Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 9;77(Pt 4):372–377. doi: 10.1107/S2056989021002474

The crystal structures, Hirshfeld surface analyses and energy frameworks of 8-{1-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperidin-4-yl}-2-meth­oxy­quinoline and 8-{4-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperazin-1-yl}-2-meth­oxy­quinoline

Nisar Ullah a, Helen Stoeckli-Evans b,*
PMCID: PMC8025868  PMID: 33936760

The title compounds, 8-{1-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperidin-4-yl}-2-meth­oxy­quinoline and 8-{4-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperazin-1-yl}-2-meth­oxy­quinoline differ only in the nature of the central six-membered ring: piperidine in the first and piperazine in the second. They are isoelectronic (CH cf. N) and isotypic. The major contribution to the inter­molecular inter­actions in the crystals is from dispersion forces (E dis), reflecting the absence of classical hydrogen bonds.

Keywords: crystal structure, meth­oxy­quinoline, piperidine, piperazine, cyclo­pentene, isoelectronic, isotypic, dopamine D2, serotonin 5-HT1a, hydrogen bonding, Hirshfeld surface analysis, energy frameworks

Abstract

The title compounds, 8-{1-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperidin-4-yl}-2-meth­oxy­quinoline, C27H30N2O (I), and 8-{4-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperazin-1-yl}-2-meth­oxy­quinoline, C26H29N3O (II), differ only in the nature of the central six-membered ring: piperidine in I and piperazine in II. They are isoelectronic (CH cf. N) and isotypic; they both crystallize in the triclinic space group P Inline graphic with very similar unit-cell parameters. Both mol­ecules have a curved shape and very similar conformations. In the biaryl group, the phenyl ring is inclined to the cyclo­pentene mean plane (r.m.s. deviations = 0.089 Å for I and 0.082 Å for II) by 15.83 (9) and 13.82 (6)° in I and II, respectively, and by 67.68 (6) and 69.47 (10)°, respectively, to the mean plane of the quinoline moiety (r.m.s. deviations = 0.034 Å for I and 0.038 Å for II). The piperazine ring in I and the piperidine ring in II have chair conformations. In the crystals of both compounds, mol­ecules are linked by C—H⋯π inter­actions, forming chains in I and ribbons in II, both propagating along the b-axis direction. The principal contributions to the overall Hirshfeld surfaces involve H⋯H contacts at 67.5 and 65.9% for I and II, respectively. The major contribution to the inter­molecular inter­actions in the crystals is from dispersion forces (E dis), reflecting the absence of classical hydrogen bonds.

Chemical context  

Compounds combining dopamine D2 receptor blockade with serotonin 5-HT1A receptor activation rather than antagonism for the treatment of Schizophrenia have been developed by a number of researchers (Newman-Tancredi et al., 2007; Jones & McCreary, 2008). One such drug, Adoprazine(c), was found to combine both dopamine D2 antagonist (blockade) and serotonin 5-HT1A agonist (activation) properties (Feenstra et al., 2001, 2006). A similar compound structurally, Bifeprunox(c), is a partial agonist at dopamine D2 receptors in vitro, and shows serotonin 5-HT1A agonist properties (Newman-Tancredi et al., 2005; Cosi et al., 2006). Unfortunately, development of Adoprazine(c) was stopped at the Phase II clinical trials for insufficient therapeutical efficacy, and the FDA refused a licence for Bifeprunox(c) for the same reason.

Ullah and collaborators have synthesized a series of compounds that are analogues of Adoprazine(c) and Bifeprunox(c) (Ullah, 2012, 2014a ,b ; Ullah & Al-Shaheri, 2012). They have examined rat-cloned dopamine D2 and human-cloned serotonin 5-HT1A receptor properties of more than forty compounds (Ghani et al., 2014; Ullah, 2014a ,b ), including the title compounds, 8-{1-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperidin-4-yl}-2-meth­oxy­quinoline (I) and 8-{4-[3-(cyclo­pent-1-en-1-yl)benz­yl]piperazin-1-yl}-2-meth­oxy­quinoline (II). The D2 receptor binding assay of compounds I and II gave K i = 524 nM for I and 12.2 nM for II. In the 5-HT1A receptor binding assay, K i = 2.13 nM for I and 0.97 nM for II (Ghani et al., 2014). Replacing the piperidine ring in I with a piperazine ring in II, also present in Adoprazine(c) and Bifeprunox(c), has a significant effect and appears to be favourable for higher binding affinity.graphic file with name e-77-00372-scheme1.jpg

The crystal structure of II is compared to that of 8-[4-([1,1′-biphen­yl]-3-ylmeth­yl)piperazin-1-yl]-2-meth­oxy­quinoline (III), where the 3-(cyclo­pent-1-en-1-yl)benzyl unit in II has been replaced by a 1,1′-biphenyl unit in III (Ullah & Altaf, 2014).

Structural commentary  

The mol­ecular structures of compounds I and II are shown in Figs. 1 and 2, respectively. They have very similar conformations, as illustrated by the view of their structural overlap, shown in Fig. 3. Both compounds crystallize in the triclinic space group P Inline graphic with very similar unit-cell parameters in spite of replacing the piperidine ring in I with a piperazine ring in II; they are isotypic and isoelectronic (CH cf. N). Both mol­ecules have a curved shape, and the piperidine ring (C = N2/C10–C14) in I and the piperazine ring (C′ = N2/N3/C10–C13) in II have chair conformations.

Figure 1.

Figure 1

A view of the mol­ecular structure of I, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

A view of the mol­ecular structure of II, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level.

Figure 3.

Figure 3

A view of the structural overlap of compounds I and II (red); r.m.s. deviation 0.002 Å (Mercury; Macrae et al., 2020). The O and N atoms are shown as balls.

In the biaryl group, the phenyl ring (D = C16–C21 in I and C15–C20 in II) is inclined to the cyclo­pentene ring mean plane (E = C22–C26, r.m.s. deviation = 0.089 Å for I and E = C21–C25, r.m.s. deviation = 0.082 Å for II) by 15.83 (9) and 13.82 (16)°, respectively. The same ring D is inclined to the mean plane of the quinoline moiety (r.m.s. deviation = 0.034 Å for I and 0.038 Å for II) by 67.68 (6) and 69.47 (10)°, respectively. In the cyclo­pentene rings, the double bonds C22=C26 in I and C21=C25 in II are 1.381 (2) and 1.365 (4) Å, respectively, while bonds C22—C23 and C21—C22 are 1.450 (2) and 1.457 (4) Å, respectively. These values fall within the limits of those observed for the structures of 40 compounds in the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016), viz. C=C varies from ca 1.268 to 1.417 Å, while the adjacent substituted C—C bond varies from ca 1.391 to 1.534 Å (see supporting information file S1).

In compound III, the 3-(cyclo­pent-1-en-1-yl)benzyl unit in II has been replaced by a 1,1′-biphenyl group (supporting information file S2; Fig. S1). The conformation of the mol­ecules differs considerably, as illustrated in the view of their structural overlap (Fig. 4). The mol­ecule has an S-shape and torsion angles C12—N3—C14—C15 and N3—C14—C15—C16 are, respectively, −172.77 (16) and 61.9 (3)°, compared to −67.4 (3) and −43.2 (3) ° in II. As in II, the central piperazine ring (C′) has a chair conformation. The two rings of the biphenyl unit (rings D and E′) are relatively coplanar with a dihedral angle of 3.84 (12)°. Phenyl ring D is inclined to the mean plane of the quinoline ring system(r.m.s. deviation = 0.021 Å) by 68.94 (10)°, compared to 69.47 (10)° in II.

Figure 4.

Figure 4

A view of the structural overlap of compounds II (red) and III (blue; Ullah & Altaf, 2014); r.m.s. deviation 0.071 Å (Mercury; Macrae et al., 2020). The O and N atoms are shown as balls.

Supra­molecular features  

In the crystals of I and II, mol­ecules are linked by C—H⋯π inter­actions (Tables 1 and 2, respectively). In I, a single C—H⋯π inter­action links the mol­ecules, forming chains propagating along the b-axis direction (Fig. 5). In II, two C—H⋯π inter­actions link the mol­ecules, forming ribbons propagating along the b-axis direction (Fig. 6). There are no other significant directional inter-atomic contacts present in either crystal structure.

Table 1. Hydrogen-bond geometry (Å, °) for I .

CgB is the centroid of ring C4–C9.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯CgBi 0.95 2.97 3.661 (2) 131

Symmetry code: (i) x, y+1, z.

Table 2. Hydrogen-bond geometry (Å, °) for II .

CgB is the centroid of ring C4-C9.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯CgBi 0.99 2.95 3.757 (3) 140
C17—H17⋯CgBii 0.95 2.93 3.602 (3) 129

Symmetry codes: (i) -x, -y, -z; (ii) x, y+1, z.

Figure 5.

Figure 5

A view along the a axis of the crystal packing of I. The C—H⋯π inter­actions are shown as dashed lines (see Table 1). Only the H atoms involved in these inter­actions have been included.

Figure 6.

Figure 6

A view along the a axis of the crystal packing of II. The C—H⋯π inter­actions are shown as dashed lines (see Table 2). Only the H atoms involved in these inter­actions have been included.

In the crystal of III, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along the [100] direction. The chains are linked by two C—H⋯π inter­actions, forming slabs lying parallel to the ab plane (supporting information file S2; Table S1 and Fig. S2). Here too, there are no other significant directional inter-atomic contacts present in the crystal structure.

Hirshfeld surface analysis and two-dimensional fingerprint plots  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017) following the protocol of Tiekink and collaborators (Tan et al., 2019).

The Hirshfeld surfaces are colour-mapped with the normalized contact distance, d norm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surfaces (HS) of I, II and III mapped over d norm are given in Fig. 7. The most significant short contacts in the crystal structures of all three compounds are given in Table 3. It is evident from the small red spots in Fig. 7 a and b that there are only weak contacts present in the crystals of compounds I and II. The slightly larger red spots in Fig. 7 c concern the Car—H⋯Ometh­oxy hydrogen bonds in the crystal structure of III (supporting information Table S2).

Figure 7.

Figure 7

The Hirshfeld surfaces of compounds (a) I, (b) II and (c) III, mapped over d norm in the colour ranges of −0.1177 to 1.5125, −0.2113 to 1.3756 and −0.1475 to 1.8614 au., respectively.

Table 3. Table 3. Short contacts (Å) in the crystal structures of compounds I, II and III a .

Atom1 Atom2 Length Length − VdW Symm. op. 1 Symm. op. 2
I          
H11B H11B 2.187 −0.213 x, y, z 1 − x, 1 − y, −z
C9 H19 2.827 −0.073 x, y, z x, −1 + y, z
H2 C19 2.834 −0.066 x, y, z −1 + x, −1 + y, z
C3 H11A 2.843 −0.057 x, y, z −1 + x, y, z
C2 H11A 2.865 −0.035 x, y, z −1 + x, y, z
H2 C20 2.904 0.004 x, y, z −1 + x, −1 + y, z
           
II          
H10A H10A 2.076 −0.324 x, y, z 1 − x, −y, −z
H2 C18 2.824 −0.076 x, y, z −1 + x, −1 + y, z
C8 H18 2.824 −0.076 x, y, z x, −1 + y, z
C9 H18 2.867 −0.033 x, y, z x, −1 + y, z
C10 H10A 2.866 −0.034 x, y, z 1 − x, −y, −z
C3 H10B 2.878 −0.022 x, y, z −1 + x, y, z
C1 C11 3.403 0.003 x, y, z −1 + x, y, z
           
III a          
O1 H24 2.514 −0.206 x, y, z −1 + x, y, z
C4 H27B 2.741 −0.159 x, y, z x, −1 + y, z
C21 H5 2.826 −0.074 x, y, z 2 − x, 1 − y, 2 − z
H12A C27 2.845 −0.055 x, y, z {3\over 2} − x, −{1\over 2} + y, {3\over 2} − z
O1 H14B 2.722 0.002 x, y, z {3\over 2} − x, −{1\over 2} + y, {3\over 2} − z

Note: (a) Ullah & Altaf (2014).

The percentage contributions of inter-atomic contacts to the HS for all three compounds are compared in Table 4. The two-dimensional fingerprint plots for compounds I, II and III are shown in Fig. 8. They reveal, as expected in the absence of classical hydrogen bonds, that the principal contributions to the overall HS surface involve H⋯H contacts at 67.5, 65.9 and 58.2%, respectively.

Table 4. Principal percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of I, II and III a .

Contact I II III a
H⋯H 67.5 65.9 58.2
C⋯H/H⋯C 25.2 25.8 33.6
O⋯H/H⋯O 4.5 4.5 4.5
N⋯H/H⋯N 2.5 3.5 2.1
C⋯C 0.2 0.2 0.2
C⋯N 0 0 1.3
C⋯O 0.1 0.1 0.1

Note: (a) Ullah & Altaf (2014).

Figure 8.

Figure 8

The full two-dimensional fingerprint plots for compounds (a) I, (b) II and (c) III, and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts.

The second most important contribution to the HS is from the C⋯H/H⋯C contacts at 25.2, 25.8 and 33.6%, for I, II and III, respectively, which are related to the presence of C—H⋯π inter­actions (see Tables 1, 2 and S1). These are followed by O⋯H/H⋯O contacts at 4.5% for each compound. These two contributions are particularly significant for III, as indicated by the pair of sharp spikes for the delineated C⋯H/H⋯C and O⋯H/H⋯O contacts shown in Fig. 8 c.

The N⋯H/H⋯N contacts contribute, respectively, 2.5, 3.5 and 2.1%. The C⋯N contacts contribute even less; 1.3% in III but 0% in I and II. The C⋯C and C⋯O contacts contribute very little for all three structures.

The fact that compounds I and II are isoelectronic and isotypic is reflected in their almost identical Hirshfeld surfaces (Fig. 7 a and b), contributions of the inter-atomic contacts to the HS (Table 4), fingerprint plots (Fig. 8 a and b), and energy frameworks (Fig. 9 a and b).

Figure 9.

Figure 9

The energy frameworks calculated for (a) I and (b) II, both viewed along the b axis direction, and (c) III, viewed along the a-axis direction, showing the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (E tot).

Energy frameworks  

A comparison of the energy frameworks calculated for I, II and III, showing the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (E tot), are shown in Fig. 9. The energies were obtained by using the wave function at the HF/3-2IG level of theory. The cylindrical radii are proportional to the relative strength of the corres­ponding energies (Turner et al., 2017; Tan et al., 2019). They have been adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within a radius of 6 Å of a central reference mol­ecule. It can be seen that for all three compounds, the major contribution to the inter­molecular inter­actions is from dispersion forces (E dis), reflecting the absence of classical hydrogen bonds in the crystals.

The colour-coded inter­action mappings within a radius of 6 Å of a central reference mol­ecule for all three compounds are given in the supporting information file S3. Full details of the various contributions to the total energy (E tot) are also included there.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) for 2-meth­oxy­quinolines gave 53 hits. In the majority of cases, the meth­oxy group (atoms Car–O–C) lies close to the mean plane of the quinoline ring, with dihedral angles varying from 0 to ca 8.51°. In compounds I, II and III the same dihedral angles are 7.24 (16), 7.1 (2) and 1.98 (19)°, respectively. A search for 2-meth­oxy­quinolines with a piperidine or piperazine ring in the 8-position gave only one hit, viz. for compound III (CSD refcode: AKUXIQ; Ullah & Altaf, 2014).

Synthesis and crystallization  

The synthesis of compounds I, II and III have been reported [I (Ullah & Al-Shaheri, 2012), compound 3 e in that paper; II and III (Ullah, 2012), compounds 3 e and 3 a, respectively, in that paper]. Colourless crystals of I and II were obtained by slow evaporation of solutions in di­chloro­methane and methanol; ratios (8:3) and (8.5:1.5), respectively.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. For both compounds, the C-bound H atoms were included in calculated positions and refined as riding on the parent atom: C—H = 0.95–0.99 Å with U iso(H) = 1.5U eq(C-meth­yl) and U iso(H) = 1.2U eq(C) for other H atoms.

Table 5. Experimental details.

  I II
Crystal data
Chemical formula C27H30N2O C26H29N3O
M r 398.53 399.52
Crystal system, space group Triclinic, P\overline{1} Triclinic, P\overline{1}
Temperature (K) 173 173
a, b, c (Å) 7.7099 (7), 11.2838 (10), 12.9539 (13) 7.9142 (8), 10.9051 (13), 12.8896 (14)
α, β, γ (°) 89.413 (8), 79.094 (7), 82.270 (7) 87.271 (9), 79.290 (8), 82.206 (9)
V3) 1096.41 (18) 1082.7 (2)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.07 0.08
Crystal size (mm) 0.45 × 0.37 × 0.25 0.45 × 0.40 × 0.19
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 2
Absorption correction Multi-scan (MULABS; Spek, 2020) Multi-scan (MULABS; Spek, 2020)
T min, T max 0.897, 1.000 0.793, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14097, 4138, 2585 11304, 4088, 2187
R int 0.038 0.080
(sin θ/λ)max−1) 0.609 0.610
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.084, 0.83 0.056, 0.121, 0.90
No. of reflections 4138 4088
No. of parameters 273 273
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.19 0.28, −0.17

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020, Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989021002474/zv2005sup1.cif

e-77-00372-sup1.cif (780.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002474/zv2005Isup2.hkl

e-77-00372-Isup2.hkl (329.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002474/zv2005Isup4.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021002474/zv2005IIsup3.hkl

e-77-00372-IIsup3.hkl (325.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002474/zv2005IIsup5.cml

CSD search and analysis in Mercury of cyclopentene rings. DOI: 10.1107/S2056989021002474/zv2005sup6.pdf

e-77-00372-sup6.pdf (239.8KB, pdf)

Details concerning compound III. DOI: 10.1107/S2056989021002474/zv2005sup7.pdf

e-77-00372-sup7.pdf (322.1KB, pdf)

Colour-coded interaction mappings for compounds I, II and III. DOI: 10.1107/S2056989021002474/zv2005sup8.pdf

e-77-00372-sup8.pdf (543.5KB, pdf)

CCDC references: 997191, 997192

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

HSE is grateful to the University of Neuchâtel for their support over the years.

supplementary crystallographic information

8-{1-[3-(Cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline (I). Crystal data

C27H30N2O Z = 2
Mr = 398.53 F(000) = 428
Triclinic, P1 Dx = 1.207 Mg m3
a = 7.7099 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.2838 (10) Å Cell parameters from 8113 reflections
c = 12.9539 (13) Å θ = 1.6–26.1°
α = 89.413 (8)° µ = 0.07 mm1
β = 79.094 (7)° T = 173 K
γ = 82.270 (7)° Block, colourless
V = 1096.41 (18) Å3 0.45 × 0.37 × 0.25 mm

8-{1-[3-(Cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline (I). Data collection

STOE IPDS 2 diffractometer 4138 independent reflections
Radiation source: fine-focus sealed tube 2585 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.038
φ + ω scans θmax = 25.6°, θmin = 1.8°
Absorption correction: multi-scan (MULABS; Spek, 2020) h = −9→9
Tmin = 0.897, Tmax = 1.000 k = −13→13
14097 measured reflections l = −15→15

8-{1-[3-(Cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline (I). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0484P)2] where P = (Fo2 + 2Fc2)/3
S = 0.83 (Δ/σ)max < 0.001
4138 reflections Δρmax = 0.31 e Å3
273 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0094 (16)

8-{1-[3-(Cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

8-{1-[3-(Cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.31520 (16) 0.30564 (11) 0.39378 (9) 0.0592 (3)
N1 −0.09673 (16) 0.31466 (10) 0.24743 (9) 0.0366 (3)
N2 0.39949 (15) 0.61267 (9) 0.18470 (8) 0.0279 (3)
C1 −0.2350 (2) 0.26704 (14) 0.29519 (13) 0.0446 (4)
C2 −0.3120 (2) 0.17738 (15) 0.25111 (16) 0.0533 (5)
H2 −0.409740 0.143721 0.290814 0.064*
C3 −0.2430 (2) 0.14117 (14) 0.15136 (16) 0.0514 (5)
H3 −0.293407 0.081958 0.119624 0.062*
C4 −0.0953 (2) 0.19087 (12) 0.09322 (13) 0.0398 (4)
C5 −0.0161 (2) 0.15780 (13) −0.01128 (13) 0.0445 (4)
H5 −0.065366 0.102091 −0.047870 0.053*
C6 0.1305 (2) 0.20515 (13) −0.06017 (13) 0.0429 (4)
H6 0.182521 0.182977 −0.130942 0.051*
C7 0.2054 (2) 0.28677 (12) −0.00641 (11) 0.0361 (3)
H7 0.309298 0.317564 −0.041440 0.043*
C8 0.13307 (19) 0.32336 (11) 0.09513 (11) 0.0303 (3)
C9 −0.02281 (19) 0.27612 (11) 0.14589 (11) 0.0338 (3)
C10 0.21444 (18) 0.40881 (11) 0.15518 (10) 0.0291 (3)
H10 0.191957 0.384932 0.230597 0.035*
C11 0.41514 (18) 0.40490 (11) 0.12068 (11) 0.0322 (3)
H11A 0.474251 0.322324 0.126794 0.039*
H11B 0.442908 0.428067 0.046058 0.039*
C12 0.48648 (19) 0.48939 (11) 0.18812 (11) 0.0323 (3)
H12A 0.467098 0.462037 0.261762 0.039*
H12B 0.616450 0.486966 0.163034 0.039*
C13 0.20593 (18) 0.61870 (12) 0.21814 (11) 0.0323 (3)
H13A 0.149684 0.702328 0.213674 0.039*
H13B 0.178461 0.594316 0.292439 0.039*
C14 0.12757 (19) 0.53857 (11) 0.15092 (11) 0.0332 (3)
H14A 0.147602 0.565916 0.077284 0.040*
H14B −0.002595 0.543682 0.176720 0.040*
C15 0.47093 (19) 0.68831 (11) 0.25299 (10) 0.0310 (3)
H15A 0.602393 0.678391 0.231762 0.037*
H15B 0.442130 0.660363 0.326154 0.037*
C16 0.40022 (18) 0.81994 (11) 0.25048 (10) 0.0289 (3)
C17 0.38518 (19) 0.87725 (12) 0.15602 (11) 0.0339 (3)
H17 0.416942 0.833137 0.091594 0.041*
C18 0.3239 (2) 0.99862 (12) 0.15611 (11) 0.0371 (4)
H18 0.314063 1.037213 0.091545 0.045*
C19 0.27704 (19) 1.06377 (12) 0.24901 (11) 0.0352 (3)
H19 0.234929 1.146760 0.247712 0.042*
C20 0.29069 (18) 1.00935 (11) 0.34499 (11) 0.0303 (3)
C21 0.35196 (18) 0.88669 (11) 0.34328 (10) 0.0296 (3)
H21 0.360782 0.847843 0.407859 0.036*
C22 0.24386 (19) 1.07783 (13) 0.44478 (11) 0.0353 (3)
C23 0.2242 (2) 1.02292 (14) 0.54733 (12) 0.0479 (4)
H23A 0.339477 0.978796 0.557619 0.057*
H23B 0.135586 0.966088 0.553796 0.057*
C24 0.1619 (2) 1.12327 (15) 0.62848 (13) 0.0535 (5)
H24A 0.234142 1.114906 0.684369 0.064*
H24B 0.035106 1.122668 0.661147 0.064*
C25 0.1867 (3) 1.23818 (16) 0.56826 (15) 0.0723 (6)
H25A 0.078370 1.297650 0.585603 0.087*
H25B 0.289265 1.273337 0.584998 0.087*
C26 0.2204 (2) 1.20096 (14) 0.45501 (13) 0.0526 (5)
H26 0.225071 1.254655 0.397896 0.063*
C27 −0.2468 (3) 0.40355 (19) 0.43470 (14) 0.0682 (6)
H27C −0.321335 0.429785 0.502637 0.102*
H27B −0.248148 0.469981 0.385397 0.102*
H27A −0.124284 0.377844 0.444035 0.102*

8-{1-[3-(Cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0465 (7) 0.0720 (8) 0.0567 (8) −0.0146 (6) −0.0006 (6) 0.0222 (6)
N1 0.0313 (7) 0.0348 (6) 0.0441 (8) −0.0057 (5) −0.0078 (6) 0.0124 (6)
N2 0.0288 (6) 0.0232 (5) 0.0319 (6) −0.0030 (5) −0.0068 (5) −0.0030 (5)
C1 0.0350 (9) 0.0479 (9) 0.0511 (10) −0.0067 (7) −0.0087 (8) 0.0216 (8)
C2 0.0372 (10) 0.0484 (10) 0.0812 (14) −0.0197 (8) −0.0207 (9) 0.0316 (9)
C3 0.0460 (10) 0.0363 (9) 0.0805 (13) −0.0133 (8) −0.0292 (10) 0.0149 (8)
C4 0.0372 (9) 0.0248 (7) 0.0633 (11) −0.0061 (6) −0.0240 (8) 0.0107 (7)
C5 0.0550 (11) 0.0267 (7) 0.0599 (11) −0.0050 (7) −0.0318 (9) −0.0018 (7)
C6 0.0550 (11) 0.0321 (8) 0.0446 (9) −0.0025 (7) −0.0190 (8) −0.0044 (7)
C7 0.0442 (9) 0.0273 (7) 0.0384 (8) −0.0051 (6) −0.0115 (7) −0.0012 (6)
C8 0.0343 (8) 0.0212 (6) 0.0366 (8) −0.0025 (6) −0.0112 (6) 0.0035 (6)
C9 0.0359 (9) 0.0242 (7) 0.0433 (9) −0.0029 (6) −0.0138 (7) 0.0081 (6)
C10 0.0339 (8) 0.0239 (7) 0.0295 (7) −0.0046 (6) −0.0054 (6) 0.0016 (5)
C11 0.0334 (8) 0.0235 (7) 0.0387 (8) −0.0013 (6) −0.0064 (6) −0.0022 (6)
C12 0.0305 (8) 0.0268 (7) 0.0390 (8) −0.0003 (6) −0.0074 (6) −0.0005 (6)
C13 0.0297 (8) 0.0267 (7) 0.0388 (8) −0.0008 (6) −0.0038 (6) −0.0035 (6)
C14 0.0307 (8) 0.0258 (7) 0.0433 (8) −0.0026 (6) −0.0081 (7) −0.0019 (6)
C15 0.0365 (8) 0.0280 (7) 0.0298 (7) −0.0045 (6) −0.0092 (6) −0.0019 (6)
C16 0.0291 (8) 0.0269 (7) 0.0327 (7) −0.0069 (6) −0.0083 (6) −0.0023 (6)
C17 0.0397 (9) 0.0324 (7) 0.0311 (8) −0.0066 (6) −0.0094 (6) −0.0036 (6)
C18 0.0451 (9) 0.0324 (8) 0.0381 (8) −0.0083 (7) −0.0170 (7) 0.0053 (6)
C19 0.0373 (9) 0.0262 (7) 0.0454 (9) −0.0049 (6) −0.0159 (7) −0.0001 (6)
C20 0.0250 (7) 0.0295 (7) 0.0379 (8) −0.0059 (6) −0.0080 (6) −0.0051 (6)
C21 0.0295 (8) 0.0292 (7) 0.0319 (8) −0.0066 (6) −0.0083 (6) 0.0010 (6)
C22 0.0297 (8) 0.0356 (8) 0.0416 (8) −0.0007 (6) −0.0113 (7) −0.0080 (6)
C23 0.0545 (11) 0.0502 (10) 0.0390 (9) −0.0037 (8) −0.0108 (8) −0.0090 (7)
C24 0.0506 (11) 0.0626 (11) 0.0459 (10) −0.0050 (9) −0.0063 (8) −0.0198 (8)
C25 0.0945 (16) 0.0519 (11) 0.0676 (13) 0.0138 (11) −0.0228 (12) −0.0270 (10)
C26 0.0671 (12) 0.0368 (9) 0.0506 (10) 0.0005 (8) −0.0076 (9) −0.0114 (7)
C27 0.0631 (13) 0.0942 (15) 0.0441 (10) −0.0159 (12) 0.0017 (9) 0.0036 (10)

8-{1-[3-(Cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline (I). Geometric parameters (Å, º)

O1—C1 1.358 (2) C13—H13B 0.9900
O1—C27 1.433 (2) C14—H14A 0.9900
N1—C1 1.3060 (19) C14—H14B 0.9900
N1—C9 1.3804 (19) C15—C16 1.5140 (18)
N2—C15 1.4631 (16) C15—H15A 0.9900
N2—C12 1.4649 (16) C15—H15B 0.9900
N2—C13 1.4656 (17) C16—C21 1.3873 (18)
C1—C2 1.416 (2) C16—C17 1.3951 (18)
C2—C3 1.346 (2) C17—C18 1.3873 (19)
C2—H2 0.9500 C17—H17 0.9500
C3—C4 1.420 (2) C18—C19 1.379 (2)
C3—H3 0.9500 C18—H18 0.9500
C4—C5 1.407 (2) C19—C20 1.3966 (19)
C4—C9 1.416 (2) C19—H19 0.9500
C5—C6 1.360 (2) C20—C21 1.4001 (18)
C5—H5 0.9500 C20—C22 1.4721 (19)
C6—C7 1.405 (2) C21—H21 0.9500
C6—H6 0.9500 C22—C26 1.381 (2)
C7—C8 1.3723 (19) C22—C23 1.450 (2)
C7—H7 0.9500 C23—C24 1.518 (2)
C8—C9 1.424 (2) C23—H23A 0.9900
C8—C10 1.5137 (19) C23—H23B 0.9900
C10—C11 1.5220 (19) C24—C25 1.522 (3)
C10—C14 1.5310 (18) C24—H24A 0.9900
C10—H10 1.0000 C24—H24B 0.9900
C11—C12 1.5214 (19) C25—C26 1.495 (2)
C11—H11A 0.9900 C25—H25A 0.9900
C11—H11B 0.9900 C25—H25B 0.9900
C12—H12A 0.9900 C26—H26 0.9500
C12—H12B 0.9900 C27—H27C 0.9800
C13—C14 1.5175 (19) C27—H27B 0.9800
C13—H13A 0.9900 C27—H27A 0.9800
C1—O1—C27 116.01 (13) C10—C14—H14A 109.6
C1—N1—C9 117.41 (13) C13—C14—H14B 109.6
C15—N2—C12 109.07 (10) C10—C14—H14B 109.6
C15—N2—C13 110.40 (10) H14A—C14—H14B 108.1
C12—N2—C13 110.58 (10) N2—C15—C16 114.10 (11)
N1—C1—O1 119.14 (15) N2—C15—H15A 108.7
N1—C1—C2 124.76 (16) C16—C15—H15A 108.7
O1—C1—C2 116.10 (15) N2—C15—H15B 108.7
C3—C2—C1 118.13 (16) C16—C15—H15B 108.7
C3—C2—H2 120.9 H15A—C15—H15B 107.6
C1—C2—H2 120.9 C21—C16—C17 118.61 (12)
C2—C3—C4 120.47 (16) C21—C16—C15 119.97 (12)
C2—C3—H3 119.8 C17—C16—C15 121.41 (12)
C4—C3—H3 119.8 C18—C17—C16 120.03 (13)
C5—C4—C9 119.15 (14) C18—C17—H17 120.0
C5—C4—C3 123.76 (15) C16—C17—H17 120.0
C9—C4—C3 117.07 (15) C19—C18—C17 120.64 (13)
C6—C5—C4 120.36 (14) C19—C18—H18 119.7
C6—C5—H5 119.8 C17—C18—H18 119.7
C4—C5—H5 119.8 C18—C19—C20 120.86 (13)
C5—C6—C7 120.26 (15) C18—C19—H19 119.6
C5—C6—H6 119.9 C20—C19—H19 119.6
C7—C6—H6 119.9 C19—C20—C21 117.63 (12)
C8—C7—C6 122.03 (15) C19—C20—C22 121.62 (12)
C8—C7—H7 119.0 C21—C20—C22 120.75 (12)
C6—C7—H7 119.0 C16—C21—C20 122.23 (12)
C7—C8—C9 117.94 (13) C16—C21—H21 118.9
C7—C8—C10 122.77 (13) C20—C21—H21 118.9
C9—C8—C10 119.28 (12) C26—C22—C23 110.50 (13)
N1—C9—C4 122.07 (14) C26—C22—C20 125.83 (14)
N1—C9—C8 117.72 (13) C23—C22—C20 123.61 (13)
C4—C9—C8 120.20 (14) C22—C23—C24 106.97 (14)
C8—C10—C11 114.28 (11) C22—C23—H23A 110.3
C8—C10—C14 112.62 (11) C24—C23—H23A 110.3
C11—C10—C14 108.35 (11) C22—C23—H23B 110.3
C8—C10—H10 107.1 C24—C23—H23B 110.3
C11—C10—H10 107.1 H23A—C23—H23B 108.6
C14—C10—H10 107.1 C23—C24—C25 105.45 (14)
C12—C11—C10 110.69 (11) C23—C24—H24A 110.7
C12—C11—H11A 109.5 C25—C24—H24A 110.7
C10—C11—H11A 109.5 C23—C24—H24B 110.7
C12—C11—H11B 109.5 C25—C24—H24B 110.7
C10—C11—H11B 109.5 H24A—C24—H24B 108.8
H11A—C11—H11B 108.1 C26—C25—C24 104.67 (14)
N2—C12—C11 111.93 (11) C26—C25—H25A 110.8
N2—C12—H12A 109.2 C24—C25—H25A 110.8
C11—C12—H12A 109.2 C26—C25—H25B 110.8
N2—C12—H12B 109.2 C24—C25—H25B 110.8
C11—C12—H12B 109.2 H25A—C25—H25B 108.9
H12A—C12—H12B 107.9 C22—C26—C25 110.74 (15)
N2—C13—C14 111.93 (11) C22—C26—H26 124.6
N2—C13—H13A 109.2 C25—C26—H26 124.6
C14—C13—H13A 109.2 O1—C27—H27C 109.5
N2—C13—H13B 109.2 O1—C27—H27B 109.5
C14—C13—H13B 109.2 H27C—C27—H27B 109.5
H13A—C13—H13B 107.9 O1—C27—H27A 109.5
C13—C14—C10 110.27 (11) H27C—C27—H27A 109.5
C13—C14—H14A 109.6 H27B—C27—H27A 109.5
C9—N1—C1—O1 −177.72 (13) C13—N2—C12—C11 57.05 (14)
C9—N1—C1—C2 1.3 (2) C10—C11—C12—N2 −57.40 (15)
C27—O1—C1—N1 4.3 (2) C15—N2—C13—C14 −178.41 (11)
C27—O1—C1—C2 −174.73 (14) C12—N2—C13—C14 −57.62 (14)
N1—C1—C2—C3 −2.6 (2) N2—C13—C14—C10 58.07 (15)
O1—C1—C2—C3 176.38 (14) C8—C10—C14—C13 176.30 (12)
C1—C2—C3—C4 0.9 (2) C11—C10—C14—C13 −56.28 (15)
C2—C3—C4—C5 −179.87 (15) C12—N2—C15—C16 176.08 (11)
C2—C3—C4—C9 1.8 (2) C13—N2—C15—C16 −62.24 (15)
C9—C4—C5—C6 1.5 (2) N2—C15—C16—C21 137.35 (13)
C3—C4—C5—C6 −176.80 (14) N2—C15—C16—C17 −43.88 (18)
C4—C5—C6—C7 0.6 (2) C21—C16—C17—C18 0.3 (2)
C5—C6—C7—C8 −1.3 (2) C15—C16—C17—C18 −178.47 (14)
C6—C7—C8—C9 −0.1 (2) C16—C17—C18—C19 −0.1 (2)
C6—C7—C8—C10 178.45 (13) C17—C18—C19—C20 0.2 (2)
C1—N1—C9—C4 1.77 (19) C18—C19—C20—C21 −0.5 (2)
C1—N1—C9—C8 −177.04 (12) C18—C19—C20—C22 179.07 (14)
C5—C4—C9—N1 178.34 (13) C17—C16—C21—C20 −0.7 (2)
C3—C4—C9—N1 −3.28 (19) C15—C16—C21—C20 178.14 (13)
C5—C4—C9—C8 −2.9 (2) C19—C20—C21—C16 0.8 (2)
C3—C4—C9—C8 175.50 (12) C22—C20—C21—C16 −178.83 (13)
C7—C8—C9—N1 −178.98 (12) C19—C20—C22—C26 −14.8 (2)
C10—C8—C9—N1 2.42 (18) C21—C20—C22—C26 164.79 (15)
C7—C8—C9—C4 2.19 (18) C19—C20—C22—C23 168.27 (15)
C10—C8—C9—C4 −176.41 (12) C21—C20—C22—C23 −12.2 (2)
C7—C8—C10—C11 −27.88 (18) C26—C22—C23—C24 6.9 (2)
C9—C8—C10—C11 150.65 (12) C20—C22—C23—C24 −175.72 (14)
C7—C8—C10—C14 96.33 (16) C22—C23—C24—C25 −12.1 (2)
C9—C8—C10—C14 −85.14 (15) C23—C24—C25—C26 12.6 (2)
C8—C10—C11—C12 −177.56 (11) C23—C22—C26—C25 1.4 (2)
C14—C10—C11—C12 55.98 (14) C20—C22—C26—C25 −175.90 (16)
C15—N2—C12—C11 178.62 (11) C24—C25—C26—C22 −9.0 (2)

8-{1-[3-(Cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-2-methoxyquinoline (I). Hydrogen-bond geometry (Å, º)

CgB is the centroid of ring C4–C9.

D—H···A D—H H···A D···A D—H···A
C18—H18···CgBi 0.95 2.97 3.661 (2) 131

Symmetry code: (i) x, y+1, z.

8-{4-[3-(Cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline (II). Crystal data

C26H29N3O Z = 2
Mr = 399.52 F(000) = 428
Triclinic, P1 Dx = 1.226 Mg m3
a = 7.9142 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.9051 (13) Å Cell parameters from 5129 reflections
c = 12.8896 (14) Å θ = 1.6–26.0°
α = 87.271 (9)° µ = 0.08 mm1
β = 79.290 (8)° T = 173 K
γ = 82.206 (9)° Plate, colourless
V = 1082.7 (2) Å3 0.45 × 0.40 × 0.19 mm

8-{4-[3-(Cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline (II). Data collection

STOE IPDS 2 diffractometer 4088 independent reflections
Radiation source: fine-focus sealed tube 2187 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.080
φ + ω scans θmax = 25.7°, θmin = 1.6°
Absorption correction: multi-scan (MULABS; Spek, 2020) h = −9→9
Tmin = 0.793, Tmax = 1.000 k = −13→13
11304 measured reflections l = −15→15

8-{4-[3-(Cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline (II). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.048P)2] where P = (Fo2 + 2Fc2)/3
S = 0.90 (Δ/σ)max < 0.001
4088 reflections Δρmax = 0.28 e Å3
273 parameters Δρmin = −0.17 e Å3
1 restraint Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0086 (15)

8-{4-[3-(Cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

8-{4-[3-(Cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.3136 (2) −0.18899 (19) 0.38520 (16) 0.0549 (6)
N1 −0.0986 (2) −0.18024 (19) 0.23968 (17) 0.0372 (5)
N2 0.2088 (2) −0.09810 (17) 0.14688 (15) 0.0294 (5)
N3 0.3825 (2) 0.10378 (18) 0.18985 (15) 0.0300 (5)
C1 −0.2363 (3) −0.2276 (2) 0.2863 (2) 0.0427 (7)
C2 −0.3174 (3) −0.3156 (3) 0.2433 (3) 0.0510 (8)
H2 −0.416246 −0.347820 0.282598 0.061*
C3 −0.2487 (3) −0.3524 (3) 0.1439 (3) 0.0529 (8)
H3 −0.300937 −0.410699 0.112140 0.063*
C4 −0.0990 (3) −0.3048 (2) 0.0861 (2) 0.0409 (7)
C5 −0.0181 (4) −0.3422 (2) −0.0161 (2) 0.0476 (7)
H5 −0.068608 −0.397363 −0.052471 0.057*
C6 0.1322 (4) −0.2996 (2) −0.0632 (2) 0.0451 (7)
H6 0.186715 −0.325569 −0.132045 0.054*
C7 0.2067 (3) −0.2173 (2) −0.0102 (2) 0.0371 (6)
H7 0.312281 −0.189311 −0.043911 0.045*
C8 0.1314 (3) −0.1759 (2) 0.08928 (19) 0.0318 (6)
C9 −0.0260 (3) −0.2196 (2) 0.1392 (2) 0.0349 (6)
C10 0.3949 (3) −0.0970 (2) 0.11133 (19) 0.0332 (6)
H10A 0.416398 −0.059510 0.039396 0.040*
H10B 0.454529 −0.182976 0.108390 0.040*
C11 0.4666 (3) −0.0238 (2) 0.1859 (2) 0.0343 (6)
H11A 0.447282 −0.062345 0.257528 0.041*
H11B 0.593116 −0.024947 0.161868 0.041*
C12 0.1955 (3) 0.1034 (2) 0.22687 (19) 0.0326 (6)
H12A 0.136438 0.189535 0.229207 0.039*
H12B 0.175082 0.067128 0.299288 0.039*
C13 0.1208 (3) 0.0294 (2) 0.1546 (2) 0.0348 (6)
H13A −0.004502 0.028411 0.181873 0.042*
H13B 0.133604 0.069334 0.083420 0.042*
C14 0.4552 (3) 0.1769 (2) 0.25913 (19) 0.0330 (6)
H14A 0.583181 0.164805 0.239081 0.040*
H14B 0.424670 0.146022 0.332804 0.040*
C15 0.3914 (3) 0.3132 (2) 0.25410 (19) 0.0301 (6)
C16 0.3790 (3) 0.3747 (2) 0.1577 (2) 0.0356 (6)
H16 0.408753 0.329933 0.094036 0.043*
C17 0.3238 (3) 0.5002 (2) 0.1546 (2) 0.0400 (7)
H17 0.316755 0.541160 0.088555 0.048*
C18 0.2787 (3) 0.5671 (2) 0.2464 (2) 0.0377 (6)
H18 0.240296 0.653306 0.242779 0.045*
C19 0.2891 (3) 0.5089 (2) 0.3440 (2) 0.0332 (6)
C20 0.3453 (3) 0.3813 (2) 0.34630 (19) 0.0328 (6)
H20 0.352236 0.340209 0.412330 0.039*
C21 0.2444 (3) 0.5783 (2) 0.4432 (2) 0.0383 (6)
C22 0.2269 (4) 0.5194 (3) 0.5478 (2) 0.0570 (8)
H22A 0.339597 0.474384 0.559038 0.068*
H22B 0.141230 0.459775 0.555661 0.068*
C23 0.1659 (4) 0.6226 (3) 0.6270 (2) 0.0613 (9)
H23A 0.043328 0.620057 0.660653 0.074*
H23B 0.237817 0.614600 0.682791 0.074*
C24 0.1860 (5) 0.7410 (3) 0.5641 (3) 0.0821 (11)
H24A 0.283698 0.779644 0.580656 0.098*
H24B 0.078692 0.800326 0.579663 0.098*
C25 0.2211 (4) 0.7042 (3) 0.4504 (3) 0.0595 (8)
H25 0.226301 0.760684 0.391774 0.071*
C26 −0.2422 (4) −0.0916 (3) 0.4257 (2) 0.0677 (10)
H26C −0.315015 −0.064309 0.492773 0.102*
H26B −0.237922 −0.021877 0.374866 0.102*
H26A −0.124641 −0.121897 0.437327 0.102*

8-{4-[3-(Cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0422 (10) 0.0650 (15) 0.0550 (13) −0.0133 (10) −0.0015 (10) 0.0136 (11)
N1 0.0304 (11) 0.0367 (13) 0.0449 (14) −0.0063 (9) −0.0091 (10) 0.0088 (11)
N2 0.0300 (10) 0.0256 (11) 0.0329 (12) −0.0053 (8) −0.0051 (9) −0.0015 (9)
N3 0.0299 (10) 0.0270 (11) 0.0339 (12) −0.0045 (8) −0.0062 (9) −0.0046 (10)
C1 0.0364 (15) 0.0389 (17) 0.0523 (19) −0.0057 (12) −0.0106 (13) 0.0166 (15)
C2 0.0345 (15) 0.0446 (18) 0.078 (2) −0.0162 (13) −0.0175 (15) 0.0184 (17)
C3 0.0448 (16) 0.0356 (17) 0.087 (2) −0.0114 (13) −0.0326 (16) 0.0077 (17)
C4 0.0406 (15) 0.0266 (15) 0.061 (2) −0.0037 (12) −0.0267 (14) 0.0055 (14)
C5 0.0604 (18) 0.0298 (16) 0.061 (2) −0.0014 (13) −0.0353 (16) −0.0038 (15)
C6 0.0587 (18) 0.0335 (16) 0.0455 (17) 0.0027 (13) −0.0208 (14) −0.0048 (14)
C7 0.0440 (14) 0.0301 (15) 0.0383 (16) −0.0041 (11) −0.0106 (12) −0.0025 (13)
C8 0.0397 (14) 0.0217 (14) 0.0360 (15) −0.0039 (11) −0.0129 (12) 0.0018 (12)
C9 0.0367 (14) 0.0255 (14) 0.0439 (16) −0.0004 (11) −0.0156 (12) 0.0071 (13)
C10 0.0296 (13) 0.0285 (14) 0.0397 (15) −0.0029 (10) −0.0013 (11) −0.0051 (12)
C11 0.0302 (13) 0.0325 (15) 0.0396 (16) −0.0016 (11) −0.0064 (11) −0.0022 (12)
C12 0.0283 (12) 0.0285 (14) 0.0397 (15) −0.0014 (10) −0.0032 (11) −0.0050 (12)
C13 0.0338 (13) 0.0267 (14) 0.0438 (16) −0.0025 (11) −0.0076 (12) −0.0005 (12)
C14 0.0379 (13) 0.0317 (15) 0.0303 (14) −0.0050 (11) −0.0074 (11) −0.0024 (12)
C15 0.0297 (12) 0.0262 (14) 0.0363 (15) −0.0058 (10) −0.0086 (11) −0.0046 (12)
C16 0.0419 (14) 0.0340 (16) 0.0332 (15) −0.0062 (11) −0.0113 (12) −0.0023 (13)
C17 0.0487 (16) 0.0367 (16) 0.0388 (16) −0.0092 (13) −0.0184 (13) 0.0087 (13)
C18 0.0388 (14) 0.0277 (15) 0.0500 (17) −0.0053 (11) −0.0159 (13) −0.0008 (14)
C19 0.0266 (12) 0.0329 (15) 0.0418 (16) −0.0071 (10) −0.0073 (11) −0.0070 (13)
C20 0.0339 (13) 0.0350 (15) 0.0319 (15) −0.0091 (11) −0.0095 (11) 0.0009 (12)
C21 0.0369 (14) 0.0375 (16) 0.0418 (17) −0.0018 (11) −0.0113 (12) −0.0086 (13)
C22 0.076 (2) 0.051 (2) 0.0433 (18) 0.0013 (16) −0.0137 (15) −0.0124 (16)
C23 0.068 (2) 0.063 (2) 0.0516 (19) 0.0022 (16) −0.0085 (16) −0.0237 (18)
C24 0.113 (3) 0.054 (2) 0.077 (3) 0.010 (2) −0.018 (2) −0.029 (2)
C25 0.076 (2) 0.0426 (19) 0.054 (2) 0.0021 (16) −0.0013 (16) −0.0145 (16)
C26 0.063 (2) 0.087 (3) 0.051 (2) −0.0196 (19) 0.0029 (16) −0.0046 (19)

8-{4-[3-(Cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline (II). Geometric parameters (Å, º)

O1—C1 1.367 (3) C13—H13A 0.9900
O1—C26 1.430 (4) C13—H13B 0.9900
N1—C1 1.302 (3) C14—C15 1.506 (3)
N1—C9 1.378 (3) C14—H14A 0.9900
N2—C8 1.420 (3) C14—H14B 0.9900
N2—C10 1.460 (3) C15—C20 1.395 (3)
N2—C13 1.468 (3) C15—C16 1.397 (3)
N3—C11 1.457 (3) C16—C17 1.380 (3)
N3—C14 1.466 (3) C16—H16 0.9500
N3—C12 1.468 (3) C17—C18 1.383 (3)
C1—C2 1.410 (4) C17—H17 0.9500
C2—C3 1.352 (4) C18—C19 1.394 (3)
C2—H2 0.9500 C18—H18 0.9500
C3—C4 1.424 (4) C19—C20 1.403 (3)
C3—H3 0.9500 C19—C21 1.477 (3)
C4—C5 1.407 (4) C20—H20 0.9500
C4—C9 1.421 (3) C21—C25 1.365 (4)
C5—C6 1.361 (4) C21—C22 1.457 (4)
C5—H5 0.9500 C22—C23 1.524 (4)
C6—C7 1.404 (3) C22—H22A 0.9900
C6—H6 0.9500 C22—H22B 0.9900
C7—C8 1.379 (3) C23—C24 1.502 (5)
C7—H7 0.9500 C23—H23A 0.9900
C8—C9 1.423 (3) C23—H23B 0.9900
C10—C11 1.511 (3) C24—C25 1.504 (4)
C10—H10A 0.9900 C24—H24A 0.9900
C10—H10B 0.9900 C24—H24B 0.9900
C11—H11A 0.9900 C25—H25 0.9500
C11—H11B 0.9900 C26—H26C 0.9800
C12—C13 1.508 (3) C26—H26B 0.9800
C12—H12A 0.9900 C26—H26A 0.9800
C12—H12B 0.9900
C1—O1—C26 116.1 (2) C12—C13—H13B 109.4
C1—N1—C9 117.0 (2) H13A—C13—H13B 108.0
C8—N2—C10 114.96 (19) N3—C14—C15 113.2 (2)
C8—N2—C13 113.51 (18) N3—C14—H14A 108.9
C10—N2—C13 109.68 (18) C15—C14—H14A 108.9
C11—N3—C14 110.95 (18) N3—C14—H14B 108.9
C11—N3—C12 108.63 (18) C15—C14—H14B 108.9
C14—N3—C12 110.84 (18) H14A—C14—H14B 107.8
N1—C1—O1 118.5 (2) C20—C15—C16 118.5 (2)
N1—C1—C2 125.8 (3) C20—C15—C14 120.3 (2)
O1—C1—C2 115.6 (2) C16—C15—C14 121.2 (2)
C3—C2—C1 117.3 (3) C17—C16—C15 120.3 (2)
C3—C2—H2 121.3 C17—C16—H16 119.9
C1—C2—H2 121.3 C15—C16—H16 119.9
C2—C3—C4 120.9 (3) C16—C17—C18 120.9 (3)
C2—C3—H3 119.5 C16—C17—H17 119.6
C4—C3—H3 119.5 C18—C17—H17 119.6
C5—C4—C9 119.8 (2) C17—C18—C19 120.5 (2)
C5—C4—C3 123.6 (3) C17—C18—H18 119.8
C9—C4—C3 116.5 (3) C19—C18—H18 119.8
C6—C5—C4 120.2 (3) C18—C19—C20 118.1 (2)
C6—C5—H5 119.9 C18—C19—C21 121.7 (2)
C4—C5—H5 119.9 C20—C19—C21 120.2 (2)
C5—C6—C7 120.1 (3) C15—C20—C19 121.7 (2)
C5—C6—H6 119.9 C15—C20—H20 119.1
C7—C6—H6 119.9 C19—C20—H20 119.1
C8—C7—C6 122.1 (2) C25—C21—C22 110.7 (3)
C8—C7—H7 119.0 C25—C21—C19 125.7 (3)
C6—C7—H7 119.0 C22—C21—C19 123.6 (2)
C7—C8—N2 123.2 (2) C21—C22—C23 106.6 (3)
C7—C8—C9 118.3 (2) C21—C22—H22A 110.4
N2—C8—C9 118.4 (2) C23—C22—H22A 110.4
N1—C9—C4 122.4 (2) C21—C22—H22B 110.4
N1—C9—C8 118.2 (2) C23—C22—H22B 110.4
C4—C9—C8 119.4 (2) H22A—C22—H22B 108.6
N2—C10—C11 110.24 (19) C24—C23—C22 105.4 (3)
N2—C10—H10A 109.6 C24—C23—H23A 110.7
C11—C10—H10A 109.6 C22—C23—H23A 110.7
N2—C10—H10B 109.6 C24—C23—H23B 110.7
C11—C10—H10B 109.6 C22—C23—H23B 110.7
H10A—C10—H10B 108.1 H23A—C23—H23B 108.8
N3—C11—C10 110.41 (19) C23—C24—C25 105.3 (3)
N3—C11—H11A 109.6 C23—C24—H24A 110.7
C10—C11—H11A 109.6 C25—C24—H24A 110.7
N3—C11—H11B 109.6 C23—C24—H24B 110.7
C10—C11—H11B 109.6 C25—C24—H24B 110.7
H11A—C11—H11B 108.1 H24A—C24—H24B 108.8
N3—C12—C13 110.67 (19) C21—C25—C24 110.5 (3)
N3—C12—H12A 109.5 C21—C25—H25 124.8
C13—C12—H12A 109.5 C24—C25—H25 124.8
N3—C12—H12B 109.5 O1—C26—H26C 109.5
C13—C12—H12B 109.5 O1—C26—H26B 109.5
H12A—C12—H12B 108.1 H26C—C26—H26B 109.5
N2—C13—C12 111.01 (19) O1—C26—H26A 109.5
N2—C13—H13A 109.4 H26C—C26—H26A 109.5
C12—C13—H13A 109.4 H26B—C26—H26A 109.5
N2—C13—H13B 109.4
C9—N1—C1—O1 −178.8 (2) C12—N3—C11—C10 59.9 (2)
C9—N1—C1—C2 0.1 (4) N2—C10—C11—N3 −60.3 (3)
C26—O1—C1—N1 4.6 (3) C11—N3—C12—C13 −58.6 (2)
C26—O1—C1—C2 −174.5 (2) C14—N3—C12—C13 179.3 (2)
N1—C1—C2—C3 −1.6 (4) C8—N2—C13—C12 173.4 (2)
O1—C1—C2—C3 177.4 (2) C10—N2—C13—C12 −56.5 (3)
C1—C2—C3—C4 0.8 (4) N3—C12—C13—N2 57.6 (3)
C2—C3—C4—C5 177.9 (3) C11—N3—C14—C15 171.8 (2)
C2—C3—C4—C9 1.1 (4) C12—N3—C14—C15 −67.4 (3)
C9—C4—C5—C6 1.7 (4) N3—C14—C15—C20 137.7 (2)
C3—C4—C5—C6 −175.0 (3) N3—C14—C15—C16 −43.2 (3)
C4—C5—C6—C7 −0.5 (4) C20—C15—C16—C17 0.6 (3)
C5—C6—C7—C8 −0.7 (4) C14—C15—C16—C17 −178.6 (2)
C6—C7—C8—N2 176.5 (2) C15—C16—C17—C18 −0.5 (4)
C6—C7—C8—C9 0.6 (4) C16—C17—C18—C19 0.4 (3)
C10—N2—C8—C7 −19.3 (3) C17—C18—C19—C20 −0.4 (3)
C13—N2—C8—C7 108.1 (3) C17—C18—C19—C21 179.0 (2)
C10—N2—C8—C9 156.7 (2) C16—C15—C20—C19 −0.6 (3)
C13—N2—C8—C9 −75.9 (3) C14—C15—C20—C19 178.6 (2)
C1—N1—C9—C4 2.0 (3) C18—C19—C20—C15 0.5 (3)
C1—N1—C9—C8 −175.7 (2) C21—C19—C20—C15 −178.9 (2)
C5—C4—C9—N1 −179.5 (2) C18—C19—C21—C25 −12.9 (4)
C3—C4—C9—N1 −2.6 (3) C20—C19—C21—C25 166.5 (3)
C5—C4—C9—C8 −1.9 (3) C18—C19—C21—C22 170.0 (2)
C3—C4—C9—C8 175.1 (2) C20—C19—C21—C22 −10.7 (3)
C7—C8—C9—N1 178.5 (2) C25—C21—C22—C23 7.0 (3)
N2—C8—C9—N1 2.4 (3) C19—C21—C22—C23 −175.5 (2)
C7—C8—C9—C4 0.7 (3) C21—C22—C23—C24 −11.4 (3)
N2—C8—C9—C4 −175.4 (2) C22—C23—C24—C25 11.3 (4)
C8—N2—C10—C11 −173.2 (2) C22—C21—C25—C24 0.3 (4)
C13—N2—C10—C11 57.5 (2) C19—C21—C25—C24 −177.1 (3)
C14—N3—C11—C10 −178.03 (19) C23—C24—C25—C21 −7.6 (4)

8-{4-[3-(Cyclopent-1-en-1-yl)benzyl]piperazin-1-yl}-2-methoxyquinoline (II). Hydrogen-bond geometry (Å, º)

CgB is the centroid of ring C4-C9.

D—H···A D—H H···A D···A D—H···A
C13—H13B···CgBi 0.99 2.95 3.757 (3) 140
C17—H17···CgBii 0.95 2.93 3.602 (3) 129

Symmetry codes: (i) −x, −y, −z; (ii) x, y+1, z.

References

  1. Cosi, C., Carilla-Durand, E., Assié, M.-B., Ormiere, A. M., Maraval, M., Leduc, N. & Newman-Tancredi, A. (2006). Eur. J. Pharmacol. 535, 135–144. [DOI] [PubMed]
  2. Feenstra, R. W., de Moes, J., Hofma, J. J., Kling, H., Kuipers, W., Long, S. K., Tulp, M. T. M., van der Heyden, J. A. M. & Kruse, C. G. (2001). Bioorg. Med. Chem. Lett. 11, 2345–2349. [DOI] [PubMed]
  3. Feenstra, R. W., van den Hoogenband, A., Stroomer, C. N. J., van Stuivenberg, H. H., Tulp, M. T. M., Long, S. K., van der Heyden, J. A. M. & Kruse, C. G. (2006). Chem. Pharm. Bull. 54, 1326–1330. [DOI] [PubMed]
  4. Ghani, U., Ullah, N., Ali, S. A. & Al-Muallem, H. A. (2014). Asian J. Chem. 26, 8258–8362.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Jones, C. A. & McCreary, A. C. (2008). Neuropharmacology, 55, 1056–1065. [DOI] [PubMed]
  7. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  8. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  9. Newman-Tancredi, A., Assié, M.-B., Leduc, N., Ormière, A.-M., Danty, N. & Cosi, C. (2005). Int. J. Neuropsychopharmacol. 8, 341–356. [DOI] [PubMed]
  10. Newman-Tancredi, A., Cussac, D. & Depoortere, R. (2007). Curr. Opin. Investig. Drugs, 8, 539–554. [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  14. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  15. Stoe & Cie. (2009). X-AREA & X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  16. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  17. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  18. Ullah, N. (2012). Z. Naturforsch. Teil B, 67, 75–84.
  19. Ullah, N. (2014a). Med. Chem. 10, 484–496. [DOI] [PubMed]
  20. Ullah, N. (2014b). J. Enzyme Inhib. Med. Chem. 29, 281–291. [DOI] [PubMed]
  21. Ullah, N. & Al-Shaheri, A. A. Q. (2012). Z. Naturforsch. Teil B, 67, 253–262.
  22. Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057–1062.
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, Global. DOI: 10.1107/S2056989021002474/zv2005sup1.cif

e-77-00372-sup1.cif (780.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002474/zv2005Isup2.hkl

e-77-00372-Isup2.hkl (329.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002474/zv2005Isup4.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021002474/zv2005IIsup3.hkl

e-77-00372-IIsup3.hkl (325.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002474/zv2005IIsup5.cml

CSD search and analysis in Mercury of cyclopentene rings. DOI: 10.1107/S2056989021002474/zv2005sup6.pdf

e-77-00372-sup6.pdf (239.8KB, pdf)

Details concerning compound III. DOI: 10.1107/S2056989021002474/zv2005sup7.pdf

e-77-00372-sup7.pdf (322.1KB, pdf)

Colour-coded interaction mappings for compounds I, II and III. DOI: 10.1107/S2056989021002474/zv2005sup8.pdf

e-77-00372-sup8.pdf (543.5KB, pdf)

CCDC references: 997191, 997192

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES