Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 2;77(Pt 4):331–334. doi: 10.1107/S2056989021002218

Synthesis and crystal structure of allyl 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carboxyl­ate

Vanessa Nowatschin a, Christian Näther b, Ulrich Lüning a,*
PMCID: PMC8025865  PMID: 33936752

The crystal structure of the title compound, C17H19NO4, consists of nearly planar mol­ecules that are linked by inter­molecular C—H⋯O hydrogen bonding into chains along the b-axis direction.

Keywords: crystal structure, synthesis, 2-oxo-2H-chromene, C—H⋯O hydrogen bonding

Abstract

The title compound, C17H19NO4, was synthesized by the reaction of 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carb­oxy­lic acid with allyl bromide and purified by flash column chromatography on silica gel. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from acetone. The aromatic core of the mol­ecule is not planar with the di­ethyl­amino group and with the carboxyl group that are rotated out of the 2-oxo-2H-chromene plane by 6.7 (2)° and 11.4 (2)°. The NC2 unit of the di­ethyl­amino group is planar with an angle sum close to 360°. Inter­molecular Car—H⋯Ocarbon­yl inter­actions lead to the formation of chains parallel to the b axis. X-ray powder diffraction analysis proves that the title compound was obtained as a pure phase.

Chemical context  

Coumarins or 2H-1-benzo­pyran-2-ones are fluoro­phores with a wide range of biological and chemical applications (Bardajee et al., 2006a ). One of the most important aspects is the detection of enzymatic activity from bacteria like Enterococci or Streptococci (Devriese et al., 1999). Within the enzymatic reaction, naturally occurring aesculin is hydrolysed with a concomitant loss of fluorescence (Edberg et al., 1976). In addition, (coumarin-4-yl)methyl esters are often used as a photocleavable protecting group that could be useful for proton detection in biological processes (Geissler et al., 2005). Another emerging field of application is photoelectricity such as in organic light-emitting diodes (OLEDs) or laser dyes (Bardajee et al., 2006a; Jones et al., 1985; Jones & Rahman, 1992, 1994; Cui et al., 2018). In this context, Cui et al. (2018) developed two coumarines that show solid-state fluorescence influenced by NH3 or HCl gas.

In a current research project, we planed to insert a coumarin moiety as part of a pH-sensitive polymer to visualize material damage. For this purpose, allyl 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carboxyl­ate was synthesized from 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carb­oxy­lic acid and allyl bromide with potassium carbonate for deprotonation and dry N,N-di­methyl­formamide as solvent (Fig. 1). The obtained title compound was characterized by 1H NMR (Fig. S1 in the supporting information) and 13C NMR (Fig. S2) spectroscopy, mass spectrometry, IR spectroscopy and elemental analysis. Recrystallization from acetone led to crystals that were characterized by single-crystal X-ray diffraction. Based on the results of the structure determination, a powder X-ray pattern was calculated and compared with the experimental pattern, revealing that the title compound was obtained as a pure phase (Fig. S3).graphic file with name e-77-00331-scheme1.jpg

Figure 1.

Figure 1

Synthesis of allyl 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carboxyl­ate by esterification of 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carb­oxy­lic acid with allyl bromide.

Structural commentary  

The mol­ecular structure of the title compound, C17H19NO4, consists of a central 2-oxo-2H-chromene (2-benzo­pyrane) unit with a carb­oxy­lic acid allyl ester in 3-position and a di­ethyl­amino group in 7-position. All atoms of the mol­ecule are in general positions (Fig. 2). The 2H-chromene unit is essentially planar with a maximum deviation for O2 of 0.1021 (6) Å from the least-squares plane calculated through C1–C7 and O1 and O2. The carboxyl group (C10,O3,O4) is slightly twisted from the 2-oxo-2H-chromene unit, with the dihedral angle between the plane calculated through the ring system and that of the carboxyl group being 6.7 (2)° (Fig. 3). The NC3 unit (N1,C7,C14,C16) of the di­ethyl­amino group is nearly planar with a maximum deviation of the N atom from the mean plane of 0.0873 Å; planarity is also obvious from the sum of the C—N—C angles of 358.9°. This unit is rotated from the 2-oxo-2H-chromene plane by 11.4 (2)° (Fig. 3), which points to conjugation between the ring system and the di­ethyl­amino group. The latter feature is also reflected by the C7—N1 bond length of 1.3597 (12)°.

Figure 2.

Figure 2

Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 3.

Figure 3

The orientation of the substituents in the mol­ecular structure of the title compound.

Supra­molecular features  

In the crystal structure of the title compound, the mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonding between one of the aromatic hydrogen atoms of a 2-oxo-2H-chromene unit and a carbonyl oxygen atom of a neighbouring mol­ecule into chains extending parallel to the crystallographic b axis (Fig. 4; Table 1). The C—H⋯O angle is close to linearity, indicating that this is a relatively strong inter­action. The mol­ecules are additionally stacked into columns that are directed along the crystallographic c axis but the mean planes of the 2H-chromene rings of neighbouring mol­ecules are not parallel (Fig. 5). They are rotated by 33.2°, which prevents π–π inter­actions.

Figure 4.

Figure 4

The formation of C—H⋯O hydrogen-bonded chains in the title compound in a view along the crystallographic c axis. Hydrogen bonds are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.45 3.3958 (12) 171

Symmetry code: (i) -x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}.

Figure 5.

Figure 5

Packing of mol­ecules in the crystal structure of the title compound in a view along the crystallographic b axis. Inter­molecular C—H⋯O hydrogen bonding is shown as dashed lines.

Database survey  

A search in the Cambridge Structural Database (CSD Version 2021; Groom et al., 2016) revealed eight structures of 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carboxyl­ate derivatives. Three of them relate to the crystal structures of the carb­oxy­lic acid, which crystallizes in two different polymorphs (Bardajee et al., 2006a ; Cui et al., 2018; Zhang et al., 2008).

Five more crystal structures relate to esterificated coumarin derivatives. One of them is 3-carb­oxy­ethyl-7-di­ethyl­amino­coumarin (Li et al., 2009). Another one is succinimidyl 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carboxyl­ate, which was obtained as a chloro­form solvate (Bardajee et al., 2006b ). The hits also include 4-cyano­biphenyl-4-yl 7-di­ethyl­amino-2-oxo-2H-chromene-3-carboxyl­ate (Sreenivasa et al., 2013). Furthermore, two bis­chromophoric acid derivatives are reported. The first one is (2R,3R)-diethyl tartrate-2,3-bis­(7-di­ethyl­amino­coumarin-3-carboxyl­ate) and the second is (2S,3R)-N,O-bis­(7-di­ethyl­amino­coumarin-3-carbon­yl)-threonine methyl ester (Lo et al., 2001).

Synthesis and crystallization  

All reagents and solvents were commercially available and were used without further purification: allyl bromide (abcr), 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carb­oxy­lic acid (Fluoro­chem). For the reaction, flasks were flame-dried, evacuated and flooded with a stream of nitro­gen. The NMR spectra were measured with a Bruker AvanceNeo 500 (1H NMR: 500 MHz, 13C NMR: 125 MHz) in di­methyl­sulfoxide-d 6 (deutero) as solvent. TMS was used as reference. The melting point was measured with a Melting Point Apparatus from Electrothermal. The mass spectrum was measured in the positive mode with an AccuTOF GCV 4G (Jeol, EI, 70 eV). R f values were determined by thin-layer chromatography using ALUGRAMM® Xtra Sil G/UV254 plates (Machery-Nagel). Flash column chromatography was performed using cartridge SNAP Ultra 25 g (Biotage®) on a Isolera one (Biotage®). Infrared spectroscopy was performed on a Perkin–Elmer 1600 series FTIR spectrometer. An AG531-G Golden-Gate-Diamond-ATR unit was used. The elemental analysis was performed with a vario MICRO CUBE (Elementar). The probe was put into a zinc container and was burned in an oxygen atmosphere.

Under nitro­gen atmosphere, 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carb­oxy­lic acid (298 mg, 1.14 mmol) and potassium carbonate (324 mg, 2.34 mmol) were suspended in dry N,N-di­methyl­formamide (20 ml). Allyl bromide (320 µl, 3.70 mmol) was added and the solution was stirred for 21.5 h at room temperature. After addition of water (50 ml), the mixture was extracted with di­chloro­methane (4 × 20 ml). The combined organic layer was washed with 1M NaOH solution (30 ml) and dried with magnesium sulfate. After filtration, the solvent was removed in vacuo. The crude product was purified by flash column chromatography on silica gel [di­chloro­methane:ethyl acetate = 100:0 → 80:20, R f (di­chloro­methane:ethyl acetate = 8:2) = 0.67] to yield the title compound (256 mg, 850 µmol, 75%) as a yellow solid. A small amount of the title compound was recrystallized from acetone, leading to crystals suitable for single crystal X-ray diffraction.

Melting point: 361 K. 1H NMR (500 MHz, DMSO-d 6, 298 K, TMS): δ = 8.59 (s, 1 H, H-4), 7.65 (d, 3J = 9.0 Hz, 1 H, H-5), 6.78 (dd, 3J = 9.0 Hz, 4J = 2.5 Hz, 1 H, H-6), 6.54 (d, 4J = 2.3 Hz, 1 H, H-8), 6.01 (ddt, 2J = 17.2, 10.5 Hz, 3J = 5.2 Hz, 1 H, CH=CH2), 5.48–5.22 (m, 2 H, CH=CH 2), 4.72 (dt, 3J = 5.2 Hz, 4J = 1.5 Hz, 2 H, OCH 2), 3.48 (q, 3J = 7.0 Hz, 4 H, NCH 2), 1.14 (t, 3J = 7.0 Hz, 6 H, NCH2CH 3) ppm. 13C NMR (125 MHz, DMSO-d 6, 298 K, TMS): δ = 163.1 (s, COOCH2), 158.1 (s, C-8a), 157.0 (s, C-2), 152.9 (s, C-7), 149.5 (d, C-4), 132.7 (d, CH=CH2), 131.9 (d, C-5), 117.6 (t, CH=CH2), 109.8 (d, C-6), 107.0 (s, C-4a), 106.9 (s, C-3), 95.8 (d, C-8), 64.7 (t, OCH2), 44.4 (t, NCH2), 12.3 (q, NCH2 CH3) ppm. MS (EI, 70 eV): m/z (%) = 301.13 (43) [M]+., 244.10 (20) [M –OCH2CH=CH2]+. HR–MS (EI, 70 eV): found: m/z = 301.1313 [M]+., calculated: m/z = 301.1314 [M]+. (Δ = 0.32 ppm). IR (ATR) wavenumbers: 2972 (w, C—H), 1729, 1685 (s, C=O), 1585 (s, arom.), 1216, 1185, 1114 (s, C—O) cm−1. Elemental analysis C17H19NO4 calculated: C: 67.76, H: 6.36, N: 4.65; found: C: 67.67, H: 6.38, N: 4.54.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C—H hydrogen atoms were located in difference maps but were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and refined isotropically with U iso(H) = 1.2U eq(C) (1.5 for methyl H atoms) using a riding model.

Table 2. Experimental details.

Crystal data
Chemical formula C17H19NO4
M r 301.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.72487 (9), 13.05333 (9), 8.55970 (6)
β (°) 95.5220 (6)
V3) 1526.40 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.77
Crystal size (mm) 0.08 × 0.06 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
T min, T max 0.796, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 26198, 3125, 2975
R int 0.025
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.090, 1.03
No. of reflections 3125
No. of parameters 202
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.18

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2014) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002218/wm5600sup1.cif

e-77-00331-sup1.cif (892.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002218/wm5600Isup2.hkl

e-77-00331-Isup2.hkl (249.7KB, hkl)

Figure S1: 1H NMR spectrum of 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid allyl ester in dimethylsulfoxide-d6. DOI: 10.1107/S2056989021002218/wm5600sup3.tif

Figure S2: 13C NMR spectrum of 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid allyl ester in dimethylsulfoxide-d6. DOI: 10.1107/S2056989021002218/wm5600sup4.tif

Figure S3: Experimental (top) and calculated XRPD pattern (botom) of the title compound measured with copper radiation. DOI: 10.1107/S2056989021002218/wm5600sup5.tif

Supporting information file. DOI: 10.1107/S2056989021002218/wm5600Isup6.cml

CCDC reference: 2064943

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C17H19NO4 F(000) = 640
Mr = 301.33 Dx = 1.311 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 13.72487 (9) Å Cell parameters from 18730 reflections
b = 13.05333 (9) Å θ = 3.2–79.5°
c = 8.55970 (6) Å µ = 0.77 mm1
β = 95.5220 (6)° T = 100 K
V = 1526.40 (2) Å3 Block, colorless
Z = 4 0.08 × 0.06 × 0.05 mm

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 3125 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2975 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.025
Detector resolution: 10.0000 pixels mm-1 θmax = 74.5°, θmin = 3.2°
ω scans h = −17→17
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) k = −16→16
Tmin = 0.796, Tmax = 1.000 l = −10→9
26198 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.4857P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.27 e Å3
3125 reflections Δρmin = −0.18 e Å3
202 parameters Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00051 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.42522 (5) 0.43406 (5) 0.62496 (8) 0.02005 (16)
O2 0.30849 (5) 0.49523 (5) 0.45723 (9) 0.02685 (18)
O3 0.14546 (5) 0.22199 (6) 0.48871 (10) 0.03164 (19)
O4 0.15018 (5) 0.37908 (6) 0.38321 (9) 0.02571 (18)
N1 0.69931 (6) 0.32538 (6) 0.96569 (9) 0.02028 (19)
C1 0.33583 (7) 0.42197 (7) 0.53540 (11) 0.0200 (2)
C2 0.28755 (7) 0.32340 (7) 0.54870 (11) 0.0200 (2)
C3 0.33465 (7) 0.24639 (7) 0.63486 (11) 0.0208 (2)
H3 0.302995 0.181966 0.640621 0.025*
C4 0.42814 (7) 0.25947 (7) 0.71496 (11) 0.0196 (2)
C5 0.48286 (7) 0.18288 (7) 0.80087 (11) 0.0213 (2)
H5 0.457233 0.115320 0.802308 0.026*
C6 0.57144 (7) 0.20301 (7) 0.88188 (11) 0.0208 (2)
H6 0.606652 0.149382 0.937029 0.025*
C7 0.61162 (7) 0.30412 (7) 0.88437 (11) 0.0187 (2)
C8 0.55922 (7) 0.38049 (7) 0.79458 (11) 0.0194 (2)
H8 0.584776 0.448004 0.791190 0.023*
C9 0.47128 (7) 0.35691 (7) 0.71221 (11) 0.0184 (2)
C10 0.18826 (7) 0.30202 (8) 0.47158 (11) 0.0220 (2)
C11 0.05028 (7) 0.36342 (9) 0.31361 (13) 0.0278 (2)
H11A 0.005740 0.353447 0.396689 0.033*
H11B 0.046669 0.302041 0.245361 0.033*
C12 0.02189 (8) 0.45623 (9) 0.22007 (14) 0.0333 (3)
H12 0.056563 0.471426 0.132052 0.040*
C13 −0.04888 (9) 0.51877 (10) 0.25251 (17) 0.0408 (3)
H13A −0.084753 0.505412 0.339854 0.049*
H13B −0.064001 0.577191 0.188542 0.049*
C14 0.74215 (7) 0.42822 (8) 0.96559 (12) 0.0237 (2)
H14A 0.730319 0.457818 0.858963 0.028*
H14B 0.813825 0.423083 0.991818 0.028*
C15 0.69959 (9) 0.49949 (8) 1.08247 (13) 0.0303 (2)
H15A 0.630056 0.511206 1.049963 0.045*
H15B 0.734605 0.564996 1.085692 0.045*
H15C 0.706714 0.468117 1.186964 0.045*
C16 0.74742 (7) 0.25546 (8) 1.08276 (11) 0.0231 (2)
H16A 0.699758 0.202771 1.109081 0.028*
H16B 0.767645 0.294469 1.179671 0.028*
C17 0.83648 (8) 0.20262 (9) 1.02778 (14) 0.0324 (3)
H17A 0.816019 0.157826 0.938740 0.049*
H17B 0.868653 0.161646 1.113786 0.049*
H17C 0.882291 0.254245 0.995308 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0191 (3) 0.0158 (3) 0.0244 (3) −0.0008 (2) −0.0025 (3) 0.0018 (3)
O2 0.0244 (4) 0.0199 (4) 0.0343 (4) −0.0021 (3) −0.0069 (3) 0.0057 (3)
O3 0.0251 (4) 0.0236 (4) 0.0446 (5) −0.0067 (3) −0.0054 (3) 0.0041 (3)
O4 0.0182 (3) 0.0256 (4) 0.0319 (4) −0.0036 (3) −0.0048 (3) 0.0050 (3)
N1 0.0187 (4) 0.0214 (4) 0.0205 (4) 0.0016 (3) 0.0006 (3) 0.0009 (3)
C1 0.0184 (4) 0.0192 (5) 0.0222 (5) 0.0002 (4) −0.0001 (4) −0.0009 (4)
C2 0.0193 (5) 0.0189 (5) 0.0218 (5) −0.0014 (4) 0.0015 (4) −0.0017 (4)
C3 0.0227 (5) 0.0172 (4) 0.0228 (5) −0.0026 (4) 0.0035 (4) −0.0015 (4)
C4 0.0212 (5) 0.0176 (5) 0.0201 (4) −0.0004 (4) 0.0027 (4) −0.0006 (3)
C5 0.0253 (5) 0.0163 (4) 0.0225 (5) −0.0007 (4) 0.0030 (4) 0.0004 (4)
C6 0.0240 (5) 0.0180 (5) 0.0206 (4) 0.0036 (4) 0.0029 (4) 0.0016 (3)
C7 0.0182 (4) 0.0209 (5) 0.0173 (4) 0.0018 (4) 0.0037 (3) −0.0010 (3)
C8 0.0200 (5) 0.0168 (4) 0.0215 (5) −0.0008 (3) 0.0021 (4) 0.0000 (3)
C9 0.0201 (4) 0.0167 (4) 0.0188 (4) 0.0020 (3) 0.0031 (3) 0.0006 (3)
C10 0.0211 (5) 0.0201 (5) 0.0245 (5) −0.0013 (4) 0.0013 (4) −0.0019 (4)
C11 0.0177 (5) 0.0297 (5) 0.0348 (6) −0.0043 (4) −0.0044 (4) 0.0022 (4)
C12 0.0241 (5) 0.0370 (6) 0.0366 (6) −0.0075 (5) −0.0082 (4) 0.0101 (5)
C13 0.0346 (6) 0.0311 (6) 0.0529 (8) −0.0015 (5) −0.0156 (6) 0.0041 (5)
C14 0.0202 (5) 0.0249 (5) 0.0253 (5) −0.0022 (4) −0.0011 (4) 0.0016 (4)
C15 0.0335 (6) 0.0246 (5) 0.0317 (6) 0.0004 (4) −0.0021 (4) −0.0030 (4)
C16 0.0223 (5) 0.0268 (5) 0.0196 (4) 0.0027 (4) −0.0007 (4) 0.0022 (4)
C17 0.0257 (5) 0.0366 (6) 0.0348 (6) 0.0104 (5) 0.0020 (4) 0.0064 (5)

Geometric parameters (Å, º)

O1—C1 1.3916 (11) C8—H8 0.9500
O1—C9 1.3714 (11) C8—C9 1.3729 (13)
O2—C1 1.2062 (12) C11—H11A 0.9900
O3—C10 1.2142 (13) C11—H11B 0.9900
O4—C10 1.3346 (12) C11—C12 1.4833 (15)
O4—C11 1.4558 (11) C12—H12 0.9500
N1—C7 1.3597 (12) C12—C13 1.3188 (19)
N1—C14 1.4655 (13) C13—H13A 0.9500
N1—C16 1.4648 (12) C13—H13B 0.9500
C1—C2 1.4567 (13) C14—H14A 0.9900
C2—C3 1.3713 (14) C14—H14B 0.9900
C2—C10 1.4824 (13) C14—C15 1.5233 (15)
C3—H3 0.9500 C15—H15A 0.9800
C3—C4 1.4059 (13) C15—H15B 0.9800
C4—C5 1.4134 (13) C15—H15C 0.9800
C4—C9 1.4041 (13) C16—H16A 0.9900
C5—H5 0.9500 C16—H16B 0.9900
C5—C6 1.3660 (14) C16—C17 1.5173 (14)
C6—H6 0.9500 C17—H17A 0.9800
C6—C7 1.4297 (14) C17—H17B 0.9800
C7—C8 1.4125 (13) C17—H17C 0.9800
C9—O1—C1 123.53 (8) O4—C11—H11B 110.3
C10—O4—C11 115.36 (8) O4—C11—C12 107.12 (8)
C7—N1—C14 121.47 (8) H11A—C11—H11B 108.5
C7—N1—C16 122.79 (8) C12—C11—H11A 110.3
C16—N1—C14 114.62 (8) C12—C11—H11B 110.3
O1—C1—C2 116.15 (8) C11—C12—H12 118.2
O2—C1—O1 115.24 (8) C13—C12—C11 123.54 (12)
O2—C1—C2 128.61 (9) C13—C12—H12 118.2
C1—C2—C10 122.49 (9) C12—C13—H13A 120.0
C3—C2—C1 119.67 (9) C12—C13—H13B 120.0
C3—C2—C10 117.84 (9) H13A—C13—H13B 120.0
C2—C3—H3 118.9 N1—C14—H14A 109.1
C2—C3—C4 122.29 (9) N1—C14—H14B 109.1
C4—C3—H3 118.9 N1—C14—C15 112.32 (8)
C3—C4—C5 125.60 (9) H14A—C14—H14B 107.9
C9—C4—C3 117.93 (9) C15—C14—H14A 109.1
C9—C4—C5 116.46 (9) C15—C14—H14B 109.1
C4—C5—H5 119.0 C14—C15—H15A 109.5
C6—C5—C4 122.04 (9) C14—C15—H15B 109.5
C6—C5—H5 119.0 C14—C15—H15C 109.5
C5—C6—H6 119.7 H15A—C15—H15B 109.5
C5—C6—C7 120.55 (9) H15A—C15—H15C 109.5
C7—C6—H6 119.7 H15B—C15—H15C 109.5
N1—C7—C6 121.14 (9) N1—C16—H16A 108.9
N1—C7—C8 120.91 (9) N1—C16—H16B 108.9
C8—C7—C6 117.90 (9) N1—C16—C17 113.25 (8)
C7—C8—H8 120.1 H16A—C16—H16B 107.7
C9—C8—C7 119.84 (9) C17—C16—H16A 108.9
C9—C8—H8 120.1 C17—C16—H16B 108.9
O1—C9—C4 120.09 (8) C16—C17—H17A 109.5
O1—C9—C8 116.83 (8) C16—C17—H17B 109.5
C8—C9—C4 123.08 (9) C16—C17—H17C 109.5
O3—C10—O4 123.31 (9) H17A—C17—H17B 109.5
O3—C10—C2 122.88 (9) H17A—C17—H17C 109.5
O4—C10—C2 113.80 (8) H17B—C17—H17C 109.5
O4—C11—H11A 110.3
O1—C1—C2—C3 −5.62 (13) C5—C6—C7—N1 179.41 (8)
O1—C1—C2—C10 174.60 (8) C5—C6—C7—C8 −3.06 (14)
O2—C1—C2—C3 174.72 (10) C6—C7—C8—C9 1.82 (13)
O2—C1—C2—C10 −5.06 (16) C7—N1—C14—C15 81.70 (11)
O4—C11—C12—C13 −115.91 (12) C7—N1—C16—C17 107.68 (11)
N1—C7—C8—C9 179.35 (8) C7—C8—C9—O1 −178.72 (8)
C1—O1—C9—C4 −0.28 (13) C7—C8—C9—C4 1.57 (14)
C1—O1—C9—C8 180.00 (8) C9—O1—C1—O2 −175.17 (8)
C1—C2—C3—C4 1.44 (14) C9—O1—C1—C2 5.12 (13)
C1—C2—C10—O3 −176.05 (10) C9—C4—C5—C6 2.31 (14)
C1—C2—C10—O4 3.33 (13) C10—O4—C11—C12 −179.62 (9)
C2—C3—C4—C5 −177.39 (9) C10—C2—C3—C4 −178.77 (9)
C2—C3—C4—C9 3.51 (14) C11—O4—C10—O3 3.12 (14)
C3—C2—C10—O3 4.17 (15) C11—O4—C10—C2 −176.26 (8)
C3—C2—C10—O4 −176.45 (8) C14—N1—C7—C6 178.43 (8)
C3—C4—C5—C6 −176.79 (9) C14—N1—C7—C8 0.97 (13)
C3—C4—C9—O1 −4.15 (13) C14—N1—C16—C17 −84.26 (11)
C3—C4—C9—C8 175.56 (9) C16—N1—C7—C6 −14.31 (13)
C4—C5—C6—C7 0.96 (14) C16—N1—C7—C8 168.23 (8)
C5—C4—C9—O1 176.67 (8) C16—N1—C14—C15 −86.53 (10)
C5—C4—C9—C8 −3.62 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O2i 0.95 2.45 3.3958 (12) 171

Symmetry code: (i) −x+1, y−1/2, −z+3/2.

Funding Statement

This work was funded by Christian-Albrechts-Universität zu Kiel grant . Deutsche Forschungsgemeinschaft grant .

References

  1. Bardajee, G. R., Winnik, M. A. & Lough, A. J. (2006a). Acta Cryst. E62, o3076–o3078.
  2. Bardajee, G. R., Winnik, M. A. & Lough, A. J. (2006b). Acta Cryst. E62, o3079–o3081.
  3. Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Cui, R. R., Lv, Y. C., Zhao, Y. S., Zhao, N. & Li, N. (2018). Mater. Chem. Front. 2, 910–916.
  5. Devriese, L. A., Hommez, J., Laevens, H., Pot, B., Vandamme, P. & Haesebrouck, F. (1999). Vet. Microbiol. 70, 87–94. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Edberg, S. C., Gam, K., Bottenbley, C. J. & Singer, J. M. (1976). J. Clin. Microbiol. 4, 180–184. [DOI] [PMC free article] [PubMed]
  8. Geissler, D., Antonenko, Y. N., Schmidt, R., Keller, S., Krylova, O. O., Wiesner, B., Bendig, J., Pohl, P. & Hagen, V. (2005). Angew. Chem. Int. Ed. 44, 1195–1198. [DOI] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Jones, G. II, Jackson, W. R., Choi, C. & Bergmark, W. R. (1985). J. Phys. Chem. 89, 294–300.
  11. Jones, G. II & Rahman, M. A. (1992). Chem. Phys. Lett. 200, 241–250.
  12. Jones, G. II & Rahman, M. A. (1994). J. Phys. Chem. 98, 13028–13037.
  13. Li, X., Lim, W. T., Kim, S.-H. & Son, Y.-A. (2009). Z. Kristallogr. NCS, 224, 593.
  14. Lo, L.-C., Chen, J.-Y., Yang, C.-T. & Gu, D.-S. (2001). Chirality, 13, 266–271. [DOI] [PubMed]
  15. Rigaku OD (2020). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Sreenivasa, S., Srinivasa, H. T., Palakshamurthy, B. S., Kumar, V. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o266. [DOI] [PMC free article] [PubMed]
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. Zhang, H., Yu, T., Zhao, Y., Fan, D., Chen, L., Qiu, Y., Qian, L., Zhang, K. & Yang, C. (2008). Spectrochim. Acta A Mol. Biomol. Spectrosc. 69, 1136–1139. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002218/wm5600sup1.cif

e-77-00331-sup1.cif (892.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002218/wm5600Isup2.hkl

e-77-00331-Isup2.hkl (249.7KB, hkl)

Figure S1: 1H NMR spectrum of 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid allyl ester in dimethylsulfoxide-d6. DOI: 10.1107/S2056989021002218/wm5600sup3.tif

Figure S2: 13C NMR spectrum of 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid allyl ester in dimethylsulfoxide-d6. DOI: 10.1107/S2056989021002218/wm5600sup4.tif

Figure S3: Experimental (top) and calculated XRPD pattern (botom) of the title compound measured with copper radiation. DOI: 10.1107/S2056989021002218/wm5600sup5.tif

Supporting information file. DOI: 10.1107/S2056989021002218/wm5600Isup6.cml

CCDC reference: 2064943

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES