The isoxazolyl-benzimidazole moiety is not planar. In the crystal, N—H⋯N hydrogen bonds between neighboring benzimidazole rings form chains along the a-axis direction.
Keywords: crystal structure, density functional theory, benzimidazole, hydrogen bond, Hirshfeld surface analysis
Abstract
In the title molecule, C13H13N3O, the isoxazole ring is inclined to the benzimidazole ring at a dihedral angle of 69.28 (14)°. In the crystal, N—H⋯N hydrogen bonds between neighboring benzimidazole rings form chains along the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (48.8%), H⋯C/C⋯H (20.9%) and H⋯N/N⋯H (19.3%) interactions. The optimized structure calculated using density functional theory at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap is 4.9266 eV.
Chemical context
Nitrogen-based structures have attracted increased attention in structural and inorganic chemistry in recent years because of their interesting properties (Lahmidi et al., 2018 ▸; Chkirate et al., 2020a
▸; Taia et al., 2020 ▸; Al Ati et al., 2021 ▸). The benzimidazole family, particularly compounds containing the 2-methyl benzimidazole moiety, is important in medicinal chemistry because of their wide range of pharmacological applications including as antimicrobial and antitubercular agents (Ranjith et al., 2013 ▸), potential urease enzyme inhibitors (Menteşe et al., 2019 ▸) and antibacterial agents (Chkirate et al., 2020b
▸). In particular, isoxazolyl benzimidazole derivatives are used as analgesic and anti-inflammatory agents (Kankala et al., 2013 ▸). They are also potent and orally bioavailable bromodomain BET inhibitors (Sperandio et al., 2019 ▸). Given the wide range of therapeutic applications for such compounds, and in a continuation of the work already carried out on the synthesis of compounds resulting from 1,5-benzodiazepine (Chkirate et al., 2001 ▸, 2018 ▸, 2019a
▸,b
▸,c
▸, 2021 ▸), a similar approach gave the title compound, 6-methyl-2-[(5-methylisoxazol-3-yl)methyl]-1H-benzimidazole C13H13N3O (I).
Besides the synthesis, we also report the molecular and crystal structures along with the results of a Hirshfeld surface analysis and density functional theory computational calculations carried out at the B3LYP/6– 311 G(d,p) level.
Structural commentary
The title compound crystallizes in the orthorhombic space group Pbca with one molecule in the asymmetric unit (Fig. 1 ▸). The molecule is not planar, as indicated by the torsion angles C4—C3—C6—C7 [−40.4 (4)°] and C3—C6—C7—N15 [−46.0 (4)°]. The best plane of the isoxazole ring (O1/N2/C3–C5; r.m.s. deviation = 0.003 Å) makes a dihedral angle of 69.28 (14)° with the best plane of the benzimidazole ring (C7/N8/C9–C14/N15; r.m.s. deviation = 0.015 Å). Both methyl groups are in the same plane as the ring to which they are attached [deviation of C17 from the isoxazole plane = 0.016 (6) Å, deviation of C16 from the benzimidazole ring = 0.067 (4) Å].
Figure 1.
Molecular structure of the title molecule with the atom labeling scheme and 50% probability ellipsoids.
Supramolecular features
The crystal packing is characterized by N—H⋯N and C—H⋯N interactions (Fig. 2 ▸, Table 1 ▸). Chains of molecules running in the a-axis direction are formed by N8—H8⋯N15i hydrogen bonds between neighboring benzimidazole rings [symmetry code: (i) −
+ x, y, 3/2 – z]. Parallel chains interact through C4—H4⋯N2ii hydrogen bonds between neighboring isoxazole rings [symmetry code: (ii) 3/2 – x,
+ y, z] resulting in the three-dimensional structure. The crystal packing contains no voids.
Figure 2.
Partial crystal packing of the title compound. N—H⋯N hydrogen bonds are shown by blue dashed lines and C—H⋯N hydrogen bonds by gray dashed lines.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N8—H8⋯N15i | 0.89 (3) | 1.96 (3) | 2.830 (3) | 167 (2) |
| C4—H4⋯N2ii | 0.93 | 2.57 | 3.447 (3) | 157 |
Symmetry codes: (i) x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}; (ii) -x+{\script{3\over 2}}, y+{\script{1\over 2}}, z.
Hirshfeld surface analysis
The CrystalExplorer program (Turner et al., 2017 ▸) was used to investigate and visualize the intermolecular interactions of (I). The Hirshfeld surface plotted over d norm in the range −0.61 49 to 1.3177 a.u. is shown in Fig. 3 ▸ a. The red spots are close contacts with a negative d norm value and represent N—H⋯N and C—H⋯N interactions. The white regions representing contacts equal to the van der Waals separation and a d norm value of zero are indicative of the H⋯H interactions. The electrostatic potential using the STO-3G basis set at the Hartree–Fock level of theory and mapped on the Hirshfeld surface over the range ± 0.05 a.u. clearly shows the positions of close intermolecular contacts in the compound (Fig. 3 ▸ b). The positive electrostatic potential (blue region) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red region). The shape-index (Fig. 4 ▸) generated in the ranges −1 to 1 Å reveals that there are no significant π–π interactions (normally indicated by adjacent red and blue triangles).
Figure 3.
(a) View of the three-dimensional Hirshfeld surface of the title compound, plotted over d norm in the range −0.6149 to 1.3177 a.u. (b) View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory.
Figure 4.
Hirshfeld surface of the title compound plotted over shape-index.
The overall two-dimensional fingerprint plot (McKinnon et al., 2007 ▸) is shown in Fig. 5 ▸ a, while those delineated into H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, H⋯O/O⋯H, C⋯C and C⋯N/N⋯C contacts are illustrated in Fig. 5 ▸ b–g, respectively, together with their relative contributions to the Hirshfeld surface (HS). The most important interaction is H⋯H, contributing 48.8% to the overall crystal packing, which is reflected in Fig. 5 ▸ b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at d e = d i = 1.28 Å. In the presence of C—H interactions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (20.9% contribution to the HS), Fig. 5 ▸ c, has the tips at d e + d i = 2.69 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯N/N⋯H, Fig. 5 ▸ d (19.3%), have the tips at d e + d i = 1.81 Å. The H⋯O/O⋯H contacts, Fig. 5 ▸ e (9.6%), have the tips at d e + d i = 2.65 Å. The C⋯C contacts, Fig. 5 ▸ f, contribute 0.9% to the HS and appear as a pair of scattered points of spikes with the tips at d e + d i = 3.60 Å. Finally, the C⋯N/N⋯C contacts, Fig. 5 ▸ g, make only a 0.5% contribution to the HS and have a low-density distribution of points.
Figure 5.
The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯N/N⋯H, (e) H⋯O/O⋯H, (f) C⋯C and (g) C⋯N/N⋯C interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
Density Functional Theory calculations
The structure in the gas phase of the title compound was optimized by means of density functional theory. The density functional theory calculation was performed by the hybrid B3LYP method and the 6–311 G(d,p) basis-set, which is based on Becke’s model (Becke, 1993 ▸) and considers a mixture of the exact (Hartree–Fock) and density functional theory exchange utilizing the B3 functional, together with the LYP correlation functional (Lee et al., 1988 ▸). After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were performed with the GAUSSIAN 09 program (Frisch et al., 2009 ▸). The theoretical and experimental results related to bond lengths and angles are in good agreement, as well as with the results of the previous structural study of 5,6-dimethyl-2-[(5-methyl-1,2-oxazol-3-yl)methyl]-1-(prop-2-en-1-yl)-1H-benzimidazole, (III) (Benyahya et al., 2017 ▸) and 5-methyl-3-(1-(2-pyridylmethyl)-1H-benzimidazol-2-ylmethyl)isoxazole, (IV) (Doumbia et al., 2009 ▸), which are summarized in Table 2 ▸. Calculated numerical values for title compound including electronegativity (χ), hardness (η), ionization potential (I), dipole moment (μ), electron affinity (A), electrophilicity (ω) and softness (σ) are collated in Table 3 ▸. The electron transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) energy level is shown in Fig. 6 ▸. The HOMO and LUMO are localized in the plane extending over the whole 6-methyl-2-[(5-methylisoxazol-3-yl)methyl]-1H-benzimidazole system. The energy band gap [ΔE = E LUMO - E HOMO] of the molecule is 4.9266 eV, and the frontier molecular orbital energies, E HOMO and E LUMO, are −5.8170 and −0.8904 eV, respectively.
Table 2. Comparison of selected (X-ray and DFT bond lengths and angles (Å, °) in the title compound and related structures.
| X-ray | B3LYP/6–311G(d,p) | (III)a | (IV)b | |
|---|---|---|---|---|
| O1—N2 | 1.413 (3) | 1.3949 | 1.417 | 1.4100 |
| O1—C5 | 1.339 (4) | 1.3481 | 1.356 | 1.3526 |
| N2—C3 | 1.299 (3) | 1.3115 | 1.304 | 1.3044 |
| C3—C6 | 1.488 (4) | 1.5065 | 1.501 | 1.504 |
| C5—C17 | 1.485 (4) | 1.4868 | 1.476 | 1.478 |
| C6—C7 | 1.488 (4) | 1.5026 | 1.498 | 1.494 |
| C7—N8 | 1.349 (3) | 1.3755 | 1.377 | 1.3720 |
| C7—N15 | 1.320 (3) | 1.3092 | 1.312 | 1.3079 |
| N8—C9 | 1.371 (3) | 1.3814 | 1.386 | 1.3840 |
| C11—C16 | 1.500 (4) | 1.5112 | 1.504 | – |
| C14—N15 | 1.391 (3) | 1.388 | 1.400 | 1.3880 |
| C5—O1—N2 | 108.2 (2) | 109.1398 | 108.37 | 108.57 |
| C3—N2—O1 | 105.5 (2) | 106.0707 | 105.15 | 105.28 |
| N2—C3—C4 | 111.3 (2) | 111.0906 | 112.00 | 111.51 |
| N2—C3—C6 | 118.9 (2) | 120.8172 | 120.16 | 119.88 |
| O1—C5—C17 | 117.0 (3) | 116.8621 | 116.33 | 115.90 |
| C4—C5—O1 | 109.5 (3) | 109.3513 | 109.34 | 109.15 |
| N8—C7—C6 | 121.7 (2) | 122.8089 | 123.02 | 122.62 |
| N15—C7—C6 | 125.6 (2) | 123.8733 | 123.28 | 124.10 |
| N15—C7—N8 | 112.7 (2) | 113.2373 | 113.69 | 113.28 |
| C7—N8—C9 | 107.59 (19) | 106.9514 | 106.09 | 106.49 |
| N8—C9—C14 | 105.29 (19) | 104.6015 | 105.63 | 105.05 |
| C13—C14—N15 | 130.8 (2) | 130.4265 | 129.98 | 129.63 |
| N15—C14—C9 | 109.67 (19) | 110.2891 | 110.23 | 110.42 |
| C7—N15—C14 | 104.72 (19) | 104.9141 | 104.36 | 104.75 |
Notes: (a) Results of the previous DFT-optimized geometry of 5,6-dimethyl-2-[(5-methyl-1,2-oxazol-3-yl)methyl]-1-(prop-2-en-1-yl)-1H-benzimidazole (Benyahya et al., 2017 ▸); (b) results of the previous crystallographic study of 5-methyl-3-(1-(2-pyridylmethyl)-1H-benzimidazol-2-ylmethyl)isoxazole (Doumbia et al., 2009 ▸)
Table 3. Calculated energies.
| Molecular Energy | Title Compound |
|---|---|
| Total Energy TE (eV) | −20214.1624 |
| E HOMO (eV) | −5.8170 |
| E LUMO (eV) | −0.8904 |
| Gap, ΔE (eV) | 4.9266 |
| Dipole moment, μ (Debye) | 4.4403 |
| Ionization potential, I (eV) | 5.8170 |
| Electron affinity, A | 0.8904 |
| Electronegativity, χ | 3.3537 |
| Hardness, η | 2.4633 |
| Electrophilicity, index ω | 2.2830 |
| Softness, σ | 0.4060 |
| Fraction of electron transferred, ΔN | 0.7401 |
Figure 6.
The energy band gap of 6-methyl-2-[(5-methylisoxazol-3-yl)methyl]-1H-benzimidazole.
Database survey
A search of the Cambridge Structural Database (CSD version 5.40, updated March 2020; Groom et al., 2016 ▸) with the 2-methylbenzimidazole fragment yielded multiple matches. Of these, three had an isoxazol-3-yl substituent comparable to (I) and they are shown in Fig. 7 ▸. The first compound (II) (refcode REQZIW; Attar et al., 2001 ▸) has no substituent on the phenyl ring. For the second one (III) (refcode FECPIP; Benyahya et al., 2017 ▸) the phenyl ring is disubstituted with an allyl substituent on nitrogen 1. The third one (IV) (refcode PUGLAF; Doumbia et al., 2009 ▸) carries pyridin-2-ylmethyl on nitrogen 1. The benzimidazole and isoxazole moieties are planar and make a dihedral angle of 76,15 (4)° in REQZIW. In FECPIP, the benzimidazole moiety is slightly non-planar, as indicated by the dihedral angle of 1.3 (1)° between the five- and six-membered rings. The isoxazole ring is planar to within 0.005 (1) Å and makes a dihedral angle of 89.78 (8)° with the benzimidazole ring. On the other hand, in PUGLAF, the fused-ring system is essentially planar, with a maximum deviation of 0.019 (1) Å. It forms interplanar angles of 70.03 (7)° with the isoxazole ring and 81.68 (7)° with the pyridine ring. The two latter rings are also planar, the maximum deviations from the mean planes being 0.0028 (15) and 0.0047 (12) Å. In (I), The isoxazole ring is inclined to the mean plane of the benzimidazole ring by 69.28 (14)° which is approximately the same as in PUGLAF, but less tilted than in REQZIW and FECPIP.
Figure 7.
Structural fragments (II), (III) and (IV) used in the database survey.
Synthesis and crystallization
(Z)-7-Methyl-4-(2-oxopropylidene)-1,5-benzodiazepin-2-one (2.3 g, 0.01 mol) and hydroxylamine hydrochloride (0.7 g, 0.01 mol) were brought to reflux in 40 ml of methanol for 2 h. After neutralization with NaHCO3, the compound that precipitated was filtered and recrystallized from ethyl acetate. The product was dissolved to saturation in ethyl acetate and crystals were obtained by evaporation at room temperature. yield: 70%; m.p. 465–467 K; IR [KBr, γ(cm−1)]: γNH = 3416; γCH = 3012–3263; γC=N–C=C= 1525–1672; 1H NMR [300MHz, DMSO-d 6, δ(ppm)]: 2.32 (s, 3H, CH3 isoxazole); 2.57 (s, 3H, CH3 benzimidazole); 4.23 (s, 2H, CH2); 6.22 (s, 1H, CH isoxazole); 7.00–7.60 (m, 3H, CHar); 5.0 (s, 1H, NH). 13C NMR [75MHz, DMSO-d 6, δ(ppm)]: 13.2 (CH3 isoxazole); 24.3 (CH3 benzimidazole); 26.7 (CH2); 101.8 (CH isoxazole); 115.2–125.8 (CH aryl); 132.7–169.6 (C quaternary).
Refinement
Crystal data, data collection and structure details refinement are given in Table 4 ▸. Hydrogen atoms were located in the first difference-Fourier map. C-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and included as riding contributions with U iso(H) = 1.2U eq(C) (1.5 for methyl groups). At the end of the refinement, the final difference Fourier map showed no residual peaks of chemical significance.
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | C13H13N3O |
| M r | 227.26 |
| Crystal system, space group | Orthorhombic, P b c a |
| Temperature (K) | 294 |
| a, b, c (Å) | 9.6545 (6), 11.2437 (6), 22.9108 (14) |
| V (Å3) | 2487.0 (3) |
| Z | 8 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.08 |
| Crystal size (mm) | 0.35 × 0.2 × 0.2 |
| Data collection | |
| Diffractometer | Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2018 ▸) |
| T min, T max | 0.883, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 13352, 2519, 1723 |
| R int | 0.024 |
| (sin θ/λ)max (Å−1) | 0.625 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.064, 0.203, 1.05 |
| No. of reflections | 2519 |
| No. of parameters | 160 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.33, −0.26 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002723/tx2037sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002723/tx2037Isup2.hkl
CCDC reference: 2048487
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035. Authors contributions are as follows. Conceptualization, AI; methodology, AI; investigation, KC and NA; theoretical calculations, KC; writing (original draft) KC; writing (review and editing of the manuscript), NA; formal analysis, BD; supervision, EME and RA; crystal-structure determination and validation, LVM.
supplementary crystallographic information
Crystal data
| C13H13N3O | Dx = 1.214 Mg m−3 |
| Mr = 227.26 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, Pbca | Cell parameters from 3531 reflections |
| a = 9.6545 (6) Å | θ = 2.9–23.3° |
| b = 11.2437 (6) Å | µ = 0.08 mm−1 |
| c = 22.9108 (14) Å | T = 294 K |
| V = 2487.0 (3) Å3 | Prism, brown |
| Z = 8 | 0.35 × 0.2 × 0.2 mm |
| F(000) = 960 |
Data collection
| Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos diffractometer | 2519 independent reflections |
| Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 1723 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.024 |
| Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.8° |
| ω scans | h = −10→12 |
| Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −14→13 |
| Tmin = 0.883, Tmax = 1.000 | l = −28→28 |
| 13352 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: dual |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.203 | w = 1/[σ2(Fo2) + (0.0963P)2 + 0.6658P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.05 | (Δ/σ)max < 0.001 |
| 2519 reflections | Δρmax = 0.33 e Å−3 |
| 160 parameters | Δρmin = −0.26 e Å−3 |
| 0 restraints |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.8450 (3) | 0.0193 (2) | 0.57078 (9) | 0.1116 (8) | |
| N2 | 0.7873 (3) | −0.0264 (2) | 0.62282 (11) | 0.0916 (8) | |
| C3 | 0.7336 (2) | 0.0646 (2) | 0.64943 (11) | 0.0649 (6) | |
| C4 | 0.7542 (3) | 0.1693 (2) | 0.61779 (12) | 0.0852 (9) | |
| H4 | 0.726197 | 0.245615 | 0.628050 | 0.102* | |
| C5 | 0.8227 (4) | 0.1368 (3) | 0.56964 (12) | 0.0962 (10) | |
| C6 | 0.6621 (3) | 0.0459 (3) | 0.70624 (12) | 0.0802 (8) | |
| H6A | 0.562991 | 0.042286 | 0.699489 | 0.096* | |
| H6B | 0.690721 | −0.030027 | 0.722308 | 0.096* | |
| C7 | 0.6914 (2) | 0.1410 (2) | 0.74970 (10) | 0.0628 (6) | |
| N8 | 0.5894 (2) | 0.19185 (18) | 0.78133 (8) | 0.0616 (5) | |
| C9 | 0.6490 (2) | 0.2765 (2) | 0.81631 (9) | 0.0578 (6) | |
| C10 | 0.5943 (3) | 0.3565 (2) | 0.85619 (10) | 0.0727 (7) | |
| H10 | 0.499999 | 0.357606 | 0.864518 | 0.087* | |
| C11 | 0.6850 (3) | 0.4350 (3) | 0.88328 (11) | 0.0815 (8) | |
| C12 | 0.8243 (3) | 0.4291 (3) | 0.87071 (12) | 0.0855 (9) | |
| H12 | 0.883742 | 0.481816 | 0.889438 | 0.103* | |
| C13 | 0.8799 (3) | 0.3491 (3) | 0.83190 (11) | 0.0785 (8) | |
| H13 | 0.974628 | 0.347148 | 0.824563 | 0.094* | |
| C14 | 0.7902 (2) | 0.2713 (2) | 0.80401 (10) | 0.0615 (6) | |
| N15 | 0.81476 (19) | 0.18510 (19) | 0.76175 (9) | 0.0678 (6) | |
| C16 | 0.6344 (5) | 0.5270 (4) | 0.92565 (15) | 0.1269 (13) | |
| H16A | 0.638258 | 0.604086 | 0.907763 | 0.190* | |
| H16B | 0.691872 | 0.526214 | 0.959831 | 0.190* | |
| H16C | 0.540500 | 0.509387 | 0.936487 | 0.190* | |
| C17 | 0.8775 (7) | 0.2031 (4) | 0.51859 (15) | 0.174 (2) | |
| H17A | 0.975882 | 0.191938 | 0.516094 | 0.261* | |
| H17B | 0.857462 | 0.286270 | 0.523070 | 0.261* | |
| H17C | 0.834513 | 0.174111 | 0.483589 | 0.261* | |
| H8 | 0.501 (3) | 0.182 (2) | 0.7723 (11) | 0.079 (8)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.153 (2) | 0.0868 (15) | 0.0948 (15) | −0.0016 (13) | 0.0324 (14) | −0.0116 (12) |
| N2 | 0.118 (2) | 0.0609 (13) | 0.0961 (16) | 0.0068 (12) | 0.0172 (14) | 0.0016 (12) |
| C3 | 0.0657 (15) | 0.0504 (12) | 0.0785 (15) | −0.0017 (10) | −0.0074 (12) | −0.0070 (11) |
| C4 | 0.121 (2) | 0.0538 (14) | 0.0809 (18) | −0.0009 (14) | −0.0090 (17) | −0.0022 (12) |
| C5 | 0.150 (3) | 0.0717 (18) | 0.0673 (17) | −0.0246 (18) | −0.0082 (17) | −0.0019 (14) |
| C6 | 0.0720 (17) | 0.0801 (18) | 0.0885 (18) | −0.0208 (13) | 0.0074 (13) | −0.0092 (14) |
| C7 | 0.0463 (13) | 0.0698 (14) | 0.0724 (14) | −0.0068 (11) | 0.0015 (10) | 0.0054 (11) |
| N8 | 0.0404 (11) | 0.0732 (13) | 0.0711 (12) | −0.0031 (9) | −0.0037 (9) | 0.0051 (10) |
| C9 | 0.0494 (12) | 0.0671 (14) | 0.0569 (12) | 0.0038 (10) | −0.0035 (10) | 0.0105 (10) |
| C10 | 0.0704 (16) | 0.0799 (17) | 0.0678 (14) | 0.0137 (13) | −0.0001 (12) | 0.0093 (13) |
| C11 | 0.103 (2) | 0.0806 (18) | 0.0608 (15) | 0.0105 (16) | −0.0089 (14) | 0.0014 (12) |
| C12 | 0.094 (2) | 0.093 (2) | 0.0687 (16) | −0.0185 (16) | −0.0220 (15) | 0.0013 (14) |
| C13 | 0.0649 (16) | 0.099 (2) | 0.0717 (15) | −0.0169 (14) | −0.0119 (13) | 0.0017 (15) |
| C14 | 0.0528 (13) | 0.0738 (15) | 0.0580 (12) | −0.0059 (10) | −0.0080 (10) | 0.0101 (11) |
| N15 | 0.0453 (11) | 0.0817 (14) | 0.0763 (13) | −0.0062 (9) | 0.0034 (9) | −0.0031 (10) |
| C16 | 0.157 (3) | 0.126 (3) | 0.097 (2) | 0.025 (3) | −0.003 (2) | −0.029 (2) |
| C17 | 0.311 (7) | 0.140 (3) | 0.072 (2) | −0.080 (4) | 0.008 (3) | 0.011 (2) |
Geometric parameters (Å, º)
| O1—N2 | 1.413 (3) | C9—C14 | 1.393 (3) |
| O1—C5 | 1.339 (4) | C10—H10 | 0.9300 |
| N2—C3 | 1.299 (3) | C10—C11 | 1.390 (4) |
| C3—C4 | 1.396 (4) | C11—C12 | 1.377 (4) |
| C3—C6 | 1.488 (4) | C11—C16 | 1.500 (4) |
| C4—H4 | 0.9300 | C12—H12 | 0.9300 |
| C4—C5 | 1.337 (4) | C12—C13 | 1.374 (4) |
| C5—C17 | 1.485 (4) | C13—H13 | 0.9300 |
| C6—H6A | 0.9700 | C13—C14 | 1.386 (3) |
| C6—H6B | 0.9700 | C14—N15 | 1.391 (3) |
| C6—C7 | 1.488 (4) | C16—H16A | 0.9600 |
| C7—N8 | 1.349 (3) | C16—H16B | 0.9600 |
| C7—N15 | 1.320 (3) | C16—H16C | 0.9600 |
| N8—C9 | 1.371 (3) | C17—H17A | 0.9600 |
| N8—H8 | 0.88 (3) | C17—H17B | 0.9600 |
| C9—C10 | 1.387 (3) | C17—H17C | 0.9600 |
| C5—O1—N2 | 108.2 (2) | C9—C10—C11 | 117.8 (3) |
| C3—N2—O1 | 105.5 (2) | C11—C10—H10 | 121.1 |
| N2—C3—C4 | 111.3 (2) | C10—C11—C16 | 121.4 (3) |
| N2—C3—C6 | 118.9 (2) | C12—C11—C10 | 119.4 (3) |
| C4—C3—C6 | 129.7 (2) | C12—C11—C16 | 119.2 (3) |
| C3—C4—H4 | 127.2 | C11—C12—H12 | 118.4 |
| C5—C4—C3 | 105.6 (3) | C13—C12—C11 | 123.3 (3) |
| C5—C4—H4 | 127.2 | C13—C12—H12 | 118.4 |
| O1—C5—C17 | 117.0 (3) | C12—C13—H13 | 121.1 |
| C4—C5—O1 | 109.5 (3) | C12—C13—C14 | 117.8 (3) |
| C4—C5—C17 | 133.5 (3) | C14—C13—H13 | 121.1 |
| C3—C6—H6A | 108.9 | C13—C14—C9 | 119.5 (2) |
| C3—C6—H6B | 108.9 | C13—C14—N15 | 130.8 (2) |
| H6A—C6—H6B | 107.7 | N15—C14—C9 | 109.67 (19) |
| C7—C6—C3 | 113.3 (2) | C7—N15—C14 | 104.72 (19) |
| C7—C6—H6A | 108.9 | C11—C16—H16A | 109.5 |
| C7—C6—H6B | 108.9 | C11—C16—H16B | 109.5 |
| N8—C7—C6 | 121.7 (2) | C11—C16—H16C | 109.5 |
| N15—C7—C6 | 125.6 (2) | H16A—C16—H16B | 109.5 |
| N15—C7—N8 | 112.7 (2) | H16A—C16—H16C | 109.5 |
| C7—N8—C9 | 107.59 (19) | H16B—C16—H16C | 109.5 |
| C7—N8—H8 | 121.4 (17) | C5—C17—H17A | 109.5 |
| C9—N8—H8 | 129.2 (17) | C5—C17—H17B | 109.5 |
| N8—C9—C10 | 132.5 (2) | C5—C17—H17C | 109.5 |
| N8—C9—C14 | 105.29 (19) | H17A—C17—H17B | 109.5 |
| C10—C9—C14 | 122.2 (2) | H17A—C17—H17C | 109.5 |
| C9—C10—H10 | 121.1 | H17B—C17—H17C | 109.5 |
| O1—N2—C3—C4 | −0.7 (3) | N8—C7—N15—C14 | −0.4 (3) |
| O1—N2—C3—C6 | 179.3 (2) | N8—C9—C10—C11 | −177.5 (2) |
| N2—O1—C5—C4 | 0.0 (4) | N8—C9—C14—C13 | 178.6 (2) |
| N2—O1—C5—C17 | 179.1 (3) | N8—C9—C14—N15 | 0.5 (2) |
| N2—C3—C4—C5 | 0.7 (3) | C9—C10—C11—C12 | −1.3 (4) |
| N2—C3—C6—C7 | 139.7 (3) | C9—C10—C11—C16 | 178.2 (3) |
| C3—C4—C5—O1 | −0.4 (4) | C9—C14—N15—C7 | −0.1 (3) |
| C3—C4—C5—C17 | −179.3 (4) | C10—C9—C14—C13 | −0.6 (3) |
| C3—C6—C7—N8 | 133.7 (2) | C10—C9—C14—N15 | −178.7 (2) |
| C3—C6—C7—N15 | −46.0 (4) | C10—C11—C12—C13 | 0.5 (4) |
| C4—C3—C6—C7 | −40.4 (4) | C11—C12—C13—C14 | 0.3 (4) |
| C5—O1—N2—C3 | 0.4 (3) | C12—C13—C14—C9 | −0.3 (4) |
| C6—C3—C4—C5 | −179.3 (3) | C12—C13—C14—N15 | 177.4 (2) |
| C6—C7—N8—C9 | −179.1 (2) | C13—C14—N15—C7 | −177.9 (3) |
| C6—C7—N15—C14 | 179.3 (2) | C14—C9—C10—C11 | 1.4 (3) |
| C7—N8—C9—C10 | 178.4 (2) | N15—C7—N8—C9 | 0.7 (3) |
| C7—N8—C9—C14 | −0.7 (2) | C16—C11—C12—C13 | −179.0 (3) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N8—H8···N15i | 0.89 (3) | 1.96 (3) | 2.830 (3) | 167 (2) |
| C4—H4···N2ii | 0.93 | 2.57 | 3.447 (3) | 157 |
Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) −x+3/2, y+1/2, z.
References
- Al Ati, G., Chkirate, K., Mashrai, A., Mague, J. T., Ramli, Y., Achour, R. & Essassi, E. M. (2021). Acta Cryst. E77, 18–22. [DOI] [PMC free article] [PubMed]
- Attar, K. H., Azaoui, B. E., Benchidmi, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o809–o810.
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
- Benyahya, M. A., El Azzaoui, B., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170647.
- Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S. & Essassi, E. M. (2021). J. Mol. Liq. 321, 114750.
- Chkirate, K., Fettach, S., El Hafi, M., Karrouchi, K., Elotmani, B., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N., Essassi, E. M. & Garcia, Y. (2020a). J. Inorg. Biochem. 208, 111092. [DOI] [PubMed]
- Chkirate, K., Fettach, S., Karrouchi, K., Sebbar, N. K., Essassi, E. M., Mague, J. T., Radi, S., Faouzi, M. E. A., Adarsh, N. N. & Garcia, Y. (2019a). J. Inorg. Biochem. 191, 21–28. [DOI] [PubMed]
- Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33–37. [DOI] [PMC free article] [PubMed]
- Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019c). Acta Cryst. E75, 154–158. [DOI] [PMC free article] [PubMed]
- Chkirate, K., Karrouchi, K., Dege, N., Sebbar, N. K., Ejjoummany, A., Radi, S., Adarsh, N. N., Talbaoui, A., Ferbinteanu, M., Essassi, E. M. & Garcia, Y. (2020b). New J. Chem. 44, 2210–2221.
- Chkirate, K., Regragui, R., Essassi, E. M. & Pierrot, M. (2001). Z. Kristallogr. New Cryst. Struct. 216, 635–636.
- Chkirate, K., Sebbar, N. K., Hökelek, T., Krishnan, D., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1669–1673. [DOI] [PMC free article] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Doumbia, M. L., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2009). Acta Cryst. E65, o2714–o2715. [DOI] [PMC free article] [PubMed]
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Revision A.02. Gaussian Inc, Wallingford, CT, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Kankala, S., Kankala, R. K., Gundepaka, P., Thota, N., Nerella, S., Gangula, M. R., Guguloth, H., Kagga, M., Vadde, R. & Vasam, C. S. (2013). Bioorg. Med. Chem. Lett. 23, 1306–1309. [DOI] [PubMed]
- Lahmidi, S., Sebbar, N. K., Hökelek, T., Chkirate, K., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1833–1837. [DOI] [PMC free article] [PubMed]
- Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. [DOI] [PubMed]
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
- Menteşe, E., Emirik, M. & Sökmen, B. B. (2019). Bioorg. Chem. 86, 151–158. [DOI] [PubMed]
- Ranjith, P. K., Rajeesh, P., Haridas, K. R., Susanta, N. K., Guru Row, T. N., Rishikesan, R. & Suchetha Kumari, N. (2013). Bioorg. Med. Chem. Lett. 23, 5228–5234. [DOI] [PubMed]
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Sperandio, D., Aktoudianakis, V., Babaoglu, K., Chen, X., Elbel, K., Chin, G., Corkey, B., Du, J., Jiang, B., Kobayashi, T., Mackman, R., Martinez, R., Yang, H., Zablocki, J., Kusam, S., Jordan, K., Webb, H., Bates, J. G., Lad, L., Mish, M., Niedziela-Majka, A., Metobo, S., Sapre, A., Hung, M., Jin, D., Fung, W., Kan, E., Eisenberg, G., Larson, N., Newby, Z. E. R., Lansdon, E., Tay, C., Neve, R. M., Shevick, S. L. & Breckenridge, D. G. (2019). Bioorg. Med. Chem. 27, 457–469. [DOI] [PubMed]
- Taia, A., Essaber, M., Aatif, A., Chkirate, K., Hökelek, T., Mague, J. T. & Sebbar, N. K. (2020). Acta Cryst. E76, 962–966. [DOI] [PMC free article] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021002723/tx2037sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021002723/tx2037Isup2.hkl
CCDC reference: 2048487
Additional supporting information: crystallographic information; 3D view; checkCIF report







