In the crystal structure, molecules are linked by N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, forming molecular layers parallel to the bc plane, which interact by the van der Waals forces between them.
Keywords: crystal structure; cyclocondensation product; 1,2,7,8-tetrahydroisoquinoline ring system; Hirshfeld surface analysis
Abstract
In the title compound, C25H22N2O3S·0.04H2O, the central cyclohexane ring adopts a chair conformation. In the crystal, molecules are linked by N—H⋯O, C—H⋯O, and C—H⋯N hydrogen bonds, forming the molecular layers parallel to the bc plane, which interact by the van der Waals forces between them. A Hirshfeld surface analysis indicates that the contributions from the most prevalent interactions are H⋯H (41.2%), C⋯H/H⋯C (20.3%), O⋯H/H⋯O (17.8%) and N⋯H/H⋯N (10.6%).
Chemical context
The significance of β-carbonyl compounds in organic chemistry is difficult to overestimate. They are valuable building blocks in organic synthesis and coordination complexes (Shokova et al., 2015 ▸; Ma et al., 2015 ▸; Gurbanov et al., 2017 ▸, 2018 ▸; Mittersteiner et al., 2020 ▸). Cyclocondensation reactions of β-diketones with various reagents mainly lead to the formation of carbocyclic and heterocyclic compounds (Mamedov et al., 2013 ▸, 2019 ▸; Naghiyev et al., 2019 ▸; Naghiyev, 2020 ▸). Being a carbocyclic system, cyclohexanone derivatives are scaffolds in many synthetic and natural products. They possess a broad spectrum of biological assets, such as anthelmintic, anti-inflammatory, antibacterial, anticancer, anticonvulsant, antitubercular, antitumor, antileukemic, antiviral, analgesic, herbicidal and enzyme inhibitory activities (Holland et al., 1990 ▸; Fu & Ye, 2004 ▸; Liu et al., 2009 ▸; Gein et al., 2015 ▸; Mamedov et al., 2017 ▸; Nosova et al., 2020 ▸). The methods used most widely for the synthesis of these functionalized cyclohexanones involve the condensation of aldehydes with β-carbonyl compounds (Gein et al., 2015 ▸; Nosova et al., 2020 ▸).
As part of our studies on the chemistry of β-dicarbonyl compounds, as well as taking into account our ongoing structural studies (Naghiyev, Akkurt et al., 2020 ▸; Naghiyev, Cisterna et al., 2020 ▸; Naghiyev, Mammadova et al., 2020 ▸; Naghiyev et al., 2021 ▸), we report here the crystal structure and Hirshfeld surface analysis of the title compound, 3-cyano-4-hydroxy-2-(4-methylphenyl)-6-oxo-N-phenyl-4-(thiophen-2-yl)-cyclohexane-1-carboxamide 0.04-hydrate.
Structural commentary
In the title compound, (Fig. 1 ▸), the central cyclohexane ring (C1–C6) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975 ▸) Q T = 0.570 (2) Å, θ = 5.1 (2)° and φ = 226 (2)°. The thiophene (S1/C22–C25), phenyl (C8–C13) and benzene (C14–C19) rings make dihedral angles of 68.05 (10), 46.41 (9) and 87.95 (10)°, respectively, with the mean plane of the central cyclohexane ring. The thiophene ring forms dihedral angles of 21.88 (10) and 73.64 (10)°, respectively, with the phenyl and benzene rings, which subtend a dihedral angle of 80.91 (10)°. The C2—C7—N1—C8 torsion angle is 178.99 (18)°.
Figure 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Supramolecular features
In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link adjacent molecules, forming molecular ribbons with
(6) and
(10) ring motifs (Bernstein et al., 1995 ▸) along the c-axis direction (Table 1 ▸; Figs. 2 ▸ and 3 ▸). These ribbons are linked by weak C—H⋯N non-classical hydrogen bonds, forming layers of molecules parallel to the bc plane (Table 1 ▸; Fig. 4 ▸), with only van der Waals interactions between them.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1N⋯O2i | 0.89 (2) | 2.00 (2) | 2.886 (2) | 174 (2) |
| C2—H2⋯O2i | 1.00 | 2.44 | 3.320 (2) | 146 |
| C4—H4⋯O1i | 1.00 | 2.54 | 3.434 (2) | 149 |
| C9—H9⋯N2ii | 0.95 | 2.57 | 3.272 (3) | 131 |
Symmetry codes: (i) x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}; (ii) -x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}.
Figure 2.
A view down the a axis of the intermolecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds of the title compound.
Figure 3.
A view down the b axis of the intermolecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds of the title compound.
Figure 4.
A view down the c axis of the intermolecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds of the title compound.
Hirshfeld surface analysis
The Hirshfeld surface for the title compound and its associated two-dimensional fingerprint plots were calculated using CrystalExplorer17 (Turner et al., 2017 ▸). The oxygen atom of the water molecule with a low occupancy factor of about 4% was not taken into account in the process. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008 ▸; Jayatilaka et al., 2005 ▸) is shown in Fig. 5 ▸. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).
Figure 5.
The Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range from −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
The overall two-dimensional fingerprint plot, and those delineated into H⋯H (41.2%), C⋯H/H⋯C (20.3%), O⋯H/H⋯O (17.8%) and N⋯H/H⋯N (10.6%) contacts are illustrated in Fig. 6 ▸ a–e, respectively. The other minor contributions to the Hirshfeld surface are from S⋯H/H⋯S (5.5%), O⋯O (1.9%), C⋯C (1.1%), S⋯C/C⋯S (1.0%), O⋯C/C⋯O (0.5%) and O⋯N/N⋯O (0.1%) contacts. The large number of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/ H⋯N interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015 ▸).
Figure 6.
The two-dimensional fingerprint plots of the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N, interactions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].
Database survey
A search of the Cambridge Structural database (CSD, version 5.42, update November 2020; Groom et al., 2016 ▸) for the 4-hydroxy-5-methyl-2-oxocyclohexane-1-carboxamide moiety revealed seven hits, of which the structures most similar to the that of the title compound are 4-hydroxy-4,N,N′-trimethyl-2-(3-nitrophenyl)-6-oxo-1,3-cyclohexanedicarbox-amide (HALROB; Ravikumar & Mehdi, 1993 ▸), 4-hydroxy-N,N,N′,N′,4-pentamethyl-6-oxo-2-phenylcyclohexane-1,3-dicarboxamide (IFUDOD; Gein et al., 2007 ▸), 5-hydroxy-5-methyl-3-phenyl-2,4-bis(N-methylcarbamoyl)cyclohexanone (IWEVOV; Mohan et al., 2003 ▸), 5-hydroxy-5-methyl-3-(o-tolyl)-2,4-bis(N-methylcarbamoyl)cyclohexanone (IWEVUB; Mohan et al., 2003 ▸), 2-(4-chlorophenyl)-4-hydroxy-4-methyl-6-oxo-N,N′-diphenylcyclohexane-1,3-dicarboxamide N,N-dimethylformamide solvate (OZUKAX; Tkachenko et al., 2014 ▸), 4-hydroxy-4-methyl-2-(4-methylphenyl)-6-oxo-N 1,N 3-diphenylcyclohexane-1,3-dicarboxamide (PEWJUZ; Fatahpour et al., 2018 ▸) and 4-hydroxy-4-methyl-2-(3-nitrophenyl)-6-oxocyclohexane-1,3-dicarboxamide ethanol solvate (ZOMDUD; Gein et al., 2019 ▸).
ZOMDUD crystallizes in the monoclinic space group P21/c, with Z = 4, HALROB, IFUDOD and IWEVUB in P21/n with Z = 4, PEWJUZ in I2/c with Z = 4, and IWEVOV and OZUKAX in the orthorhombic space group Pbca with Z = 8.
In the crystal of HALROB, the amide carbonyl groups are oriented in different directions with respect to the cyclohexanone ring. These orientations of the carboxamide groups facilitate the formation of an intramolecular O—H⋯O hydrogen bond. The molecules are packed such that chains are formed along the b-axis direction. These chains are held together by N—H⋯O hydrogen bonds.
In the crystal IFUDOD, there are no classical hydrogen bonds. Intermolecular C—H⋯O contacts and weak C—H⋯π interactions lead to the formation of a three-dimensional network.
In the crystal of IWEVOV, the molecules pack such that both carbonyl O atoms, participate in hydrogen-bond formation with symmetry-related amide nitrogen atoms, present in the carbamoyl substituents, forming N—H⋯O hydrogen bonds in a helical arrangement. In the crystal, the phenyl rings are positioned so as to favour edge-to-edge aromatic stacking. When the crystal packing is viewed normal to the ac plane, it reveals a ‘wire-mesh’ type hydrogen-bond network.
In the crystal of IWEVUB, unlike in IWEVOV where both carbonyl O atoms participate in hydrogen bonding, only one of the carbonyl oxygen atoms participates in intermolecular N—H⋯O hydrogen bonding while the other carbonyl oxygen participates in a weak C—H⋯O interaction. In addition, one of the amide nitrogen atoms participates in N—H⋯O hydrogen bonding with the hydroxyl oxygen atom, linking the molecules in a helical arrangement, which is similar to that in the structure of IWEVOV. As observed in the structure of IWEVOV, the packing of the molecules viewed normal to the ab plane resembles a ‘wiremesh’ arrangement of the molecules.
In OZUKAX, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the ac plane. C—H⋯π interactions are also observed. Intermolecular O—H⋯O hydrogen bonds consolidate the molecular conformation.
In PEWJUZ, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. C—H⋯π interactions are also observed.
In ZOMDUD, molecules are linked by intermolecular N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. C—H⋯π interactions are also observed.
Intermolecular interactions can be weaker or more robust based on the presence or absence of different functional groups and the molecular environment, depending on the crystal system, which all affect the molecular conformation.
Synthesis and crystallization
To a dissolved mixture of 2-(thiophene-2-carbonyl)-3-(p-tolyl)acrylonitrile (1.32 g; 5.2 mmol) and acetoacetanilide (0.92 g; 5.2 mmol) in methanol (35 mL), 2–3 drops of methyl piperazine were added and the mixture was stirred at room temperature for 5–7 min. The reaction mixture was kept in a closed flask for 24–48 h. Then, 25 mL of methanol was removed from the reaction mixture and it was left overnight. The precipitated needle-like crystals were separated by filtration and recrystallized from ethanol (yield 72%; m.p. 483–484 K).
1H NMR (300 MHz, DMSO-d 6, m.h.): δ 2.23 (s, 3H, CH 3); 2.79 (d, 2H, CH 2, 2 J H-H = 18.1 Hz); 3.50 (t, 1H, CH, 3 J H-H = 13.8 Hz); 3.63 (s, 1H, OH); 4.06 (d, 1H, CH, 3 J H-H = 10.5 Hz); 4.28 (dd, 1H, CH, 3 J H-H = 10.5 Hz, 3 J H-H = 11.9 Hz); 6.97–7.48 (m, 12H, 9Ar-H + 3CH thienyl); 9.94 ppm (s, 1H, NH). 13C NMR (75 MHz, DMSO-d 6, m.h.): δ 21.14 (CH3–-Ar), 44.26 (CH—Ar), 47.40 (CH—CN), 54.07 (CH2), 62.64 (CH—CO), 75.29 (O—C quat.), 119.02 (CN), 119.49 (2CHarom), 123.87 (CHthienyl), 124.45 (CHarom), 125.71 (CHthienyl), 127.63 (CHthienyl), 128.75 (2 CHarom), 129.14 (2 CHarom),129.54 (2 CHarom), 137.06 (C arom), 137.17 (C arom), 139.14 (C arom), 150.57 (C thienyl), 165.85 (O=C), 203.12 ppm (O=C ket). As a result of the overlap of peaks in the 1H NMR spectrum, it was not possible to determine precisely all coupling constants.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The H atoms of the OH and NH groups were located from the difference-Fourier synthesis and refined freely. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–1.00 Å, and with U iso(H) = 1.2 or 1.5U eq(C).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C25H22N2O3S·0.04H2O |
| M r | 1724.87 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 100 |
| a, b, c (Å) | 12.049 (2), 20.223 (4), 9.1743 (18) |
| β (°) | 100.91 (3) |
| V (Å3) | 2195.0 (8) |
| Z | 1 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.18 |
| Crystal size (mm) | 0.36 × 0.03 × 0.03 |
| Data collection | |
| Diffractometer | Bruker D8 QUEST PHOTON-III CCD |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.930, 0.990 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 40890, 4492, 3208 |
| R int | 0.086 |
| (sin θ/λ)max (Å−1) | 0.625 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.043, 0.099, 1.02 |
| No. of reflections | 4492 |
| No. of parameters | 297 |
| No. of restraints | 7 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.24, −0.28 |
Data with a resolution higher than 0.8 Å have a mean I/σ(I) of less than 4, and significant errors in the equivalent intensities (high R merge). The dataset was therefore truncated at 0.8 Å. Furthermore, there is a small cavity in the crystal, which is only partially occupied by a water molecule (only about 4%) and the protons could not be located. It is also highly probable that, in the presence of a fully occupied water molecule, the proton of the OH group would have a different orientation.
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002449/jq2005sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002449/jq2005Isup2.hkl
13C NMR spectrum. DOI: 10.1107/S2056989021002449/jq2005sup3.jpg
1H NMR spectrum. DOI: 10.1107/S2056989021002449/jq2005sup4.jpg
Supporting information file. DOI: 10.1107/S2056989021002449/jq2005Isup5.cml
CCDC reference: 2068003
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C25H22N2O3S·0.04H2O | F(000) = 906 |
| Mr = 1724.87 | Dx = 1.305 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 12.049 (2) Å | Cell parameters from 6355 reflections |
| b = 20.223 (4) Å | θ = 2.5–27.2° |
| c = 9.1743 (18) Å | µ = 0.18 mm−1 |
| β = 100.91 (3)° | T = 100 K |
| V = 2195.0 (8) Å3 | Needle, colourless |
| Z = 1 | 0.36 × 0.03 × 0.03 mm |
Data collection
| Bruker D8 QUEST PHOTON-III CCD diffractometer | 3208 reflections with I > 2σ(I) |
| φ and ω scans | Rint = 0.086 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 2.0° |
| Tmin = 0.930, Tmax = 0.990 | h = −15→15 |
| 40890 measured reflections | k = −25→25 |
| 4492 independent reflections | l = −11→11 |
Refinement
| Refinement on F2 | 7 restraints |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.034P)2 + 1.3559P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.02 | (Δ/σ)max < 0.001 |
| 4492 reflections | Δρmax = 0.24 e Å−3 |
| 297 parameters | Δρmin = −0.28 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| S1 | 0.94322 (4) | 0.33798 (3) | 0.19635 (6) | 0.02478 (14) | |
| O1 | 0.64646 (13) | 0.20448 (7) | 0.48755 (16) | 0.0284 (4) | |
| O2 | 0.44002 (12) | 0.28766 (7) | 0.52178 (15) | 0.0236 (3) | |
| O3 | 0.79249 (12) | 0.35394 (8) | 0.55025 (15) | 0.0262 (4) | |
| H3O | 0.8523 (16) | 0.3394 (12) | 0.595 (3) | 0.039* | |
| O4 | 0.612 (3) | 0.351 (2) | 0.700 (4) | 0.031 (14) | 0.040 (5) |
| N1 | 0.36773 (14) | 0.23974 (9) | 0.29809 (18) | 0.0206 (4) | |
| H1N | 0.3849 (18) | 0.2305 (11) | 0.211 (3) | 0.025* | |
| N2 | 0.72836 (16) | 0.51020 (9) | 0.3630 (2) | 0.0281 (4) | |
| C1 | 0.65290 (17) | 0.24998 (10) | 0.4037 (2) | 0.0209 (4) | |
| C2 | 0.55201 (16) | 0.29125 (10) | 0.3322 (2) | 0.0184 (4) | |
| H2 | 0.536629 | 0.282554 | 0.222891 | 0.022* | |
| C3 | 0.57511 (16) | 0.36608 (10) | 0.3578 (2) | 0.0185 (4) | |
| H3 | 0.582369 | 0.375121 | 0.466358 | 0.022* | |
| C4 | 0.68857 (16) | 0.38432 (9) | 0.3124 (2) | 0.0180 (4) | |
| H4 | 0.680962 | 0.376165 | 0.203480 | 0.022* | |
| C5 | 0.78937 (17) | 0.34269 (10) | 0.3945 (2) | 0.0207 (4) | |
| C6 | 0.76359 (17) | 0.26933 (10) | 0.3603 (2) | 0.0221 (5) | |
| H6A | 0.759197 | 0.261182 | 0.252955 | 0.026* | |
| H6B | 0.825432 | 0.241803 | 0.415728 | 0.026* | |
| C7 | 0.44750 (17) | 0.27263 (10) | 0.3935 (2) | 0.0190 (4) | |
| C8 | 0.26345 (17) | 0.21588 (10) | 0.3278 (2) | 0.0198 (4) | |
| C9 | 0.22262 (17) | 0.15683 (10) | 0.2617 (2) | 0.0230 (4) | |
| H9 | 0.264590 | 0.133517 | 0.200325 | 0.028* | |
| C10 | 0.12021 (18) | 0.13192 (11) | 0.2855 (2) | 0.0272 (5) | |
| H10 | 0.092562 | 0.091213 | 0.241189 | 0.033* | |
| C11 | 0.05831 (18) | 0.16603 (12) | 0.3732 (2) | 0.0284 (5) | |
| H11 | −0.012143 | 0.149162 | 0.388622 | 0.034* | |
| C12 | 0.09986 (18) | 0.22518 (11) | 0.4386 (2) | 0.0280 (5) | |
| H12 | 0.057482 | 0.248606 | 0.499304 | 0.034* | |
| C13 | 0.20247 (17) | 0.25057 (11) | 0.4167 (2) | 0.0235 (5) | |
| H13 | 0.230470 | 0.291052 | 0.461766 | 0.028* | |
| C14 | 0.47911 (16) | 0.40798 (10) | 0.2754 (2) | 0.0194 (4) | |
| C15 | 0.45216 (18) | 0.40895 (11) | 0.1203 (2) | 0.0246 (5) | |
| H15 | 0.492962 | 0.381703 | 0.064508 | 0.030* | |
| C16 | 0.36664 (18) | 0.44924 (11) | 0.0475 (2) | 0.0269 (5) | |
| H16 | 0.349713 | 0.449300 | −0.057939 | 0.032* | |
| C17 | 0.30501 (17) | 0.48957 (11) | 0.1251 (2) | 0.0256 (5) | |
| C18 | 0.33140 (18) | 0.48823 (11) | 0.2794 (2) | 0.0257 (5) | |
| H18 | 0.290300 | 0.515437 | 0.334897 | 0.031* | |
| C19 | 0.41680 (17) | 0.44777 (10) | 0.3536 (2) | 0.0219 (4) | |
| H19 | 0.432838 | 0.447282 | 0.459033 | 0.026* | |
| C20 | 0.2125 (2) | 0.53442 (12) | 0.0457 (3) | 0.0349 (6) | |
| H20A | 0.188806 | 0.519550 | −0.057203 | 0.052* | |
| H20B | 0.240883 | 0.579854 | 0.046566 | 0.052* | |
| H20C | 0.147738 | 0.532911 | 0.096157 | 0.052* | |
| C21 | 0.71119 (17) | 0.45522 (11) | 0.3399 (2) | 0.0216 (4) | |
| C22 | 0.89866 (17) | 0.36488 (10) | 0.3544 (2) | 0.0218 (4) | |
| C23 | 0.97306 (17) | 0.40966 (11) | 0.4282 (2) | 0.0267 (5) | |
| H23 | 0.962924 | 0.430925 | 0.517123 | 0.032* | |
| C24 | 1.06711 (19) | 0.42148 (12) | 0.3596 (3) | 0.0312 (5) | |
| H24 | 1.127012 | 0.450845 | 0.398265 | 0.037* | |
| C25 | 1.06228 (18) | 0.38632 (11) | 0.2328 (2) | 0.0280 (5) | |
| H25 | 1.117772 | 0.388191 | 0.171907 | 0.034* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0239 (3) | 0.0333 (3) | 0.0184 (3) | −0.0043 (2) | 0.0072 (2) | −0.0021 (2) |
| O1 | 0.0322 (8) | 0.0279 (8) | 0.0260 (8) | 0.0009 (7) | 0.0077 (7) | 0.0086 (7) |
| O2 | 0.0275 (8) | 0.0310 (8) | 0.0141 (7) | −0.0036 (6) | 0.0085 (6) | −0.0010 (6) |
| O3 | 0.0262 (8) | 0.0395 (10) | 0.0130 (7) | 0.0029 (7) | 0.0038 (6) | 0.0014 (6) |
| O4 | 0.024 (18) | 0.04 (2) | 0.027 (19) | −0.001 (13) | −0.004 (13) | −0.009 (13) |
| N1 | 0.0234 (9) | 0.0270 (10) | 0.0130 (8) | −0.0028 (8) | 0.0077 (7) | −0.0021 (7) |
| N2 | 0.0329 (10) | 0.0281 (11) | 0.0235 (10) | −0.0047 (8) | 0.0060 (8) | −0.0014 (8) |
| C1 | 0.0272 (11) | 0.0221 (11) | 0.0143 (10) | −0.0014 (9) | 0.0062 (8) | −0.0013 (8) |
| C2 | 0.0211 (10) | 0.0236 (11) | 0.0112 (9) | −0.0022 (8) | 0.0050 (8) | −0.0014 (8) |
| C3 | 0.0218 (10) | 0.0210 (10) | 0.0138 (9) | −0.0012 (8) | 0.0064 (8) | −0.0015 (8) |
| C4 | 0.0204 (10) | 0.0207 (10) | 0.0132 (9) | −0.0023 (8) | 0.0038 (8) | −0.0020 (8) |
| C5 | 0.0221 (10) | 0.0272 (11) | 0.0131 (9) | 0.0005 (9) | 0.0042 (8) | 0.0009 (8) |
| C6 | 0.0214 (10) | 0.0247 (11) | 0.0207 (11) | 0.0021 (9) | 0.0054 (9) | 0.0036 (9) |
| C7 | 0.0219 (10) | 0.0192 (10) | 0.0168 (10) | 0.0018 (8) | 0.0063 (8) | 0.0026 (8) |
| C8 | 0.0207 (10) | 0.0243 (11) | 0.0153 (10) | −0.0003 (8) | 0.0055 (8) | 0.0040 (8) |
| C9 | 0.0277 (11) | 0.0245 (11) | 0.0176 (10) | 0.0006 (9) | 0.0067 (9) | 0.0001 (9) |
| C10 | 0.0300 (12) | 0.0283 (12) | 0.0223 (11) | −0.0057 (10) | 0.0029 (9) | 0.0025 (9) |
| C11 | 0.0231 (11) | 0.0386 (13) | 0.0245 (11) | −0.0061 (10) | 0.0065 (9) | 0.0049 (10) |
| C12 | 0.0271 (11) | 0.0361 (13) | 0.0228 (11) | 0.0029 (10) | 0.0102 (9) | 0.0013 (10) |
| C13 | 0.0248 (11) | 0.0257 (11) | 0.0200 (10) | 0.0004 (9) | 0.0046 (9) | 0.0001 (9) |
| C14 | 0.0226 (10) | 0.0193 (10) | 0.0171 (10) | −0.0027 (8) | 0.0058 (8) | 0.0009 (8) |
| C15 | 0.0292 (11) | 0.0275 (12) | 0.0183 (10) | 0.0021 (9) | 0.0075 (9) | −0.0029 (9) |
| C16 | 0.0300 (12) | 0.0318 (12) | 0.0183 (10) | 0.0044 (10) | 0.0033 (9) | 0.0014 (9) |
| C17 | 0.0232 (11) | 0.0261 (11) | 0.0277 (12) | 0.0004 (9) | 0.0056 (9) | 0.0028 (9) |
| C18 | 0.0267 (11) | 0.0255 (12) | 0.0274 (11) | 0.0024 (9) | 0.0118 (9) | −0.0009 (9) |
| C19 | 0.0239 (10) | 0.0271 (11) | 0.0165 (10) | −0.0013 (9) | 0.0083 (9) | −0.0028 (9) |
| C20 | 0.0335 (13) | 0.0390 (14) | 0.0327 (13) | 0.0106 (11) | 0.0075 (11) | 0.0064 (11) |
| C21 | 0.0215 (10) | 0.0295 (12) | 0.0146 (10) | −0.0020 (9) | 0.0058 (8) | 0.0011 (9) |
| C22 | 0.0244 (11) | 0.0250 (11) | 0.0161 (10) | 0.0020 (9) | 0.0038 (8) | 0.0016 (8) |
| C23 | 0.0256 (11) | 0.0329 (13) | 0.0221 (11) | −0.0007 (10) | 0.0057 (9) | −0.0048 (9) |
| C24 | 0.0266 (11) | 0.0360 (13) | 0.0310 (12) | −0.0065 (10) | 0.0056 (10) | −0.0020 (10) |
| C25 | 0.0221 (11) | 0.0377 (13) | 0.0253 (11) | −0.0059 (10) | 0.0076 (9) | 0.0011 (10) |
Geometric parameters (Å, º)
| S1—C25 | 1.716 (2) | C9—H9 | 0.9500 |
| S1—C22 | 1.727 (2) | C10—C11 | 1.381 (3) |
| O1—C1 | 1.211 (2) | C10—H10 | 0.9500 |
| O2—C7 | 1.236 (2) | C11—C12 | 1.389 (3) |
| O3—C5 | 1.440 (2) | C11—H11 | 0.9500 |
| O3—H3O | 0.815 (16) | C12—C13 | 1.388 (3) |
| N1—C7 | 1.347 (3) | C12—H12 | 0.9500 |
| N1—C8 | 1.420 (3) | C13—H13 | 0.9500 |
| N1—H1N | 0.89 (2) | C14—C19 | 1.389 (3) |
| N2—C21 | 1.143 (3) | C14—C15 | 1.398 (3) |
| C1—C6 | 1.514 (3) | C15—C16 | 1.382 (3) |
| C1—C2 | 1.517 (3) | C15—H15 | 0.9500 |
| C2—C7 | 1.520 (3) | C16—C17 | 1.387 (3) |
| C2—C3 | 1.549 (3) | C16—H16 | 0.9500 |
| C2—H2 | 1.0000 | C17—C18 | 1.391 (3) |
| C3—C14 | 1.515 (3) | C17—C20 | 1.513 (3) |
| C3—C4 | 1.547 (3) | C18—C19 | 1.388 (3) |
| C3—H3 | 1.0000 | C18—H18 | 0.9500 |
| C4—C21 | 1.472 (3) | C19—H19 | 0.9500 |
| C4—C5 | 1.551 (3) | C20—H20A | 0.9800 |
| C4—H4 | 1.0000 | C20—H20B | 0.9800 |
| C5—C22 | 1.501 (3) | C20—H20C | 0.9800 |
| C5—C6 | 1.536 (3) | C22—C23 | 1.361 (3) |
| C6—H6A | 0.9900 | C23—C24 | 1.417 (3) |
| C6—H6B | 0.9900 | C23—H23 | 0.9500 |
| C8—C13 | 1.387 (3) | C24—C25 | 1.355 (3) |
| C8—C9 | 1.387 (3) | C24—H24 | 0.9500 |
| C9—C10 | 1.388 (3) | C25—H25 | 0.9500 |
| C25—S1—C22 | 92.19 (11) | C11—C10—H10 | 119.8 |
| C5—O3—H3O | 107.5 (18) | C9—C10—H10 | 119.8 |
| C7—N1—C8 | 126.29 (17) | C10—C11—C12 | 119.5 (2) |
| C7—N1—H1N | 115.6 (14) | C10—C11—H11 | 120.3 |
| C8—N1—H1N | 118.0 (14) | C12—C11—H11 | 120.3 |
| O1—C1—C6 | 121.94 (19) | C13—C12—C11 | 120.9 (2) |
| O1—C1—C2 | 123.36 (19) | C13—C12—H12 | 119.5 |
| C6—C1—C2 | 114.70 (17) | C11—C12—H12 | 119.5 |
| C1—C2—C7 | 110.84 (16) | C8—C13—C12 | 118.9 (2) |
| C1—C2—C3 | 111.44 (16) | C8—C13—H13 | 120.5 |
| C7—C2—C3 | 108.88 (16) | C12—C13—H13 | 120.5 |
| C1—C2—H2 | 108.5 | C19—C14—C15 | 118.25 (19) |
| C7—C2—H2 | 108.5 | C19—C14—C3 | 120.15 (17) |
| C3—C2—H2 | 108.5 | C15—C14—C3 | 121.59 (18) |
| C14—C3—C4 | 111.24 (16) | C16—C15—C14 | 120.5 (2) |
| C14—C3—C2 | 111.86 (16) | C16—C15—H15 | 119.7 |
| C4—C3—C2 | 109.56 (16) | C14—C15—H15 | 119.7 |
| C14—C3—H3 | 108.0 | C15—C16—C17 | 121.4 (2) |
| C4—C3—H3 | 108.0 | C15—C16—H16 | 119.3 |
| C2—C3—H3 | 108.0 | C17—C16—H16 | 119.3 |
| C21—C4—C3 | 109.29 (16) | C16—C17—C18 | 118.0 (2) |
| C21—C4—C5 | 110.05 (16) | C16—C17—C20 | 121.5 (2) |
| C3—C4—C5 | 112.98 (16) | C18—C17—C20 | 120.5 (2) |
| C21—C4—H4 | 108.1 | C19—C18—C17 | 121.1 (2) |
| C3—C4—H4 | 108.1 | C19—C18—H18 | 119.5 |
| C5—C4—H4 | 108.1 | C17—C18—H18 | 119.5 |
| O3—C5—C22 | 109.67 (16) | C18—C19—C14 | 120.75 (19) |
| O3—C5—C6 | 108.76 (16) | C18—C19—H19 | 119.6 |
| C22—C5—C6 | 113.04 (17) | C14—C19—H19 | 119.6 |
| O3—C5—C4 | 105.49 (16) | C17—C20—H20A | 109.5 |
| C22—C5—C4 | 111.18 (16) | C17—C20—H20B | 109.5 |
| C6—C5—C4 | 108.40 (16) | H20A—C20—H20B | 109.5 |
| C1—C6—C5 | 110.49 (17) | C17—C20—H20C | 109.5 |
| C1—C6—H6A | 109.6 | H20A—C20—H20C | 109.5 |
| C5—C6—H6A | 109.6 | H20B—C20—H20C | 109.5 |
| C1—C6—H6B | 109.6 | N2—C21—C4 | 179.1 (2) |
| C5—C6—H6B | 109.6 | C23—C22—C5 | 127.05 (19) |
| H6A—C6—H6B | 108.1 | C23—C22—S1 | 110.32 (16) |
| O2—C7—N1 | 124.66 (19) | C5—C22—S1 | 122.57 (15) |
| O2—C7—C2 | 120.42 (18) | C22—C23—C24 | 113.4 (2) |
| N1—C7—C2 | 114.92 (17) | C22—C23—H23 | 123.3 |
| C13—C8—C9 | 120.61 (19) | C24—C23—H23 | 123.3 |
| C13—C8—N1 | 121.85 (19) | C25—C24—C23 | 112.6 (2) |
| C9—C8—N1 | 117.52 (18) | C25—C24—H24 | 123.7 |
| C8—C9—C10 | 119.7 (2) | C23—C24—H24 | 123.7 |
| C8—C9—H9 | 120.1 | C24—C25—S1 | 111.40 (17) |
| C10—C9—H9 | 120.1 | C24—C25—H25 | 124.3 |
| C11—C10—C9 | 120.3 (2) | S1—C25—H25 | 124.3 |
| O1—C1—C2—C7 | 6.3 (3) | C8—C9—C10—C11 | 0.7 (3) |
| C6—C1—C2—C7 | −174.55 (16) | C9—C10—C11—C12 | −0.6 (3) |
| O1—C1—C2—C3 | 127.8 (2) | C10—C11—C12—C13 | 0.2 (3) |
| C6—C1—C2—C3 | −53.1 (2) | C9—C8—C13—C12 | 0.1 (3) |
| C1—C2—C3—C14 | 174.89 (16) | N1—C8—C13—C12 | 178.60 (19) |
| C7—C2—C3—C14 | −62.5 (2) | C11—C12—C13—C8 | 0.0 (3) |
| C1—C2—C3—C4 | 51.1 (2) | C4—C3—C14—C19 | −120.6 (2) |
| C7—C2—C3—C4 | 173.62 (15) | C2—C3—C14—C19 | 116.5 (2) |
| C14—C3—C4—C21 | 57.0 (2) | C4—C3—C14—C15 | 58.1 (2) |
| C2—C3—C4—C21 | −178.84 (15) | C2—C3—C14—C15 | −64.8 (2) |
| C14—C3—C4—C5 | 179.86 (16) | C19—C14—C15—C16 | 0.8 (3) |
| C2—C3—C4—C5 | −55.9 (2) | C3—C14—C15—C16 | −177.84 (19) |
| C21—C4—C5—O3 | 64.9 (2) | C14—C15—C16—C17 | −0.2 (3) |
| C3—C4—C5—O3 | −57.6 (2) | C15—C16—C17—C18 | −0.3 (3) |
| C21—C4—C5—C22 | −54.0 (2) | C15—C16—C17—C20 | 179.1 (2) |
| C3—C4—C5—C22 | −176.43 (16) | C16—C17—C18—C19 | 0.0 (3) |
| C21—C4—C5—C6 | −178.80 (16) | C20—C17—C18—C19 | −179.4 (2) |
| C3—C4—C5—C6 | 58.7 (2) | C17—C18—C19—C14 | 0.7 (3) |
| O1—C1—C6—C5 | −124.8 (2) | C15—C14—C19—C18 | −1.1 (3) |
| C2—C1—C6—C5 | 56.1 (2) | C3—C14—C19—C18 | 177.61 (18) |
| O3—C5—C6—C1 | 57.7 (2) | O3—C5—C22—C23 | −22.9 (3) |
| C22—C5—C6—C1 | 179.77 (16) | C6—C5—C22—C23 | −144.4 (2) |
| C4—C5—C6—C1 | −56.5 (2) | C4—C5—C22—C23 | 93.4 (2) |
| C8—N1—C7—O2 | −1.1 (3) | O3—C5—C22—S1 | 160.44 (14) |
| C8—N1—C7—C2 | 178.99 (18) | C6—C5—C22—S1 | 38.9 (2) |
| C1—C2—C7—O2 | 71.2 (2) | C4—C5—C22—S1 | −83.3 (2) |
| C3—C2—C7—O2 | −51.7 (2) | C25—S1—C22—C23 | 0.82 (17) |
| C1—C2—C7—N1 | −108.87 (19) | C25—S1—C22—C5 | 178.01 (18) |
| C3—C2—C7—N1 | 128.20 (18) | C5—C22—C23—C24 | −178.2 (2) |
| C7—N1—C8—C13 | 36.3 (3) | S1—C22—C23—C24 | −1.2 (2) |
| C7—N1—C8—C9 | −145.1 (2) | C22—C23—C24—C25 | 1.0 (3) |
| C13—C8—C9—C10 | −0.5 (3) | C23—C24—C25—S1 | −0.4 (3) |
| N1—C8—C9—C10 | −179.04 (18) | C22—S1—C25—C24 | −0.26 (19) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1N···O2i | 0.89 (2) | 2.00 (2) | 2.886 (2) | 174 (2) |
| C2—H2···O2i | 1.00 | 2.44 | 3.320 (2) | 146 |
| C3—H3···O3 | 1.00 | 2.54 | 2.879 (2) | 100 |
| C4—H4···O1i | 1.00 | 2.54 | 3.434 (2) | 149 |
| C6—H6A···S1 | 0.99 | 2.83 | 3.179 (2) | 101 |
| C9—H9···N2ii | 0.95 | 2.57 | 3.272 (3) | 131 |
| C13—H13···O2 | 0.95 | 2.48 | 2.939 (3) | 110 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2.
Funding Statement
This work was funded by Baki Dövl\#601;t Universiteti grant . Ministry of Education and Science of the Russian Federation grant 075–03-2020- 223 (FSSF-2020–0017).
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Fatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111–2122.
- Fu, Y. & Ye, F. (2004). Chem. Res. Chin. Univ. 20, 124–126.
- Gein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven’ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101–1102.
- Gein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592–1596.
- Gein, V. L., Odegova, T. F., Yankin, A. N. & Nosova, N. V. (2015). Pharm. Chem. J. 49, 246–249.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.
- Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
- Holland, K. D., Naritoku, D. K., McKeon, A. C., Ferrendelli, J. A. & Covey, D. F. (1990). Mol. Pharmacol. 37, 98–103. [PubMed]
- Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Liu, L., Liu, S., Chen, X., Guo, L. & Che, Y. (2009). Bioorg. & Med. Chem. 17, 606–613. [DOI] [PubMed]
- Ma, Z., Sutradhar, M., Gurbanov, A. V., Maharramov, A. M., Aliyeva, R. A., Aliyeva, F. S., Bahmanova, F. N., Mardanova, V. I., Chyragov, F. M. & Mahmudov, K. T. (2015). Polyhedron, 101, 14–22.
- Mamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2013). Magn. Reson. Chem. 51, 234–239. [DOI] [PubMed]
- Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233.
- Mamedov, I. G., Mamedova, Y. V., Khrustalev, V. N., Bayramov, M. R. & Maharramov, A. M. (2017). Indian J. Chem. Sect. B, 56, 192–196.
- Mittersteiner, M., Andrade, V. P., Bonacorso, H. G., Martins, M. A. P. & Zanatta, N. (2020). Eur. J. Org. Chem. pp. 6405–6417.
- Mohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97–103.
- Naghiyev, F. N. (2020). Azerbaijan Chem. J. 2, 39–47.
- Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723. [DOI] [PMC free article] [PubMed]
- Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235. [DOI] [PMC free article] [PubMed]
- Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. [DOI] [PMC free article] [PubMed]
- Naghiyev, F. N., Mamedov, I., Khrustalev, V. N., Shixaliyev, N. & Maharramov, A. M. (2019). J. Chin. Chem. Soc. 66, 253–256.
- Naghiyev, F. N., Mammadova, G. Z., Mamedov, I. G., Huseynova, A. T., Çelikesir, S. T., Akkurt, M. & Akobirshoeva, A. A. (2020). Acta Cryst. E76, 1365–1368. [DOI] [PMC free article] [PubMed]
- Nosova, N. V., Lezhnina, D. D., Gein, O. N., Novikova, V. V. & Gein, V. L. (2020). Russ. J. Gen. Chem. 90, 1817–1822.
- Ravikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027–2030.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shokova, E. A., Kim, J. K. & Kovalev, V. V. (2015). Russ. J. Org. Chem. 51, 755–830.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Tkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166–1176.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002449/jq2005sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002449/jq2005Isup2.hkl
13C NMR spectrum. DOI: 10.1107/S2056989021002449/jq2005sup3.jpg
1H NMR spectrum. DOI: 10.1107/S2056989021002449/jq2005sup4.jpg
Supporting information file. DOI: 10.1107/S2056989021002449/jq2005Isup5.cml
CCDC reference: 2068003
Additional supporting information: crystallographic information; 3D view; checkCIF report






