Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Mar 5;77(Pt 4):335–340. doi: 10.1107/S2056989021002310

Reduced 3,4′-bi­pyrazoles carrying thio­phene and thia­zole substituents: structures of two intermediates and two products

Chayanna Harish Chinthal a, Hemmige S Yathirajan a,*, Nagaraja Manju b, Balakrishna Kalluraya b, Sabine Foro c, Christopher Glidewell d
PMCID: PMC8025870  PMID: 33936753

Reduced 3,4′-bi­pyrazole-2-carbo­thio­amides are formed in cyclo­addition reactions between chalcones and thio­semicarbazide, and these can undergo further cyclo­addition reactions to form oxothaazole of thia­zole substituents. Structure analysis establishes the regiochemistry of the cyclo­addition reactions and shows the very simple patterns of supra­molecular assembly in these compounds.

Keywords: heterocyclic compounds, reduced bi­pyrazoles, synthesis, crystal structure, regiochemistry, hydrogen bonding, supra­molecular assembly

Abstract

Cyclo­addition reactions between 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-ones and thio­semicarbazide leads to the formation of reduced 3,4′-bi­pyrazole-2-carbo­thio­amides. Further cyclo­addition of these inter­mediates with either diethyl acetyl­enedi­carboxyl­ate or 4-bromo­phenacyl bromide leads to reduced 3,4′-bi­pyrazoles carrying oxo­thia­zole or thia­zole substituents, respectively. The structures of two representative inter­mediates and two representative products established unambiguously the regiochemistry of the cyclo­addition reactions. The mol­ecules of 3′-methyl-5′-(2-methyl­phen­oxy)-1′-phenyl-5-(thio­phen-2-yl)-3,4-di­hydro-1′H,2H-3,4′-bi­pyra­zole-2-carbo­thio­amide, C25H23N5OS2 (Ia), are linked by N—H⋯N hydrogen bonds to form simple C(8) chains. The analogous compound 5′-(2,4-di­chloro­phen­oxy)-3′-methyl-1′-phenyl-5-(thio­phen-2-yl)-3,4-di­hydro-1′H,2H-3,4′-bi­pyra­zole-2-carbo­thio­amide hemihydrate crystallizes as a hemihydrate, C24H19Cl2N5OS2·0.5H2O (Ib), and the independent components are linked into a chain of spiro-fused R 4 4(20) rings by a combination of O—H⋯N and N—H⋯O hydrogen bonds. In the structure of ethyl (Z)-2-{2-[3′-methyl-1′-phenyl-5-(thio­phen-2-yl)-5′-(2-methyl­phen­oxy)-3,4-di­hydro-1′H,2H-3,4′-bi­pyrazole-2-yl]-4-oxo-4,5-di­hydro­thia­zol-5-yl­idene}acetate, C31H27N5O4S2 (II), inversion-related pairs of mol­ecules are linked by paired C—H⋯π(arene) hydrogen bonds to form cyclic centrosymmetric dimers, but there are no direction-specific inter­molecular inter­actions in 4-(4-bromo­phen­yl)-2-[5′-(2,4-di­chloro­phen­oxy)-3′-methyl-1′-phenyl-5-(thio­phen-2-yl)-3,4-di­hydro-1′H,2H-3,4′-bi­pyrazole-2-yl]-4-thia­zole, C32H22BrCl2N5OS2 (III). Comparisons are made with the structures of some related compounds.

Chemical context  

Heterocyclic compounds containing the pyrazole unit have been found to exhibit a wide range of biological activities, including anti­bacterial and anti­fungal activity (Rai et al., 2008; Isloor et al., 2009; Vijesh et al., 2013) and analgesic and anti-inflammatory activity (Girisha et al., 2010; Isloor et al., 2010; Vijesh et al., 2013). It has also been found that the incorporation of a thia­zole or thia­zolone substituent often leads to enhanced activity (Sulthana et al., 2015; Havrylyuk et al., 2016), as does the incorporation of a thio­phene substituent (Rostom et al., 2009; Bondock et al., 2010). In this connection, a procedure has recently been developed (Manju et al., 2019) for the synthesis of reduced 3,4′-bi­pyrazoles incorporating other heterocyclic units such as thia­zole, thia­zoline and thio­phene as integral components. In brief, condensation of a 5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde with 2-acetyl­thio­phene gives the corresponding chalcone (Shaibah et al., 2020); chalcones of this type can undergo cyclo­condensation reactions with semicabazide to provide the inter­mediate carbo­thio­amides of type (I) (see Scheme). Further condensation of type (I) inter­mediates with diethyl acetyl­enedi­carboxyl­ate or with 4-bromo­phenacyl bromide gave the oxo­thia­zolyl­idene ester (II) or the thia­zole (III), respectively (see Scheme). Although the NMR spectra of the inter­mediates (I) and the products (II) and (III) contained all of the expected signals, it was not possible to establish uniquely from these data the regiochemistry of the cyclo­addition reactions leading to their formation, and accordingly we have determined the structures of two representative inter­mediates (Ia) and (Ib) (Figs. 1 and 2) and of two representative products (II) (Fig. 3) and (III) (Fig. 4).graphic file with name e-77-00335-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of compound (Ia) showing the atom-labelling scheme and the disorder in the thio­phene unit, where the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The structure of the independent components in compound (Ib) showing the atom-labelling scheme and the disorder in the thio­phene unit, where the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. The water mol­ecule lies across a twofold rotation axis and the displacement ellipsoids are drawn at the 30% probability level.

Figure 3.

Figure 3

The mol­ecular structure of compound (II) showing the atom-labelling scheme and the disorder in the thio­phene unit, where the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

Figure 4.

Figure 4

The mol­ecular structure of compound (III) showing the atom-labelling scheme and the disorder in the thio­phene unit, where the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

Structural commentary  

Although compounds (Ia), (Ib), (II) and (III) were all crystallized under identical conditions, compound (Ib) crystallized as a hemihydrate, in which the water mol­ecules lies across a twofold rotation axis, while the other three compounds all crystallized in solvent-free form. In each compound, the thio­phene substituent is disordered over two sets of atomic sites (Section 6), whose relationship approximately corres­ponds to a rotation of 180° about the bond C45—C452 (Figs. 1–4 ). That the cyclo­condensation reactions between the chalcone precursors and thio­semicarbazide lead to the formation of new pyrazole rings indicates that it is the two N atoms of the hydrazine unit in thio­semicarbazide that participate in this reaction step. If the participants had been the two N atoms either side of the thio­carbonyl unit, then the products would have been the regioisomers of type (A), containing a newly formed reduced pyrimidine ring in place of the pyrazole ring actually observed (Fig. 5). Similarly, in the cyclo­condensation reactions between the carbo­thio­amides (I) and either diethyl acetyl­enedi­carboxyl­ate or 4-bromo­phenacyl bromide to form (II) and (III), respectively, alternative regiochemistry is possible in each case, to yield products of types (B) and (C), respectively (Fig. 5). The X-ray analyses reported here have confirmed that the single products formed in each of these cyclo­condensation reactions (Manju et al., 2019) have structures of types (I)–(III), as opposed to the possible alternative isomers (A)–(C).

Figure 5.

Figure 5

Possible regioisomers (A)–(C) of compounds (I)–(III), respectively.

Supra­molecular features  

The supra­molecular assembly of compound (Ia) is extremely simple: a single N—H⋯N hydrogen bond (Table 1) links mol­ecules that are related by translation into a C(8) (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995) chain running parallel to the [100] direction (Fig. 6), but there are no direction-specific inter­actions between adjacent chains.

Table 1. Hydrogen bonds and short inter- and intra­molecular contacts (Å, °).

Cg1 represents the centroid of the C11–C16 ring.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(Ia) N423—H42A⋯N2i 0.92 (3) 2.28 (3) 3.111 (3) 150 (2)
  N423—H42A⋯N41 0.92 (3) 2.27 (3) 2.628 (4) 103 (2)
(Ib) O61—H61⋯N2 0.88 (3) 2.03 (3) 2.900 (2) 176 (2)
  N423—H42A⋯O61ii 0.84 (3) 2.33 (3) 3.154 (3) 167 (3)
  N423—H42B⋯N41 0.85 (3) 2.27 (3) 2.648 (3) 107 (2)
(II) C13—H13⋯O424iii 0.93 2.49 3.200 (7) 133
  C54—H54⋯Cg1iv 0.93 2.91 3.714 (12) 146
  C553—H553⋯Cg1v 0.93 2.92 3.76 (5) 151

Symmetry codes: (i) 1 + x, y, z; (ii) 1 − x, 1 − y, 1 − z; (iii) x, −1 + y, z; (iv) 2 − x, −y, 1 − z; (v) −1 + x, y, z.

Figure 6.

Figure 6

Part of the crystal structure of compound (Ia) showing the formation of a hydrogen-bonded chain running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are bonded to C atoms have been omitted.

Compound (Ib) is a hemihydrate in which the water component lies across a twofold rotation axis, and the supra­molecular aggregation is more complex than that in (Ia). There is an O—H⋯N hydrogen bond within the selected asymmetric unit (Table 1), and pairs of inversion-related bimolecular units of this type are linked by paired N—H⋯O hydrogen bonds to form an Inline graphic(20) ring. Propagation of this motif by the action of the twofold rotation axes generates a chain of spiro-fused Inline graphic(20) rings running parallel to the [001] direction, in which the centrosymmetric rings are centred at (0.5, 0.5, 0.5n) where n represents an integer (Fig. 7). Within this chain the water mol­ecules, which act as double donors in O—H⋯N hydrogen bonds and double acceptors in N—H⋯O hydrogen bonds, are the points of fusion between adjacent rings (Fig. 7).

Figure 7.

Figure 7

Part of the crystal structure of compound (Ib) showing the formation of a hydrogen-bonded chain of spiro-fused rings running parallel to the [001] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are bonded to C atoms have been omitted.

There are three short inter­molecular contacts in the structure of compound (II). That involving atom C13 (Table 1) has a very small D—H⋯A angle, and so is unlikely to be structurally significant (Wood et al., 2009), while that involving atom C553 applies only to the minor disorder component, and is absent for the majority of the mol­ecules. The only possible significant inter­action is thus that involving atom C54, which links inversion-related pairs of mol­ecules to form a cyclic centrosymmetric motif (Fig. 8). There are no significant hydrogen bonds of any type in the structure of compound (III).

Figure 8.

Figure 8

Part of the crystal structure of compound (II) showing the formation of a cyclic centrosymmetric dimer containing C—H⋯π(arene) hydrogen bonds. For the sake of clarity, the minor disorder components, and the H atoms not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (2 − x, −y, 1 − z).

Database survey  

Structures have been reported recently for a number of compounds related to those reported here, including precursors and inter­mediates in the synthetic pathways to compounds (I)–(III). The structures of five examples of 5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehydes have been reported (Shahani et al., 2011; Vinutha et al., 2014; Glidewell et al., 2019; Kiran Kumar et al., 2019), as have those (Shaibah et al., 2020) of two isostructural chalcones derived from two such carbaldehydes by condensation reactions with 2-acetyl­thio­phene, in each of which the thio­phene unit shows the same type of disorder as observed here in compounds (Ia), (Ib), (II) and (III). Structures have also been reported (Cuartas et al., 2017; Kiran Kumar et al., 2019) for several reduced 3,4′-bi­pyrazoles formed by cyclo­condensation reactions between chalcones and hydrazine followed by N-acetyl­ation. However, the only structure reported to date of a product in which the 3,4′-bi­pyrazole unit is embedded within a group of other cyclic substituents, as in (I)–(III) is that for the methyl ester analogue of (II) (Manju et al., 2019). The original report on this compound provided no crystallographic information other than a mol­ecular structure plot. However, the deposited CIF (CCDC deposition No. 1588961) shows that the reflection data have been subjected to the SQUEEZE procedure (Spek, 2015), although this is not mentioned in the original report. The CIF also shows two sites for the O atom of the ar­yloxy unit, ca 1.28 Å apart with occupancies of 0.843 (6) and 0.157 (6) and involving some unexpected geometrical features, although all other atoms are reported as being fully ordered. Hence this structure is unlikely to be entirely correct.

Synthesis and crystallization  

Samples of compounds (Ia), (Ib), (II) and (III) were prepared using the methods previously reported (Manju et al., 2019). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in a mixture of ethanol and N,N-di­methyl­formamide (initial composition 3:1, v/v).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Several bad outlier reflections were omitted from the refinements. i.e. for (Ia) (Inline graphic,Inline graphic,18); for (Ic) (1,1,1), (14,0,0), (Inline graphic,0,6), (Inline graphic,1,19), (Inline graphic,9,7) and (Inline graphic,3,2); and for (II) (Inline graphic,Inline graphic,2) and (0,5,13). All H atoms, apart from those in the minor disorder components, were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (alkenyl, aromatic and thien­yl), 0.96 Å (CH3), 0.97 Å (CH2) or 0.98 Å (aliphatic C—H), and with U iso(H) = kU eq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N or O atoms, the atomic coordinates were refined with U iso(H) = 1.2Ueq(N) or 1.5U eq(O), giving the N—H and O—H distances shown in Table 1. For the minor disorder components, the bonded distances and the 1,3 non-bonded distances were restrained to be the same as the corresponding distances in the major disorder components, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic displace­ment parameters associated with pairs of atomic sites occupying essentially the same regions of physical space were constrained to be equal. Subject to these conditions, the occupancies, in the crystals selected for data collection, of the disordered thienyl units refined to 0.866 (3) and 0.134 (3) in (Ia), 0.951 (3) and 0.049 (3) in (Ib), 0.768 (6) and 0.232 (6) in (II), and 0.947 (4) and 0.053 (4) in (III).

Table 2. Experimental details.

  (Ia) (Ib) (II) (III)
Crystal data
Chemical formula C25H23N5OS2 2C24H19Cl2N5OS2·H2O C31H27N5O4S2 C32H22BrCl2N5OS2
M r 473.60 1074.94 597.69 707.47
Crystal system, space group Triclinic, P\overline{1} Monoclinic, P2/c Triclinic, P\overline{1} Triclinic, P\overline{1}
Temperature (K) 296 296 296 296
a, b, c (Å) 8.6269 (7), 9.8418 (9), 14.900 (1) 15.037 (1), 8.4266 (6), 19.471 (1) 10.783 (2), 11.683 (3), 13.577 (3) 12.3200 (9), 12.5700 (9), 12.7742 (9)
α, β, γ (°) 90.588 (7), 106.162 (8), 101.441 (7) 90, 96.246 (6), 90 93.54 (2), 105.17 (2), 113.20 (2) 117.202 (8), 102.879 (7), 105.727 (7)
V3) 1188.05 (17) 2452.5 (3) 1490.9 (6) 1548.4 (2)
Z 2 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.25 0.47 0.22 1.67
Crystal size (mm) 0.36 × 0.12 × 0.04 0.36 × 0.12 × 0.12 0.48 × 0.12 × 0.06 0.40 × 0.40 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD detector Oxford Diffraction Xcalibur with Sapphire CCD detector Oxford Diffraction Xcalibur with Sapphire CCD detector Oxford Diffraction Xcalibur with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.949, 0.990 0.922, 0.946 0.849, 0.987 0.779, 0.875
No. of measured, independent and observed [I > 2σ(I)] reflections 8241, 4898, 2524 10494, 5290, 3075 10433, 5561, 1730 10549, 5773, 3158
R int 0.030 0.033 0.138 0.022
(sin θ/λ)max−1) 0.629 0.651 0.607 0.607
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.056, 0.112, 1.03 0.046, 0.097, 0.98 0.079, 0.143, 0.88 0.039, 0.095, 0.93
No. of reflections 4898 5290 5561 5773
No. of parameters 319 335 395 402
No. of restraints 10 10 10 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.18 0.26, −0.30 0.26, −0.24 0.47, −0.34

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, Ia, Ib, II, III. DOI: 10.1107/S2056989021002310/dx2035sup1.cif

e-77-00335-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) Ia. DOI: 10.1107/S2056989021002310/dx2035Iasup2.hkl

e-77-00335-Iasup2.hkl (389.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002310/dx2035Iasup6.cml

Structure factors: contains datablock(s) Ib. DOI: 10.1107/S2056989021002310/dx2035Ibsup3.hkl

e-77-00335-Ibsup3.hkl (421KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002310/dx2035Ibsup7.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021002310/dx2035IIsup4.hkl

e-77-00335-IIsup4.hkl (442.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002310/dx2035IIsup8.cml

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989021002310/dx2035IIIsup5.hkl

e-77-00335-IIIsup5.hkl (459KB, hkl)

CCDC references: 2065478, 2065477, 2065476, 2065475

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

CHC thanks the University of Mysore for research facilities.

supplementary crystallographic information

3'-Methyl-5'-(2-methylphenoxy)-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide (Ia) . Crystal data

C25H23N5OS2 Z = 2
Mr = 473.60 F(000) = 496
Triclinic, P1 Dx = 1.324 Mg m3
a = 8.6269 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.8418 (9) Å Cell parameters from 5098 reflections
c = 14.900 (1) Å θ = 2.9–27.9°
α = 90.588 (7)° µ = 0.25 mm1
β = 106.162 (8)° T = 296 K
γ = 101.441 (7)° Needle, yellow
V = 1188.05 (17) Å3 0.36 × 0.12 × 0.04 mm

3'-Methyl-5'-(2-methylphenoxy)-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide (Ia) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD detector diffractometer 4898 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2524 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω scans θmax = 26.6°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→9
Tmin = 0.949, Tmax = 0.990 k = −10→12
8241 measured reflections l = −16→18

3'-Methyl-5'-(2-methylphenoxy)-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide (Ia) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.038P)2 + 0.0763P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4898 reflections Δρmax = 0.18 e Å3
319 parameters Δρmin = −0.18 e Å3
10 restraints

3'-Methyl-5'-(2-methylphenoxy)-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide (Ia) . Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3'-Methyl-5'-(2-methylphenoxy)-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide (Ia) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 −0.0795 (2) 0.6663 (2) 0.30851 (14) 0.0406 (6)
N2 −0.2192 (2) 0.6179 (2) 0.23518 (15) 0.0451 (6)
C3 −0.1670 (3) 0.6245 (3) 0.15926 (18) 0.0421 (7)
C4 0.0047 (3) 0.6737 (3) 0.18050 (17) 0.0384 (7)
C5 0.0541 (3) 0.6994 (3) 0.27513 (17) 0.0384 (7)
C11 −0.0885 (3) 0.6605 (3) 0.40219 (18) 0.0445 (7)
C12 0.0024 (3) 0.7654 (4) 0.4690 (2) 0.0625 (9)
H12 0.0687 0.8426 0.4532 0.075*
C13 −0.0067 (4) 0.7541 (5) 0.5603 (2) 0.0816 (12)
H13 0.0563 0.8232 0.6063 0.098*
C14 −0.1073 (5) 0.6421 (5) 0.5835 (2) 0.0838 (12)
H14 −0.1123 0.6354 0.6448 0.101*
C15 −0.2004 (4) 0.5399 (4) 0.5157 (3) 0.0757 (11)
H15 −0.2704 0.4648 0.5310 0.091*
C16 −0.1904 (3) 0.5484 (3) 0.4250 (2) 0.0565 (8)
H16 −0.2524 0.4784 0.3793 0.068*
C31 −0.2869 (3) 0.5831 (3) 0.06491 (18) 0.0615 (9)
H31A −0.2770 0.6581 0.0249 0.092*
H31B −0.3970 0.5616 0.0707 0.092*
H31C −0.2637 0.5027 0.0384 0.092*
N41 0.4015 (2) 0.7247 (3) 0.16104 (14) 0.0415 (6)
N42 0.2565 (2) 0.6253 (2) 0.14876 (14) 0.0393 (6)
C43 0.1056 (3) 0.6826 (3) 0.11269 (17) 0.0412 (7)
H43 0.0379 0.6306 0.0538 0.049*
C44 0.1805 (3) 0.8295 (3) 0.09133 (18) 0.0496 (8)
H44A 0.1515 0.8403 0.0244 0.060*
H44B 0.1441 0.8997 0.1218 0.060*
C45 0.3626 (3) 0.8383 (3) 0.13106 (18) 0.0418 (7)
S421 0.09307 (9) 0.36681 (8) 0.14413 (5) 0.0559 (3)
C422 0.2638 (3) 0.4938 (3) 0.16724 (17) 0.0408 (7)
N423 0.4148 (3) 0.4679 (3) 0.20351 (18) 0.0538 (7)
H42A 0.506 (3) 0.539 (3) 0.2180 (18) 0.065*
H42B 0.426 (3) 0.380 (3) 0.2139 (19) 0.065*
S451 0.69257 (13) 0.96287 (15) 0.18083 (12) 0.0769 (5) 0.866 (3)
C452 0.4879 (3) 0.9623 (3) 0.13580 (19) 0.0515 (8) 0.866 (3)
C453 0.4652 (18) 1.0876 (10) 0.1098 (14) 0.0769 (15) 0.866 (3)
H453 0.3615 1.1067 0.0830 0.092* 0.866 (3)
C454 0.6146 (9) 1.1897 (8) 0.1270 (14) 0.104 (2) 0.866 (3)
H454 0.6204 1.2821 0.1127 0.125* 0.866 (3)
C455 0.7456 (8) 1.1343 (6) 0.1666 (8) 0.099 (2) 0.866 (3)
H455 0.8539 1.1848 0.1844 0.119* 0.866 (3)
S551 0.456 (3) 1.1213 (19) 0.104 (3) 0.0769 (15) 0.134 (3)
C552 0.4879 (3) 0.9623 (3) 0.13580 (19) 0.0515 (8) 0.134 (3)
C553 0.6476 (19) 0.960 (4) 0.159 (4) 0.0769 (5) 0.134 (3)
H553 0.6877 0.8792 0.1740 0.092* 0.134 (3)
C554 0.751 (3) 1.092 (4) 0.158 (6) 0.099 (2) 0.134 (3)
H554 0.8660 1.1083 0.1735 0.119* 0.134 (3)
C555 0.661 (4) 1.189 (4) 0.133 (10) 0.104 (2) 0.134 (3)
H555 0.7062 1.2828 0.1317 0.125* 0.134 (3)
O51 0.20838 (18) 0.73742 (19) 0.33641 (11) 0.0434 (5)
C51 0.2920 (3) 0.8764 (3) 0.34104 (17) 0.0432 (7)
C52 0.4615 (3) 0.8993 (4) 0.37778 (18) 0.0535 (8)
C53 0.5473 (5) 1.0365 (5) 0.3857 (2) 0.0833 (13)
H53 0.6615 1.0564 0.4102 0.100*
C54 0.4682 (7) 1.1423 (5) 0.3583 (3) 0.1011 (15)
H54 0.5291 1.2330 0.3649 0.121*
C55 0.3006 (6) 1.1174 (4) 0.3213 (3) 0.0882 (12)
H55 0.2478 1.1901 0.3018 0.106*
C56 0.2104 (4) 0.9822 (4) 0.3131 (2) 0.0626 (9)
H56 0.0961 0.9634 0.2889 0.075*
C57 0.5475 (4) 0.7841 (4) 0.4051 (2) 0.0804 (11)
H57A 0.6602 0.8211 0.4398 0.121*
H57B 0.5441 0.7310 0.3500 0.121*
H57C 0.4940 0.7253 0.4435 0.121*

3'-Methyl-5'-(2-methylphenoxy)-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide (Ia) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0280 (12) 0.0587 (17) 0.0333 (13) 0.0070 (10) 0.0073 (10) 0.0036 (11)
N2 0.0269 (12) 0.0642 (18) 0.0403 (13) 0.0050 (11) 0.0063 (11) 0.0041 (11)
C3 0.0276 (14) 0.057 (2) 0.0382 (16) 0.0036 (12) 0.0073 (12) 0.0040 (13)
C4 0.0265 (14) 0.0520 (19) 0.0335 (16) 0.0026 (12) 0.0072 (12) 0.0031 (13)
C5 0.0237 (14) 0.0491 (19) 0.0400 (16) 0.0047 (12) 0.0073 (12) 0.0048 (13)
C11 0.0319 (15) 0.070 (2) 0.0363 (17) 0.0195 (14) 0.0112 (13) 0.0073 (15)
C12 0.0516 (19) 0.089 (3) 0.049 (2) 0.0129 (17) 0.0179 (16) −0.0042 (18)
C13 0.071 (2) 0.129 (4) 0.049 (2) 0.029 (2) 0.0175 (19) −0.011 (2)
C14 0.085 (3) 0.143 (4) 0.047 (2) 0.059 (3) 0.031 (2) 0.023 (2)
C15 0.073 (2) 0.105 (3) 0.069 (2) 0.037 (2) 0.038 (2) 0.039 (2)
C16 0.0508 (18) 0.072 (2) 0.053 (2) 0.0205 (16) 0.0208 (15) 0.0169 (16)
C31 0.0324 (16) 0.095 (3) 0.0440 (18) −0.0081 (15) 0.0050 (14) −0.0017 (17)
N41 0.0288 (12) 0.0448 (16) 0.0471 (14) −0.0054 (11) 0.0141 (10) −0.0002 (12)
N42 0.0259 (12) 0.0429 (16) 0.0468 (14) −0.0018 (10) 0.0132 (10) 0.0027 (11)
C43 0.0313 (15) 0.054 (2) 0.0342 (15) 0.0018 (13) 0.0073 (12) 0.0049 (13)
C44 0.0437 (17) 0.060 (2) 0.0465 (17) 0.0070 (14) 0.0172 (14) 0.0109 (15)
C45 0.0369 (16) 0.049 (2) 0.0376 (16) −0.0023 (14) 0.0154 (13) 0.0021 (14)
S421 0.0477 (5) 0.0563 (6) 0.0525 (5) −0.0151 (4) 0.0143 (4) 0.0049 (4)
C422 0.0387 (17) 0.049 (2) 0.0340 (16) −0.0004 (14) 0.0155 (13) 0.0007 (13)
N423 0.0410 (15) 0.0452 (18) 0.0733 (18) 0.0051 (13) 0.0161 (14) 0.0093 (15)
S451 0.0458 (7) 0.0803 (9) 0.0897 (12) −0.0215 (6) 0.0194 (7) 0.0077 (7)
C452 0.0507 (18) 0.050 (2) 0.0530 (19) −0.0039 (15) 0.0241 (15) 0.0042 (15)
C453 0.095 (3) 0.050 (5) 0.095 (3) 0.014 (4) 0.041 (2) 0.022 (5)
C454 0.144 (6) 0.050 (3) 0.120 (5) −0.023 (4) 0.071 (7) 0.013 (3)
C455 0.097 (3) 0.076 (5) 0.106 (4) −0.048 (3) 0.046 (3) −0.013 (5)
S551 0.095 (3) 0.050 (5) 0.095 (3) 0.014 (4) 0.041 (2) 0.022 (5)
C552 0.0507 (18) 0.050 (2) 0.0530 (19) −0.0039 (15) 0.0241 (15) 0.0042 (15)
C553 0.0458 (7) 0.0803 (9) 0.0897 (12) −0.0215 (6) 0.0194 (7) 0.0077 (7)
C554 0.097 (3) 0.076 (5) 0.106 (4) −0.048 (3) 0.046 (3) −0.013 (5)
C555 0.144 (6) 0.050 (3) 0.120 (5) −0.023 (4) 0.071 (7) 0.013 (3)
O51 0.0265 (10) 0.0521 (13) 0.0445 (11) 0.0054 (8) 0.0009 (8) 0.0032 (9)
C51 0.0373 (16) 0.050 (2) 0.0386 (16) 0.0002 (14) 0.0115 (13) −0.0033 (14)
C52 0.0380 (17) 0.075 (3) 0.0406 (17) 0.0016 (16) 0.0073 (14) −0.0046 (16)
C53 0.064 (2) 0.100 (4) 0.065 (2) −0.028 (2) 0.0160 (19) −0.015 (2)
C54 0.129 (4) 0.073 (4) 0.085 (3) −0.032 (3) 0.043 (3) −0.017 (3)
C55 0.137 (4) 0.054 (3) 0.083 (3) 0.018 (3) 0.048 (3) 0.004 (2)
C56 0.069 (2) 0.057 (3) 0.066 (2) 0.0164 (19) 0.0243 (18) 0.0042 (18)
C57 0.0410 (19) 0.119 (4) 0.072 (2) 0.018 (2) 0.0016 (17) 0.001 (2)

3'-Methyl-5'-(2-methylphenoxy)-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide (Ia) . Geometric parameters (Å, º)

N1—C5 1.362 (3) S421—C422 1.682 (3)
N1—N2 1.379 (2) C422—N423 1.341 (3)
N1—C11 1.421 (3) N423—H42A 0.91 (3)
N2—C3 1.326 (3) N423—H42B 0.90 (3)
C3—C4 1.407 (3) S451—C455 1.690 (6)
C3—C31 1.491 (3) S451—C452 1.704 (3)
C4—C5 1.360 (3) C452—C453 1.331 (8)
C4—C43 1.499 (3) C453—C454 1.426 (13)
C5—O51 1.366 (3) C453—H453 0.9300
C11—C12 1.376 (4) C454—C455 1.343 (7)
C11—C16 1.376 (4) C454—H454 0.9300
C12—C13 1.389 (4) C455—H455 0.9300
C12—H12 0.9300 S551—C555 1.690 (12)
C13—C14 1.372 (5) C553—C554 1.428 (16)
C13—H13 0.9300 C553—H553 0.9300
C14—C15 1.372 (5) C554—C555 1.344 (12)
C14—H14 0.9300 C554—H554 0.9300
C15—C16 1.382 (4) C555—H555 0.9300
C15—H15 0.9300 O51—C51 1.406 (3)
C16—H16 0.9300 C51—C56 1.374 (4)
C31—H31A 0.9600 C51—C52 1.382 (4)
C31—H31B 0.9600 C52—C53 1.392 (5)
C31—H31C 0.9600 C52—C57 1.475 (4)
N41—C45 1.280 (3) C53—C54 1.361 (5)
N41—N42 1.392 (3) C53—H53 0.9300
N42—C422 1.336 (3) C54—C55 1.366 (5)
N42—C43 1.487 (3) C54—H54 0.9300
C43—C44 1.537 (3) C55—C56 1.387 (4)
C43—H43 0.9800 C55—H55 0.9300
C44—C45 1.501 (3) C56—H56 0.9300
C44—H44A 0.9700 C57—H57A 0.9600
C44—H44B 0.9700 C57—H57B 0.9600
C45—C452 1.447 (4) C57—H57C 0.9600
C5—N1—N2 109.56 (19) N41—C45—C44 114.4 (2)
C5—N1—C11 130.2 (2) C452—C45—C44 124.5 (3)
N2—N1—C11 119.8 (2) N42—C422—N423 116.4 (2)
C3—N2—N1 105.00 (18) N42—C422—S421 121.8 (2)
N2—C3—C4 112.4 (2) N423—C422—S421 121.7 (2)
N2—C3—C31 120.2 (2) C422—N423—H42A 120.3 (18)
C4—C3—C31 127.4 (2) C422—N423—H42B 119.2 (18)
C5—C4—C3 103.8 (2) H42A—N423—H42B 121 (3)
C5—C4—C43 129.7 (2) C455—S451—C452 91.8 (3)
C3—C4—C43 126.3 (2) C453—C452—C45 127.5 (7)
C4—C5—N1 109.2 (2) C453—C452—S451 111.0 (6)
C4—C5—O51 130.8 (2) C45—C452—S451 121.5 (3)
N1—C5—O51 119.7 (2) C452—C453—C454 113.8 (8)
C12—C11—C16 120.5 (3) C452—C453—H453 123.1
C12—C11—N1 120.6 (3) C454—C453—H453 123.1
C16—C11—N1 118.8 (3) C455—C454—C453 110.7 (6)
C11—C12—C13 118.8 (3) C455—C454—H454 124.7
C11—C12—H12 120.6 C453—C454—H454 124.7
C13—C12—H12 120.6 C454—C455—S451 112.7 (5)
C14—C13—C12 120.8 (3) C454—C455—H455 123.6
C14—C13—H13 119.6 S451—C455—H455 123.6
C12—C13—H13 119.6 C554—C553—H553 123.2
C15—C14—C13 119.8 (3) C555—C554—C553 110.8 (13)
C15—C14—H14 120.1 C555—C554—H554 124.6
C13—C14—H14 120.1 C553—C554—H554 124.6
C14—C15—C16 120.1 (3) C554—C555—S551 112.2 (12)
C14—C15—H15 119.9 C554—C555—H555 123.9
C16—C15—H15 119.9 S551—C555—H555 123.9
C11—C16—C15 119.9 (3) C5—O51—C51 117.9 (2)
C11—C16—H16 120.0 C56—C51—C52 122.6 (3)
C15—C16—H16 120.0 C56—C51—O51 122.3 (2)
C3—C31—H31A 109.5 C52—C51—O51 115.1 (3)
C3—C31—H31B 109.5 C51—C52—C53 116.4 (3)
H31A—C31—H31B 109.5 C51—C52—C57 121.8 (3)
C3—C31—H31C 109.5 C53—C52—C57 121.7 (3)
H31A—C31—H31C 109.5 C54—C53—C52 121.7 (4)
H31B—C31—H31C 109.5 C54—C53—H53 119.2
C45—N41—N42 108.1 (2) C52—C53—H53 119.2
C422—N42—N41 119.9 (2) C53—C54—C55 121.0 (4)
C422—N42—C43 127.2 (2) C53—C54—H54 119.5
N41—N42—C43 112.9 (2) C55—C54—H54 119.5
N42—C43—C4 112.3 (2) C54—C55—C56 119.2 (4)
N42—C43—C44 101.01 (19) C54—C55—H55 120.4
C4—C43—C44 116.4 (2) C56—C55—H55 120.4
N42—C43—H43 108.9 C51—C56—C55 119.2 (3)
C4—C43—H43 108.9 C51—C56—H56 120.4
C44—C43—H43 108.9 C55—C56—H56 120.4
C45—C44—C43 102.9 (2) C52—C57—H57A 109.5
C45—C44—H44A 111.2 C52—C57—H57B 109.5
C43—C44—H44A 111.2 H57A—C57—H57B 109.5
C45—C44—H44B 111.2 C52—C57—H57C 109.5
C43—C44—H44B 111.2 H57A—C57—H57C 109.5
H44A—C44—H44B 109.1 H57B—C57—H57C 109.5
N41—C45—C452 121.1 (3)
C5—N1—N2—C3 −0.7 (3) N42—C43—C44—C45 −7.5 (2)
C11—N1—N2—C3 −173.9 (2) C4—C43—C44—C45 114.3 (2)
N1—N2—C3—C4 1.1 (3) N42—N41—C45—C452 179.1 (2)
N1—N2—C3—C31 −178.5 (2) N42—N41—C45—C44 −1.3 (3)
N2—C3—C4—C5 −1.1 (3) C43—C44—C45—N41 6.1 (3)
C31—C3—C4—C5 178.5 (3) C43—C44—C45—C452 −174.4 (2)
N2—C3—C4—C43 174.5 (3) N41—N42—C422—N423 4.6 (3)
C31—C3—C4—C43 −5.8 (5) C43—N42—C422—N423 −177.0 (2)
C3—C4—C5—N1 0.6 (3) N41—N42—C422—S421 −174.18 (16)
C43—C4—C5—N1 −174.8 (3) C43—N42—C422—S421 4.2 (3)
C3—C4—C5—O51 173.7 (3) N41—C45—C452—C453 −178.0 (11)
C43—C4—C5—O51 −1.7 (5) C44—C45—C452—C453 2.5 (12)
N2—N1—C5—C4 0.0 (3) N41—C45—C452—S451 0.3 (4)
C11—N1—C5—C4 172.3 (3) C44—C45—C452—S451 −179.2 (2)
N2—N1—C5—O51 −174.0 (2) C455—S451—C452—C453 1.4 (10)
C11—N1—C5—O51 −1.7 (4) C455—S451—C452—C45 −177.2 (4)
C5—N1—C11—C12 45.3 (4) C45—C452—C453—C454 177.6 (11)
N2—N1—C11—C12 −143.1 (3) S451—C452—C453—C454 −0.9 (18)
C5—N1—C11—C16 −135.0 (3) C452—C453—C454—C455 0 (2)
N2—N1—C11—C16 36.6 (4) C453—C454—C455—S451 1.4 (18)
C16—C11—C12—C13 2.0 (5) C452—S451—C455—C454 −1.6 (11)
N1—C11—C12—C13 −178.3 (3) C553—C554—C555—S551 −4 (13)
C11—C12—C13—C14 −1.6 (5) C4—C5—O51—C51 76.6 (4)
C12—C13—C14—C15 −0.1 (6) N1—C5—O51—C51 −110.9 (3)
C13—C14—C15—C16 1.3 (5) C5—O51—C51—C56 22.5 (3)
C12—C11—C16—C15 −0.8 (4) C5—O51—C51—C52 −158.9 (2)
N1—C11—C16—C15 179.5 (3) C56—C51—C52—C53 0.2 (4)
C14—C15—C16—C11 −0.9 (5) O51—C51—C52—C53 −178.3 (2)
C45—N41—N42—C422 174.3 (2) C56—C51—C52—C57 −178.4 (3)
C45—N41—N42—C43 −4.4 (3) O51—C51—C52—C57 3.1 (4)
C422—N42—C43—C4 64.4 (3) C51—C52—C53—C54 −0.2 (5)
N41—N42—C43—C4 −117.0 (2) C57—C52—C53—C54 178.4 (3)
C422—N42—C43—C44 −170.8 (2) C52—C53—C54—C55 −0.5 (6)
N41—N42—C43—C44 7.7 (3) C53—C54—C55—C56 1.1 (6)
C5—C4—C43—N42 41.7 (4) C52—C51—C56—C55 0.4 (4)
C3—C4—C43—N42 −132.8 (3) O51—C51—C56—C55 178.8 (2)
C5—C4—C43—C44 −74.0 (4) C54—C55—C56—C51 −1.0 (5)
C3—C4—C43—C44 111.5 (3)

3'-Methyl-5'-(2-methylphenoxy)-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide (Ia) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N423—H42A···N2i 0.92 (3) 2.28 (3) 3.111 (3) 150 (2)
N423—H42A···N41 0.92 (3) 2.27 (3) 2.628 (4) 103 (2)

Symmetry code: (i) x+1, y, z.

5'-(2,4-Dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide hemihydrate (Ib) . Crystal data

2C24H19Cl2N5OS2·H2O F(000) = 1108
Mr = 1074.94 Dx = 1.456 Mg m3
Monoclinic, P2/c Mo Kα radiation, λ = 0.71073 Å
a = 15.037 (1) Å Cell parameters from 5307 reflections
b = 8.4266 (6) Å θ = 2.6–27.9°
c = 19.471 (1) Å µ = 0.47 mm1
β = 96.246 (6)° T = 296 K
V = 2452.5 (3) Å3 Needle, orange
Z = 2 0.36 × 0.12 × 0.12 mm

5'-(2,4-Dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide hemihydrate (Ib) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD detector diffractometer 5290 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3075 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
ω scans θmax = 27.6°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −19→13
Tmin = 0.922, Tmax = 0.946 k = −10→10
10494 measured reflections l = −25→25

5'-(2,4-Dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide hemihydrate (Ib) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0411P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max = 0.001
5290 reflections Δρmax = 0.26 e Å3
335 parameters Δρmin = −0.30 e Å3
10 restraints

5'-(2,4-Dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide hemihydrate (Ib) . Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

5'-(2,4-Dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide hemihydrate (Ib) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.68939 (13) 0.4363 (2) 0.37947 (9) 0.0343 (5)
N2 0.61354 (13) 0.3752 (2) 0.34400 (9) 0.0356 (5)
C3 0.59656 (15) 0.2419 (3) 0.37692 (11) 0.0318 (5)
C4 0.66061 (15) 0.2149 (3) 0.43422 (11) 0.0296 (5)
C5 0.71767 (15) 0.3404 (3) 0.43322 (11) 0.0308 (5)
C11 0.72930 (16) 0.5768 (3) 0.35564 (11) 0.0354 (6)
C12 0.81789 (18) 0.5775 (3) 0.34460 (15) 0.0602 (8)
H12 0.8535 0.4889 0.3557 0.072*
C13 0.8538 (2) 0.7111 (4) 0.31678 (17) 0.0748 (10)
H13 0.9137 0.7127 0.3089 0.090*
C14 0.8006 (2) 0.8415 (3) 0.30086 (14) 0.0580 (8)
H14 0.8244 0.9307 0.2815 0.070*
C15 0.7138 (2) 0.8410 (3) 0.31316 (13) 0.0471 (7)
H15 0.6788 0.9306 0.3028 0.057*
C16 0.67667 (17) 0.7089 (3) 0.34090 (11) 0.0384 (6)
H16 0.6170 0.7092 0.3495 0.046*
C31 0.51811 (17) 0.1418 (3) 0.35213 (13) 0.0438 (6)
H31A 0.4846 0.1180 0.3901 0.066*
H31B 0.5384 0.0447 0.3332 0.066*
H31C 0.4807 0.1979 0.3171 0.066*
N41 0.75120 (13) 0.0972 (2) 0.59603 (9) 0.0355 (5)
N42 0.67049 (13) 0.1362 (2) 0.55799 (9) 0.0344 (5)
C43 0.66437 (16) 0.0806 (3) 0.48505 (11) 0.0335 (6)
H43 0.6115 0.0131 0.4751 0.040*
C44 0.74925 (17) −0.0209 (3) 0.48690 (12) 0.0404 (6)
H44A 0.7346 −0.1326 0.4813 0.048*
H44B 0.7855 0.0110 0.4510 0.048*
C45 0.79663 (16) 0.0117 (3) 0.55736 (11) 0.0336 (6)
S421 0.50684 (4) 0.25555 (8) 0.54387 (3) 0.0477 (2)
C422 0.60539 (16) 0.2113 (3) 0.58829 (12) 0.0361 (6)
N423 0.62484 (18) 0.2475 (3) 0.65504 (11) 0.0512 (7)
H42A 0.585 (2) 0.293 (3) 0.6745 (14) 0.061*
H42B 0.675 (2) 0.220 (3) 0.6753 (14) 0.061*
S451 0.93613 (5) −0.02351 (9) 0.66256 (4) 0.0493 (3) 0.951 (3)
C452 0.88401 (16) −0.0510 (3) 0.58006 (12) 0.0365 (6) 0.951 (3)
C453 0.9356 (3) −0.1417 (6) 0.5435 (2) 0.0475 (9) 0.951 (3)
H453 0.9188 −0.1700 0.4977 0.057* 0.951 (3)
C454 1.0167 (2) −0.1900 (7) 0.5800 (2) 0.0524 (14) 0.951 (3)
H454 1.0593 −0.2517 0.5612 0.063* 0.951 (3)
C455 1.0251 (2) −0.1363 (4) 0.64507 (18) 0.0537 (12) 0.951 (3)
H455 1.0740 −0.1580 0.6772 0.064* 0.951 (3)
S551 0.937 (2) −0.159 (4) 0.5215 (11) 0.0475 (9) 0.049 (3)
C552 0.88401 (16) −0.0510 (3) 0.58006 (12) 0.0365 (6) 0.049 (3)
C553 0.944 (2) −0.005 (7) 0.633 (2) 0.0493 (3) 0.049 (3)
H553 0.9341 0.0767 0.6631 0.059* 0.049 (3)
C554 1.024 (3) −0.094 (11) 0.637 (3) 0.0537 (12) 0.049 (3)
H554 1.0649 −0.1006 0.6763 0.064* 0.049 (3)
C555 1.032 (4) −0.169 (16) 0.577 (4) 0.0524 (14) 0.049 (3)
H555 1.0839 −0.2211 0.5676 0.063* 0.049 (3)
O51 0.79155 (10) 0.37875 (17) 0.47791 (7) 0.0338 (4)
C51 0.77558 (16) 0.4711 (3) 0.53498 (11) 0.0326 (6)
C52 0.84468 (16) 0.4851 (3) 0.58742 (12) 0.0366 (6)
Cl52 0.94533 (5) 0.39239 (9) 0.58023 (4) 0.0618 (2)
C53 0.83348 (19) 0.5733 (3) 0.64567 (13) 0.0464 (7)
H53 0.8799 0.5827 0.6811 0.056*
C54 0.7533 (2) 0.6467 (3) 0.65044 (13) 0.0453 (7)
Cl54 0.73886 (6) 0.75872 (9) 0.72375 (4) 0.0733 (3)
C55 0.68368 (19) 0.6329 (3) 0.59891 (14) 0.0496 (7)
H55 0.6294 0.6826 0.6032 0.060*
C56 0.69494 (17) 0.5446 (3) 0.54082 (13) 0.0424 (6)
H56 0.6482 0.5348 0.5057 0.051*
O61 0.5000 0.5746 (3) 0.2500 0.0605 (9)
H61 0.532 (2) 0.511 (3) 0.2784 (15) 0.091*

5'-(2,4-Dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide hemihydrate (Ib) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0301 (11) 0.0402 (12) 0.0312 (11) −0.0022 (9) −0.0028 (9) 0.0066 (9)
N2 0.0304 (12) 0.0441 (12) 0.0306 (11) −0.0018 (10) −0.0039 (9) 0.0035 (9)
C3 0.0300 (13) 0.0390 (14) 0.0263 (12) 0.0011 (11) 0.0029 (10) −0.0019 (11)
C4 0.0306 (13) 0.0325 (13) 0.0254 (12) 0.0022 (11) 0.0013 (10) 0.0006 (10)
C5 0.0259 (13) 0.0372 (14) 0.0280 (12) 0.0040 (11) −0.0024 (10) −0.0010 (11)
C11 0.0334 (14) 0.0411 (15) 0.0309 (13) −0.0047 (12) 0.0001 (11) 0.0056 (11)
C12 0.0372 (17) 0.0615 (19) 0.082 (2) 0.0038 (15) 0.0074 (16) 0.0298 (17)
C13 0.0392 (18) 0.087 (2) 0.098 (3) −0.0103 (18) 0.0100 (18) 0.039 (2)
C14 0.058 (2) 0.0583 (19) 0.0562 (18) −0.0216 (17) −0.0028 (16) 0.0207 (15)
C15 0.0563 (19) 0.0407 (16) 0.0432 (15) −0.0018 (14) 0.0001 (14) 0.0049 (13)
C16 0.0383 (15) 0.0438 (15) 0.0332 (14) −0.0012 (12) 0.0046 (12) −0.0012 (12)
C31 0.0385 (15) 0.0491 (16) 0.0421 (15) −0.0018 (13) −0.0030 (12) −0.0019 (12)
N41 0.0348 (12) 0.0398 (12) 0.0314 (11) 0.0032 (10) 0.0015 (9) 0.0036 (9)
N42 0.0341 (12) 0.0424 (12) 0.0264 (10) 0.0080 (10) 0.0017 (9) 0.0004 (9)
C43 0.0367 (14) 0.0345 (13) 0.0286 (12) −0.0024 (11) 0.0009 (11) −0.0001 (11)
C44 0.0496 (16) 0.0359 (14) 0.0348 (13) 0.0073 (13) 0.0010 (12) −0.0001 (11)
C45 0.0412 (15) 0.0284 (13) 0.0313 (13) 0.0013 (12) 0.0047 (12) 0.0032 (11)
S421 0.0361 (4) 0.0614 (5) 0.0457 (4) 0.0054 (3) 0.0045 (3) 0.0036 (3)
C422 0.0382 (15) 0.0369 (14) 0.0336 (13) −0.0021 (12) 0.0062 (12) 0.0045 (11)
N423 0.0508 (16) 0.0714 (17) 0.0317 (13) 0.0165 (13) 0.0051 (11) −0.0039 (12)
S451 0.0460 (5) 0.0588 (5) 0.0412 (5) 0.0101 (4) −0.0039 (4) −0.0069 (4)
C452 0.0382 (15) 0.0347 (14) 0.0361 (13) 0.0032 (12) 0.0026 (12) 0.0038 (11)
C453 0.0523 (18) 0.057 (2) 0.035 (3) 0.0135 (15) 0.009 (2) 0.000 (2)
C454 0.041 (2) 0.058 (3) 0.0590 (19) 0.013 (2) 0.0074 (17) −0.0020 (17)
C455 0.0405 (17) 0.056 (3) 0.061 (2) 0.0099 (16) −0.0100 (15) 0.0011 (18)
S551 0.0523 (18) 0.057 (2) 0.035 (3) 0.0135 (15) 0.009 (2) 0.000 (2)
C552 0.0382 (15) 0.0347 (14) 0.0361 (13) 0.0032 (12) 0.0026 (12) 0.0038 (11)
C553 0.0460 (5) 0.0588 (5) 0.0412 (5) 0.0101 (4) −0.0039 (4) −0.0069 (4)
C554 0.0405 (17) 0.056 (3) 0.061 (2) 0.0099 (16) −0.0100 (15) 0.0011 (18)
C555 0.041 (2) 0.058 (3) 0.0590 (19) 0.013 (2) 0.0074 (17) −0.0020 (17)
O51 0.0261 (9) 0.0424 (10) 0.0317 (9) 0.0033 (7) −0.0025 (7) −0.0042 (8)
C51 0.0356 (14) 0.0287 (13) 0.0333 (13) −0.0006 (11) 0.0031 (11) 0.0024 (11)
C52 0.0320 (14) 0.0378 (14) 0.0392 (14) 0.0002 (11) −0.0004 (12) 0.0004 (12)
Cl52 0.0389 (4) 0.0757 (5) 0.0665 (5) 0.0146 (4) −0.0133 (4) −0.0190 (4)
C53 0.0496 (18) 0.0501 (17) 0.0385 (15) −0.0095 (14) 0.0007 (13) −0.0065 (13)
C54 0.0579 (19) 0.0391 (15) 0.0411 (15) −0.0095 (14) 0.0155 (14) −0.0061 (12)
Cl54 0.0881 (6) 0.0778 (6) 0.0589 (5) −0.0104 (5) 0.0293 (4) −0.0278 (4)
C55 0.0437 (17) 0.0510 (17) 0.0564 (18) 0.0062 (13) 0.0157 (15) −0.0078 (14)
C56 0.0352 (15) 0.0455 (16) 0.0454 (15) 0.0029 (12) −0.0004 (13) −0.0032 (13)
O61 0.064 (2) 0.0498 (18) 0.0594 (19) 0.000 −0.0293 (15) 0.000

5'-(2,4-Dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide hemihydrate (Ib) . Geometric parameters (Å, º)

N1—C5 1.354 (3) C45—C452 1.440 (3)
N1—N2 1.368 (2) S421—C422 1.675 (2)
N1—C11 1.427 (3) C422—N423 1.336 (3)
N2—C3 1.332 (3) N423—H42A 0.83 (3)
C3—C4 1.411 (3) N423—H42B 0.84 (3)
C3—C31 1.488 (3) S451—C455 1.705 (3)
C4—C5 1.363 (3) S451—C452 1.725 (2)
C4—C43 1.500 (3) C452—C453 1.347 (5)
C5—O51 1.373 (2) C453—C454 1.404 (5)
C11—C12 1.372 (3) C453—H453 0.9300
C11—C16 1.378 (3) C454—C455 1.339 (4)
C12—C13 1.385 (4) C454—H454 0.9300
C12—H12 0.9300 C455—H455 0.9300
C13—C14 1.375 (4) S551—C555 1.707 (11)
C13—H13 0.9300 C553—C554 1.407 (11)
C14—C15 1.352 (4) C553—H553 0.9300
C14—H14 0.9300 C554—C555 1.342 (10)
C15—C16 1.382 (3) C554—H554 0.9300
C15—H15 0.9300 C555—H555 0.9300
C16—H16 0.9300 O51—C51 1.399 (3)
C31—H31A 0.9600 C51—C56 1.377 (3)
C31—H31B 0.9600 C51—C52 1.380 (3)
C31—H31C 0.9600 C52—C53 1.382 (3)
N41—C45 1.290 (3) C52—Cl52 1.722 (2)
N41—N42 1.391 (2) C53—C54 1.366 (4)
N42—C422 1.354 (3) C53—H53 0.9300
N42—C43 1.489 (3) C54—C55 1.374 (4)
C43—C44 1.534 (3) C54—Cl54 1.745 (3)
C43—H43 0.9800 C55—C56 1.379 (3)
C44—C45 1.501 (3) C55—H55 0.9300
C44—H44A 0.9700 C56—H56 0.9300
C44—H44B 0.9700 O61—H61 0.88 (3)
C5—N1—N2 109.89 (18) C43—C44—H44B 111.1
C5—N1—C11 129.69 (19) H44A—C44—H44B 109.1
N2—N1—C11 120.32 (17) N41—C45—C452 123.3 (2)
C3—N2—N1 105.50 (17) N41—C45—C44 114.0 (2)
N2—C3—C4 111.5 (2) C452—C45—C44 122.7 (2)
N2—C3—C31 120.6 (2) N423—C422—N42 116.0 (2)
C4—C3—C31 127.9 (2) N423—C422—S421 122.6 (2)
C5—C4—C3 103.90 (19) N42—C422—S421 121.36 (18)
C5—C4—C43 128.0 (2) C422—N423—H42A 117.2 (19)
C3—C4—C43 128.1 (2) C422—N423—H42B 118.9 (19)
N1—C5—C4 109.20 (19) H42A—N423—H42B 124 (3)
N1—C5—O51 120.9 (2) C455—S451—C452 91.49 (14)
C4—C5—O51 129.8 (2) C453—C452—C45 127.2 (3)
C12—C11—C16 120.6 (2) C453—C452—S451 109.8 (2)
C12—C11—N1 120.3 (2) C45—C452—S451 122.94 (19)
C16—C11—N1 119.1 (2) C452—C453—C454 114.6 (3)
C11—C12—C13 119.5 (3) C452—C453—H453 122.7
C11—C12—H12 120.3 C454—C453—H453 122.7
C13—C12—H12 120.3 C455—C454—C453 111.6 (3)
C14—C13—C12 119.7 (3) C455—C454—H454 124.2
C14—C13—H13 120.1 C453—C454—H454 124.2
C12—C13—H13 120.1 C454—C455—S451 112.5 (2)
C15—C14—C13 120.5 (3) C454—C455—H455 123.7
C15—C14—H14 119.8 S451—C455—H455 123.7
C13—C14—H14 119.8 C554—C553—H553 123.6
C14—C15—C16 120.7 (3) C555—C554—C553 111.1 (15)
C14—C15—H15 119.6 C555—C554—H554 124.5
C16—C15—H15 119.6 C553—C554—H554 124.5
C11—C16—C15 119.0 (2) C554—C555—S551 112.1 (11)
C11—C16—H16 120.5 C554—C555—H555 123.9
C15—C16—H16 120.5 S551—C555—H555 123.9
C3—C31—H31A 109.5 C5—O51—C51 115.94 (17)
C3—C31—H31B 109.5 C56—C51—C52 120.0 (2)
H31A—C31—H31B 109.5 C56—C51—O51 123.0 (2)
C3—C31—H31C 109.5 C52—C51—O51 117.0 (2)
H31A—C31—H31C 109.5 C51—C52—C53 120.2 (2)
H31B—C31—H31C 109.5 C51—C52—Cl52 119.92 (18)
C45—N41—N42 107.92 (18) C53—C52—Cl52 119.83 (19)
C422—N42—N41 120.58 (18) C54—C53—C52 119.1 (2)
C422—N42—C43 126.17 (19) C54—C53—H53 120.4
N41—N42—C43 113.19 (18) C52—C53—H53 120.4
N42—C43—C4 112.72 (18) C53—C54—C55 121.3 (2)
N42—C43—C44 100.84 (17) C53—C54—Cl54 119.3 (2)
C4—C43—C44 114.06 (19) C55—C54—Cl54 119.3 (2)
N42—C43—H43 109.6 C54—C55—C56 119.5 (2)
C4—C43—H43 109.6 C54—C55—H55 120.2
C44—C43—H43 109.6 C56—C55—H55 120.2
C45—C44—C43 103.32 (18) C51—C56—C55 119.9 (2)
C45—C44—H44A 111.1 C51—C56—H56 120.1
C43—C44—H44A 111.1 C55—C56—H56 120.1
C45—C44—H44B 111.1
C5—N1—N2—C3 0.0 (2) C4—C43—C44—C45 113.3 (2)
C11—N1—N2—C3 176.76 (19) N42—N41—C45—C452 −179.7 (2)
N1—N2—C3—C4 0.3 (2) N42—N41—C45—C44 −1.3 (3)
N1—N2—C3—C31 −179.6 (2) C43—C44—C45—N41 6.2 (3)
N2—C3—C4—C5 −0.5 (2) C43—C44—C45—C452 −175.4 (2)
C31—C3—C4—C5 179.4 (2) N41—N42—C422—N423 1.5 (3)
N2—C3—C4—C43 178.8 (2) C43—N42—C422—N423 178.6 (2)
C31—C3—C4—C43 −1.4 (4) N41—N42—C422—S421 −178.60 (16)
N2—N1—C5—C4 −0.3 (3) C43—N42—C422—S421 −1.5 (3)
C11—N1—C5—C4 −176.7 (2) N41—C45—C452—C453 179.5 (4)
N2—N1—C5—O51 −178.18 (18) C44—C45—C452—C453 1.3 (5)
C11—N1—C5—O51 5.4 (3) N41—C45—C452—S451 2.1 (3)
C3—C4—C5—N1 0.4 (2) C44—C45—C452—S451 −176.17 (18)
C43—C4—C5—N1 −178.8 (2) C455—S451—C452—C453 −0.4 (3)
C3—C4—C5—O51 178.1 (2) C455—S451—C452—C45 177.4 (2)
C43—C4—C5—O51 −1.1 (4) C45—C452—C453—C454 −177.9 (4)
C5—N1—C11—C12 50.0 (3) S451—C452—C453—C454 −0.2 (6)
N2—N1—C11—C12 −126.0 (3) C452—C453—C454—C455 0.9 (7)
C5—N1—C11—C16 −132.9 (2) C453—C454—C455—S451 −1.2 (6)
N2—N1—C11—C16 51.0 (3) C452—S451—C455—C454 0.9 (4)
C16—C11—C12—C13 −1.6 (4) C553—C554—C555—S551 −10 (12)
N1—C11—C12—C13 175.4 (2) N1—C5—O51—C51 89.3 (2)
C11—C12—C13—C14 0.3 (5) C4—C5—O51—C51 −88.1 (3)
C12—C13—C14—C15 1.0 (5) C5—O51—C51—C56 −11.5 (3)
C13—C14—C15—C16 −1.0 (4) C5—O51—C51—C52 167.5 (2)
C12—C11—C16—C15 1.6 (4) C56—C51—C52—C53 −0.4 (3)
N1—C11—C16—C15 −175.40 (19) O51—C51—C52—C53 −179.4 (2)
C14—C15—C16—C11 −0.3 (4) C56—C51—C52—Cl52 179.72 (18)
C45—N41—N42—C422 172.8 (2) O51—C51—C52—Cl52 0.7 (3)
C45—N41—N42—C43 −4.6 (2) C51—C52—C53—C54 −0.2 (4)
C422—N42—C43—C4 68.7 (3) Cl52—C52—C53—C54 179.7 (2)
N41—N42—C43—C4 −114.0 (2) C52—C53—C54—C55 0.7 (4)
C422—N42—C43—C44 −169.3 (2) C52—C53—C54—Cl54 −179.85 (18)
N41—N42—C43—C44 8.0 (2) C53—C54—C55—C56 −0.7 (4)
C5—C4—C43—N42 52.6 (3) Cl54—C54—C55—C56 179.89 (19)
C3—C4—C43—N42 −126.5 (2) C52—C51—C56—C55 0.4 (4)
C5—C4—C43—C44 −61.7 (3) O51—C51—C56—C55 179.4 (2)
C3—C4—C43—C44 119.3 (3) C54—C55—C56—C51 0.1 (4)
N42—C43—C44—C45 −7.8 (2)

5'-(2,4-Dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide hemihydrate (Ib) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O61—H61···N2 0.88 (3) 2.03 (3) 2.900 (2) 176 (2)
N423—H42A···O61i 0.84 (3) 2.33 (3) 3.154 (3) 167 (3)
N423—H42B···N41 0.85 (3) 2.27 (3) 2.648 (3) 107 (2)

Symmetry code: (i) −x+1, −y+1, −z+1.

Ethyl (Z)-2-{2-[3'-methyl-1'-phenyl-5-(thiophen-2-yl)-5'-(2-methylphenoxy)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-oxo-4,5-dihydrothiazol-5-ylidene}acetate (II) . Crystal data

C31H27N5O4S2 Z = 2
Mr = 597.69 F(000) = 624
Triclinic, P1 Dx = 1.331 Mg m3
a = 10.783 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.683 (3) Å Cell parameters from 6462 reflections
c = 13.577 (3) Å θ = 2.5–28.2°
α = 93.54 (2)° µ = 0.22 mm1
β = 105.17 (2)° T = 296 K
γ = 113.20 (2)° Needle, yellow
V = 1490.9 (6) Å3 0.48 × 0.12 × 0.06 mm

Ethyl (Z)-2-{2-[3'-methyl-1'-phenyl-5-(thiophen-2-yl)-5'-(2-methylphenoxy)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-oxo-4,5-dihydrothiazol-5-ylidene}acetate (II) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD detector diffractometer 5561 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1730 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.138
ω scans θmax = 25.6°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −7→13
Tmin = 0.849, Tmax = 0.987 k = −14→12
10433 measured reflections l = −16→16

Ethyl (Z)-2-{2-[3'-methyl-1'-phenyl-5-(thiophen-2-yl)-5'-(2-methylphenoxy)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-oxo-4,5-dihydrothiazol-5-ylidene}acetate (II) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079 H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0319P)2] where P = (Fo2 + 2Fc2)/3
S = 0.88 (Δ/σ)max < 0.001
5561 reflections Δρmax = 0.26 e Å3
395 parameters Δρmin = −0.24 e Å3
10 restraints

Ethyl (Z)-2-{2-[3'-methyl-1'-phenyl-5-(thiophen-2-yl)-5'-(2-methylphenoxy)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-oxo-4,5-dihydrothiazol-5-ylidene}acetate (II) . Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Ethyl (Z)-2-{2-[3'-methyl-1'-phenyl-5-(thiophen-2-yl)-5'-(2-methylphenoxy)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-oxo-4,5-dihydrothiazol-5-ylidene}acetate (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 1.0895 (5) 0.0030 (4) 0.1894 (3) 0.0436 (12)
N2 1.1527 (4) 0.1065 (4) 0.1476 (4) 0.0459 (12)
C3 1.0468 (6) 0.1321 (4) 0.0945 (4) 0.0430 (15)
C4 0.9141 (5) 0.0459 (5) 0.0992 (4) 0.0401 (14)
C5 0.9473 (6) −0.0321 (5) 0.1612 (4) 0.0424 (15)
C11 1.1772 (6) −0.0460 (5) 0.2534 (4) 0.0420 (14)
C12 1.1198 (6) −0.1658 (5) 0.2763 (5) 0.0571 (17)
H12 1.0229 −0.2171 0.2490 0.068*
C13 1.2090 (7) −0.2083 (5) 0.3410 (5) 0.0644 (18)
H13 1.1707 −0.2886 0.3570 0.077*
C14 1.3536 (7) −0.1337 (6) 0.3821 (5) 0.0657 (18)
H14 1.4123 −0.1629 0.4256 0.079*
C15 1.4082 (6) −0.0162 (6) 0.3573 (5) 0.0596 (17)
H15 1.5054 0.0343 0.3832 0.071*
C16 1.3214 (6) 0.0286 (5) 0.2947 (4) 0.0459 (14)
H16 1.3602 0.1096 0.2801 0.055*
C31 1.0776 (5) 0.2433 (4) 0.0406 (4) 0.0609 (17)
H31A 1.0234 0.2153 −0.0317 0.091*
H31B 1.1770 0.2823 0.0477 0.091*
H31C 1.0520 0.3037 0.0711 0.091*
N41 0.5871 (4) −0.0182 (4) 0.1331 (3) 0.0455 (12)
N42 0.7101 (4) 0.0797 (4) 0.1249 (4) 0.0482 (13)
C43 0.7718 (6) 0.0410 (4) 0.0483 (4) 0.0487 (16)
H43 0.7777 0.0954 −0.0040 0.058*
C44 0.6507 (5) −0.0938 (4) −0.0010 (4) 0.0511 (16)
H44A 0.6003 −0.0969 −0.0724 0.061*
H44B 0.6884 −0.1568 0.0005 0.061*
C45 0.5547 (5) −0.1162 (5) 0.0651 (4) 0.0439 (15)
S421 0.68139 (15) 0.21639 (13) 0.27511 (12) 0.0544 (5)
C422 0.7658 (6) 0.1937 (5) 0.1848 (5) 0.0505 (16)
N423 0.8776 (5) 0.2867 (4) 0.1773 (4) 0.0558 (14)
C424 0.9084 (6) 0.3951 (6) 0.2437 (5) 0.0622 (18)
O424 1.0021 (4) 0.4986 (4) 0.2506 (3) 0.0877 (15)
C425 0.8101 (5) 0.3718 (5) 0.3113 (5) 0.0482 (15)
C426 0.8307 (6) 0.4611 (5) 0.3868 (5) 0.0636 (18)
H426 0.9061 0.5406 0.3996 0.076*
C427 0.7337 (7) 0.4347 (6) 0.4514 (5) 0.0637 (19)
O427 0.6309 (5) 0.3363 (4) 0.4379 (3) 0.0842 (15)
O428 0.7767 (4) 0.5339 (4) 0.5256 (4) 0.0852 (14)
C428 0.6931 (7) 0.5170 (6) 0.5969 (6) 0.094 (2)
H48A 0.7096 0.4595 0.6416 0.112*
H48B 0.5928 0.4809 0.5580 0.112*
C429 0.7352 (7) 0.6415 (7) 0.6602 (6) 0.119 (3)
H49A 0.6803 0.6314 0.7071 0.179*
H49B 0.7184 0.6980 0.6155 0.179*
H49C 0.8342 0.6763 0.6992 0.179*
S451 0.3311 (4) −0.2531 (3) 0.1357 (3) 0.0655 (10) 0.768 (6)
C452 0.4337 (6) −0.2339 (5) 0.0544 (4) 0.0499 (15) 0.768 (6)
C453 0.398 (3) −0.339 (2) −0.0103 (19) 0.073 (3) 0.768 (6)
H453 0.4475 −0.3467 −0.0552 0.087* 0.768 (6)
C454 0.270 (2) −0.4427 (17) −0.002 (2) 0.075 (5) 0.768 (6)
H454 0.2228 −0.5220 −0.0449 0.090* 0.768 (6)
C455 0.2293 (14) −0.4072 (9) 0.0772 (15) 0.073 (4) 0.768 (6)
H455 0.1540 −0.4614 0.0971 0.087* 0.768 (6)
S551 0.383 (3) −0.3635 (19) −0.0394 (18) 0.073 (3) 0.232 (6)
C552 0.4337 (6) −0.2339 (5) 0.0544 (4) 0.0499 (15) 0.232 (6)
C553 0.349 (5) −0.251 (4) 0.112 (4) 0.0655 (10) 0.232 (6)
H553 0.3652 −0.1924 0.1690 0.079* 0.232 (6)
C554 0.224 (5) −0.375 (3) 0.073 (5) 0.073 (4) 0.232 (6)
H554 0.1462 −0.4003 0.0973 0.087* 0.232 (6)
C555 0.239 (9) −0.446 (5) −0.002 (8) 0.075 (5) 0.232 (6)
H555 0.1772 −0.5306 −0.0298 0.090* 0.232 (6)
O51 0.8569 (3) −0.1355 (3) 0.1888 (3) 0.0513 (10)
C51 0.8251 (6) −0.1159 (6) 0.2805 (5) 0.0543 (16)
C52 0.7268 (7) −0.2241 (7) 0.3002 (6) 0.073 (2)
C53 0.6939 (8) −0.2041 (10) 0.3902 (8) 0.116 (3)
H53 0.6310 −0.2738 0.4086 0.140*
C54 0.7476 (11) −0.0898 (13) 0.4529 (8) 0.132 (4)
H54 0.7183 −0.0825 0.5107 0.158*
C55 0.8442 (10) 0.0144 (10) 0.4315 (6) 0.105 (3)
H55 0.8838 0.0924 0.4756 0.125*
C56 0.8832 (6) 0.0023 (6) 0.3421 (5) 0.0704 (19)
H56 0.9468 0.0725 0.3247 0.084*
C57 0.6674 (7) −0.3502 (6) 0.2333 (6) 0.105 (3)
H57A 0.5900 −0.4086 0.2528 0.158*
H57B 0.7399 −0.3803 0.2416 0.158*
H57C 0.6337 −0.3435 0.1620 0.158*

Ethyl (Z)-2-{2-[3'-methyl-1'-phenyl-5-(thiophen-2-yl)-5'-(2-methylphenoxy)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-oxo-4,5-dihydrothiazol-5-ylidene}acetate (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.042 (3) 0.044 (3) 0.045 (3) 0.016 (3) 0.016 (3) 0.008 (2)
N2 0.043 (3) 0.043 (3) 0.053 (3) 0.011 (2) 0.028 (3) 0.011 (3)
C3 0.047 (4) 0.041 (3) 0.046 (4) 0.017 (3) 0.025 (3) 0.007 (3)
C4 0.039 (4) 0.047 (3) 0.039 (4) 0.020 (3) 0.017 (3) 0.009 (3)
C5 0.040 (4) 0.042 (3) 0.036 (4) 0.007 (3) 0.016 (3) 0.000 (3)
C11 0.040 (4) 0.045 (3) 0.037 (4) 0.016 (3) 0.011 (3) 0.001 (3)
C12 0.050 (4) 0.048 (4) 0.065 (5) 0.014 (3) 0.016 (4) 0.009 (3)
C13 0.076 (5) 0.053 (4) 0.068 (5) 0.029 (4) 0.024 (4) 0.019 (4)
C14 0.062 (5) 0.075 (4) 0.058 (5) 0.032 (4) 0.010 (4) 0.015 (4)
C15 0.052 (4) 0.068 (4) 0.050 (5) 0.018 (4) 0.013 (4) 0.010 (4)
C16 0.051 (4) 0.050 (3) 0.035 (4) 0.015 (3) 0.020 (3) 0.015 (3)
C31 0.068 (4) 0.051 (3) 0.067 (5) 0.019 (3) 0.034 (4) 0.019 (3)
N41 0.047 (3) 0.042 (3) 0.047 (3) 0.015 (2) 0.021 (3) 0.012 (2)
N42 0.047 (3) 0.046 (3) 0.057 (4) 0.022 (2) 0.022 (3) 0.006 (3)
C43 0.057 (4) 0.051 (3) 0.043 (4) 0.021 (3) 0.027 (3) 0.003 (3)
C44 0.043 (4) 0.061 (4) 0.046 (4) 0.021 (3) 0.014 (3) 0.001 (3)
C45 0.047 (4) 0.047 (3) 0.041 (4) 0.024 (3) 0.013 (3) 0.013 (3)
S421 0.0588 (11) 0.0465 (8) 0.0573 (12) 0.0175 (8) 0.0263 (9) 0.0045 (8)
C422 0.063 (4) 0.051 (4) 0.052 (4) 0.034 (3) 0.027 (4) 0.013 (3)
N423 0.059 (3) 0.042 (3) 0.061 (4) 0.009 (2) 0.030 (3) 0.005 (3)
C424 0.061 (5) 0.055 (4) 0.058 (5) 0.014 (4) 0.018 (4) 0.007 (4)
O424 0.087 (3) 0.056 (2) 0.089 (4) −0.008 (2) 0.043 (3) −0.005 (3)
C425 0.056 (4) 0.038 (3) 0.051 (4) 0.017 (3) 0.021 (3) 0.010 (3)
C426 0.074 (5) 0.053 (4) 0.064 (5) 0.020 (3) 0.035 (4) 0.001 (4)
C427 0.074 (5) 0.053 (4) 0.052 (5) 0.030 (4) 0.001 (4) −0.013 (4)
O427 0.093 (4) 0.071 (3) 0.074 (4) 0.018 (3) 0.033 (3) −0.005 (3)
O428 0.101 (4) 0.074 (3) 0.075 (4) 0.030 (3) 0.036 (3) −0.011 (3)
C428 0.102 (6) 0.107 (6) 0.076 (6) 0.048 (5) 0.033 (5) −0.006 (5)
C429 0.147 (7) 0.131 (6) 0.083 (6) 0.073 (6) 0.028 (5) −0.020 (5)
S451 0.0732 (19) 0.0564 (14) 0.068 (2) 0.0167 (12) 0.0389 (13) 0.0163 (14)
C452 0.058 (4) 0.040 (3) 0.048 (4) 0.017 (3) 0.018 (3) 0.004 (3)
C453 0.085 (6) 0.043 (7) 0.053 (11) 0.002 (5) 0.007 (7) −0.003 (5)
C454 0.080 (13) 0.046 (4) 0.066 (6) −0.001 (5) 0.017 (9) −0.002 (4)
C455 0.083 (5) 0.046 (7) 0.079 (6) 0.016 (5) 0.026 (5) 0.014 (7)
S551 0.085 (6) 0.043 (7) 0.053 (11) 0.002 (5) 0.007 (7) −0.003 (5)
C552 0.058 (4) 0.040 (3) 0.048 (4) 0.017 (3) 0.018 (3) 0.004 (3)
C553 0.0732 (19) 0.0564 (14) 0.068 (2) 0.0167 (12) 0.0389 (13) 0.0163 (14)
C554 0.083 (5) 0.046 (7) 0.079 (6) 0.016 (5) 0.026 (5) 0.014 (7)
C555 0.080 (13) 0.046 (4) 0.066 (6) −0.001 (5) 0.017 (9) −0.002 (4)
O51 0.049 (2) 0.056 (2) 0.048 (3) 0.0145 (19) 0.024 (2) 0.010 (2)
C51 0.058 (4) 0.075 (4) 0.042 (5) 0.037 (4) 0.020 (4) 0.020 (4)
C52 0.065 (5) 0.110 (6) 0.068 (6) 0.041 (5) 0.042 (4) 0.065 (5)
C53 0.098 (7) 0.169 (9) 0.110 (10) 0.054 (7) 0.068 (7) 0.081 (7)
C54 0.140 (10) 0.248 (15) 0.078 (8) 0.125 (10) 0.068 (7) 0.074 (9)
C55 0.136 (8) 0.182 (9) 0.049 (6) 0.107 (7) 0.047 (5) 0.035 (6)
C56 0.077 (5) 0.102 (5) 0.055 (5) 0.052 (4) 0.034 (4) 0.019 (4)
C57 0.092 (6) 0.082 (5) 0.129 (7) 0.013 (4) 0.041 (5) 0.070 (5)

Ethyl (Z)-2-{2-[3'-methyl-1'-phenyl-5-(thiophen-2-yl)-5'-(2-methylphenoxy)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-oxo-4,5-dihydrothiazol-5-ylidene}acetate (II) . Geometric parameters (Å, º)

N1—C5 1.358 (6) C426—C427 1.489 (8)
N1—N2 1.374 (5) C426—H426 0.9300
N1—C11 1.426 (6) C427—O427 1.203 (6)
N2—C3 1.333 (6) C427—O428 1.327 (6)
C3—C4 1.409 (6) O428—C428 1.458 (7)
C3—C31 1.497 (6) C428—C429 1.477 (7)
C4—C5 1.364 (7) C428—H48A 0.9700
C4—C43 1.485 (6) C428—H48B 0.9700
C5—O51 1.367 (6) C429—H49A 0.9600
C11—C16 1.382 (6) C429—H49B 0.9600
C11—C12 1.382 (7) C429—H49C 0.9600
C12—C13 1.390 (7) S451—C455 1.699 (9)
C12—H12 0.9300 S451—C452 1.723 (6)
C13—C14 1.384 (7) C452—C453 1.320 (16)
C13—H13 0.9300 C453—C454 1.47 (2)
C14—C15 1.367 (7) C453—H453 0.9300
C14—H14 0.9300 C454—C455 1.359 (10)
C15—C16 1.377 (7) C454—H454 0.9300
C15—H15 0.9300 C455—H455 0.9300
C16—H16 0.9300 S551—C555 1.698 (14)
C31—H31A 0.9600 C553—C554 1.48 (2)
C31—H31B 0.9600 C553—H553 0.9300
C31—H31C 0.9600 C554—C555 1.359 (13)
N41—C45 1.293 (5) C554—H554 0.9300
N41—N42 1.405 (5) C555—H555 0.9300
N42—C422 1.333 (5) O51—C51 1.405 (6)
N42—C43 1.507 (6) C51—C56 1.379 (7)
C43—C44 1.557 (6) C51—C52 1.387 (8)
C43—H43 0.9800 C52—C53 1.390 (10)
C44—C45 1.499 (7) C52—C57 1.481 (8)
C44—H44A 0.9700 C53—C54 1.355 (10)
C44—H44B 0.9700 C53—H53 0.9300
C45—C452 1.441 (6) C54—C55 1.362 (11)
S421—C425 1.736 (5) C54—H54 0.9300
S421—C422 1.771 (5) C55—C56 1.400 (9)
C422—N423 1.300 (6) C55—H55 0.9300
N423—C424 1.378 (6) C56—H56 0.9300
C424—O424 1.211 (6) C57—H57A 0.9600
C424—C425 1.534 (7) C57—H57B 0.9600
C425—C426 1.325 (6) C57—H57C 0.9600
C5—N1—N2 109.6 (4) C424—C425—S421 109.7 (4)
C5—N1—C11 131.7 (5) C425—C426—C427 120.3 (5)
N2—N1—C11 118.6 (4) C425—C426—H426 119.9
C3—N2—N1 105.2 (4) C427—C426—H426 119.9
N2—C3—C4 112.1 (5) O427—C427—O428 125.0 (7)
N2—C3—C31 120.0 (5) O427—C427—C426 124.2 (6)
C4—C3—C31 127.9 (6) O428—C427—C426 110.7 (6)
C5—C4—C3 103.6 (5) C427—O428—C428 115.7 (5)
C5—C4—C43 128.2 (5) O428—C428—C429 108.9 (6)
C3—C4—C43 128.2 (5) O428—C428—H48A 109.9
N1—C5—C4 109.4 (5) C429—C428—H48A 109.9
N1—C5—O51 122.3 (5) O428—C428—H48B 109.9
C4—C5—O51 128.2 (5) C429—C428—H48B 109.9
C16—C11—C12 119.6 (5) H48A—C428—H48B 108.3
C16—C11—N1 119.3 (5) C428—C429—H49A 109.5
C12—C11—N1 121.1 (5) C428—C429—H49B 109.5
C11—C12—C13 119.0 (5) H49A—C429—H49B 109.5
C11—C12—H12 120.5 C428—C429—H49C 109.5
C13—C12—H12 120.5 H49A—C429—H49C 109.5
C14—C13—C12 121.4 (6) H49B—C429—H49C 109.5
C14—C13—H13 119.3 C455—S451—C452 91.1 (5)
C12—C13—H13 119.3 C453—C452—C45 124.6 (12)
C15—C14—C13 118.5 (6) C453—C452—S451 113.6 (11)
C15—C14—H14 120.7 C45—C452—S451 121.6 (4)
C13—C14—H14 120.7 C452—C453—C454 111.2 (14)
C14—C15—C16 121.0 (6) C452—C453—H453 124.4
C14—C15—H15 119.5 C454—C453—H453 124.4
C16—C15—H15 119.5 C455—C454—C453 111.1 (10)
C15—C16—C11 120.4 (5) C455—C454—H454 124.5
C15—C16—H16 119.8 C453—C454—H454 124.5
C11—C16—H16 119.8 C454—C455—S451 112.8 (10)
C3—C31—H31A 109.5 C454—C455—H455 123.6
C3—C31—H31B 109.5 S451—C455—H455 123.6
H31A—C31—H31B 109.5 C554—C553—H553 124.6
C3—C31—H31C 109.5 C555—C554—C553 111.3 (16)
H31A—C31—H31C 109.5 C555—C554—H554 124.4
H31B—C31—H31C 109.5 C553—C554—H554 124.4
C45—N41—N42 107.5 (4) C554—C555—S551 112.2 (17)
C422—N42—N41 120.5 (4) C554—C555—H555 123.9
C422—N42—C43 125.3 (4) S551—C555—H555 123.9
N41—N42—C43 114.2 (4) C5—O51—C51 117.5 (4)
C4—C43—N42 112.5 (4) C56—C51—C52 123.9 (6)
C4—C43—C44 115.7 (4) C56—C51—O51 122.0 (6)
N42—C43—C44 98.8 (4) C52—C51—O51 114.0 (6)
C4—C43—H43 109.8 C51—C52—C53 114.0 (7)
N42—C43—H43 109.8 C51—C52—C57 122.7 (7)
C44—C43—H43 109.8 C53—C52—C57 123.3 (7)
C45—C44—C43 104.6 (4) C54—C53—C52 124.3 (10)
C45—C44—H44A 110.8 C54—C53—H53 117.8
C43—C44—H44A 110.8 C52—C53—H53 117.8
C45—C44—H44B 110.8 C53—C54—C55 120.1 (11)
C43—C44—H44B 110.8 C53—C54—H54 119.9
H44A—C44—H44B 108.9 C55—C54—H54 119.9
N41—C45—C452 121.4 (5) C54—C55—C56 119.1 (9)
N41—C45—C44 114.0 (5) C54—C55—H55 120.5
C452—C45—C44 124.5 (5) C56—C55—H55 120.5
C425—S421—C422 87.3 (3) C51—C56—C55 118.5 (7)
N423—C422—N42 121.8 (5) C51—C56—H56 120.7
N423—C422—S421 120.3 (4) C55—C56—H56 120.7
N42—C422—S421 117.9 (4) C52—C57—H57A 109.5
C422—N423—C424 110.0 (5) C52—C57—H57B 109.5
O424—C424—N423 125.4 (6) H57A—C57—H57B 109.5
O424—C424—C425 122.0 (6) C52—C57—H57C 109.5
N423—C424—C425 112.5 (5) H57A—C57—H57C 109.5
C426—C425—C424 121.8 (5) H57B—C57—H57C 109.5
C426—C425—S421 128.4 (5)
C5—N1—N2—C3 −0.1 (5) C43—N42—C422—S421 −176.4 (4)
C11—N1—N2—C3 −178.6 (4) C425—S421—C422—N423 −0.2 (5)
N1—N2—C3—C4 −1.0 (5) C425—S421—C422—N42 −179.4 (4)
N1—N2—C3—C31 178.2 (4) N42—C422—N423—C424 176.8 (5)
N2—C3—C4—C5 1.6 (5) S421—C422—N423—C424 −2.4 (7)
C31—C3—C4—C5 −177.5 (5) C422—N423—C424—O424 −176.2 (6)
N2—C3—C4—C43 −178.3 (4) C422—N423—C424—C425 4.1 (7)
C31—C3—C4—C43 2.7 (8) O424—C424—C425—C426 −6.1 (9)
N2—N1—C5—C4 1.1 (5) N423—C424—C425—C426 173.5 (5)
C11—N1—C5—C4 179.4 (4) O424—C424—C425—S421 176.0 (5)
N2—N1—C5—O51 177.6 (4) N423—C424—C425—S421 −4.3 (6)
C11—N1—C5—O51 −4.2 (7) C422—S421—C425—C426 −175.3 (6)
C3—C4—C5—N1 −1.6 (5) C422—S421—C425—C424 2.4 (4)
C43—C4—C5—N1 178.3 (4) C424—C425—C426—C427 −179.5 (6)
C3—C4—C5—O51 −177.8 (5) S421—C425—C426—C427 −2.0 (8)
C43—C4—C5—O51 2.1 (8) C425—C426—C427—O427 −2.8 (10)
C5—N1—C11—C16 −160.7 (5) C425—C426—C427—O428 176.9 (5)
N2—N1—C11—C16 17.5 (6) O427—C427—O428—C428 2.3 (9)
C5—N1—C11—C12 18.0 (7) C426—C427—O428—C428 −177.4 (5)
N2—N1—C11—C12 −163.8 (4) C427—O428—C428—C429 −168.6 (5)
C16—C11—C12—C13 0.2 (8) N41—C45—C452—C453 −177.0 (19)
N1—C11—C12—C13 −178.5 (4) C44—C45—C452—C453 5 (2)
C11—C12—C13—C14 −0.4 (8) N41—C45—C452—S451 −3.3 (7)
C12—C13—C14—C15 −0.3 (9) C44—C45—C452—S451 178.4 (5)
C13—C14—C15—C16 1.3 (9) C455—S451—C452—C453 −2.9 (18)
C14—C15—C16—C11 −1.6 (8) C455—S451—C452—C45 −177.2 (8)
C12—C11—C16—C15 0.8 (7) C45—C452—C453—C454 180 (2)
N1—C11—C16—C15 179.5 (5) S451—C452—C453—C454 5 (3)
C45—N41—N42—C422 178.4 (5) C452—C453—C454—C455 −6 (4)
C45—N41—N42—C43 −4.1 (6) C453—C454—C455—S451 4 (4)
C5—C4—C43—N42 70.7 (6) C452—S451—C455—C454 −1 (2)
C3—C4—C43—N42 −109.5 (6) C553—C554—C555—S551 −8 (12)
C5—C4—C43—C44 −41.9 (7) N1—C5—O51—C51 92.8 (5)
C3—C4—C43—C44 138.0 (5) C4—C5—O51—C51 −91.4 (6)
C422—N42—C43—C4 62.7 (6) C5—O51—C51—C56 −0.8 (7)
N41—N42—C43—C4 −114.6 (5) C5—O51—C51—C52 176.7 (5)
C422—N42—C43—C44 −174.7 (5) C56—C51—C52—C53 −1.7 (9)
N41—N42—C43—C44 8.0 (5) O51—C51—C52—C53 −179.1 (5)
C4—C43—C44—C45 111.9 (5) C56—C51—C52—C57 −179.3 (6)
N42—C43—C44—C45 −8.3 (5) O51—C51—C52—C57 3.3 (8)
N42—N41—C45—C452 179.2 (5) C51—C52—C53—C54 2.1 (12)
N42—N41—C45—C44 −2.3 (6) C57—C52—C53—C54 179.6 (8)
C43—C44—C45—N41 7.3 (6) C52—C53—C54—C55 −2.4 (15)
C43—C44—C45—C452 −174.3 (5) C53—C54—C55—C56 2.2 (14)
N41—N42—C422—N423 −178.4 (5) C52—C51—C56—C55 1.7 (9)
C43—N42—C422—N423 4.4 (8) O51—C51—C56—C55 178.9 (5)
N41—N42—C422—S421 0.7 (6) C54—C55—C56—C51 −1.9 (11)

Ethyl (Z)-2-{2-[3'-methyl-1'-phenyl-5-(thiophen-2-yl)-5'-(2-methylphenoxy)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-oxo-4,5-dihydrothiazol-5-ylidene}acetate (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13···O424i 0.93 2.49 3.200 (7) 133
C54—H54···Cg1ii 0.93 2.91 3.714 (12) 146
C553—H553···Cg1iii 0.93 2.92 3.76 (5) 151

Symmetry codes: (i) x, y−1, z; (ii) −x+2, −y, −z+1; (iii) x−1, y, z.

4-(4-Bromophenyl)-2-[5'-(2,4-dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-thiazole (III) . Crystal data

C32H22BrCl2N5OS2 Z = 2
Mr = 707.47 F(000) = 716
Triclinic, P1 Dx = 1.517 Mg m3
a = 12.3200 (9) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.5700 (9) Å Cell parameters from 6664 reflections
c = 12.7742 (9) Å θ = 2.6–27.8°
α = 117.202 (8)° µ = 1.67 mm1
β = 102.879 (7)° T = 296 K
γ = 105.727 (7)° Plate, yellow
V = 1548.4 (2) Å3 0.40 × 0.40 × 0.08 mm

4-(4-Bromophenyl)-2-[5'-(2,4-dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-thiazole (III) . Data collection

Oxford Diffraction Xcalibur with Sapphire CCD detector diffractometer 5773 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3158 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
ω scans θmax = 25.6°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −13→14
Tmin = 0.779, Tmax = 0.875 k = −15→10
10549 measured reflections l = −10→15

4-(4-Bromophenyl)-2-[5'-(2,4-dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-thiazole (III) . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0475P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93 (Δ/σ)max < 0.001
5773 reflections Δρmax = 0.47 e Å3
402 parameters Δρmin = −0.34 e Å3
10 restraints

4-(4-Bromophenyl)-2-[5'-(2,4-dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-thiazole (III) . Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-(4-Bromophenyl)-2-[5'-(2,4-dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-thiazole (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.5457 (2) 0.3735 (2) 0.86216 (19) 0.0478 (5)
N2 0.4327 (2) 0.3754 (2) 0.8277 (2) 0.0514 (6)
C3 0.4368 (3) 0.4319 (2) 0.7616 (2) 0.0495 (7)
C4 0.5508 (3) 0.4674 (2) 0.7522 (2) 0.0477 (7)
C5 0.6162 (2) 0.4278 (2) 0.8157 (2) 0.0446 (6)
C11 0.5693 (3) 0.3119 (2) 0.9294 (2) 0.0449 (6)
C12 0.6877 (3) 0.3383 (3) 0.9963 (3) 0.0552 (7)
H12 0.7546 0.3982 0.9997 0.066*
C13 0.7064 (3) 0.2750 (3) 1.0586 (3) 0.0591 (8)
H13 0.7863 0.2915 1.1029 0.071*
C14 0.6089 (3) 0.1887 (3) 1.0558 (3) 0.0630 (8)
H14 0.6221 0.1465 1.0978 0.076*
C15 0.4917 (3) 0.1647 (3) 0.9907 (3) 0.0719 (9)
H15 0.4252 0.1064 0.9893 0.086*
C16 0.4707 (3) 0.2257 (3) 0.9271 (3) 0.0617 (8)
H16 0.3906 0.2088 0.8830 0.074*
C31 0.3270 (3) 0.4476 (3) 0.7047 (3) 0.0686 (8)
H31A 0.3053 0.4075 0.6140 0.103*
H31B 0.3464 0.5402 0.7453 0.103*
H31C 0.2589 0.4054 0.7181 0.103*
N41 0.7375 (3) 0.5162 (3) 0.5905 (3) 0.0661 (7)
N42 0.6211 (2) 0.4547 (3) 0.5794 (2) 0.0670 (7)
C43 0.5928 (3) 0.5358 (3) 0.6881 (3) 0.0576 (7)
H43 0.5288 0.5591 0.6567 0.069*
C44 0.7168 (3) 0.6608 (3) 0.7729 (3) 0.0672 (8)
H44A 0.7058 0.7390 0.7866 0.081*
H44B 0.7546 0.6741 0.8558 0.081*
C45 0.7931 (3) 0.6315 (3) 0.6965 (3) 0.0622 (8)
S421 0.59658 (8) 0.25102 (9) 0.35914 (8) 0.0776 (3)
C422 0.5442 (3) 0.3311 (3) 0.4739 (3) 0.0576 (8)
N423 0.4313 (2) 0.2671 (2) 0.4522 (2) 0.0554 (6)
C424 0.3781 (3) 0.1417 (3) 0.3379 (3) 0.0568 (7)
C425 0.4545 (3) 0.1182 (3) 0.2773 (3) 0.0724 (9)
H425 0.4325 0.0394 0.2004 0.087*
C441 0.2509 (3) 0.0523 (3) 0.2964 (3) 0.0557 (7)
C442 0.1828 (3) 0.0877 (3) 0.3669 (3) 0.0663 (8)
H442 0.2188 0.1712 0.4429 0.080*
C443 0.0635 (3) 0.0037 (3) 0.3287 (3) 0.0738 (9)
H443 0.0196 0.0310 0.3783 0.089*
C444 0.0085 (3) −0.1208 (3) 0.2172 (3) 0.0667 (8)
Br44 −0.15403 (3) −0.23859 (4) 0.16704 (4) 0.09399 (17)
C445 0.0740 (4) −0.1594 (3) 0.1453 (3) 0.0803 (10)
H445 0.0378 −0.2435 0.0700 0.096*
C446 0.1919 (4) −0.0751 (3) 0.1836 (3) 0.0778 (9)
H446 0.2349 −0.1030 0.1331 0.093*
S451 0.99714 (13) 0.68706 (13) 0.64070 (13) 0.1055 (6) 0.947 (4)
C452 0.9177 (3) 0.7199 (4) 0.7353 (4) 0.0739 (9) 0.947 (4)
C453 0.9844 (6) 0.8384 (6) 0.8487 (6) 0.0934 (17) 0.947 (4)
H453 0.9561 0.8733 0.9127 0.112* 0.947 (4)
C454 1.1069 (5) 0.9043 (5) 0.8577 (6) 0.1124 (18) 0.947 (4)
H454 1.1665 0.9865 0.9289 0.135* 0.947 (4)
C455 1.1232 (5) 0.8339 (6) 0.7532 (7) 0.1145 (18) 0.947 (4)
H455 1.1955 0.8612 0.7421 0.137* 0.947 (4)
S551 1.025 (3) 0.871 (2) 0.863 (3) 0.0934 (17) 0.053 (4)
C552 0.9177 (3) 0.7199 (4) 0.7353 (4) 0.0739 (9) 0.053 (4)
C553 0.966 (5) 0.658 (5) 0.654 (6) 0.1055 (6) 0.053 (4)
H553 0.9264 0.5696 0.5857 0.127* 0.053 (4)
C554 1.090 (5) 0.750 (6) 0.687 (7) 0.1145 (18) 0.053 (4)
H554 1.1374 0.7270 0.6403 0.137* 0.053 (4)
C555 1.126 (7) 0.868 (8) 0.790 (10) 0.1124 (18) 0.053 (4)
H555 1.1972 0.9419 0.8192 0.135* 0.053 (4)
O51 0.73172 (16) 0.43438 (16) 0.83109 (15) 0.0493 (4)
C51 0.7387 (2) 0.3304 (2) 0.7303 (2) 0.0440 (6)
C52 0.8521 (2) 0.3502 (3) 0.7240 (3) 0.0488 (7)
Cl52 0.97805 (7) 0.50033 (8) 0.83960 (9) 0.0895 (3)
C53 0.8662 (3) 0.2526 (3) 0.6269 (3) 0.0586 (8)
H53 0.9429 0.2664 0.6230 0.070*
C54 0.7648 (3) 0.1344 (3) 0.5356 (3) 0.0563 (7)
Cl54 0.77954 (9) 0.01019 (9) 0.41070 (8) 0.0873 (3)
C55 0.6533 (3) 0.1136 (3) 0.5414 (3) 0.0634 (8)
H55 0.5856 0.0330 0.4793 0.076*
C56 0.6397 (3) 0.2115 (3) 0.6391 (3) 0.0576 (7)
H56 0.5628 0.1966 0.6428 0.069*

4-(4-Bromophenyl)-2-[5'-(2,4-dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-thiazole (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0546 (15) 0.0491 (13) 0.0455 (13) 0.0245 (12) 0.0228 (11) 0.0279 (12)
N2 0.0558 (15) 0.0592 (14) 0.0494 (14) 0.0323 (12) 0.0271 (12) 0.0304 (12)
C3 0.0627 (19) 0.0521 (17) 0.0406 (16) 0.0336 (15) 0.0240 (14) 0.0241 (14)
C4 0.0656 (19) 0.0472 (16) 0.0404 (16) 0.0306 (15) 0.0266 (14) 0.0257 (14)
C5 0.0547 (18) 0.0403 (15) 0.0406 (15) 0.0226 (14) 0.0252 (14) 0.0198 (13)
C11 0.0557 (18) 0.0434 (15) 0.0406 (15) 0.0250 (14) 0.0224 (14) 0.0235 (13)
C12 0.062 (2) 0.0595 (18) 0.0545 (17) 0.0272 (16) 0.0278 (15) 0.0363 (16)
C13 0.065 (2) 0.070 (2) 0.0525 (18) 0.0350 (18) 0.0262 (16) 0.0367 (17)
C14 0.090 (2) 0.060 (2) 0.0539 (19) 0.0401 (19) 0.0315 (18) 0.0366 (16)
C15 0.079 (2) 0.068 (2) 0.080 (2) 0.0250 (19) 0.0351 (19) 0.0506 (19)
C16 0.0580 (18) 0.066 (2) 0.067 (2) 0.0224 (17) 0.0225 (16) 0.0438 (18)
C31 0.085 (2) 0.083 (2) 0.065 (2) 0.054 (2) 0.0393 (18) 0.0460 (18)
N41 0.080 (2) 0.0741 (19) 0.0642 (18) 0.0358 (17) 0.0382 (16) 0.0471 (17)
N42 0.0780 (19) 0.0714 (18) 0.0550 (17) 0.0272 (16) 0.0397 (15) 0.0343 (15)
C43 0.074 (2) 0.0604 (19) 0.0558 (18) 0.0365 (18) 0.0330 (17) 0.0377 (16)
C44 0.089 (2) 0.0558 (19) 0.066 (2) 0.0305 (19) 0.0310 (19) 0.0409 (17)
C45 0.078 (2) 0.071 (2) 0.068 (2) 0.039 (2) 0.036 (2) 0.054 (2)
S421 0.0958 (7) 0.0867 (6) 0.0679 (5) 0.0459 (6) 0.0536 (5) 0.0425 (5)
C422 0.080 (2) 0.067 (2) 0.0479 (19) 0.0399 (19) 0.0355 (17) 0.0392 (18)
N423 0.0729 (18) 0.0614 (16) 0.0449 (14) 0.0360 (15) 0.0317 (13) 0.0311 (13)
C424 0.080 (2) 0.062 (2) 0.0451 (18) 0.0416 (19) 0.0316 (17) 0.0329 (17)
C425 0.095 (2) 0.072 (2) 0.059 (2) 0.044 (2) 0.0440 (19) 0.0326 (17)
C441 0.081 (2) 0.0597 (19) 0.0423 (17) 0.0442 (18) 0.0298 (16) 0.0295 (15)
C442 0.078 (2) 0.060 (2) 0.0572 (19) 0.041 (2) 0.0311 (18) 0.0224 (16)
C443 0.077 (2) 0.070 (2) 0.070 (2) 0.042 (2) 0.0344 (19) 0.0274 (19)
C444 0.076 (2) 0.069 (2) 0.068 (2) 0.0457 (19) 0.0303 (19) 0.0385 (19)
Br44 0.0795 (3) 0.0793 (3) 0.1006 (3) 0.0331 (2) 0.0273 (2) 0.0381 (2)
C445 0.092 (3) 0.061 (2) 0.064 (2) 0.031 (2) 0.031 (2) 0.0186 (18)
C446 0.101 (3) 0.078 (3) 0.061 (2) 0.048 (2) 0.048 (2) 0.031 (2)
S451 0.0958 (12) 0.1464 (12) 0.1214 (10) 0.0581 (10) 0.0620 (8) 0.0961 (9)
C452 0.074 (2) 0.078 (2) 0.088 (3) 0.030 (2) 0.028 (2) 0.062 (2)
C453 0.067 (4) 0.080 (4) 0.124 (4) 0.012 (3) 0.028 (3) 0.065 (3)
C454 0.076 (4) 0.112 (4) 0.155 (5) 0.026 (3) 0.034 (3) 0.091 (4)
C455 0.075 (3) 0.149 (5) 0.171 (6) 0.044 (4) 0.046 (4) 0.128 (5)
S551 0.067 (4) 0.080 (4) 0.124 (4) 0.012 (3) 0.028 (3) 0.065 (3)
C552 0.074 (2) 0.078 (2) 0.088 (3) 0.030 (2) 0.028 (2) 0.062 (2)
C553 0.0958 (12) 0.1464 (12) 0.1214 (10) 0.0581 (10) 0.0620 (8) 0.0961 (9)
C554 0.075 (3) 0.149 (5) 0.171 (6) 0.044 (4) 0.046 (4) 0.128 (5)
C555 0.076 (4) 0.112 (4) 0.155 (5) 0.026 (3) 0.034 (3) 0.091 (4)
O51 0.0512 (12) 0.0460 (11) 0.0451 (11) 0.0196 (9) 0.0208 (9) 0.0212 (9)
C51 0.0533 (18) 0.0436 (16) 0.0432 (16) 0.0229 (15) 0.0241 (14) 0.0266 (14)
C52 0.0421 (16) 0.0517 (17) 0.0502 (17) 0.0159 (14) 0.0166 (14) 0.0299 (15)
Cl52 0.0503 (5) 0.0766 (6) 0.0886 (6) 0.0101 (4) 0.0132 (4) 0.0238 (5)
C53 0.0549 (19) 0.077 (2) 0.064 (2) 0.0381 (18) 0.0339 (17) 0.0431 (19)
C54 0.073 (2) 0.062 (2) 0.0535 (18) 0.0405 (18) 0.0372 (17) 0.0341 (17)
Cl54 0.1139 (7) 0.0907 (6) 0.0691 (5) 0.0620 (6) 0.0543 (5) 0.0350 (5)
C55 0.063 (2) 0.0437 (17) 0.064 (2) 0.0156 (15) 0.0306 (16) 0.0180 (15)
C56 0.0493 (17) 0.0473 (18) 0.068 (2) 0.0167 (15) 0.0322 (16) 0.0242 (16)

4-(4-Bromophenyl)-2-[5'-(2,4-dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-thiazole (III) . Geometric parameters (Å, º)

N1—C5 1.361 (3) C425—H425 0.9300
N1—N2 1.374 (3) C441—C442 1.373 (4)
N1—C11 1.428 (3) C441—C446 1.400 (4)
N2—C3 1.330 (3) C442—C443 1.372 (4)
C3—C4 1.404 (3) C442—H442 0.9300
C3—C31 1.495 (3) C443—C444 1.377 (4)
C4—C5 1.361 (3) C443—H443 0.9300
C4—C43 1.506 (3) C444—C445 1.366 (4)
C5—O51 1.367 (3) C444—Br44 1.888 (3)
C11—C12 1.375 (3) C445—C446 1.359 (4)
C11—C16 1.375 (3) C445—H445 0.9300
C12—C13 1.385 (3) C446—H446 0.9300
C12—H12 0.9300 S451—C452 1.696 (4)
C13—C14 1.364 (4) S451—C455 1.706 (6)
C13—H13 0.9300 C452—C453 1.351 (7)
C14—C15 1.366 (4) C453—C454 1.461 (10)
C14—H14 0.9300 C453—H453 0.9300
C15—C16 1.379 (4) C454—C455 1.321 (7)
C15—H15 0.9300 C454—H454 0.9300
C16—H16 0.9300 C455—H455 0.9300
C31—H31A 0.9600 S551—C555 1.707 (12)
C31—H31B 0.9600 C553—C554 1.461 (14)
C31—H31C 0.9600 C553—H553 0.9300
N41—C45 1.287 (4) C554—C555 1.322 (12)
N41—N42 1.372 (3) C554—H554 0.9300
N42—C422 1.359 (4) C555—H555 0.9300
N42—C43 1.484 (3) O51—C51 1.395 (3)
C43—C44 1.543 (4) C51—C56 1.366 (3)
C43—H43 0.9800 C51—C52 1.379 (3)
C44—C45 1.496 (4) C52—C53 1.377 (4)
C44—H44A 0.9700 C52—Cl52 1.730 (3)
C44—H44B 0.9700 C53—C54 1.374 (4)
C45—C452 1.439 (4) C53—H53 0.9300
S421—C425 1.717 (3) C54—C55 1.353 (4)
S421—C422 1.734 (3) C54—Cl54 1.737 (3)
C422—N423 1.295 (3) C55—C56 1.379 (4)
N423—C424 1.399 (3) C55—H55 0.9300
C424—C425 1.356 (4) C56—H56 0.9300
C424—C441 1.460 (4)
C5—N1—N2 109.84 (19) C425—C424—C441 127.3 (3)
C5—N1—C11 130.5 (2) N423—C424—C441 118.8 (3)
N2—N1—C11 119.5 (2) C424—C425—S421 112.0 (2)
C3—N2—N1 105.3 (2) C424—C425—H425 124.0
N2—C3—C4 111.7 (2) S421—C425—H425 124.0
N2—C3—C31 120.5 (2) C442—C441—C446 116.2 (3)
C4—C3—C31 127.7 (2) C442—C441—C424 121.8 (3)
C5—C4—C3 104.5 (2) C446—C441—C424 122.0 (3)
C5—C4—C43 127.4 (3) C443—C442—C441 122.0 (3)
C3—C4—C43 128.1 (2) C443—C442—H442 119.0
C4—C5—N1 108.7 (2) C441—C442—H442 119.0
C4—C5—O51 128.6 (2) C442—C443—C444 120.1 (3)
N1—C5—O51 122.7 (2) C442—C443—H443 119.9
C12—C11—C16 120.1 (2) C444—C443—H443 119.9
C12—C11—N1 121.3 (2) C445—C444—C443 119.3 (3)
C16—C11—N1 118.6 (2) C445—C444—Br44 120.4 (3)
C11—C12—C13 119.4 (3) C443—C444—Br44 120.3 (3)
C11—C12—H12 120.3 C446—C445—C444 120.1 (3)
C13—C12—H12 120.3 C446—C445—H445 120.0
C14—C13—C12 120.7 (3) C444—C445—H445 120.0
C14—C13—H13 119.7 C445—C446—C441 122.3 (3)
C12—C13—H13 119.7 C445—C446—H446 118.9
C13—C14—C15 119.5 (3) C441—C446—H446 118.9
C13—C14—H14 120.2 C452—S451—C455 92.0 (3)
C15—C14—H14 120.2 C453—C452—C45 124.7 (4)
C14—C15—C16 120.9 (3) C453—C452—S451 112.1 (3)
C14—C15—H15 119.6 C45—C452—S451 123.2 (3)
C16—C15—H15 119.6 C452—C453—C454 111.1 (6)
C11—C16—C15 119.4 (3) C452—C453—H453 124.4
C11—C16—H16 120.3 C454—C453—H453 124.4
C15—C16—H16 120.3 C455—C454—C453 112.2 (5)
C3—C31—H31A 109.5 C455—C454—H454 123.9
C3—C31—H31B 109.5 C453—C454—H454 123.9
H31A—C31—H31B 109.5 C454—C455—S451 112.5 (4)
C3—C31—H31C 109.5 C454—C455—H455 123.8
H31A—C31—H31C 109.5 S451—C455—H455 123.8
H31B—C31—H31C 109.5 C554—C553—H553 124.5
C45—N41—N42 108.5 (3) C555—C554—C553 111.9 (12)
C422—N42—N41 119.3 (3) C555—C554—H554 124.0
C422—N42—C43 126.7 (3) C553—C554—H554 124.0
N41—N42—C43 114.0 (2) C554—C555—S551 112.0 (15)
N42—C43—C4 113.5 (2) C554—C555—H555 124.0
N42—C43—C44 100.3 (2) S551—C555—H555 124.0
C4—C43—C44 115.3 (2) C5—O51—C51 115.95 (19)
N42—C43—H43 109.1 C56—C51—C52 119.1 (2)
C4—C43—H43 109.1 C56—C51—O51 123.4 (2)
C44—C43—H43 109.1 C52—C51—O51 117.5 (2)
C45—C44—C43 103.5 (2) C53—C52—C51 120.9 (3)
C45—C44—H44A 111.1 C53—C52—Cl52 119.7 (2)
C43—C44—H44A 111.1 C51—C52—Cl52 119.4 (2)
C45—C44—H44B 111.1 C54—C53—C52 118.8 (3)
C43—C44—H44B 111.1 C54—C53—H53 120.6
H44A—C44—H44B 109.0 C52—C53—H53 120.6
N41—C45—C452 121.5 (3) C55—C54—C53 120.7 (3)
N41—C45—C44 113.6 (3) C55—C54—Cl54 119.5 (2)
C452—C45—C44 124.8 (3) C53—C54—Cl54 119.8 (2)
C425—S421—C422 87.62 (16) C54—C55—C56 120.3 (3)
N423—C422—N42 123.9 (3) C54—C55—H55 119.8
N423—C422—S421 116.5 (2) C56—C55—H55 119.8
N42—C422—S421 119.6 (3) C51—C56—C55 120.1 (3)
C422—N423—C424 109.9 (3) C51—C56—H56 119.9
C425—C424—N423 113.9 (3) C55—C56—H56 119.9
C5—N1—N2—C3 −0.4 (3) N42—C422—N423—C424 −178.4 (2)
C11—N1—N2—C3 −176.7 (2) S421—C422—N423—C424 1.8 (3)
N1—N2—C3—C4 −0.1 (3) C422—N423—C424—C425 −1.0 (3)
N1—N2—C3—C31 178.2 (2) C422—N423—C424—C441 179.2 (2)
N2—C3—C4—C5 0.6 (3) N423—C424—C425—S421 −0.1 (3)
C31—C3—C4—C5 −177.6 (2) C441—C424—C425—S421 179.6 (2)
N2—C3—C4—C43 −178.6 (2) C422—S421—C425—C424 0.9 (2)
C31—C3—C4—C43 3.2 (4) C425—C424—C441—C442 179.8 (3)
C3—C4—C5—N1 −0.8 (3) N423—C424—C441—C442 −0.5 (4)
C43—C4—C5—N1 178.3 (2) C425—C424—C441—C446 0.8 (4)
C3—C4—C5—O51 177.3 (2) N423—C424—C441—C446 −179.5 (2)
C43—C4—C5—O51 −3.5 (4) C446—C441—C442—C443 −0.5 (4)
N2—N1—C5—C4 0.8 (3) C424—C441—C442—C443 −179.6 (3)
C11—N1—C5—C4 176.5 (2) C441—C442—C443—C444 0.5 (5)
N2—N1—C5—O51 −177.4 (2) C442—C443—C444—C445 −0.1 (5)
C11—N1—C5—O51 −1.7 (4) C442—C443—C444—Br44 178.1 (2)
C5—N1—C11—C12 22.9 (4) C443—C444—C445—C446 −0.3 (5)
N2—N1—C11—C12 −161.7 (2) Br44—C444—C445—C446 −178.5 (2)
C5—N1—C11—C16 −157.7 (3) C444—C445—C446—C441 0.3 (5)
N2—N1—C11—C16 17.7 (3) C442—C441—C446—C445 0.1 (4)
C16—C11—C12—C13 1.5 (4) C424—C441—C446—C445 179.2 (3)
N1—C11—C12—C13 −179.1 (2) N41—C45—C452—C453 −175.4 (5)
C11—C12—C13—C14 −1.0 (4) C44—C45—C452—C453 3.4 (6)
C12—C13—C14—C15 0.0 (4) N41—C45—C452—S451 5.6 (4)
C13—C14—C15—C16 0.5 (5) C44—C45—C452—S451 −175.5 (2)
C12—C11—C16—C15 −1.0 (4) C455—S451—C452—C453 −0.1 (4)
N1—C11—C16—C15 179.6 (2) C455—S451—C452—C45 179.0 (3)
C14—C15—C16—C11 0.0 (4) C45—C452—C453—C454 −179.4 (4)
C45—N41—N42—C422 179.6 (2) S451—C452—C453—C454 −0.3 (6)
C45—N41—N42—C43 0.5 (3) C452—C453—C454—C455 0.6 (7)
C422—N42—C43—C4 55.9 (4) C453—C454—C455—S451 −0.6 (7)
N41—N42—C43—C4 −125.0 (3) C452—S451—C455—C454 0.4 (5)
C422—N42—C43—C44 179.5 (2) C553—C554—C555—S551 8 (16)
N41—N42—C43—C44 −1.4 (3) C4—C5—O51—C51 −84.1 (3)
C5—C4—C43—N42 63.0 (4) N1—C5—O51—C51 93.9 (3)
C3—C4—C43—N42 −118.0 (3) C5—O51—C51—C56 −17.9 (3)
C5—C4—C43—C44 −51.9 (4) C5—O51—C51—C52 162.1 (2)
C3—C4—C43—C44 127.1 (3) C56—C51—C52—C53 0.5 (4)
N42—C43—C44—C45 1.7 (2) O51—C51—C52—C53 −179.5 (2)
C4—C43—C44—C45 124.0 (2) C56—C51—C52—Cl52 −179.80 (19)
N42—N41—C45—C452 179.8 (2) O51—C51—C52—Cl52 0.2 (3)
N42—N41—C45—C44 0.8 (3) C51—C52—C53—C54 0.1 (4)
C43—C44—C45—N41 −1.7 (3) Cl52—C52—C53—C54 −179.63 (19)
C43—C44—C45—C452 179.3 (2) C52—C53—C54—C55 −0.5 (4)
N41—N42—C422—N423 −177.2 (2) C52—C53—C54—Cl54 179.2 (2)
C43—N42—C422—N423 1.9 (4) C53—C54—C55—C56 0.3 (4)
N41—N42—C422—S421 2.6 (3) Cl54—C54—C55—C56 −179.3 (2)
C43—N42—C422—S421 −178.31 (19) C52—C51—C56—C55 −0.7 (4)
C425—S421—C422—N423 −1.6 (2) O51—C51—C56—C55 179.4 (2)
C425—S421—C422—N42 178.6 (2) C54—C55—C56—C51 0.3 (4)

Funding Statement

This work was funded by University Grants Commission, New Delhi grant .

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bondock, S., Fadaly, W. & Metwally, M. A. (2010). Eur. J. Med. Chem. 45, 3692–3701. [DOI] [PubMed]
  3. Cuartas, V., Insuasty, B., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 784–790. [DOI] [PubMed]
  4. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644. [DOI] [PubMed]
  7. Glidewell, C., Kalluraya, B., Rathore, R. S. & Yathirajan, H. S. (2019). CSD Communication (deposition No. 1897876). CCDC, Cambridge, England.
  8. Havrylyuk, D., Roman, O. & Lesyk, R. (2016). Eur. J. Med. Chem. 113, 145–166. [DOI] [PMC free article] [PubMed]
  9. Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787. [DOI] [PubMed]
  10. Isloor, A. M., Kalluraya, B. & Pai, S. K. (2010). Eur. J. Med. Chem. 45, 825–830. [DOI] [PubMed]
  11. Kiran Kumar, H., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2019). Acta Cryst. C75, 768–776. [DOI] [PubMed]
  12. Manju, N., Kalluraya, B., Asma, Madan Kumar, S., Revanasiddappa, B. & Chandra (2019). J. Med. Chem. Sci. 2, 101–109.
  13. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  14. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  15. Rostom, S. A. F., El-Ashmawy, I. M., Abd El Razik, H. A., Badr, M. H. & Ashour, H. M. A. (2009). Bioorg. Med. Chem. 17, 882–895. [DOI] [PubMed]
  16. Shahani, T., Fun, H.-K., Shetty, S. & Kalluraya, B. (2011). Acta Cryst. E67, o2646. [DOI] [PMC free article] [PubMed]
  17. Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48–52. [DOI] [PMC free article] [PubMed]
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  21. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  22. Sulthana, S. S., Antony, S. A., Balachandran, C. & Shafi, S. S. (2015). Bioorg. Med. Chem. Lett. 25, 2753–2757. [DOI] [PubMed]
  23. Vijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410–415. [DOI] [PubMed]
  24. Vinutha, N., Kumar, S. M., Shobhitha, S., Kalluraya, B., Lokanath, N. K. & Revannasiddaiah, D. (2014). Acta Cryst. E70, o560. [DOI] [PMC free article] [PubMed]
  25. Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, Ia, Ib, II, III. DOI: 10.1107/S2056989021002310/dx2035sup1.cif

e-77-00335-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) Ia. DOI: 10.1107/S2056989021002310/dx2035Iasup2.hkl

e-77-00335-Iasup2.hkl (389.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002310/dx2035Iasup6.cml

Structure factors: contains datablock(s) Ib. DOI: 10.1107/S2056989021002310/dx2035Ibsup3.hkl

e-77-00335-Ibsup3.hkl (421KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002310/dx2035Ibsup7.cml

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021002310/dx2035IIsup4.hkl

e-77-00335-IIsup4.hkl (442.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021002310/dx2035IIsup8.cml

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989021002310/dx2035IIIsup5.hkl

e-77-00335-IIIsup5.hkl (459KB, hkl)

CCDC references: 2065478, 2065477, 2065476, 2065475

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES