The synthesis and solid-state structure of the fumarate salt of the synthetic psychedelic 5-methoxy-N,N-diallyltryptamine (5-MeO-DALT) is reported.
Keywords: crystal structure, tryptamines, indoles, hydrogen bonding
Abstract
The title compound, bis(N,N-diallyl-5-methoxytryptammonium) (5-MeO-DALT) fumarate (systematic name: bis{N-[2-(5-methoxy-1H-indol-3-yl)ethyl]- N-(prop-2-en-1-yl)prop-2-en-1-aminium} (E)-but-2-enedioate), 2C17H23N2O+·C4H2O4 2−, has a single tryptammonium cation and half of a fumarate dianion in the asymmetric unit. The tryptammonium and fumarate ions are held together in one-dimensional chains by a series of N—H⋯O hydrogen bonds. These chains are combinations of R 4 4(22) rings, and C 2 2(14) and C 4 4(28) parallel chains along [111].
Chemical context
Psychotropic compounds have gained a lot of attention in recent years for their potential as therapeutics to treat depression, anxiety, post-traumatic stress disorder, and addiction, among other disorders (Nichols & Hendricks, 2020 ▸). 5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a naturally occurring tryptamine found in the parotid gland of some toads, and this compound has been explored for its clinical effects in treating mood disorders (Davis et al., 2018 ▸). 5-MeO-DMT is highly active at the serotonin (5-hydroxytryptamine, 5-HT) 2A receptor, which is the origin of its psychotropic activity. It can be administered via inhalation or injection, but does not function as a psychedelic when consumed orally (Weil & Davis, 1994 ▸). A recent report described the synthesis of a water-soluble succinate salt of 5-MeO-DMT (Sherwood et al., 2020 ▸).
5-Methoxy-N,N-diallyltryptamine (5-MeO-DALT) is a synthetic analogue of 5-MeO-DMT, which was synthesized in 2004 by Alexander Shulgin (Shulgin & Shulgin, 2016 ▸). The compound has potential as a therapeutic because it has a quick onset and rapid drop-off relative to other psychotropic tryptamines (Corkery et al., 2012 ▸). Unlike 5-MeO-DMT, 5-MeO-DALT demonstrates activity when consumed orally, further improving its potential as a drug candidate. 5-MeO-DALT shows activity at a number of serotonin receptors, including 5-HT1A, 5-HT1D, 5-HT2A, 5-HT2B, 5-HT6 and 5-HT7 (Cozzi & Daley, 2016 ▸). As this class of molecules become more significant in the treatment of mood disorders, it is important to have analytically pure, well-characterized, crystalline material to study the unique impact of individual compounds from the diverse range of compounds. It is also important to explore the effects of analytically pure combinations of these compounds to explore potential entourage effects. To best administer these compounds orally active, water-soluble crystalline materials are ideal. To that end, we set out to synthesize a water-soluble salt of 5-MeO-DALT, and report the synthesis and structure of bis(5-methoxy-N,N-diallyltryptammonium) fumarate herein.
Structural commentary
The asymmetric unit of bis(5-methoxy-N,N-diallyltryptammonium) fumarate contains one tryptammonium cation and one half of a fumarate dianion (Fig. 1 ▸). The cation possesses a near planar indole ring, with a mean deviation from planarity of 0.011 Å. The methoxy group is turned slightly away from this plane, with a C2—C3—O1—C17 torsion angle of −13.9 (2)°. The ethylamino group is turned away from this plane, with a C7—C8—C9—C10 torsion angle of −103.9 (2)°. The second half of the fumarate dianion is generated by inversion, and the dianion is near planar, with a mean deviation from planarity of 0.057 Å. The carboxylate unit is delocalized, with C—O distances of 1.271 (2) and 1.240 (2) Å. The nature of this salt allows for it to have high solubility in water, while the freebase does not.
Figure 1.
The molecular structure of bis(5-methoxy-N,N-diallyltryptammonium) fumarate, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Symmetry code: (i) −x, 1 − y, −z.
Supramolecular features
The tryptammonium cation and the fumarate dianion are linked together in the asymmetric unit through an N—H⋯O hydrogen bond between the ammonium nitrogen and a carboxylate oxygen (Table 1 ▸, Fig. 2 ▸). The indole nitrogen also exhibits an N—H⋯O hydrogen bond with another symmetry generated fumarate dianion. Two tryptammonium cations and two fumarate dianions are joined together through the N—H⋯O hydrogen bonds to form rings with graph-set notation
(22) (Etter et al., 1990 ▸). The rings are joined together by two parallel chains along [111]. These chains have graph-set notation
(14) and
(28). The chains and rings are shown in Fig. 3 ▸. The hydrogen bond donor–acceptor distances of 2.5669 (16) Å and 2.7729 (17) Å indicate strong hydrogen bonds, with the N2—H2⋯O3 bond being stronger due to a charged donor and acceptor (Desiraju & Steiner, 2001 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1⋯O2i | 0.87 (1) | 1.91 (1) | 2.7729 (17) | 175 (2) |
| N2—H2⋯O3 | 0.90 (1) | 1.68 (1) | 2.5669 (16) | 171 (2) |
Symmetry code: (i) -x+1, -y+2, -z+1.
Figure 2.
The crystal packing of bis(5-methoxy-N,N-diallyltryptammonium) fumarate, viewed along the b axis. The N—H⋯O hydrogen bonds (Table 1 ▸) are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
Figure 3.
The hydrogen-bonding network along [111], which consists of
(22) rings that are joined together by two parallel
(14) and
(28) chains. The three components described in graph-set notation and the combined chain are shown. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Hydrogen bonds are shown as dashed lines.
Database survey
The structure of the freebase of 5-MeO-DALT has previously been reported (CCDC 1995802; Chadeayne et al., 2020d ▸). The other tryptamine fumarate salts reported are those of 4-hydroxy-N-methyl-N-isopropyltryptamine (4-HO-MiPT) (TUFQAP; Chadeayne et al., 2020a ▸), norpsilocin (4-HO-NMT) (MULXEZ; Chadeayne et al., 2020b ▸), 4-acetoxy-N,N-dimethyltryptamine (4-AcO-DMT) (XOFDOO; Chadeayne, Golen & Manke, 2019a ▸) and 4-hydroxy-N,N-di-n-propyltryptamine (4-HO-DPT) (WUCGAF; Chadeayne, Pham et al., 2019b ▸). There have also been a number of hydrofumarate tryptamine salts reported, namely those of 4-AcO-DMT (HOCJUH; Chadeayne, Golen & Manke, 2019b ▸), N-methyl-N-isopropyltryptamine (MiPT) and 4-HO-MiPT (RONSOF and RONSUL; Chadeayne, Pham et al., 2019a ▸), N-ethyl-N-n-propyltryptamine (EPT) and N-methyl-N-allyltryptamine (MALT) (GUPBOL and GUPBUR; Chadeayne et al., 2020c ▸). The MALT structure is the only other structure of an N-allyl tryptamine reported. There are a number of other 5-O-substituted tryptamines whose structures have been reported, including bufotenine (BUFTEN; Falkenberg, 1972 ▸), 5-MeO-DMT hydrochloride (MOTYPT; Falkenberg & Carlström, 1971 ▸), 5-methoxytryptamine (MXTRUP; Quarles et al., 1974 ▸), 5-MeO-DMT and 5-methoxymonomethyltryptamine (QQQAGY and QQQAHA; Bergin et al., 1968 ▸). Three 2-Me-substituted 5-MeO-tryptamines were recently reported (CCDC 2058143, 2058144, 2058145; Pham et al. 2021 ▸).
Synthesis and crystallization
110 mg of 5-MeO-DALT freebase were dissolved in 10 mL of methanol and 47 mg of fumaric acid was added and refluxed overnight. 129 mg (82% yield) of white powder was obtained upon removal of solvent in vacuo. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an aqueous solution. The product was analysed by 1H NMR and 13C NMR. 1H NMR (400 MHz, D2O): δ 7.44 (d, J = 8.8 Hz, 1 H, ArH), 7.27 (s, 1 H, ArH), 7.10 (d, J = 2.3 Hz, 1 H, ArH), 6.94 (dd, J = 8.8, 2.4 Hz, 1 H, ArH), 6.67 (s, 2 H, CH), 5.91–5.81 (m, 2 H, CH), 5.62–5.56 (m, 4 H, CH 2), 3.87 (s, 3 H, CH 3), 3.79 (d, J = 7.2 Hz, 4 H, CH 2), 3.42–3.38 (m, 2 H, CH 2), 3.17–3.13 (m, 2 H, CH 2); 13C NMR (100 MHz, D2O): δ 172.1 (COO), 152.7 (CH), 135.3 (ArC), 132.5 (ArC), 127.22 (ArC), 127.20 (ArC), 126.2 (ArC), 125.8 (ArC), 113.7 (ArC), 112.6 (ArC), 108.9 (CH=CH2), 101.3 (CH=CH2), 56.8 (AkC), 55.7 (AkC), 52.2 (AkC), 20.4 (AkC).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The hydrogen atoms on the indole nitrogen (H1), and the amine (H2), were found in a difference-Fourier map and were refined isotropically, using DFIX restraints with N—H distances of 0.87 (1) Å. Isotropic displacement parameters were set to 1.2U eq of the parent nitrogen atom. All other hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å). Isotropic displacement parameters were set to 1.2U eq (CH,CH2) or 1.5U eq (CH3).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C17H23N2O+·0.5C4H2O4 2− |
| M r | 328.40 |
| Crystal system, space group | Triclinic, P\overline{1} |
| Temperature (K) | 297 |
| a, b, c (Å) | 7.8791 (7), 9.2908 (7), 13.5352 (11) |
| α, β, γ (°) | 108.081 (3), 104.365 (3), 95.903 (3) |
| V (Å3) | 894.87 (13) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.08 |
| Crystal size (mm) | 0.34 × 0.28 × 0.22 |
| Data collection | |
| Diffractometer | Bruker D8 Venture CMOS |
| Absorption correction | Multi-scan (SADABS; Bruker, 2018 ▸) |
| T min, T max | 0.711, 0.745 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 27913, 3383, 2788 |
| R int | 0.035 |
| (sin θ/λ)max (Å−1) | 0.611 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.043, 0.114, 1.05 |
| No. of reflections | 3383 |
| No. of parameters | 226 |
| No. of restraints | 2 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.26, −0.16 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002838/ey2005sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002838/ey2005Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021002838/ey2005Isup3.cml
CCDC reference: 2070873
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
Financial statements and conflict of interest: This study was funded by CaaMTech, Inc. ARC reports an ownership interest in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.
supplementary crystallographic information
Crystal data
| C17H23N2O+·0.5C4H2O42− | Z = 2 |
| Mr = 328.40 | F(000) = 352 |
| Triclinic, P1 | Dx = 1.219 Mg m−3 |
| a = 7.8791 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 9.2908 (7) Å | Cell parameters from 9847 reflections |
| c = 13.5352 (11) Å | θ = 2.7–25.7° |
| α = 108.081 (3)° | µ = 0.08 mm−1 |
| β = 104.365 (3)° | T = 297 K |
| γ = 95.903 (3)° | Block, orange |
| V = 894.87 (13) Å3 | 0.34 × 0.28 × 0.22 mm |
Data collection
| Bruker D8 Venture CMOS diffractometer | 2788 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.035 |
| Absorption correction: multi-scan (SADABS; Bruker, 2018) | θmax = 25.7°, θmin = 2.7° |
| Tmin = 0.711, Tmax = 0.745 | h = −9→9 |
| 27913 measured reflections | k = −11→11 |
| 3383 independent reflections | l = −16→16 |
Refinement
| Refinement on F2 | Primary atom site location: dual |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0485P)2 + 0.266P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.05 | (Δ/σ)max = 0.001 |
| 3383 reflections | Δρmax = 0.26 e Å−3 |
| 226 parameters | Δρmin = −0.16 e Å−3 |
| 2 restraints |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O3 | 0.32558 (15) | 0.59832 (14) | 0.09859 (10) | 0.0582 (3) | |
| O2 | 0.21841 (18) | 0.81313 (14) | 0.10656 (11) | 0.0675 (4) | |
| O1 | 0.7398 (2) | 0.32650 (13) | 0.56660 (10) | 0.0647 (4) | |
| N1 | 0.7725 (2) | 0.95161 (15) | 0.70532 (10) | 0.0491 (3) | |
| H1 | 0.773 (2) | 1.0212 (17) | 0.7654 (10) | 0.058 (5)* | |
| N2 | 0.63718 (16) | 0.74775 (14) | 0.22313 (9) | 0.0392 (3) | |
| H2 | 0.5248 (15) | 0.704 (2) | 0.1812 (15) | 0.078 (6)* | |
| C1 | 0.77565 (19) | 0.72996 (16) | 0.57820 (11) | 0.0372 (3) | |
| C2 | 0.7682 (2) | 0.57053 (17) | 0.53501 (11) | 0.0412 (3) | |
| H2A | 0.774806 | 0.524400 | 0.464848 | 0.049* | |
| C3 | 0.7507 (2) | 0.48447 (17) | 0.59951 (12) | 0.0453 (4) | |
| C4 | 0.7447 (2) | 0.55271 (19) | 0.70629 (13) | 0.0503 (4) | |
| H4 | 0.735505 | 0.491381 | 0.748234 | 0.060* | |
| C5 | 0.7522 (2) | 0.70801 (19) | 0.74980 (12) | 0.0494 (4) | |
| H5 | 0.747839 | 0.753096 | 0.820581 | 0.059* | |
| C6 | 0.7667 (2) | 0.79678 (17) | 0.68493 (11) | 0.0420 (3) | |
| C7 | 0.7879 (2) | 0.98335 (18) | 0.61541 (12) | 0.0460 (4) | |
| H7 | 0.795238 | 1.080810 | 0.609612 | 0.055* | |
| C8 | 0.79099 (19) | 0.85197 (16) | 0.53544 (11) | 0.0386 (3) | |
| C9 | 0.80805 (19) | 0.83539 (17) | 0.42450 (11) | 0.0400 (3) | |
| H9A | 0.894016 | 0.770455 | 0.409345 | 0.048* | |
| H9B | 0.852886 | 0.936130 | 0.423723 | 0.048* | |
| C10 | 0.63041 (19) | 0.76520 (17) | 0.33583 (11) | 0.0386 (3) | |
| H10A | 0.587159 | 0.664307 | 0.336960 | 0.046* | |
| H10B | 0.544568 | 0.829401 | 0.352776 | 0.046* | |
| C11 | 0.7478 (2) | 0.63509 (19) | 0.18188 (13) | 0.0508 (4) | |
| H11A | 0.750182 | 0.632850 | 0.110119 | 0.061* | |
| H11B | 0.869410 | 0.668790 | 0.229759 | 0.061* | |
| C12 | 0.6761 (3) | 0.4763 (2) | 0.17570 (15) | 0.0624 (5) | |
| H12 | 0.555703 | 0.436157 | 0.138805 | 0.075* | |
| C13 | 0.7660 (4) | 0.3904 (3) | 0.2168 (2) | 0.0886 (7) | |
| H13A | 0.886868 | 0.425891 | 0.254358 | 0.106* | |
| H13B | 0.710420 | 0.292544 | 0.209010 | 0.106* | |
| C14 | 0.6880 (2) | 0.90039 (18) | 0.21243 (12) | 0.0501 (4) | |
| H14A | 0.623177 | 0.972370 | 0.248743 | 0.060* | |
| H14B | 0.814472 | 0.939713 | 0.249493 | 0.060* | |
| C17 | 0.7066 (3) | 0.2475 (2) | 0.45399 (15) | 0.0660 (5) | |
| H17A | 0.673648 | 0.138566 | 0.438067 | 0.099* | |
| H17B | 0.812447 | 0.268352 | 0.433750 | 0.099* | |
| H17C | 0.611040 | 0.282080 | 0.413694 | 0.099* | |
| C15 | 0.6516 (3) | 0.8949 (2) | 0.09796 (13) | 0.0570 (4) | |
| H15 | 0.538880 | 0.845917 | 0.049925 | 0.068* | |
| C16 | 0.7676 (3) | 0.9543 (3) | 0.06119 (18) | 0.0783 (6) | |
| H16A | 0.881409 | 1.004033 | 0.107318 | 0.094* | |
| H16B | 0.737080 | 0.947286 | −0.011317 | 0.094* | |
| C19 | 0.02229 (19) | 0.57392 (16) | 0.00887 (11) | 0.0392 (3) | |
| H19 | −0.063089 | 0.621325 | −0.022769 | 0.047* | |
| C18 | 0.2012 (2) | 0.67065 (17) | 0.07656 (11) | 0.0416 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O3 | 0.0431 (6) | 0.0573 (7) | 0.0615 (7) | −0.0031 (5) | −0.0059 (5) | 0.0244 (6) |
| O2 | 0.0745 (9) | 0.0416 (7) | 0.0662 (8) | −0.0010 (6) | 0.0246 (7) | −0.0080 (6) |
| O1 | 0.1008 (10) | 0.0379 (6) | 0.0513 (7) | 0.0104 (6) | 0.0145 (7) | 0.0174 (5) |
| N1 | 0.0683 (9) | 0.0402 (7) | 0.0320 (6) | 0.0074 (6) | 0.0156 (6) | 0.0039 (5) |
| N2 | 0.0384 (7) | 0.0423 (7) | 0.0301 (6) | 0.0001 (5) | 0.0070 (5) | 0.0083 (5) |
| C1 | 0.0399 (7) | 0.0378 (7) | 0.0291 (6) | 0.0026 (6) | 0.0067 (6) | 0.0096 (6) |
| C2 | 0.0487 (8) | 0.0389 (8) | 0.0314 (7) | 0.0058 (6) | 0.0097 (6) | 0.0086 (6) |
| C3 | 0.0518 (9) | 0.0386 (8) | 0.0404 (8) | 0.0040 (7) | 0.0070 (7) | 0.0137 (6) |
| C4 | 0.0587 (10) | 0.0528 (10) | 0.0397 (8) | 0.0012 (7) | 0.0100 (7) | 0.0231 (7) |
| C5 | 0.0597 (10) | 0.0556 (10) | 0.0299 (7) | 0.0036 (8) | 0.0138 (7) | 0.0127 (7) |
| C6 | 0.0478 (8) | 0.0411 (8) | 0.0308 (7) | 0.0040 (6) | 0.0094 (6) | 0.0073 (6) |
| C7 | 0.0574 (9) | 0.0367 (8) | 0.0388 (8) | 0.0033 (7) | 0.0097 (7) | 0.0115 (6) |
| C8 | 0.0423 (8) | 0.0369 (7) | 0.0311 (7) | 0.0015 (6) | 0.0064 (6) | 0.0097 (6) |
| C9 | 0.0420 (8) | 0.0421 (8) | 0.0323 (7) | 0.0006 (6) | 0.0077 (6) | 0.0132 (6) |
| C10 | 0.0393 (7) | 0.0416 (8) | 0.0316 (7) | 0.0020 (6) | 0.0111 (6) | 0.0096 (6) |
| C11 | 0.0533 (9) | 0.0577 (10) | 0.0385 (8) | 0.0129 (8) | 0.0176 (7) | 0.0089 (7) |
| C12 | 0.0685 (12) | 0.0557 (11) | 0.0576 (11) | 0.0183 (9) | 0.0149 (9) | 0.0133 (9) |
| C13 | 0.0978 (18) | 0.0812 (16) | 0.0977 (17) | 0.0381 (14) | 0.0339 (14) | 0.0358 (14) |
| C14 | 0.0596 (10) | 0.0456 (9) | 0.0391 (8) | −0.0012 (7) | 0.0108 (7) | 0.0134 (7) |
| C17 | 0.0925 (15) | 0.0400 (9) | 0.0539 (10) | 0.0135 (9) | 0.0097 (10) | 0.0099 (8) |
| C15 | 0.0681 (11) | 0.0579 (10) | 0.0403 (8) | 0.0039 (8) | 0.0085 (8) | 0.0191 (8) |
| C16 | 0.1000 (17) | 0.0871 (15) | 0.0617 (12) | 0.0149 (13) | 0.0341 (12) | 0.0381 (11) |
| C19 | 0.0391 (7) | 0.0439 (7) | 0.0314 (7) | 0.0085 (6) | 0.0087 (6) | 0.0097 (6) |
| C18 | 0.0472 (8) | 0.0436 (8) | 0.0272 (7) | 0.0006 (7) | 0.0120 (6) | 0.0049 (6) |
Geometric parameters (Å, º)
| O3—C18 | 1.2709 (19) | C9—H9B | 0.9700 |
| O2—C18 | 1.2400 (19) | C9—C10 | 1.5224 (19) |
| O1—C3 | 1.3817 (19) | C10—H10A | 0.9700 |
| O1—C17 | 1.414 (2) | C10—H10B | 0.9700 |
| N1—H1 | 0.865 (9) | C11—H11A | 0.9700 |
| N1—C6 | 1.372 (2) | C11—H11B | 0.9700 |
| N1—C7 | 1.368 (2) | C11—C12 | 1.494 (3) |
| N2—H2 | 0.897 (9) | C12—H12 | 0.9300 |
| N2—C10 | 1.4982 (17) | C12—C13 | 1.282 (3) |
| N2—C11 | 1.494 (2) | C13—H13A | 0.9300 |
| N2—C14 | 1.494 (2) | C13—H13B | 0.9300 |
| C1—C2 | 1.402 (2) | C14—H14A | 0.9700 |
| C1—C6 | 1.4073 (19) | C14—H14B | 0.9700 |
| C1—C8 | 1.431 (2) | C14—C15 | 1.488 (2) |
| C2—H2A | 0.9300 | C17—H17A | 0.9600 |
| C2—C3 | 1.375 (2) | C17—H17B | 0.9600 |
| C3—C4 | 1.402 (2) | C17—H17C | 0.9600 |
| C4—H4 | 0.9300 | C15—H15 | 0.9300 |
| C4—C5 | 1.367 (2) | C15—C16 | 1.297 (3) |
| C5—H5 | 0.9300 | C16—H16A | 0.9300 |
| C5—C6 | 1.394 (2) | C16—H16B | 0.9300 |
| C7—H7 | 0.9300 | C19—C19i | 1.312 (3) |
| C7—C8 | 1.364 (2) | C19—H19 | 0.9300 |
| C8—C9 | 1.5025 (19) | C19—C18 | 1.491 (2) |
| C9—H9A | 0.9700 | ||
| C3—O1—C17 | 116.62 (13) | N2—C10—H10A | 108.6 |
| C6—N1—H1 | 127.5 (13) | N2—C10—H10B | 108.6 |
| C7—N1—H1 | 123.8 (13) | C9—C10—H10A | 108.6 |
| C7—N1—C6 | 108.60 (12) | C9—C10—H10B | 108.6 |
| C10—N2—H2 | 103.9 (13) | H10A—C10—H10B | 107.5 |
| C11—N2—H2 | 105.0 (13) | N2—C11—H11A | 109.3 |
| C11—N2—C10 | 113.75 (12) | N2—C11—H11B | 109.3 |
| C14—N2—H2 | 109.2 (13) | H11A—C11—H11B | 107.9 |
| C14—N2—C10 | 111.74 (11) | C12—C11—N2 | 111.77 (14) |
| C14—N2—C11 | 112.46 (13) | C12—C11—H11A | 109.3 |
| C2—C1—C6 | 119.75 (13) | C12—C11—H11B | 109.3 |
| C2—C1—C8 | 133.20 (13) | C11—C12—H12 | 117.1 |
| C6—C1—C8 | 107.05 (12) | C13—C12—C11 | 125.7 (2) |
| C1—C2—H2A | 121.0 | C13—C12—H12 | 117.1 |
| C3—C2—C1 | 118.00 (13) | C12—C13—H13A | 120.0 |
| C3—C2—H2A | 121.0 | C12—C13—H13B | 120.0 |
| O1—C3—C4 | 114.40 (14) | H13A—C13—H13B | 120.0 |
| C2—C3—O1 | 123.88 (14) | N2—C14—H14A | 108.8 |
| C2—C3—C4 | 121.71 (14) | N2—C14—H14B | 108.8 |
| C3—C4—H4 | 119.5 | H14A—C14—H14B | 107.6 |
| C5—C4—C3 | 121.06 (14) | C15—C14—N2 | 114.01 (13) |
| C5—C4—H4 | 119.5 | C15—C14—H14A | 108.8 |
| C4—C5—H5 | 121.0 | C15—C14—H14B | 108.8 |
| C4—C5—C6 | 118.05 (14) | O1—C17—H17A | 109.5 |
| C6—C5—H5 | 121.0 | O1—C17—H17B | 109.5 |
| N1—C6—C1 | 107.68 (13) | O1—C17—H17C | 109.5 |
| N1—C6—C5 | 130.91 (14) | H17A—C17—H17B | 109.5 |
| C5—C6—C1 | 121.41 (14) | H17A—C17—H17C | 109.5 |
| N1—C7—H7 | 124.8 | H17B—C17—H17C | 109.5 |
| C8—C7—N1 | 110.47 (14) | C14—C15—H15 | 118.1 |
| C8—C7—H7 | 124.8 | C16—C15—C14 | 123.87 (18) |
| C1—C8—C9 | 125.93 (13) | C16—C15—H15 | 118.1 |
| C7—C8—C1 | 106.20 (13) | C15—C16—H16A | 120.0 |
| C7—C8—C9 | 127.88 (14) | C15—C16—H16B | 120.0 |
| C8—C9—H9A | 109.2 | H16A—C16—H16B | 120.0 |
| C8—C9—H9B | 109.2 | C19i—C19—H19 | 118.0 |
| C8—C9—C10 | 112.05 (12) | C19i—C19—C18 | 124.09 (18) |
| H9A—C9—H9B | 107.9 | C18—C19—H19 | 118.0 |
| C10—C9—H9A | 109.2 | O3—C18—C19 | 116.27 (13) |
| C10—C9—H9B | 109.2 | O2—C18—O3 | 125.12 (14) |
| N2—C10—C9 | 114.87 (11) | O2—C18—C19 | 118.62 (15) |
| O1—C3—C4—C5 | −179.30 (16) | C6—C1—C8—C9 | 178.77 (14) |
| N1—C7—C8—C1 | 0.28 (18) | C7—N1—C6—C1 | −1.02 (18) |
| N1—C7—C8—C9 | −179.37 (14) | C7—N1—C6—C5 | 179.81 (17) |
| N2—C11—C12—C13 | −128.3 (2) | C7—C8—C9—C10 | −103.93 (18) |
| N2—C14—C15—C16 | −130.4 (2) | C8—C1—C2—C3 | −179.20 (15) |
| C1—C2—C3—O1 | 179.27 (15) | C8—C1—C6—N1 | 1.18 (17) |
| C1—C2—C3—C4 | −1.5 (2) | C8—C1—C6—C5 | −179.56 (14) |
| C1—C8—C9—C10 | 76.48 (19) | C8—C9—C10—N2 | 179.04 (12) |
| C2—C1—C6—N1 | −178.59 (13) | C10—N2—C11—C12 | 61.28 (17) |
| C2—C1—C6—C5 | 0.7 (2) | C10—N2—C14—C15 | −164.89 (14) |
| C2—C1—C8—C7 | 178.83 (16) | C11—N2—C10—C9 | 65.56 (16) |
| C2—C1—C8—C9 | −1.5 (3) | C11—N2—C14—C15 | 65.76 (18) |
| C2—C3—C4—C5 | 1.4 (3) | C14—N2—C10—C9 | −63.11 (17) |
| C3—C4—C5—C6 | −0.2 (3) | C14—N2—C11—C12 | −170.43 (13) |
| C4—C5—C6—N1 | 178.27 (16) | C17—O1—C3—C2 | −13.9 (2) |
| C4—C5—C6—C1 | −0.8 (2) | C17—O1—C3—C4 | 166.81 (16) |
| C6—N1—C7—C8 | 0.46 (19) | C19i—C19—C18—O3 | 14.9 (3) |
| C6—C1—C2—C3 | 0.5 (2) | C19i—C19—C18—O2 | −165.31 (18) |
| C6—C1—C8—C7 | −0.89 (17) |
Symmetry code: (i) −x, −y+1, −z.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1···O2ii | 0.87 (1) | 1.91 (1) | 2.7729 (17) | 175 (2) |
| N2—H2···O3 | 0.90 (1) | 1.68 (1) | 2.5669 (16) | 171 (2) |
Symmetry code: (ii) −x+1, −y+2, −z+1.
Funding Statement
This work was funded by National Science Foundation, Directorate for Mathematical and Physical Sciences grant CHE-1429086.
References
- Bergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.
- Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902. [DOI] [PMC free article] [PubMed]
- Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/
- Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316–1320. [DOI] [PMC free article] [PubMed]
- Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x191469.
- Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514–517. [DOI] [PMC free article] [PubMed]
- Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589–593. [DOI] [PMC free article] [PubMed]
- Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020c). Acta Cryst. E76, 1201–1205. [DOI] [PMC free article] [PubMed]
- Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020d). IUCrData, 5, x200498. [DOI] [PMC free article] [PubMed]
- Corkery, J. M., Durkin, E., Elliott, S., Schifano, F. & Ghodse, A. H. (2012). Prog. Neuropsychopharmacol. Biol. Psychiatry, 39, 259–262. [DOI] [PubMed]
- Cozzi, N. V. & Daley, P. F. (2016). Bioorg. Med. Chem. Lett. 26, 959–964. [DOI] [PubMed]
- Davis, A. K., Barsuglia, J. P., Lancelotta, R., Grant, R. M. & Renn, E. (2018). J. Psychopharmacol. 32, 779–792. [DOI] [PMC free article] [PubMed]
- Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
- Falkenberg, G. (1972). Acta Cryst. B28, 3075–3083.
- Falkenberg, G. & Carlström, D. (1971). Acta Cryst. B27, 411–418.
- Nichols, C. D. & Hendricks, P. S. (2020). Handb. Behav. Neurosci, 31, 959–966.
- Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 190–194. [DOI] [PMC free article] [PubMed]
- Quarles, W. G., Templeton, D. H. & Zalkin, A. (1974). Acta Cryst. B30, 95–98.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Sherwood, A. M., Claveau, R., Lancelotta, R., Kaylo, K. W. & Lenoch, K. (2020). ACS Omega, 5, 32067–32075. [DOI] [PMC free article] [PubMed]
- Shulgin, A. T. & Shulgin, A. (2016). TiKHAL: The Continuation. Isomerdesign. Available at: https://isomerdesign.com/PiHKAL/read.php?domain=tk&id=56. Accessed 25 December 2020.
- Weil, A. T. & Davis, W. (1994). J. Ethnopharmacol. 41, 1–8. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002838/ey2005sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002838/ey2005Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021002838/ey2005Isup3.cml
CCDC reference: 2070873
Additional supporting information: crystallographic information; 3D view; checkCIF report



