Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 9;77(Pt 4):366–371. doi: 10.1107/S2056989021002449

Crystal structure and Hirshfeld surface analysis of 3-cyano-4-hy­droxy-2-(4-methyl­phen­yl)-6-oxo-N-phenyl-4-(thio­phen-2-yl)cyclo­hexane-1-carbox­amide 0.04-hydrate

Farid N Naghiyev a, Victor N Khrustalev b,c, Mehmet Akkurt d, Elnur Z Huseynov a, Ali N Khalilov a,e, Anzurat A Akobirshoeva f,*, İbrahim G Mamedov a
PMCID: PMC8025867  PMID: 33936759

In the crystal structure, mol­ecules are linked by N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, forming mol­ecular layers parallel to the bc plane, which inter­act by the van der Waals forces between them.

Keywords: crystal structure; cyclo­condensation product; 1,2,7,8-tetra­hydro­iso­quinoline ring system; Hirshfeld surface analysis

Abstract

In the title compound, C25H22N2O3S·0.04H2O, the central cyclo­hexane ring adopts a chair conformation. In the crystal, mol­ecules are linked by N—H⋯O, C—H⋯O, and C—H⋯N hydrogen bonds, forming the mol­ecular layers parallel to the bc plane, which inter­act by the van der Waals forces between them. A Hirshfeld surface analysis indicates that the contributions from the most prevalent inter­actions are H⋯H (41.2%), C⋯H/H⋯C (20.3%), O⋯H/H⋯O (17.8%) and N⋯H/H⋯N (10.6%).

Chemical context  

The significance of β-carbonyl compounds in organic chemistry is difficult to overestimate. They are valuable building blocks in organic synthesis and coordination complexes (Shokova et al., 2015; Ma et al., 2015; Gurbanov et al., 2017, 2018; Mittersteiner et al., 2020). Cyclo­condensation reactions of β-diketones with various reagents mainly lead to the formation of carbocyclic and heterocyclic compounds (Mamedov et al., 2013, 2019; Naghiyev et al., 2019; Naghiyev, 2020). Being a carbocyclic system, cyclo­hexa­none derivatives are scaffolds in many synthetic and natural products. They possess a broad spectrum of biological assets, such as anthelmintic, anti-inflammatory, anti­bacterial, anti­cancer, anti­convulsant, anti­tubercular, anti­tumor, anti­leukemic, anti­viral, analgesic, herbicidal and enzyme inhibitory activities (Holland et al., 1990; Fu & Ye, 2004; Liu et al., 2009; Gein et al., 2015; Mamedov et al., 2017; Nosova et al., 2020). The methods used most widely for the synthesis of these functionalized cyclo­hexa­nones involve the condensation of aldehydes with β-carbonyl compounds (Gein et al., 2015; Nosova et al., 2020).

As part of our studies on the chemistry of β-dicarbonyl compounds, as well as taking into account our ongoing structural studies (Naghiyev, Akkurt et al., 2020; Naghiyev, Cisterna et al., 2020; Naghiyev, Mammadova et al., 2020; Naghiyev et al., 2021), we report here the crystal structure and Hirshfeld surface analysis of the title compound, 3-cyano-4-hy­droxy-2-(4-methyl­phen­yl)-6-oxo-N-phenyl-4-(thio­phen-2-yl)-cyclo­hexane-1-carboxamide 0.04-hydrate.graphic file with name e-77-00366-scheme1.jpg

Structural commentary  

In the title compound, (Fig. 1), the central cyclo­hexane ring (C1–C6) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q T = 0.570 (2) Å, θ = 5.1 (2)° and φ = 226 (2)°. The thio­phene (S1/C22–C25), phenyl (C8–C13) and benzene (C14–C19) rings make dihedral angles of 68.05 (10), 46.41 (9) and 87.95 (10)°, respectively, with the mean plane of the central cyclo­hexane ring. The thio­phene ring forms dihedral angles of 21.88 (10) and 73.64 (10)°, respectively, with the phenyl and benzene rings, which subtend a dihedral angle of 80.91 (10)°. The C2—C7—N1—C8 torsion angle is 178.99 (18)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link adjacent mol­ecules, forming mol­ecular ribbons with Inline graphic(6) and Inline graphic(10) ring motifs (Bernstein et al., 1995) along the c-axis direction (Table 1; Figs. 2 and 3). These ribbons are linked by weak C—H⋯N non-classical hydrogen bonds, forming layers of mol­ecules parallel to the bc plane (Table 1; Fig. 4), with only van der Waals inter­actions between them.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.89 (2) 2.00 (2) 2.886 (2) 174 (2)
C2—H2⋯O2i 1.00 2.44 3.320 (2) 146
C4—H4⋯O1i 1.00 2.54 3.434 (2) 149
C9—H9⋯N2ii 0.95 2.57 3.272 (3) 131

Symmetry codes: (i) x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}; (ii) -x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}.

Figure 2.

Figure 2

A view down the a axis of the inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds of the title compound.

Figure 3.

Figure 3

A view down the b axis of the inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds of the title compound.

Figure 4.

Figure 4

A view down the c axis of the inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds of the title compound.

Hirshfeld surface analysis  

The Hirshfeld surface for the title compound and its associated two-dimensional fingerprint plots were calculated using CrystalExplorer17 (Turner et al., 2017). The oxygen atom of the water mol­ecule with a low occupancy factor of about 4% was not taken into account in the process. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) is shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).

Figure 5.

Figure 5

The Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range from −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

The overall two-dimensional fingerprint plot, and those delineated into H⋯H (41.2%), C⋯H/H⋯C (20.3%), O⋯H/H⋯O (17.8%) and N⋯H/H⋯N (10.6%) contacts are illustrated in Fig. 6 ae, respectively. The other minor contributions to the Hirshfeld surface are from S⋯H/H⋯S (5.5%), O⋯O (1.9%), C⋯C (1.1%), S⋯C/C⋯S (1.0%), O⋯C/C⋯O (0.5%) and O⋯N/N⋯O (0.1%) contacts. The large number of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/ H⋯N inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Figure 6.

Figure 6

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N, inter­actions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

Database survey  

A search of the Cambridge Structural database (CSD, version 5.42, update November 2020; Groom et al., 2016) for the 4-hy­droxy-5-methyl-2-oxo­cyclo­hexane-1-carboxamide moiety revealed seven hits, of which the structures most similar to the that of the title compound are 4-hy­droxy-4,N,N′-trimethyl-2-(3-nitro­phen­yl)-6-oxo-1,3-cyclo­hexa­nedicarbox-amide (HALROB; Ravikumar & Mehdi, 1993), 4-hy­droxy-N,N,N′,N′,4-penta­methyl-6-oxo-2-phenyl­cyclo­hexane-1,3-di­carboxamide (IFUDOD; Gein et al., 2007), 5-hy­droxy-5-methyl-3-phenyl-2,4-bis­(N-methyl­carbamo­yl)cyclo­hexa­none (IWEVOV; Mohan et al., 2003), 5-hy­droxy-5-methyl-3-(o-tol­yl)-2,4-bis­(N-methyl­carbamo­yl)cyclo­hexa­none (IWEVUB; Mohan et al., 2003), 2-(4-chloro­phen­yl)-4-hy­droxy-4-methyl-6-oxo-N,N′-di­phenyl­cyclo­hexane-1,3-dicarboxamide N,N-di­methyl­formamide solvate (OZUKAX; Tkachenko et al., 2014), 4-hy­droxy-4-methyl-2-(4-methyl­phen­yl)-6-oxo-N 1,N 3-di­phenyl­cyclo­hexane-1,3-dicarboxamide (PEWJUZ; Fatahpour et al., 2018) and 4-hy­droxy-4-methyl-2-(3-nitrophen­yl)-6-oxo­cyclo­hexane-1,3-dicarboxamide ethanol solvate (ZOMDUD; Gein et al., 2019).

ZOMDUD crystallizes in the monoclinic space group P21/c, with Z = 4, HALROB, IFUDOD and IWEVUB in P21/n with Z = 4, PEWJUZ in I2/c with Z = 4, and IWEVOV and OZUKAX in the ortho­rhom­bic space group Pbca with Z = 8.

In the crystal of HALROB, the amide carbonyl groups are oriented in different directions with respect to the cyclo­hexa­none ring. These orientations of the carboxamide groups facilitate the formation of an intra­molecular O—H⋯O hydrogen bond. The mol­ecules are packed such that chains are formed along the b-axis direction. These chains are held together by N—H⋯O hydrogen bonds.

In the crystal IFUDOD, there are no classical hydrogen bonds. Inter­molecular C—H⋯O contacts and weak C—H⋯π inter­actions lead to the formation of a three-dimensional network.

In the crystal of IWEVOV, the mol­ecules pack such that both carbonyl O atoms, participate in hydrogen-bond formation with symmetry-related amide nitro­gen atoms, present in the carbamoyl substituents, forming N—H⋯O hydrogen bonds in a helical arrangement. In the crystal, the phenyl rings are positioned so as to favour edge-to-edge aromatic stacking. When the crystal packing is viewed normal to the ac plane, it reveals a ‘wire-mesh’ type hydrogen-bond network.

In the crystal of IWEVUB, unlike in IWEVOV where both carbonyl O atoms participate in hydrogen bonding, only one of the carbonyl oxygen atoms participates in inter­molecular N—H⋯O hydrogen bonding while the other carbonyl oxygen participates in a weak C—H⋯O inter­action. In addition, one of the amide nitro­gen atoms participates in N—H⋯O hydrogen bonding with the hydroxyl oxygen atom, linking the mol­ecules in a helical arrangement, which is similar to that in the structure of IWEVOV. As observed in the structure of IWEVOV, the packing of the mol­ecules viewed normal to the ab plane resembles a ‘wiremesh’ arrangement of the mol­ecules.

In OZUKAX, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the ac plane. C—H⋯π inter­actions are also observed. Inter­molecular O—H⋯O hydrogen bonds consolidate the mol­ecular conformation.

In PEWJUZ, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. C—H⋯π inter­actions are also observed.

In ZOMDUD, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. C—H⋯π inter­actions are also observed.

Inter­molecular inter­actions can be weaker or more robust based on the presence or absence of different functional groups and the mol­ecular environment, depending on the crystal system, which all affect the mol­ecular conformation.

Synthesis and crystallization  

To a dissolved mixture of 2-(thio­phene-2-carbon­yl)-3-(p-tol­yl)acrylo­nitrile (1.32 g; 5.2 mmol) and acetoacetanilide (0.92 g; 5.2 mmol) in methanol (35 mL), 2–3 drops of methyl piperazine were added and the mixture was stirred at room temperature for 5–7 min. The reaction mixture was kept in a closed flask for 24–48 h. Then, 25 mL of methanol was removed from the reaction mixture and it was left overnight. The precipitated needle-like crystals were separated by filtration and recrystallized from ethanol (yield 72%; m.p. 483–484 K).

1H NMR (300 MHz, DMSO-d 6, m.h.): δ 2.23 (s, 3H, CH 3); 2.79 (d, 2H, CH 2, 2 J H-H = 18.1 Hz); 3.50 (t, 1H, CH, 3 J H-H = 13.8 Hz); 3.63 (s, 1H, OH); 4.06 (d, 1H, CH, 3 J H-H = 10.5 Hz); 4.28 (dd, 1H, CH, 3 J H-H = 10.5 Hz, 3 J H-H = 11.9 Hz); 6.97–7.48 (m, 12H, 9Ar-H + 3CH thien­yl); 9.94 ppm (s, 1H, NH). 13C NMR (75 MHz, DMSO-d 6, m.h.): δ 21.14 (CH3–-Ar), 44.26 (CH—Ar), 47.40 (CH—CN), 54.07 (CH2), 62.64 (CH—CO), 75.29 (O—C quat.), 119.02 (CN), 119.49 (2CHarom), 123.87 (CHthien­yl), 124.45 (CHarom), 125.71 (CHthien­yl), 127.63 (CHthien­yl), 128.75 (2 CHarom), 129.14 (2 CHarom),129.54 (2 CHarom), 137.06 (C arom), 137.17 (C arom), 139.14 (C arom), 150.57 (C thien­yl), 165.85 (O=C), 203.12 ppm (O=C ket). As a result of the overlap of peaks in the 1H NMR spectrum, it was not possible to determine precisely all coupling constants.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms of the OH and NH groups were located from the difference-Fourier synthesis and refined freely. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–1.00 Å, and with U iso(H) = 1.2 or 1.5U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C25H22N2O3S·0.04H2O
M r 1724.87
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.049 (2), 20.223 (4), 9.1743 (18)
β (°) 100.91 (3)
V3) 2195.0 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.36 × 0.03 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.930, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 40890, 4492, 3208
R int 0.086
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.099, 1.02
No. of reflections 4492
No. of parameters 297
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.28

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2013), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Data with a resolution higher than 0.8 Å have a mean I/σ(I) of less than 4, and significant errors in the equivalent intensities (high R merge). The dataset was therefore truncated at 0.8 Å. Furthermore, there is a small cavity in the crystal, which is only partially occupied by a water mol­ecule (only about 4%) and the protons could not be located. It is also highly probable that, in the presence of a fully occupied water mol­ecule, the proton of the OH group would have a different orientation.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002449/jq2005sup1.cif

e-77-00366-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002449/jq2005Isup2.hkl

e-77-00366-Isup2.hkl (357.9KB, hkl)

13C NMR spectrum. DOI: 10.1107/S2056989021002449/jq2005sup3.jpg

1H NMR spectrum. DOI: 10.1107/S2056989021002449/jq2005sup4.jpg

Supporting information file. DOI: 10.1107/S2056989021002449/jq2005Isup5.cml

CCDC reference: 2068003

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C25H22N2O3S·0.04H2O F(000) = 906
Mr = 1724.87 Dx = 1.305 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.049 (2) Å Cell parameters from 6355 reflections
b = 20.223 (4) Å θ = 2.5–27.2°
c = 9.1743 (18) Å µ = 0.18 mm1
β = 100.91 (3)° T = 100 K
V = 2195.0 (8) Å3 Needle, colourless
Z = 1 0.36 × 0.03 × 0.03 mm

Data collection

Bruker D8 QUEST PHOTON-III CCD diffractometer 3208 reflections with I > 2σ(I)
φ and ω scans Rint = 0.086
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 26.4°, θmin = 2.0°
Tmin = 0.930, Tmax = 0.990 h = −15→15
40890 measured reflections k = −25→25
4492 independent reflections l = −11→11

Refinement

Refinement on F2 7 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.034P)2 + 1.3559P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4492 reflections Δρmax = 0.24 e Å3
297 parameters Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.94322 (4) 0.33798 (3) 0.19635 (6) 0.02478 (14)
O1 0.64646 (13) 0.20448 (7) 0.48755 (16) 0.0284 (4)
O2 0.44002 (12) 0.28766 (7) 0.52178 (15) 0.0236 (3)
O3 0.79249 (12) 0.35394 (8) 0.55025 (15) 0.0262 (4)
H3O 0.8523 (16) 0.3394 (12) 0.595 (3) 0.039*
O4 0.612 (3) 0.351 (2) 0.700 (4) 0.031 (14) 0.040 (5)
N1 0.36773 (14) 0.23974 (9) 0.29809 (18) 0.0206 (4)
H1N 0.3849 (18) 0.2305 (11) 0.211 (3) 0.025*
N2 0.72836 (16) 0.51020 (9) 0.3630 (2) 0.0281 (4)
C1 0.65290 (17) 0.24998 (10) 0.4037 (2) 0.0209 (4)
C2 0.55201 (16) 0.29125 (10) 0.3322 (2) 0.0184 (4)
H2 0.536629 0.282554 0.222891 0.022*
C3 0.57511 (16) 0.36608 (10) 0.3578 (2) 0.0185 (4)
H3 0.582369 0.375121 0.466358 0.022*
C4 0.68857 (16) 0.38432 (9) 0.3124 (2) 0.0180 (4)
H4 0.680962 0.376165 0.203480 0.022*
C5 0.78937 (17) 0.34269 (10) 0.3945 (2) 0.0207 (4)
C6 0.76359 (17) 0.26933 (10) 0.3603 (2) 0.0221 (5)
H6A 0.759197 0.261182 0.252955 0.026*
H6B 0.825432 0.241803 0.415728 0.026*
C7 0.44750 (17) 0.27263 (10) 0.3935 (2) 0.0190 (4)
C8 0.26345 (17) 0.21588 (10) 0.3278 (2) 0.0198 (4)
C9 0.22262 (17) 0.15683 (10) 0.2617 (2) 0.0230 (4)
H9 0.264590 0.133517 0.200325 0.028*
C10 0.12021 (18) 0.13192 (11) 0.2855 (2) 0.0272 (5)
H10 0.092562 0.091213 0.241189 0.033*
C11 0.05831 (18) 0.16603 (12) 0.3732 (2) 0.0284 (5)
H11 −0.012143 0.149162 0.388622 0.034*
C12 0.09986 (18) 0.22518 (11) 0.4386 (2) 0.0280 (5)
H12 0.057482 0.248606 0.499304 0.034*
C13 0.20247 (17) 0.25057 (11) 0.4167 (2) 0.0235 (5)
H13 0.230470 0.291052 0.461766 0.028*
C14 0.47911 (16) 0.40798 (10) 0.2754 (2) 0.0194 (4)
C15 0.45216 (18) 0.40895 (11) 0.1203 (2) 0.0246 (5)
H15 0.492962 0.381703 0.064508 0.030*
C16 0.36664 (18) 0.44924 (11) 0.0475 (2) 0.0269 (5)
H16 0.349713 0.449300 −0.057939 0.032*
C17 0.30501 (17) 0.48957 (11) 0.1251 (2) 0.0256 (5)
C18 0.33140 (18) 0.48823 (11) 0.2794 (2) 0.0257 (5)
H18 0.290300 0.515437 0.334897 0.031*
C19 0.41680 (17) 0.44777 (10) 0.3536 (2) 0.0219 (4)
H19 0.432838 0.447282 0.459033 0.026*
C20 0.2125 (2) 0.53442 (12) 0.0457 (3) 0.0349 (6)
H20A 0.188806 0.519550 −0.057203 0.052*
H20B 0.240883 0.579854 0.046566 0.052*
H20C 0.147738 0.532911 0.096157 0.052*
C21 0.71119 (17) 0.45522 (11) 0.3399 (2) 0.0216 (4)
C22 0.89866 (17) 0.36488 (10) 0.3544 (2) 0.0218 (4)
C23 0.97306 (17) 0.40966 (11) 0.4282 (2) 0.0267 (5)
H23 0.962924 0.430925 0.517123 0.032*
C24 1.06711 (19) 0.42148 (12) 0.3596 (3) 0.0312 (5)
H24 1.127012 0.450845 0.398265 0.037*
C25 1.06228 (18) 0.38632 (11) 0.2328 (2) 0.0280 (5)
H25 1.117772 0.388191 0.171907 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0239 (3) 0.0333 (3) 0.0184 (3) −0.0043 (2) 0.0072 (2) −0.0021 (2)
O1 0.0322 (8) 0.0279 (8) 0.0260 (8) 0.0009 (7) 0.0077 (7) 0.0086 (7)
O2 0.0275 (8) 0.0310 (8) 0.0141 (7) −0.0036 (6) 0.0085 (6) −0.0010 (6)
O3 0.0262 (8) 0.0395 (10) 0.0130 (7) 0.0029 (7) 0.0038 (6) 0.0014 (6)
O4 0.024 (18) 0.04 (2) 0.027 (19) −0.001 (13) −0.004 (13) −0.009 (13)
N1 0.0234 (9) 0.0270 (10) 0.0130 (8) −0.0028 (8) 0.0077 (7) −0.0021 (7)
N2 0.0329 (10) 0.0281 (11) 0.0235 (10) −0.0047 (8) 0.0060 (8) −0.0014 (8)
C1 0.0272 (11) 0.0221 (11) 0.0143 (10) −0.0014 (9) 0.0062 (8) −0.0013 (8)
C2 0.0211 (10) 0.0236 (11) 0.0112 (9) −0.0022 (8) 0.0050 (8) −0.0014 (8)
C3 0.0218 (10) 0.0210 (10) 0.0138 (9) −0.0012 (8) 0.0064 (8) −0.0015 (8)
C4 0.0204 (10) 0.0207 (10) 0.0132 (9) −0.0023 (8) 0.0038 (8) −0.0020 (8)
C5 0.0221 (10) 0.0272 (11) 0.0131 (9) 0.0005 (9) 0.0042 (8) 0.0009 (8)
C6 0.0214 (10) 0.0247 (11) 0.0207 (11) 0.0021 (9) 0.0054 (9) 0.0036 (9)
C7 0.0219 (10) 0.0192 (10) 0.0168 (10) 0.0018 (8) 0.0063 (8) 0.0026 (8)
C8 0.0207 (10) 0.0243 (11) 0.0153 (10) −0.0003 (8) 0.0055 (8) 0.0040 (8)
C9 0.0277 (11) 0.0245 (11) 0.0176 (10) 0.0006 (9) 0.0067 (9) 0.0001 (9)
C10 0.0300 (12) 0.0283 (12) 0.0223 (11) −0.0057 (10) 0.0029 (9) 0.0025 (9)
C11 0.0231 (11) 0.0386 (13) 0.0245 (11) −0.0061 (10) 0.0065 (9) 0.0049 (10)
C12 0.0271 (11) 0.0361 (13) 0.0228 (11) 0.0029 (10) 0.0102 (9) 0.0013 (10)
C13 0.0248 (11) 0.0257 (11) 0.0200 (10) 0.0004 (9) 0.0046 (9) 0.0001 (9)
C14 0.0226 (10) 0.0193 (10) 0.0171 (10) −0.0027 (8) 0.0058 (8) 0.0009 (8)
C15 0.0292 (11) 0.0275 (12) 0.0183 (10) 0.0021 (9) 0.0075 (9) −0.0029 (9)
C16 0.0300 (12) 0.0318 (12) 0.0183 (10) 0.0044 (10) 0.0033 (9) 0.0014 (9)
C17 0.0232 (11) 0.0261 (11) 0.0277 (12) 0.0004 (9) 0.0056 (9) 0.0028 (9)
C18 0.0267 (11) 0.0255 (12) 0.0274 (11) 0.0024 (9) 0.0118 (9) −0.0009 (9)
C19 0.0239 (10) 0.0271 (11) 0.0165 (10) −0.0013 (9) 0.0083 (9) −0.0028 (9)
C20 0.0335 (13) 0.0390 (14) 0.0327 (13) 0.0106 (11) 0.0075 (11) 0.0064 (11)
C21 0.0215 (10) 0.0295 (12) 0.0146 (10) −0.0020 (9) 0.0058 (8) 0.0011 (9)
C22 0.0244 (11) 0.0250 (11) 0.0161 (10) 0.0020 (9) 0.0038 (8) 0.0016 (8)
C23 0.0256 (11) 0.0329 (13) 0.0221 (11) −0.0007 (10) 0.0057 (9) −0.0048 (9)
C24 0.0266 (11) 0.0360 (13) 0.0310 (12) −0.0065 (10) 0.0056 (10) −0.0020 (10)
C25 0.0221 (11) 0.0377 (13) 0.0253 (11) −0.0059 (10) 0.0076 (9) 0.0011 (10)

Geometric parameters (Å, º)

S1—C25 1.716 (2) C9—H9 0.9500
S1—C22 1.727 (2) C10—C11 1.381 (3)
O1—C1 1.211 (2) C10—H10 0.9500
O2—C7 1.236 (2) C11—C12 1.389 (3)
O3—C5 1.440 (2) C11—H11 0.9500
O3—H3O 0.815 (16) C12—C13 1.388 (3)
N1—C7 1.347 (3) C12—H12 0.9500
N1—C8 1.420 (3) C13—H13 0.9500
N1—H1N 0.89 (2) C14—C19 1.389 (3)
N2—C21 1.143 (3) C14—C15 1.398 (3)
C1—C6 1.514 (3) C15—C16 1.382 (3)
C1—C2 1.517 (3) C15—H15 0.9500
C2—C7 1.520 (3) C16—C17 1.387 (3)
C2—C3 1.549 (3) C16—H16 0.9500
C2—H2 1.0000 C17—C18 1.391 (3)
C3—C14 1.515 (3) C17—C20 1.513 (3)
C3—C4 1.547 (3) C18—C19 1.388 (3)
C3—H3 1.0000 C18—H18 0.9500
C4—C21 1.472 (3) C19—H19 0.9500
C4—C5 1.551 (3) C20—H20A 0.9800
C4—H4 1.0000 C20—H20B 0.9800
C5—C22 1.501 (3) C20—H20C 0.9800
C5—C6 1.536 (3) C22—C23 1.361 (3)
C6—H6A 0.9900 C23—C24 1.417 (3)
C6—H6B 0.9900 C23—H23 0.9500
C8—C13 1.387 (3) C24—C25 1.355 (3)
C8—C9 1.387 (3) C24—H24 0.9500
C9—C10 1.388 (3) C25—H25 0.9500
C25—S1—C22 92.19 (11) C11—C10—H10 119.8
C5—O3—H3O 107.5 (18) C9—C10—H10 119.8
C7—N1—C8 126.29 (17) C10—C11—C12 119.5 (2)
C7—N1—H1N 115.6 (14) C10—C11—H11 120.3
C8—N1—H1N 118.0 (14) C12—C11—H11 120.3
O1—C1—C6 121.94 (19) C13—C12—C11 120.9 (2)
O1—C1—C2 123.36 (19) C13—C12—H12 119.5
C6—C1—C2 114.70 (17) C11—C12—H12 119.5
C1—C2—C7 110.84 (16) C8—C13—C12 118.9 (2)
C1—C2—C3 111.44 (16) C8—C13—H13 120.5
C7—C2—C3 108.88 (16) C12—C13—H13 120.5
C1—C2—H2 108.5 C19—C14—C15 118.25 (19)
C7—C2—H2 108.5 C19—C14—C3 120.15 (17)
C3—C2—H2 108.5 C15—C14—C3 121.59 (18)
C14—C3—C4 111.24 (16) C16—C15—C14 120.5 (2)
C14—C3—C2 111.86 (16) C16—C15—H15 119.7
C4—C3—C2 109.56 (16) C14—C15—H15 119.7
C14—C3—H3 108.0 C15—C16—C17 121.4 (2)
C4—C3—H3 108.0 C15—C16—H16 119.3
C2—C3—H3 108.0 C17—C16—H16 119.3
C21—C4—C3 109.29 (16) C16—C17—C18 118.0 (2)
C21—C4—C5 110.05 (16) C16—C17—C20 121.5 (2)
C3—C4—C5 112.98 (16) C18—C17—C20 120.5 (2)
C21—C4—H4 108.1 C19—C18—C17 121.1 (2)
C3—C4—H4 108.1 C19—C18—H18 119.5
C5—C4—H4 108.1 C17—C18—H18 119.5
O3—C5—C22 109.67 (16) C18—C19—C14 120.75 (19)
O3—C5—C6 108.76 (16) C18—C19—H19 119.6
C22—C5—C6 113.04 (17) C14—C19—H19 119.6
O3—C5—C4 105.49 (16) C17—C20—H20A 109.5
C22—C5—C4 111.18 (16) C17—C20—H20B 109.5
C6—C5—C4 108.40 (16) H20A—C20—H20B 109.5
C1—C6—C5 110.49 (17) C17—C20—H20C 109.5
C1—C6—H6A 109.6 H20A—C20—H20C 109.5
C5—C6—H6A 109.6 H20B—C20—H20C 109.5
C1—C6—H6B 109.6 N2—C21—C4 179.1 (2)
C5—C6—H6B 109.6 C23—C22—C5 127.05 (19)
H6A—C6—H6B 108.1 C23—C22—S1 110.32 (16)
O2—C7—N1 124.66 (19) C5—C22—S1 122.57 (15)
O2—C7—C2 120.42 (18) C22—C23—C24 113.4 (2)
N1—C7—C2 114.92 (17) C22—C23—H23 123.3
C13—C8—C9 120.61 (19) C24—C23—H23 123.3
C13—C8—N1 121.85 (19) C25—C24—C23 112.6 (2)
C9—C8—N1 117.52 (18) C25—C24—H24 123.7
C8—C9—C10 119.7 (2) C23—C24—H24 123.7
C8—C9—H9 120.1 C24—C25—S1 111.40 (17)
C10—C9—H9 120.1 C24—C25—H25 124.3
C11—C10—C9 120.3 (2) S1—C25—H25 124.3
O1—C1—C2—C7 6.3 (3) C8—C9—C10—C11 0.7 (3)
C6—C1—C2—C7 −174.55 (16) C9—C10—C11—C12 −0.6 (3)
O1—C1—C2—C3 127.8 (2) C10—C11—C12—C13 0.2 (3)
C6—C1—C2—C3 −53.1 (2) C9—C8—C13—C12 0.1 (3)
C1—C2—C3—C14 174.89 (16) N1—C8—C13—C12 178.60 (19)
C7—C2—C3—C14 −62.5 (2) C11—C12—C13—C8 0.0 (3)
C1—C2—C3—C4 51.1 (2) C4—C3—C14—C19 −120.6 (2)
C7—C2—C3—C4 173.62 (15) C2—C3—C14—C19 116.5 (2)
C14—C3—C4—C21 57.0 (2) C4—C3—C14—C15 58.1 (2)
C2—C3—C4—C21 −178.84 (15) C2—C3—C14—C15 −64.8 (2)
C14—C3—C4—C5 179.86 (16) C19—C14—C15—C16 0.8 (3)
C2—C3—C4—C5 −55.9 (2) C3—C14—C15—C16 −177.84 (19)
C21—C4—C5—O3 64.9 (2) C14—C15—C16—C17 −0.2 (3)
C3—C4—C5—O3 −57.6 (2) C15—C16—C17—C18 −0.3 (3)
C21—C4—C5—C22 −54.0 (2) C15—C16—C17—C20 179.1 (2)
C3—C4—C5—C22 −176.43 (16) C16—C17—C18—C19 0.0 (3)
C21—C4—C5—C6 −178.80 (16) C20—C17—C18—C19 −179.4 (2)
C3—C4—C5—C6 58.7 (2) C17—C18—C19—C14 0.7 (3)
O1—C1—C6—C5 −124.8 (2) C15—C14—C19—C18 −1.1 (3)
C2—C1—C6—C5 56.1 (2) C3—C14—C19—C18 177.61 (18)
O3—C5—C6—C1 57.7 (2) O3—C5—C22—C23 −22.9 (3)
C22—C5—C6—C1 179.77 (16) C6—C5—C22—C23 −144.4 (2)
C4—C5—C6—C1 −56.5 (2) C4—C5—C22—C23 93.4 (2)
C8—N1—C7—O2 −1.1 (3) O3—C5—C22—S1 160.44 (14)
C8—N1—C7—C2 178.99 (18) C6—C5—C22—S1 38.9 (2)
C1—C2—C7—O2 71.2 (2) C4—C5—C22—S1 −83.3 (2)
C3—C2—C7—O2 −51.7 (2) C25—S1—C22—C23 0.82 (17)
C1—C2—C7—N1 −108.87 (19) C25—S1—C22—C5 178.01 (18)
C3—C2—C7—N1 128.20 (18) C5—C22—C23—C24 −178.2 (2)
C7—N1—C8—C13 36.3 (3) S1—C22—C23—C24 −1.2 (2)
C7—N1—C8—C9 −145.1 (2) C22—C23—C24—C25 1.0 (3)
C13—C8—C9—C10 −0.5 (3) C23—C24—C25—S1 −0.4 (3)
N1—C8—C9—C10 −179.04 (18) C22—S1—C25—C24 −0.26 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.89 (2) 2.00 (2) 2.886 (2) 174 (2)
C2—H2···O2i 1.00 2.44 3.320 (2) 146
C3—H3···O3 1.00 2.54 2.879 (2) 100
C4—H4···O1i 1.00 2.54 3.434 (2) 149
C6—H6A···S1 0.99 2.83 3.179 (2) 101
C9—H9···N2ii 0.95 2.57 3.272 (3) 131
C13—H13···O2 0.95 2.48 2.939 (3) 110

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2.

Funding Statement

This work was funded by Baki Dövl\#601;t Universiteti grant . Ministry of Education and Science of the Russian Federation grant 075–03-2020- 223 (FSSF-2020–0017).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Fatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111–2122.
  7. Fu, Y. & Ye, F. (2004). Chem. Res. Chin. Univ. 20, 124–126.
  8. Gein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven’ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101–1102.
  9. Gein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592–1596.
  10. Gein, V. L., Odegova, T. F., Yankin, A. N. & Nosova, N. V. (2015). Pharm. Chem. J. 49, 246–249.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.
  13. Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.
  14. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  15. Holland, K. D., Naritoku, D. K., McKeon, A. C., Ferrendelli, J. A. & Covey, D. F. (1990). Mol. Pharmacol. 37, 98–103. [PubMed]
  16. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  17. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  18. Liu, L., Liu, S., Chen, X., Guo, L. & Che, Y. (2009). Bioorg. & Med. Chem. 17, 606–613. [DOI] [PubMed]
  19. Ma, Z., Sutradhar, M., Gurbanov, A. V., Maharramov, A. M., Aliyeva, R. A., Aliyeva, F. S., Bahmanova, F. N., Mardanova, V. I., Chyragov, F. M. & Mahmudov, K. T. (2015). Polyhedron, 101, 14–22.
  20. Mamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2013). Magn. Reson. Chem. 51, 234–239. [DOI] [PubMed]
  21. Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233.
  22. Mamedov, I. G., Mamedova, Y. V., Khrustalev, V. N., Bayramov, M. R. & Maharramov, A. M. (2017). Indian J. Chem. Sect. B, 56, 192–196.
  23. Mittersteiner, M., Andrade, V. P., Bonacorso, H. G., Martins, M. A. P. & Zanatta, N. (2020). Eur. J. Org. Chem. pp. 6405–6417.
  24. Mohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97–103.
  25. Naghiyev, F. N. (2020). Azerbaijan Chem. J. 2, 39–47.
  26. Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. [DOI] [PMC free article] [PubMed]
  27. Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235. [DOI] [PMC free article] [PubMed]
  28. Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. [DOI] [PMC free article] [PubMed]
  29. Naghiyev, F. N., Mamedov, I., Khrustalev, V. N., Shixaliyev, N. & Maharramov, A. M. (2019). J. Chin. Chem. Soc. 66, 253–256.
  30. Naghiyev, F. N., Mammadova, G. Z., Mamedov, I. G., Huseynova, A. T., Çelikesir, S. T., Akkurt, M. & Akobirshoeva, A. A. (2020). Acta Cryst. E76, 1365–1368. [DOI] [PMC free article] [PubMed]
  31. Nosova, N. V., Lezhnina, D. D., Gein, O. N., Novikova, V. V. & Gein, V. L. (2020). Russ. J. Gen. Chem. 90, 1817–1822.
  32. Ravikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027–2030.
  33. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  34. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  35. Shokova, E. A., Kim, J. K. & Kovalev, V. V. (2015). Russ. J. Org. Chem. 51, 755–830.
  36. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  37. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  38. Tkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166–1176.
  39. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002449/jq2005sup1.cif

e-77-00366-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002449/jq2005Isup2.hkl

e-77-00366-Isup2.hkl (357.9KB, hkl)

13C NMR spectrum. DOI: 10.1107/S2056989021002449/jq2005sup3.jpg

1H NMR spectrum. DOI: 10.1107/S2056989021002449/jq2005sup4.jpg

Supporting information file. DOI: 10.1107/S2056989021002449/jq2005Isup5.cml

CCDC reference: 2068003

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES