUCrData, 5, x200498. [DOI] [PMC free article] [PubMed]
  11. Corkery, J. M., Durkin, E., Elliott, S., Schifano, F. & Ghodse, A. H. (2012). Prog. Neuropsychopharmacol. Biol. Psychiatry, 39, 259–262. [DOI] [PubMed]
  12. Cozzi, N. V. & Daley, P. F. (2016). Bioorg. Med. Chem. Lett. 26, 959–964. [DOI] [PubMed]
  13. Davis, A. K., Barsuglia, J. P., Lancelotta, R., Grant, R. M. & Renn, E. (2018). J. Psychopharmacol. 32, 779–792. [DOI] [PMC free article] [PubMed]
  14. Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
  15. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  16. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  17. Falkenberg, G. (1972). Acta Cryst. B28, 3075–3083.
  18. Falkenberg, G. & Carlström, D. (1971). Acta Cryst. B27, 411–418.
  19. Nichols, C. D. & Hendricks, P. S. (2020). Handb. Behav. Neurosci, 31, 959–966.
  20. Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 190–194. [DOI] [PMC free article] [PubMed]
  21. Quarles, W. G., Templeton, D. H. & Zalkin, A. (1974). Acta Cryst. B30, 95–98.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Sherwood, A. M., Claveau, R., Lancelotta, R., Kaylo, K. W. & Lenoch, K. (2020). ACS Omega, 5, 32067–32075. [DOI] [PMC free article] [PubMed]
  25. Shulgin, A. T. & Shulgin, A. (2016). TiKHAL: The Continuation. Isomerdesign. Available at: https://isomerdesign.com/PiHKAL/read.php?domain=tk&id=56. Accessed 25 December 2020.
  26. Weil, A. T. & Davis, W. (1994). J. Ethnopharmacol. 41, 1–8. [DOI] [PubMed]
  27. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002838/ey2005sup1.cif

e-77-00416-sup1.cif (816.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002838/ey2005Isup2.hkl

e-77-00416-Isup2.hkl (270KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002838/ey2005Isup3.cml

CCDC reference: 2070873

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES