Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 31;77(Pt 4):446–449. doi: 10.1107/S2056989021002826

Structure of Λ(δλλ)-[Co(en)3]I3(I)2

Megan R Kollitz a, Allen G Oliver a, A Graham Lappin a,*
PMCID: PMC8025864  PMID: 33936773

The structure, coordination geometry and extended hydrogen-bonded network of tris­(ethane-1,2-di­amine-κ2 N,N′)cobalt(III) bis­(iodide) triiodide is discussed.

Keywords: crystal structure, cobalt coordination, chiral coordination

Abstract

The structure of tris­(ethane-1,2-di­amine-κ2 N,N’)cobalt(III) bis­(iodide) triiodide, [Co(C2H8N2)3]I3(I)2, at 120 K has ortho­rhom­bic (P212121) symmetry. The di­amine nitro­gen atoms form N—H⋯I hydrogen bonds throughout the lattice, resulting in a three-dimensional network, which involves the iodide and all atoms in the triiodide anions.

Chemical context  

Significant information on the hydrogen bonding and other inter­actions that contribute to the chiral discriminations between metal-ion complexes has been obtained from the crystal structures of compounds containing a chiral complex cation and a chiral complex anion (Warren et al., 1994; Marusak & Lappin, 1989). For example, a comparison of the compounds Λ-[Co(en)3]Δ-[Co(en)(ox)2]I2·3H2O and Δ-[Co(en)3]Δ-[Co(en)(ox)2]I2·H2O reveals the importance of different helicities projected along the C 3 and C 2 axes of [Co(en)3]3+ in discriminating with the pseudo-C 3 face of the Δ-[Co(en)(ox)2] anion (Lappin et al., 1993).graphic file with name e-77-00446-scheme1.jpg

As part of a study involving potential effects of non-chiral counter-ions, an attempt was made to grow crystals with [Co(en)3]I3 and Na[Co(edta)]. However, in the presence of I, the mildly oxidizing [Co(edta)] was reduced and an unexpected product, [Co(en)3]I3(I)2 was obtained. The structure of the corresponding cobalt(II) complex, [Co(en)3]I3I, has been reported (Du et al., 2007). The larger cobalt(II) complex supports an lel 3 geometry of the bidentate ligands around the cobalt center. The Co—N bond distances in [Co(en)3]2+ average 2.28 Å, significantly longer than the 1.97 Å average in [Co(en)3]3+ and consistent with the sluggish redox exchange between the complexes (Jolley et al., 1990). In [Co(en)3]I3I, the I ions are located along the quasi-C 2 axis of the [Co(en)3]2+ complex ion with close hydrogen-bond contacts from N—H protons of 2.91 Å. The terminal iodine atoms of the I3 ions likewise form hydrogen bonds with N—H protons at 2.93 Å, resulting in an alternating chain of linear I3 ions at 90° to one another down the c-axis direction.

Structural commentary  

The complex, [Co(en)3](I3)(I)2 crystallizes as dark-red, rod-like crystals. The asymmetric unit of the primitive, acentric, ortho­rhom­bic space group P212121 consists of one [Co(en)3]3+ cation, two iodide anions and a triiodide anion (Fig. 1). The correct enanti­omorph of the space group was determined by comparison of intensities of Friedel pairs of reflections, yielding a Flack x parameter of 0.017 (9) (Parsons et al., 2013) and a Hooft y parameter of 0.006 (8) (Hooft et al., 2008). Values close to zero indicate the correct enanti­omorph of the space group. This determination allows an accurate assessment of the configuration of the cobalt cation.

Figure 1.

Figure 1

Labeling scheme for [Co(en)3]I3(I)2 with ellipsoids at the 50% probability level. Hydrogen atoms depicted as spheres of an arbitrary radius.

The cobalt center is located in a slightly distorted octa­hedral environment by the nitro­gen atoms of three ethyl­ene di­amine ligands (see Table 1 for details). The ligands adopt a Λ(δλλ) lel ob ob (lelob2) geometry about the cobalt center, Fig. 1. Bond distances and angles within the mol­ecules are unexceptional.

Table 1. Selected geometric parameters (Å, °).

Co1—N1 1.964 (3) Co1—N3 1.968 (3)
Co1—N5 1.967 (3) Co1—N6 1.969 (3)
Co1—N4 1.968 (3) Co1—N2 1.982 (3)
       
N1—Co1—N5 91.86 (14) N4—Co1—N6 91.39 (13)
N1—Co1—N4 175.38 (14) N3—Co1—N6 91.83 (13)
N5—Co1—N4 91.64 (14) N1—Co1—N2 85.20 (13)
N1—Co1—N3 91.25 (13) N5—Co1—N2 91.96 (14)
N5—Co1—N3 175.65 (14) N4—Co1—N2 91.68 (13)
N4—Co1—N3 85.42 (14) N3—Co1—N2 91.34 (15)
N1—Co1—N6 91.91 (13) N6—Co1—N2 175.76 (13)
N5—Co1—N6 85.02 (13)    

The amine hydrogen atoms were initially located from a difference-Fourier map and were refined freely. All of the amine hydrogen atoms are involved in hydrogen bonds to nearby iodine/triiodide moieties, Fig. 2. This inter­connectivity results in a three-dimensional hydrogen-bonded network throughout the entire structure.

Figure 2.

Figure 2

View down the b axis of [Co(en)3]I3(I)2 showing the herringbone pattern, with ellipsoids at the 50% probability level.

Supra­molecular features  

The iodide ion I(1) is hydrogen bonded to N—H protons from N4 on one [Co(en)3]3+ ion at 2.77 Å, bridging to N—H protons on N4 and N5 from the two ligands with a λ-configuration on an adjacent cation with distances of 2.90 (5) and 2.95 (5) Å (Fig. 2, Table 2). The pairwise inter­actions create a hydrogen-bonded chain along the crystallographic a-axis direction, forming a layer with the complex cations separated by channels formed by I3 ions in an alternating herringbone pattern punctuated by I2 ions. The iodide I2 forms a hydrogen-bonded network bridging the layers with N—H protons from three separate cations at 2.79 (5), 2.80 (5) and 2.83 (5) Å. The I3 ion has a close N—H contact with N6 at 2.89 (5) Å.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯I2 0.87 (5) 2.83 (5) 3.598 (3) 149 (4)
N1—H1D⋯I2i 0.87 (5) 2.79 (5) 3.616 (3) 158 (4)
N2—H2C⋯I3ii 0.89 (5) 3.04 (5) 3.823 (3) 149 (4)
N2—H2D⋯I1iii 0.80 (5) 3.02 (5) 3.756 (4) 154 (4)
N3—H3C⋯I2iv 0.97 (5) 3.25 (5) 4.111 (3) 149 (4)
N3—H3C⋯I5iv 0.97 (5) 3.08 (5) 3.586 (3) 114 (3)
N3—H3D⋯I1iii 0.76 (5) 3.18 (5) 3.805 (4) 142 (5)
N4—H4C⋯I1 0.92 (5) 2.77 (5) 3.630 (3) 155 (4)
N4—H4D⋯I1v 0.90 (5) 2.90 (5) 3.715 (3) 152 (4)
N5—H5C⋯I1v 0.89 (5) 2.95 (5) 3.765 (3) 154 (4)
N5—H5C⋯I3ii 0.89 (5) 3.25 (5) 3.639 (3) 109 (3)
N5—H5D⋯I4ii 0.89 (5) 3.05 (5) 3.611 (3) 123 (4)
N6—H6C⋯I5 0.91 (5) 2.89 (5) 3.674 (3) 145 (4)
N6—H6D⋯I2iv 0.95 (5) 2.80 (5) 3.684 (3) 157 (4)

Symmetry codes: (i) -x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (ii) -x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (iii) x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1; (iv) -x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}; (v) x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1.

Database survey  

A survey of Co(en)3 coupled with iodine reveals 23 structures in the Cambridge Structural Database (CSD v5.42, November 2020; Groom et al., 2016). Predominantly these are Co(III) complexes. There are three reports of Co(en)3I3 (EDANEC, Matsuki et al., 2001; ENCOIH, Whuler et al., 1980; FIXLAI, Grant et al., 2019). EDANEC and FIXLAI are structural analyses of the Λ- and Δ-isomers, respectively. The structure determination by Whuler et al. is of the racemic cation species. A mixed Cl/I species was reported by Huang and co-workers (FAXMEX, Zhang et al., 2005). All of these reports also contain water of crystallization. There is one report of Co(en)3 that has both an iodide and a triodide pair of counter-ions that crystallizes in the tetra­gonal space group I Inline graphic2d (HIQYUC, Du et al., 2007). However, that report is of the CoII complex, Co(en)3(I3)I.

Synthesis and crystallization  

Crystals were obtained from an attempt to co-crystallize optically active [Co(en)3]3+ and the mildly oxidizing [Co(edta)] from Λ-[Co(en)3]I3 and Na[Co(edta)]. After storage at 283 K for two weeks, the deep-purple coloration of the [Co(edta)] ion had disappeared and dark-red well-formed crystals were recovered.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The structure was solved by dual-space methods (Sheldrick, 2015a ) and refined routinely (Sheldrick, 2015b ). Amine hydrogen atoms were refined freely and methyl­ene hydrogen atoms were refined as riding on the carbon to which they are bonded with C—H = 0.99 Å and U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula [Co(C2H8N2)3]I3(I)2
M r 873.74
Crystal system, space group Orthorhombic, P212121
Temperature (K) 120
a, b, c (Å) 8.7508 (12), 8.8333 (12), 25.982 (4)
V3) 2008.4 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.54
Crystal size (mm) 0.28 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa X8 APEXII
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.603, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 35617, 5024, 5023
R int 0.022
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.012, 0.028, 1.33
No. of reflections 5024
No. of parameters 199
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.66
Absolute structure Flack x determined using 2136 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter 0.017 (9)

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020), CIFTAB (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002826/dj2023sup1.cif

e-77-00446-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002826/dj2023Isup2.hkl

e-77-00446-Isup2.hkl (399.9KB, hkl)

CCDC reference: 2070495

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Co(C2H8N2)3]I3(I)2 Dx = 2.890 Mg m3
Mr = 873.74 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9680 reflections
a = 8.7508 (12) Å θ = 2.4–28.4°
b = 8.8333 (12) Å µ = 8.54 mm1
c = 25.982 (4) Å T = 120 K
V = 2008.4 (5) Å3 Rod, dark red
Z = 4 0.28 × 0.15 × 0.10 mm
F(000) = 1576

Data collection

Bruker Kappa X8 APEXII diffractometer 5024 independent reflections
Radiation source: fine-focus sealed tube 5023 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
Detector resolution: 8.33 pixels mm-1 θmax = 28.3°, θmin = 1.6°
combination of ω and φ–scans h = −11→11
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −11→11
Tmin = 0.603, Tmax = 1.000 l = −33→34
35617 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.012 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.028 w = 1/[σ2(Fo2) + (0.0073P)2 + 1.9769P] where P = (Fo2 + 2Fc2)/3
S = 1.33 (Δ/σ)max = 0.001
5024 reflections Δρmax = 0.39 e Å3
199 parameters Δρmin = −0.66 e Å3
0 restraints Absolute structure: Flack x determined using 2136 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dual Absolute structure parameter: 0.017 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.32971 (3) 0.22384 (3) 0.55282 (2) 0.01429 (5)
I2 0.69407 (3) 0.30959 (2) 0.22059 (2) 0.01325 (5)
I3 −0.13267 (3) 0.17300 (3) 0.01437 (2) 0.01367 (5)
I4 0.05242 (3) 0.28734 (2) 0.09775 (2) 0.01107 (5)
I5 0.22245 (3) 0.40722 (3) 0.18675 (2) 0.01307 (5)
Co1 0.32630 (5) 0.30665 (5) 0.36719 (2) 0.00693 (8)
N1 0.4364 (4) 0.4391 (3) 0.31911 (13) 0.0111 (6)
H1C 0.466 (6) 0.383 (5) 0.2936 (18) 0.013*
H1D 0.380 (6) 0.513 (5) 0.3077 (18) 0.013*
N2 0.4337 (4) 0.4219 (4) 0.42174 (12) 0.0119 (6)
H2C 0.374 (6) 0.453 (5) 0.4473 (19) 0.014*
H2D 0.500 (6) 0.370 (5) 0.4332 (19) 0.014*
N3 0.4917 (4) 0.1557 (3) 0.36466 (13) 0.0121 (6)
H3C 0.484 (6) 0.087 (5) 0.3358 (18) 0.015*
H3D 0.571 (6) 0.189 (6) 0.3664 (19) 0.015*
N4 0.2318 (4) 0.1713 (4) 0.41825 (12) 0.0122 (6)
H4C 0.248 (5) 0.217 (5) 0.4497 (19) 0.015*
H4D 0.129 (6) 0.168 (5) 0.4168 (18) 0.015*
N5 0.1500 (4) 0.4446 (3) 0.36922 (12) 0.0114 (6)
H5C 0.094 (6) 0.419 (5) 0.3963 (19) 0.014*
H5D 0.173 (6) 0.543 (5) 0.3687 (18) 0.014*
N6 0.2158 (4) 0.2066 (3) 0.31060 (12) 0.0109 (5)
H6C 0.261 (5) 0.236 (5) 0.2807 (19) 0.013*
H6D 0.227 (5) 0.100 (5) 0.3128 (18) 0.013*
C1 0.5641 (4) 0.5172 (4) 0.34653 (16) 0.0154 (7)
H1A 0.595861 0.608878 0.327383 0.018*
H1B 0.653317 0.448913 0.349678 0.018*
C2 0.5050 (5) 0.5596 (4) 0.39899 (16) 0.0158 (7)
H2A 0.589927 0.595429 0.421034 0.019*
H2B 0.428560 0.641804 0.396078 0.019*
C3 0.4761 (4) 0.0485 (4) 0.40885 (15) 0.0129 (7)
H3A 0.521899 0.092664 0.440276 0.016*
H3B 0.528980 −0.047957 0.401093 0.016*
C4 0.3078 (5) 0.0210 (4) 0.41678 (15) 0.0146 (7)
H4A 0.266124 −0.040706 0.388242 0.018*
H4B 0.290451 −0.033783 0.449508 0.018*
C5 0.0500 (4) 0.4213 (4) 0.32313 (15) 0.0135 (7)
H5A 0.089273 0.479960 0.293487 0.016*
H5B −0.055557 0.455093 0.330595 0.016*
C6 0.0521 (4) 0.2540 (4) 0.31111 (15) 0.0135 (7)
H6A −0.005054 0.196883 0.337647 0.016*
H6B 0.004415 0.234598 0.277189 0.016*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.00933 (10) 0.02215 (11) 0.01140 (10) 0.00063 (9) −0.00073 (9) −0.00018 (9)
I2 0.01308 (11) 0.01112 (9) 0.01555 (11) −0.00011 (8) −0.00068 (9) −0.00056 (8)
I3 0.01745 (12) 0.01416 (10) 0.00939 (10) 0.00078 (8) 0.00012 (9) −0.00136 (8)
I4 0.01061 (10) 0.01122 (9) 0.01138 (10) 0.00010 (8) 0.00211 (8) 0.00068 (8)
I5 0.01294 (11) 0.01450 (10) 0.01176 (11) −0.00060 (8) −0.00106 (9) 0.00081 (8)
Co1 0.0067 (2) 0.00784 (19) 0.00628 (19) −0.00032 (16) 0.00029 (17) 0.00003 (15)
N1 0.0095 (14) 0.0099 (13) 0.0139 (15) −0.0003 (11) 0.0011 (13) 0.0024 (11)
N2 0.0109 (15) 0.0144 (14) 0.0104 (14) −0.0011 (12) −0.0008 (12) −0.0011 (11)
N3 0.0116 (15) 0.0110 (13) 0.0138 (15) 0.0019 (11) 0.0024 (13) 0.0024 (11)
N4 0.0083 (14) 0.0189 (14) 0.0095 (14) −0.0023 (12) 0.0009 (12) 0.0023 (12)
N5 0.0108 (15) 0.0130 (14) 0.0104 (14) 0.0028 (11) −0.0015 (12) −0.0024 (11)
N6 0.0156 (14) 0.0080 (12) 0.0091 (13) 0.0005 (11) −0.0008 (12) −0.0004 (10)
C1 0.0100 (17) 0.0149 (16) 0.0212 (19) −0.0073 (14) −0.0008 (16) 0.0043 (14)
C2 0.0150 (18) 0.0125 (16) 0.020 (2) −0.0049 (14) −0.0044 (16) −0.0013 (14)
C3 0.0147 (18) 0.0117 (15) 0.0124 (17) 0.0021 (13) 0.0000 (14) 0.0048 (13)
C4 0.0187 (19) 0.0112 (14) 0.0140 (17) −0.0041 (14) −0.0003 (15) 0.0048 (12)
C5 0.0103 (16) 0.0175 (16) 0.0127 (17) 0.0016 (13) −0.0033 (14) −0.0019 (13)
C6 0.0100 (16) 0.0178 (16) 0.0126 (16) −0.0042 (13) −0.0018 (14) −0.0011 (13)

Geometric parameters (Å, º)

I3—I4 2.8875 (4) N5—H5C 0.89 (5)
I4—I5 2.9464 (4) N5—H5D 0.89 (5)
Co1—N1 1.964 (3) N6—C6 1.493 (5)
Co1—N5 1.967 (3) N6—H6C 0.91 (5)
Co1—N4 1.968 (3) N6—H6D 0.95 (5)
Co1—N3 1.968 (3) C1—C2 1.505 (6)
Co1—N6 1.969 (3) C1—H1A 0.9900
Co1—N2 1.982 (3) C1—H1B 0.9900
N1—C1 1.494 (5) C2—H2A 0.9900
N1—H1C 0.87 (5) C2—H2B 0.9900
N1—H1D 0.87 (5) C3—C4 1.507 (5)
N2—C2 1.490 (5) C3—H3A 0.9900
N2—H2C 0.89 (5) C3—H3B 0.9900
N2—H2D 0.80 (5) C4—H4A 0.9900
N3—C3 1.495 (5) C4—H4B 0.9900
N3—H3C 0.97 (5) C5—C6 1.511 (5)
N3—H3D 0.76 (5) C5—H5A 0.9900
N4—C4 1.486 (5) C5—H5B 0.9900
N4—H4C 0.92 (5) C6—H6A 0.9900
N4—H4D 0.90 (5) C6—H6B 0.9900
N5—C5 1.498 (5)
I3—I4—I5 176.193 (11) Co1—N5—H5D 115 (3)
N1—Co1—N5 91.86 (14) H5C—N5—H5D 113 (4)
N1—Co1—N4 175.38 (14) C6—N6—Co1 109.8 (2)
N5—Co1—N4 91.64 (14) C6—N6—H6C 110 (3)
N1—Co1—N3 91.25 (13) Co1—N6—H6C 107 (3)
N5—Co1—N3 175.65 (14) C6—N6—H6D 112 (3)
N4—Co1—N3 85.42 (14) Co1—N6—H6D 111 (3)
N1—Co1—N6 91.91 (13) H6C—N6—H6D 107 (4)
N5—Co1—N6 85.02 (13) N1—C1—C2 106.8 (3)
N4—Co1—N6 91.39 (13) N1—C1—H1A 110.4
N3—Co1—N6 91.83 (13) C2—C1—H1A 110.4
N1—Co1—N2 85.20 (13) N1—C1—H1B 110.4
N5—Co1—N2 91.96 (14) C2—C1—H1B 110.4
N4—Co1—N2 91.68 (13) H1A—C1—H1B 108.6
N3—Co1—N2 91.34 (15) N2—C2—C1 107.5 (3)
N6—Co1—N2 175.76 (13) N2—C2—H2A 110.2
C1—N1—Co1 109.8 (2) C1—C2—H2A 110.2
C1—N1—H1C 114 (3) N2—C2—H2B 110.2
Co1—N1—H1C 107 (3) C1—C2—H2B 110.2
C1—N1—H1D 104 (3) H2A—C2—H2B 108.5
Co1—N1—H1D 113 (3) N3—C3—C4 107.2 (3)
H1C—N1—H1D 110 (4) N3—C3—H3A 110.3
C2—N2—Co1 109.5 (2) C4—C3—H3A 110.3
C2—N2—H2C 107 (3) N3—C3—H3B 110.3
Co1—N2—H2C 114 (3) C4—C3—H3B 110.3
C2—N2—H2D 108 (4) H3A—C3—H3B 108.5
Co1—N2—H2D 108 (3) N4—C4—C3 107.3 (3)
H2C—N2—H2D 109 (5) N4—C4—H4A 110.3
C3—N3—Co1 109.7 (2) C3—C4—H4A 110.3
C3—N3—H3C 101 (3) N4—C4—H4B 110.3
Co1—N3—H3C 113 (3) C3—C4—H4B 110.3
C3—N3—H3D 106 (4) H4A—C4—H4B 108.5
Co1—N3—H3D 115 (4) N5—C5—C6 107.0 (3)
H3C—N3—H3D 111 (5) N5—C5—H5A 110.3
C4—N4—Co1 109.7 (2) C6—C5—H5A 110.3
C4—N4—H4C 110 (3) N5—C5—H5B 110.3
Co1—N4—H4C 106 (3) C6—C5—H5B 110.3
C4—N4—H4D 114 (3) H5A—C5—H5B 108.6
Co1—N4—H4D 114 (3) N6—C6—C5 106.7 (3)
H4C—N4—H4D 102 (4) N6—C6—H6A 110.4
C5—N5—Co1 110.6 (2) C5—C6—H6A 110.4
C5—N5—H5C 106 (3) N6—C6—H6B 110.4
Co1—N5—H5C 107 (3) C5—C6—H6B 110.4
C5—N5—H5D 105 (3) H6A—C6—H6B 108.6
Co1—N1—C1—C2 −39.6 (3) N3—C3—C4—N4 −49.3 (4)
Co1—N2—C2—C1 −37.5 (4) Co1—N5—C5—C6 36.0 (3)
N1—C1—C2—N2 49.9 (4) Co1—N6—C6—C5 40.5 (3)
Co1—N3—C3—C4 37.5 (3) N5—C5—C6—N6 −49.1 (4)
Co1—N4—C4—C3 38.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1C···I2 0.87 (5) 2.83 (5) 3.598 (3) 149 (4)
N1—H1D···I2i 0.87 (5) 2.79 (5) 3.616 (3) 158 (4)
N2—H2C···I3ii 0.89 (5) 3.04 (5) 3.823 (3) 149 (4)
N2—H2D···I1iii 0.80 (5) 3.02 (5) 3.756 (4) 154 (4)
N3—H3C···I2iv 0.97 (5) 3.25 (5) 4.111 (3) 149 (4)
N3—H3C···I5iv 0.97 (5) 3.08 (5) 3.586 (3) 114 (3)
N3—H3D···I1iii 0.76 (5) 3.18 (5) 3.805 (4) 142 (5)
N4—H4C···I1 0.92 (5) 2.77 (5) 3.630 (3) 155 (4)
N4—H4D···I1v 0.90 (5) 2.90 (5) 3.715 (3) 152 (4)
N5—H5C···I1v 0.89 (5) 2.95 (5) 3.765 (3) 154 (4)
N5—H5C···I3ii 0.89 (5) 3.25 (5) 3.639 (3) 109 (3)
N5—H5D···I4ii 0.89 (5) 3.05 (5) 3.611 (3) 123 (4)
N6—H6C···I5 0.91 (5) 2.89 (5) 3.674 (3) 145 (4)
N6—H6D···I2iv 0.95 (5) 2.80 (5) 3.684 (3) 157 (4)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, −z+1; (iv) −x+1, y−1/2, −z+1/2; (v) x−1/2, −y+1/2, −z+1.

References

  1. Bruker (2015). APEX3 and SAINT. Bruker–Nonius AXS Inc. Madison, Wisconsin, USA.
  2. Du, J.-M., Zhang, Z.-J., Lin, H.-M., Li, W. & Guo, G.-C. (2007). Acta Cryst. E63, m3206.
  3. Grant, G. J., Noll, B. C. & Lee, J. P. (2019). Z. Anorg. Allg. Chem. 645, 1011–1014.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  6. Jolley, W. H., Stranks, D. R. & Swaddle, T. W. (1990). Inorg. Chem. 29, 385–389.
  7. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  8. Lappin, A. G., Haller, K. J., Warren, R. M. L. & Tatehata, A. (1993). Inorg. Chem. 32, 4498–4504.
  9. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  10. Marusak, R. A. & Lappin, A. G. (1989). J. Phys. Chem. 93, 6856–6859.
  11. Matsuki, R., Shiro, M., Asahi, T. & Asai, H. (2001). Acta Cryst. E57, m448–m450.
  12. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Warren, R. M. L., Haller, K. J., Tatehata, A. & Lappin, A. G. (1994). Inorg. Chem. 33, 227–232.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Whuler, A., Spinat, P. & Brouty, C. (1980). Acta Cryst. B36, 1086–1091.
  19. Zhang, Z.-J., Zheng, F.-K., Fu, M.-L., Guo, G.-C. & Huang, J.-S. (2005). Acta Cryst. E61, m89–m91.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002826/dj2023sup1.cif

e-77-00446-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002826/dj2023Isup2.hkl

e-77-00446-Isup2.hkl (399.9KB, hkl)

CCDC reference: 2070495

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES