Abstract
Metabolic reprogramming is a key hallmark of cancer and shifts cellular metabolism to meet the demands of biomass production necessary for abnormal cell reproduction. One-carbon metabolism (1CM) contributes to many biosynthetic pathways that fuel growth and is comprised of a complex network of enzymes. Methotrexate and 5-fluorouracil were pioneering drugs in this field and are still widely used today as anticancer agents as well as for other diseases such as arthritis. Besides dihydrofolate reductase and thymidylate synthase, two other enzymes of the folate cycle arm of 1CM have not been targeted clinically: serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate dehydrogenase (MTHFD). An increasing body of literature suggests that the mitochondrial isoforms of these enzymes (SHMT2 and MTHFD2) are clinically relevant in the context of cancer. In this review, we focused on the 1CM pathway as a target for cancer therapy and, in particular, SHMT2 and MTHFD2. The function, regulation, and clinical relevance of SHMT2 and MTHFD2 are all discussed. We expand on previous clinical studies and evaluate the prognostic significance of these critical enzymes by performing a pan-cancer analysis of patient data from the The Cancer Genome Atlas and a transcriptional coexpression network enrichment analysis. We also provide an overview of preclinical and clinical inhibitors targeting the folate pathway, the methionine cycle, and folate-dependent purine biosynthesis enzymes.
Keywords: one-carbon metabolism, folate metabolism, SHMT2, MTHFD2, cancer, inhibitors
1. Introduction
One-carbon metabolism (1CM) is commonly dysregulated in cancer due to its contribution to core cellular building blocks (e.g., purine and pyrimidine nucleotides), epigenetics, post-translational modifications (PTMs), and redox homeostasis, and it is comprised of a complex network of enzymes.1,2 Targeting of 1CM was one of the original chemotherapeutic strategies with the discovery of aminopterin by Sidney Farber in 1948 and has led to some of the most successful approaches to halt cell growth.3−5 Methotrexate (MTX) and 5-fluorouracil (5FU) were pioneering drugs in this field and are still widely used today. Dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS) are the targets of these drugs, respectively, and have been successfully targeted for other proliferative diseases such as arthritis.6 Two other enzymes complete the folate cycle arm of 1CM but have not been targeted clinically at this point: serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate dehydrogenase (MTHFD). Literature continues to suggest that the mitochondrial isoforms of these enzymes are clinically relevant in the context of cancer.7−9
2. The 1CM Pathway
2.1. Preliminary Metabolism before Folate Cycle Entry
1CM begins with the folate cycle and provides the 1C unit to the methionine cycle. The one-carbon metabolism pathway is illustrated in Figure 1. The 1C unit is largely supplied by serine, either from the extracellular environment or de novo synthesis, but can be donated by other amino acids as well.4 The extracellular serine is transported by solute carrier family 1 member 4/5 (SLC1A4/SLC1A5).10 De novo serine biosynthesis is carried out by a series of three enzymes from the glycolytic intermediate 3-phosphoglycerate (3PG): phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) which extends off of glycolysis.11 Folate is not able to diffuse through the plasma membrane due to its high polarity (cLog P = −2.37); therefore, it must be transported. Folate and its derivatives enter cells through three mechanisms: internalization of the folate receptors (FRα/FOLR1 and FRβ/FOLR2), passive transport by the reduced folate carrier (RFC, encoded by SLC19A1), and active transport by the proton-coupled folate transporter (PCFT, encoded by SLC46A1).12−14 In the context of cancer, the α isoform of the folate receptor has been shown to be more relevant.12 Polyglutamylation of folate and its derivatives are regulated by the extracellular folate hydrolase 1 (FOLH1, also known as PSMA and GCPII), intracellular folylpolyglutamate synthase (FPGS), and lysosomal gamma glutamyl hydrolase (GGH).15,16 Only monoglutamate forms of folate are able to be transported. Notably, polyglutamylated folate derivatives are usually better substrates for folate-dependent enzymes, and therefore regulation by FOLH1, FPGS, and GGH play a key role in sensitivity to chemotherapies.15,17 While nearly all dietary folate is in a reduced, bioactive form,18 folic acid (vitamin B9) must be reduced to dihydrofolate (DHF) and further to tetrahydrofolate (THF) by DHFR to yield the physiological form.
Figure 1.
Key enzymes involved in one-carbon metabolism. Cytosolic folate metabolism enzymes: FPGS; DHFR; TYMS; SHMT1; MTHFR; MTHFD1; MTHFS, methenyltetrahydrofolate synthetase, ALDH1L1. Serine biosynthesis enzymes: PHGDH, phosphoglycerate dehydrogenase; PSAT1, phosphoserine aminotransferase 1; PSPH, phosphoserine phosphatase. Mitochondrial folate metabolism: SHMT2, serine hydroxymethyltransferase 2; MTHFD2/2L, methylenetetrahydrofolate dehydrogenase 2/2-like; MTFMT, methyltetrahydrofolate methyltransferase; MTHFD1L, methylenetetrahydrofolate dehydrogenase 1-like; ALDH1L2, aldehyde dehydrogenase 1 family member L2; GCS, glycine cleavage system. Plasma membrane transporters: RFC, reduced folate carrier; PCFT, proton-coupled folate transporter; FOLR1/2, folate receptor α or β; FOLH1, folate hydrolase; SLC1A4/SLC1A5, solute carrier family 1 member 4/5. Mitochondrial transporters: SFXN1, sideroflexin 1; MFT, mitochondrial folate transporter.
2.2. Cytosolic Folate Metabolism
After DHFR reduces folate to THF, SHMT1 transfers a 1C unit from serine to produce 5,10-methylene-THF (5,10-CH2-THF). This can be recycled back to DHF by TYMS, which transfers the 1C unit to dUMP to form dTMP.2 This is the first contribution to nucleotide biosynthesis (pyrimidines). Alternatively, 5,10-CH2-THF can go through a series of oxidation reactions catalyzed by MTHFD1. MTHFD1 has three functions: dehydrogenase, cyclohydrolase, and synthetase. The first intermediate, 5,10-methenyl-THF (5,10-CH+-THF), is short-lived due to its instability and is subsequently reduced to 10-formyl-THF (10-CHO-THF).19 10-CHO-THF can go on to participate in purine biosynthesis (GAR transformylase, GART, and AICAR formyltransferase, AICARFT)20 or be converted back to THF by MTHFD1 or aldehyde dehydrogenase 1 family member L1 (ALDH1L1) releasing formate or CO2, respectively.21 Methenyltetrahydrofolate synthetase can contribute to this pathway by converting 5-CHO-THF into 5,10-CH+-THF.22 5,10-CH2-THF can also be further reduced to 5-methyl-THF (5-CH3-THF) by methylenetetrahydrofolate reductase (MTHFR), acting as the methyl donor to the methionine cycle.23
2.3. Mitochondrial Folate Metabolism
In order for mitochondrial folate metabolism to function, serine and THF must first be transported into the organelle by sideroflexin 1 (SFXN1) and the mitochondrial folate transporter (MFT), respectively.24,25 SHMT2 is the mitochondrial isoform of SHMT1 and performs the same enzymatic reaction to donate a 1C unit from serine to THF.2 In addition to serine, glycine is another amino acid that can donate a 1C unit, and this is facilitated by the glycine cleavage system (GCS).26 Both SHMT2 and the GCS generate 5,10-CH2-THF, which is a substrate for MTHFD2/2L. MTHFD2 and MTHFD2L catalyze the oxidation of 5,10-CH2-THF to 10-CHO-THF.27,28 MTHFD1L completes what the trifunctional MTHFD1 is able to catalyze in the cytosol: regeneration of THF and production of formate.29 10-CHO-THF is also a substrate for ALDH1L2 and MTFMT. ALDH1L2 has the same function as the cytosolic ALDH1L1; production of THF and carbon dioxide.21 MTFMT, or mitochondrial methionyl-tRNA formyltransferase, transfers the formyl group from 10-CHO-THF to methionine-tRNAs to produce formyl-methionine-tRNA which is required for the initiation of translation of mitochondrial proteins.30
2.4. Select Inhibitors of 1CM
Inhibitors have been discovered for most enzymes and transporters involved in 1CM (Figure 2), also recently succinctly summarized by Robinson et al.31 Those that remain to be targeted are PSAT1, MFT (SLC25A32), PCFT (SLC46A1), SFXN1, ALDH1L1/2, MTFMT, MTRR, and DMGDH. A list of inhibitors of 1CM proteins and their structures, activities, and status can be found in Tables 1–6. Inhibitors of subsections of 1CM are discussed briefly below. Biochemical activity data is only included for nonpolyglutamyl forms of folate derivatives, but it is important to note that polyglutamylated forms typically bind with much higher affinities.17 It should be noted that only experimentally validated compounds with activity levels ≤50 μM are included, and structures likely to be pan-assay inhibitors (PAINS) are excluded.
Figure 2.
Summary of select preclinical and clinically used compounds targeting 1CM. Coloring: black indicates FDA-approved, green indicates clinical trials, red indicates preclinical. BSP, bromosulfophthalein; GPC, glycerylphosphorylcholine.
Table 1. Serine Biosynthesis Inhibitors32,34−47.
Table 6. Inhibitors of Folate-Dependent Enzymes in Purine Biosynthesis66,107,110−114,116−120.
2.4.1. Serine Biosynthesis Inhibitors
Two out of the three enzymes that make up the serine biosynthesis pathway have inhibitors discovered for them (Figure 2, Table 1). A good portion of the reported serine biosynthesis inhibitors have antibacterial activity and have been recently reviewed.32 PHGDH is an emerging anticancer target, and there has been extensive effort to develop compounds that inhibit this enzyme.33 BI-4924 is the most potent among them with an IC50 of 2 nM.34
2.4.2. Folate Glutamylation-Modifying Enzyme Inhibitors
Glutamylation states of folates or derivatives are important for activity against their targets and also determine cell permeability/uptake by transporters.15 Uptake by the folate transporters is only possible with the monoglutamate forms. Inhibitors have been discovered for both FOLH1 and FPGS although none are FDA-approved (Figure 2, Table 2). FOLH1 inhibitors have suffered from poor oral bioavailability (due to their acidic nature in mimicking the glutamate substrate) or toxicity which prevented progress in clinical trials.16 However, there is still interest in pursuing pro-drug strategies for the inhibitors in which there was not dose-limiting toxicity because of promising preclinical data.16 Folate analogs are reported to inhibit FPGS, albeit only modestly in the midmicromolar range.48
Table 2. Folate Glutamylation-Modifying Enzyme Inhibitors16,48,49.
Consult ref (16) for details on the clinical use of FOLH1 inhibitors.
2.4.3. Folate and Serine Transporter Inhibitors
Folate transporters play an important role in the efficacy of antifolate chemotherapies.12,14,50 The small molecule inhibitors of these cell surface transporters require high concentrations in order to be effective (>100 μM). In pursuit of delivering oncolytic virotherapy to ovarian cancer cells, Hulin-Curtis and colleagues identified a peptide that competes with folic acid for binding to FOLR1 (Table 3).51 There are many antibody–drug conjugates and folic acid conjugates built on the same premise of delivering chemotherapy selectively to the cancer cells.12 The unconjugated monoclonal antibody farletuzumab specifically targets FOLR1, but interestingly, inhibition of folic acid uptake is not part of its mechanism of action.12 Despite encouraging preclinical data, farletuzumab has not successfully completed a Phase III trial.12 As these transporters are important for the efficacy of antifolate drugs, development of inhibitors for these proteins would need to be carefully considered in the context of cancer.
Table 3. Folate and Serine Transporter Inhibitors12,51−55.
Antifolates are excluded as they are also substrates.
Compounds with Ki or IC50 > 50 μM are not included
2.4.4. Cytosolic and Mitochondrial Folate Metabolism Inhibitors
DHFR and TYMS were the first 1CM proteins to be clinically validated as targets for cancer therapy and remain the most successful in this context to date (Figure 2, Table 4). All FDA-approved DHFR and TYMS inhibitors are classical or nonclassical folate derivatives, with the obvious exception of 5FU. There are also several compounds targeting these two enzymes in the clinical trial pipeline: raltitrexed, piritrexim, ZD-9331, GS7904L, and ONX-0801 (Figure 2, green text; Table 4). Detailed reviews are available for these classical inhibitors.56,57 Considerable interest exists for ONX-0801 because it specifically targets FOLR1-overexpressing tumors.58 Pemetrexed and raltitrexed, though originally designated as TYMS inhibitors, also potently inhibit DHFR (Table 4) and to a lesser extent purine biosynthesis enzymes (Table 6).
Table 4. Cytosolic and Mitochondrial Folate Metabolism Inhibitors12,56,58−90.
Only cancer-related studies outside of approved indications and with drug as a single agent are included (recruiting or completed).
The only known inhibitor for MTHFR is S-adenosylmethionine (SAM), which is a product feedback inhibitor.23,59 There are no reported inhibitors for human MTHFS, but 5-formyltetrahydrohomofolate (5-formylTHHF) inhibits the murine homologue with a Ki of 0.7 μM.60 The GCS is a multienzyme complex composed of four proteins which all work to convert glycine and THF to 5,10-CH2-THF, carbon dioxide, and ammonia. To our knowledge, cysteamine is the only described inhibitor for the GCS with a Ki of 5 μM.61 Cysteamine is FDA-approved for nephropathic cystinosis and is undergoing clinical trials for multiple indications (Table 4).
2.4.5. Inhibitors of the Methionine Cycle Arm of 1CM
The methionine cycle has great implications because through it the 1C unit is transferred to S-adenosylhomocysteine (SAH) to form SAM, a cofactor used by many methyltransferases.91 MTRR (methionine synthase reductase) and DMGDH (dimethylglycine dehydrogenase, mitochondrial) are the two enzymes yet to be targeted of the methionine cycle. Most of the established inhibitors are folate, adenosine, or amino acid analogs; however, there are some exceptions (Table 5). Methionine synthase (MS) inhibitors contain interesting electrophilic folate analogs such as compounds 6 and 6c which take advantage of MS’s mechanism of action and possess anticancer activity.92,93 Inhibitors of glycine N-methyltransferase (GNMT) include one of its products, SAH, and 5-CH3-THF, which acts as a regulator of pathway flux,94 but no inhibitors outside of these downstream molecules have been discovered. A clinical trial with a compound targeting the 2A isoform of methionine adenosyltransferase (MAT2A), AG-270, is currently underway (NCT03435250). Biochemical or preclinical data from Agios Pharmaceuticals is not available at this time. The first nonsubstrate or product based allosteric MAT2A inhibitor with nanomolar activity came from Pfizer in 2017.95 The natural product AKBA was recently identified as a potent and selective allosteric inhibitor of MAT2A with a Kd of 129 nM.96 There are many potent inhibitors discovered for SAHH (S-adenosyl-l-homocysteine hydrolase) (Table 5). Many are, unsurprisingly, adenine analogs.97−99 However, several compounds with new scaffolds for SAHH were recently identified using a novel high-throughput screening technique.100 The physiological roles of betaine-homocysteine methyltransferases 1 or 2 (BHMT1/2) are still incompletely understood, especially in the context of cancer. Potent inhibitors of both isoforms have been discovered and could be important tools in elucidating BHMT/2’s function.101,102
Table 5. Inhibitors of the Methionine Cycle Arm of 1CM92−106.
2.4.6. Inhibitors of Folate-Dependent Enzymes in Purine Biosynthesis
Purine biosynthesis is carried out by the purinosome, a multienzyme complex, where two of the enzymes (GART and AICARFT) are folate-dependent, both requiring 10-CHO-THF.20 Nearly all discovered inhibitors for these enzymes mimic the folate substrate except for the peptidomimetic identified (compound 14) for AICARFT (Table 6).107 The FDA-approved inhibitor pemetrexed does possess inhibitory activity against GART and AICARFT but only in the low micromolar range.66 Though it has reduced potency compared to other 1CM enzymes, pemetrexed-induced inhibition of AICARFT has important implications as it causes accumulation of the purine intermediate aminoimidazolecarboxamide ribonucleotide (ZMP) thereby affecting AMPK and mTOR signaling.108,109 Lometrexol is much more potent with a Ki of 60 nM for GART,110 but was discontinued from clinical trials. Another potent inhibitor of GART is AG2034 with a Ki of 28 nM but unfortunately did not advance past Phase I clinical trials due to toxicity.111,112 Importantly, several series of compounds discovered by a collaboration between the Ganjee and Matherly laboratories potently inhibit GART and are selectively transported by folate receptors and the PCFT over the RFC.113−115 The discovery of the AICARFT inhibitor LSN3213128 by Eli Lilly and Company is exciting as it is orally bioavailable, efficacious in murine xenografts, and selective against other 1CM enzymes.116 Given the success of other antipurinic antimetabolites (e.g., gemcitabine), the field awaits data on the further development of this potential anticancer therapeutic.
3. SHMT2
3.1. Function and Regulation
SHMT2 simultaneously converts serine and THF to glycine and 5,10-CH2-THF (Figure 1). SHMT2 seems to promote chemosensitivity or resistance in a context-specific manner.121,122 Outside of nutrient contributions, SHMT2 knockout caused mitochondrial translation to stall at specific methylated tRNAs, and this was dependent on its enzymatic activity.123 Protein translation initiation requires formylmethionyl tRNAs, and when SHMT2 is knocked out, 10-CHO-THF, a downstream product, is no longer available for conjugation by MTFMT.30 SHMT2 also plays a role in redox balance. Expression of SHMT2 was shown to be associated with changes in the level of expression of mitochondrial respiration complex proteins.124 Hypoxia induces SHMT2 expression and was found to be necessary for redox homeostasis and cell survival under hypoxic conditions.125,126 Additionally, expression of SHMT2 promotes survival in the ischemic tumor microenvironment in glioma.127 Recent structural studies have identified a novel function of SHMT2 that contributes to immune regulation through the BRISC complex.128−130 This function was in turn regulated by a PTM modulated by HDAC11.131 Other PTMs such as acetylation and succinylation determine enzymatic activity and are modulated by SIRT3 and SIRT5, respectively.132,133 Besides canonical regulation by known metabolic master regulators (Figure 3, black text),1 novel epigenetic mechanisms, transcriptional programs, and noncoding RNAs have been reported to modulate SHMT2 expression (Figure 3, red text). Knockdown of the histone methyltransferase G9A resulted in a decrease in expression of SHMT2 as well as reduced H3K9Me1 levels for serine synthesis pathway genes.134 Novel transcription factors and signaling pathways that regulate SHMT2 include TGF-β, STAT3, and EWS-FLI1.135−137 Interestingly, SHMT1 was shown to bind to the 5′-untranslated region of the SHMT2 transcript thereby preventing its expression.138 SHMT2 expression has also been reported to be under the control of several micro-RNAs (miRs) and long intergenic noncoding RNAs (lincRNAs).139−142 A summary of regulation of SHMT2 is shown in Figure 3. Despite encouraging evidence that SHMT2 is a viable anticancer target, only a handful of inhibitors have been published to date (discussed below).143−146 However, none are specific to SHMT2.
Figure 3.
Summary of the regulation of SHMT2 expression in cancer. Canonical mechanisms are in black text, and noncanonical mechanisms are in red.
3.2. SHMT Inhibitors
The pyrazolopyran scaffold is the predominant series of compounds that make up the SHMT1/2 inhibitor space (Table 7 summarizes select inhibitors for the human isoforms). This class of compounds was originally disclosed as plant SHMT inhibitors in a patent application by BASF (WO 2013182472 A1). This scaffold was then evaluated for activity against Plasmodium SHMT and showed nanomolar enantioselective activity against the enzyme and the parasites.147 That same year, Marani and colleagues published the first data on the human isoforms. In addition to having selective activity against SHMT1, compound 2.12 (Table 7) also displayed anticancer activity in the mid-micromolar range.148 Further optimization of this scaffold led to potent inhibitors of both SHMT1 and SHMT2.143 However, as was also shown in the antimalarial studies,147 this scaffold suffered from poor pharmacokinetic properties that prevented in vivo efficacy studies.143 A breakthrough came this past year with the disclosure of (+)SHIN2 which showed in vivo target engagement of SHMT2 in addition to anticancer activity in models of T-ALL.145 Han and colleagues recently disclosed novel pyrazolopyran compounds with midmicromolar activity against SHMT2 (Table 7).146
Table 7. Inhibitors of Human SHMTs143−146,148,149,155,156.
SHMT2 IC50 values were calculated using GraphPad Prism 9 with the Source Data file from ref (156).
The first in vivo active SHMT inhibitor, AGF347, is a folate mimetic.144 Despite being much less potent than the pyrazolopyran compounds against recombinant protein, AGF347 showed in vivo activity in pancreatic adenocarcinoma models;144 notably, the least-sensitive cell line in vitro was used for the xenograft model. Importantly, AGF347 was shown to be metabolized to polyglutamate forms.149 Polyglutamated endogenous folates bind SHMT with increased affinity compared to their monoglutamated counterparts.150,151 Therefore, it is possible that the polyglutamylation of AGF347 increases the affinity to have similar activity as the pyrazolopyrans, but this remains to be determined experimentally. FDA-approved antifolates do inhibit SHMTs, but higher concentrations are required (≥100 μM).152−154
Using a novel fluorescent assay measuring SHMT activity directly, Nonaka et al. conducted a high-throughput screen of >200k compounds.156 They identified two hits with sub-micromolar activity (Table 7). “Hit 1” is ∼20-fold selective for SHMT1, while “hit 2” is the first-reported SHMT2 selective inhibitor (∼5-fold). Prior to Nonaka and co-worker’s study, generally, only marginal selectivity between the two SHMT isoforms has been achieved, with the inhibitors being selective for SHMT1 by 2- to 3-fold.143,155 The cysteine-reactive inhibitor 3-bromopyruvate is selective for SHMT1 due to the absence of a cysteine residue in SHMT2’s active site.157 Crystal structures are available for both isoforms (summarized in Table 8), but there are currently no cocrystal structures of SHMT1 with any of the published inhibitors. If selectivity is desired, then it will be critical to experimentally determine differences in the binding pockets. However, one could pose the following question: Is SHMT2 selectivity ideal? In vivo studies of the dual SHMT1/2 inhibitors show that coinhibition is efficacious with minimal systemic toxicities,144,145 suggesting that selectivity may not be required. Additionally, when the mitochondrial folate pathway is inhibited, the cytosolic pathway reverses flux to compensate; therefore, inhibition of both isoforms is essential for antitumor activity.158
Table 8. Crystal Structures of the Human SHMTs.
protein | variant | ligands | macromolecule | method | resolution | PDB ID | refs |
---|---|---|---|---|---|---|---|
SHMT1 | WT | PLP | NAa | X-ray | 2.65 Å | 1BJ4 | (159) |
H135N, R137A, E168N | PLP | NA | X-ray | 3.60 Å | 6FL5 | (160) | |
SHMT2 | WT | NA | NA | X-ray | 2.04 Å | 6DK3 | TBPb |
A264T | NA | BRISC-complex | cryo-EM | 3.90 Å | 6H3C | (128) | |
WT | NA | BRISC-complex | cryo-EM | 3.80 Å | 6R8F | (129) | |
WT | PLP, pemetrexed | NA | X-ray | 2.28 Å | 6QVL | (152) | |
WT | PLP, lometrexol | NA | X-ray | 2.32 Å | 6QVG | ||
WT | PLP | NA | X-ray | 2.60 Å | 4PVF | (161) | |
WT | PLP, compound 2 | NA | X-ray | 2.47 Å | 5V7I | (143) | |
K74R, A264T | NA | NA | X-ray | 2.85 Å | 5X3V | TBP |
NA, not applicable.
TBP, to be published.
3.3. Association with Cancer Patient Survival and Transcriptional Programs
The mitochondrial isoform of SHMT is selectively overexpressed compared to its cytosolic counterpart and is associated with poor patient prognosis, staging, and metastasis in several cancers including kidney, gastric, liver, breast, lung, colorectal, esophageal and intrahepatic cholangiocarcinoma, oral squamous carcinoma, and glioma.162−172 Across the NCI-60 panel of cell lines, SHMT2 expression held a stronger correlation with proliferation rate than that of SHMT1.8 The Cancer Genome Atlas (TCGA) disease patient samples were evaluated for reduced survival by comparing survival outcomes for patients with high SHMT1 and SHMT2 expression to those with low SHMT1/2 expression. Patients were stratified based on median gene expression, and a log-rank statistic was used to quantify differences in survival with p-values FDR-adjusted across 33 cancer types, and FDR-adjusted p-values < 0.05 were considered significant (Figure 4). Gene expression thresholding and Kaplan–Meier (KM) plots were generated using patient sample RNA-Seq RSEM-normalized gene expression values and survival metadata sourced from the TCGA GDAC Firehose.173 Survival test statistics and KM plots were generated using the R statistical programming language.174 We observed higher expression of SHMT2 in adrenocortical carcinoma (ACC), which was significantly associated with reduced survival; SHMT1 was also marginally associated with reduced survival (p-value not significant after multiple testing). This result is novel based on our search of the literature. Not much is known about the metabolic landscape of ACC, but gemcitabine and capecitabine are part of second-line therapy regimens.175 Additionally, some mTOR inhibitors are currently undergoing clinical trials.175 We identified three TCGA diseases for which higher levels of SHMT1 was associated with improved survival and would not recommend targeting SHMT1 in these diseases. Interestingly, in brain lower grade glioma (LGG), patients with a higher expression of SHMT1 were significantly associated with reduced survival, and patients with a higher expression of SHMT2 were moderately associated with improved survival (p-value not significant after FDR correction).
Figure 4.
Pan-cancer SHMT1 and SHMT2 patient survival association survey. (A) SHMT1 and SHMT2 expression are associated with overall survival in several cancers. Patients from each disease were stratified by median expression of SHMT1 and SHMT2. Heat map color indicates directionality and significance of association (red = reduced survival, blue = increased survival) with increased gene expression. Heat map cells with black borders indicate FDR p-value < 0.05. (B) SHMT1 and SHMT2 expression associate with reduced survival in ACC. (C) LGG patients with high expression of SHMT1 had significantly reduced survival, while patients with high levels of SHMT2 marginally associated with improved survival. Log-rank (LR) statistic p-values used to quantify association with survival were FDR adjusted across cancers per gene. ACC SHMT1 and LGG SHMT2 LR p-values not significant after FDR correction. (D) Gene Set Enrichment Analysis (GSEA) performed to identify gene sets enriched for genes correlated with SHMT1 expression in ACC and LGG diseases. 34 common enriched gene sets were identified using Hallmark and KEGG gene sets with FWER < 0.05. (E) GSEA enrichment plots for interferon gamma response gene set. Several immune-related gene sets were significantly enriched for coexpression with SHMT1 expression. GSEA PreRanked analysis performed using Pearson correlation with SHMT1 expression using GSEAv2.2.3, weighted scoring, and 10 000 permutations with MsigDBv7 gene sets. BRCA = breast invasive carcinoma; CESC= cervical and endocervical cancers; CHOL = Cholangiocarcinoma; COAD = colon adenocarcinoma; DLBC = lymphoid neoplasm diffuse large B-cell lymphoma; ESCA = esophageal carcinoma; GBM = glioblastoma multiforme; HNSC = head and neck squamous cell carcinoma; KICH = kidney chromophobe; KIRP = Kidney renal papillary cell carcinoma; LAML = acute myeloid leukemia; LIHC = liver hepatocellular carcinoma; LUAD = lung adenocarcinoma; LUSC = lung squamous cell carcinoma; MESO = mesothelioma; OV = ovarian serous cystadenocarcinoma; PCPG = pheochromocytoma and paraganglioma; PRAD = Prostate adenocarcinoma; READ = Rectum adenocarcinoma; SARC = sarcoma; SKCM = skin cutaneous melanoma; STAD = stomach adenocarcinoma; TGCT = testicular germ cell tumors; THCA = thyroid carcinoma; THYM = thymoma; UCS = uterine carcinosarcoma; UVM = uveal melanoma.
We performed a transcriptional coexpression network enrichment analysis to identify gene sets statistically enriched for genes correlated with SHMT1 in ACC and LGG patient cohorts. Gene Set Enrichment Analysis (GSEA) PreRanked V2.2.3 was used to score Hallmark and KEGG gene sets from the MSigDBv7 database.176 Interestingly 34 enriched gene sets were commonly enriched in ACC and LGG networks (Figure 4D, GSEA Supporting Information Table) and the statistically significant overlap between diseases indicates common transcriptional programs associated with SHMT1 expression are detected. There were several immune-related gene sets including interferon gamma response, inflammatory response, interferon alpha response, and cytokine signaling identified. Previous studies have identified links between SHMT proteins and interferon signaling, and these findings indicate SHMT expression is associated with immune response transcriptional programs in ACC and LGG patient cohorts.131,177,178 Tumor necrosis factor alpha (TNF-α) is a key cytokine that regulates immune responses in healthy persons and in diseased conditions. In cancer, TNF-α can elicit myriad effects depending on the context, such as proliferation, apoptosis, necrosis, migration, angiogenesis, or invasion.179 Little is known about the relationship between cancer cell metabolism reprogramming and TNF-α signaling through NF-κB. To our knowledge, only a couple of studies have been published investigating metabolic changes of cancer cells in response to TNF-α. In noncancerous and malignant breast epithelial cells, TNF-α induces a shift to reliance on aerobic glycolysis, however it is unknown if it was NF-κB dependent.180 Also, in cooperation with interleukin-17, TNF-α induces glycolysis in colorectal cancer cells.181 Similarly, another study reported metabolic reprogramming of hepatocytes toward the Warburg-effect phenotype in response to viral infection mediated by macrophage-secreted TNF-α.182 In adipocytes, sustained exposure to TNF-α alters mitochondrial metabolism, notably reducing the NAD/NADH ratio.183 Despite the observations toward the Warburg effect, no mechanisms have been elucidated. Given this knowledge gap, it is uncertain as to how folate metabolism is relevant to NF-κB signaling and more specifically SHMTs. Interestingly, a nanoparticle containing NF-κB-targeted siRNA and MTX, a standard drug for the treatment of rheumatoid arthritis, reduced TNF-α secretion and suppressed arthritis progression in a mouse model.184
4. MTHFD2
4.1. Function and Regulation
MTHFD2 possesses two enzymatic activities, a dehydrogenase and cyclohydrolase (Figure 1). The role of MTHFD2 in cancer was recently reviewed.7 Both through genetic and small molecule approaches, inhibition of MTHFD2 reduces proliferation, migration, invasion, tumor growth, stem-cell-like properties, and promotes cell death, differentiation, and chemosensitivity in several cancer types.7,185−188 In addition to its involvement in nutrient regulation, MTHFD2 plays a role in redox homeostasis through the use of its cofactor NAD+, as well as involvement with expression of hypoxia-related proteins such as HIF-2α.158,189−192 Other secondary functions of MTHFD2 have also been discovered such as nonenzymatic driven proliferation, potential physical interaction with nuclear-RNA-related proteins, and localization to DNA replication sites.193,194 The mechanism of how the nonenzymatic function drives proliferation is not well understood. Overexpression of MTHFD2 with an active site residue mutated that is required for catalysis still had a proliferative advantage compared to the vector control.193 Similar to SHMT2, regulation of MTHFD2 expression extends beyond canonical metabolism-related transcription factors such as c-MYC, mTOR, ATF4, HIF-1α, AMPK, and NRF2.1 For example, several microRNAs and transcription factors like the chimeric oncogene EWS-FLI1 have been shown to impact MTHFD2 expression.7,137 Noncoding RNAs reported to regulate MTHFD2 expression include miR-9 (along with lncRNA TUG1), miR-92a, miR-940, miR-33a-5p, miR-22, and LIN28B.195−201 MTHFD2 is a predicted target gene of miR-99a-3p, miR-186–5p, and hsa-miR-202.202−204 Similar to SHMT2, acetylation of an active site residue (Lys88) was reported to be removed by SIRT3 thereby activating MTHFD2’s enzymatic activity.205 Five sites of phosphorylation on MTHFD2 have been identified through phosphoproteomics (S149, T187, T191, T306, and T324).206 However, it is unknown what kinases catalyze these phosphorylations or what purpose they serve. PTMs in general can act as a switch for metabolic enzymes to take on their moonlighting functions.207 For example, phosphorylation of superoxide dismutase 1 (SOD1) causes its translocation to the nucleus where it is able to transcriptionally upregulate antioxidant-related genes.208 As MTHFD2 has been shown to be present at DNA replication sites,193 it would be interesting to see if PTMs regulated this function.
4.2. MTHFD Inhibitors
The mounting evidence of the clinical relevance of MTHFD2 has led to intense interest in developing MTHFD2-targeting therapeutics. The development of MTHFD2 inhibitors was recently reviewed, so it will only be discussed here briefly.7 There are fewer published inhibitors of MTHFD2 than for SHMT2 (Table 9), but significant progress in selectivity over the cytosolic MTHFD isoform (MTHFD1) was achieved in a very short amount of time. The first described MTHFD2 inhibitor, LY345899, is a folate analog. While it had activity in the high nanomolar range, it was still ∼7-fold selective for MTHFD1.209 Around the same time, the natural product carolacton was originally discovered as an inhibitor of the E. coli isoform, FolD, but it also possessed potent activity against MTHFD1 and MTHFD2.185 Interestingly, carolacton was selective for MTHFD2 with the dehydrogenase function, but for MTHFD1 with the cyclohydrolase function.185 The first truly MTHFD2-selective inhibitor was reported in 2019, DS44960156, although potency was lacking.210 Later that year, the same group followed up with an optimized inhibitor, DS18561882, that was not only potent in vitro but also efficacious in vivo.186 MTHFD2L takes the place of MTHFD2’s function in normal adult tissues, so an important next step would be to evaluate the activity of these molecules against this mitochondrial isoform. Currently there are no crystal structures available for the other two human mitochondrial isoforms (Table 10).
Table 9. Inhibitors of Human MTHFDs185,186,189,209,210.
Table 10. X-ray Crystal Structures of Human MTHFDs.
protein | ligands | resolution (Å) | PDB ID | refs |
---|---|---|---|---|
MTHFD1 | NADP | 1.50 | 1A4I | (211) |
NADP, LY249543 | 2.20 | 1DIA | (212) | |
NADP, LY345899 | 2.70 | 1DIB | ||
NADP, LY374571 | 2.20 | 1DIG | ||
NADP, LY249543 | 2.20 | 6ECP | (213) | |
NADP, LY345899 | 2.70 | 6ECQ | ||
NADP | 2.20 | 6ECR | ||
MTHFD2 | NAD, LY345899 | 1.89 | 5TC4 | (209) |
DS44960156 | 2.25 | 6JIB | (210) | |
compound 1 | 2.50 | 6JID | ||
DS18561882 | 2.25 | 6KG2 | (186) | |
MTHFD1L | NA | NA | NA | NA |
MTHFD2L | NA | NA | NA | NA |
NA, not applicable
4.3. Association with Cancer Patient Survival and Transcriptional Programs
Of the four MTHFD isoforms, MTHFD2 is the only one that is not expressed in adult human tissues and is primarily expressed during embryonic development or in cancerous cells, making it an attractive anticancer target.9 Overexpression of MTHFD2 is associated with poor prognosis and clinicopathological parameters in breast, renal, liver, pancreatic, and colorectal cancers and some brain cancers.7 A TCGA pan-disease survival association analysis with MTHFD2 expression was performed using the GDAC Firehose-sourced data as described above (Figure 5). Our analysis corroborated previous findings with pancreatic (pancreatic adenocarcinoma, PAAD), kidney renal clear cell carcinoma (KIRC), and kidney renal papillary cell carcinoma (KIRP) malignancies.214,215 We identified significant reduction in survival with a higher expression of MTHFD2 in bladder urothelial carcinoma (BLCA) and uterine corpus endometrial carcinoma (UCEC) (Figure 5B). These findings have not been published to our knowledge. Significant reduction in survival was seen with a lower expression of MTHFD2 in glioblastoma multiforme (GBM) and low-grade glioma (LGG) (Figure 5C). The role of MTHFD2 in brain cancer seems to be quite complex as other studies have seen similar and contrasting results.7
Figure 5.
Pan-cancer MTHFD2 patient survival association survey. (A) MTHFD2 expression correlates with cancer patient survival in several cancers. Patients from each disease were stratified by median expression of MTHFD2. Heat map color indicates directionality and significance of association (red = reduced survival, blue = increased survival) with increased gene expression. Heat map cells with black borders indicate FDR p-value <0.05. (B) High MTHFD2 expression associates with reduced survival in BLCA, KIRC, KIRP, PAAD, and UCEC. Log-rank (LR) statistic p-values used to quantify association with survival were FDR adjusted across cancers. (C) Chow-Ruskey venn diagram showing results from Gene Set Enrichment Analysis (GSEA) performed to identify gene sets enriched for genes correlated with MTHFD2 expression in BLCA, KIRC, KIRP, PAAD, and UCEC diseases. Nine common enriched gene sets were identified using Hallmark and KEGG gene sets with FWER < 0.05. (D) GSEA enrichment plots for Hallmark MYC Targets V1 gene set. GSEA PreRanked analysis performed using Pearson correlation with MTHFD2 expression using GSEAv2.2.3, weighted scoring, 10,000 permutations with MsigDBv7 gene sets.
Our transcriptional coexpression network enrichment analysis identified nine gene sets statistically enriched for genes correlated with MTHFD2 in BLCA, KIRC, KIRP, PAAD, and UCEC patient cohorts. (Figure 5C, GSEA Supporting Information Table). Common gene sets were found to be related to the cell cycle, MYC signaling, and unfolded protein response. MTHFD2’s relation to MYC has previously been established.189,216,217 Recently, SHMT2 and MTHFD2 expression was found to be increased upon induction of the unfolded protein response (UPR).218 Additionally, knockout of a key UPR transcription factor XBP1 caused an upregulation of SHMT2 in dendritic cells.219
5. Summary
Metabolic reprogramming shifts a cell’s metabolism from an energetically efficient process to one which is more biomass-production-centric. As a result, this allows cancer cells to rapidly proliferate, resist chemotherapies, invade, metastasize, and survive a nutrient-deprived microenvironment. 1CM has its hand in many biosynthetic pathways that fuel growth, regulate redox status, and contribute to post-translational modifications, among others. In this review, we focused on the 1CM pathway as a target for cancer therapy, and in particular, SHMT2 and MTHFD2.
The function, regulation, and clinical relevance of SHMT2 and MTHFD2 were all discussed. These enzymes are critical for their contributions to the synthesis of one carbon donors in different oxidation states (5,10-CH2-THF and 10-CHO-THF) that are donated to biosynthetic pathways such as pyrimidine and purine biosynthesis, respectively. Several post-translational modifications have been discovered that regulate SHMT2’s activity. Interestingly, both SHMT2’s and MTHFD2’s enzymatic activity is regulated by SIRT3.133,205 Additionally, the expression of both enzymes are controlled by an increasing number of miRs and other noncoding RNAs. Through our independent analysis of TCGA, we identified several cancers whose survival was associated with the high expression of SHMT2 (ACC) and MTHFD2 (BLCA, ESCA, HNSC, LUAD, MESO, and UCEC).
We also provided a comprehensive overview of preclinical and clinical inhibitors targeting the 1CM pathway. Most clinically approved drugs for this pathway target DHFR and TYMS, and there are still even more new drugs undergoing clinical trials that target these enzymes (raltitrexed, piritrexim, ONX-0801, ZD-9331, and GS7904L). However, there are other 1CM enzymes with inhibitors undergoing clinical trials (MAT2A and GART). There is considerable interest in pursuing development of SHMT2 and MTHFD2 inhibitors due to their selective overexpression and association with myriad of clinicopathological parameters. Significant progress has been made in the discovery of potent inhibitors of these enzymes.144,145,186 In summary, we believe that targeting 1CM will be a mainstay therapeutic strategy for the treatment of cancer for years to come.
Acknowledgments
C.R.C. is a trainee of the University of Michigan Pharmacological Sciences Training Program (PSTP, T32-GM007767). This work was supported by NIH grant R01 CA188252 and a grant from the University of Michigan Forbes Institute for Cancer Discovery.
Glossary
Abbreviations Used
- 1CM
One-carbon metabolism
- 5FU
5-Fluorouracil
- ACC
Adrenocortical carcinoma
- ALDH1L1/ALDH1L2
Aldehyde dehydrogenase 1 family member L1/L2
- BLCA
Bladder urothelial carcinoma
- BRCA
Breast invasive carcinoma
- BSP
Bromosulfophthalein
- CESC
Cervical and endocervical cancers
- CHOL
Cholangiocarcinoma
- COAD
Colon adenocarcinoma
- DHFR
Dihydrofolate reductase
- DLBC
Lymphoid neoplasm diffuse large B-cell lymphoma
- ESCA
Esophageal carcinoma
- FDA
Food and Drug Administration
- FOLR1/2
Folate receptor α or β
- FOLH1
Folate hydrolase
- FPGS
Folylpolyglutamate synthase
- GBM
Glioblastoma multiforme
- GPC
Glycerylphosphorylcholine
- GSEA
Gene Set Enrichment Analysis
- HNSC
Head and neck squamous cell carcinoma
- IC50
Half maximal inhibitory concentration
- KICH
Kidney chromophobe
- KIRC
Kidney renal clear cell carcinoma
- KIRP
Kidney renal papillary cell carcinoma
- LAML
Acute myeloid leukemia
- LGG
Lower grade glioma
- LIHC
Liver hepatocellular carcinoma
- LUAD
Lung adenocarcinoma
- LUSC
Lung squamous cell carcinoma
- MESO
Mesothelioma
- MFT
Mitochondrial folate transporter
- MTHFD1
Methylenetetrahydrofolate dehydrogenase 1, cytosolic (trifunctional)
- MTHFD1L
Methylenetetrahydrofolate dehydrogenase 1-like, mitochondrial (monofunctional)
- MTHFD2
Methylenetetrahydrofolate dehydrogenase 2, mitochondrial (bifunctional)
- MTHFD2L
Methylenetetrahydrofolate dehydrogenase 2-like, mitochondrial (bifunctional)
- MTHFR
Methylenetetrahydrofolate reductase
- MTHFS
Methenyltetrahydrofolate synthetase
- MTX
Methotrexate
- OV
Ovarian serous cystadenocarcinoma
- PAAD
Pancreatic adenocarcinoma
- PAINS
Pan-assay interference compounds
- PCFT
Proton-coupled folate transporter
- PCPG
Pheochromocytoma and paraganglioma
- PHGDH
Phosphoglycerate dehydrogenase
- PRAD
Prostate adenocarcinoma
- PSPH
Phosphoserine phosphatase
- PTM
Post-translational modification
- READ
Rectum adenocarcinoma
- SARC
Sarcoma
- SFXN1
Sideroflexin 1
- SHMT1
Serine hydroxymethyltransferase 1, cytosolic
- SHMT2
Serine hydroxymethyltransferase 2, mitochondrial
- SKCM
Skin cutaneous melanoma
- SLC1A4/SLC1A5
Solute carrier family 1 member 4/5
- STAD
stomach adenocarcinoma
- TGCT
Testicular germ cell tumors
- THCA
Thyroid carcinoma
- THYM
Thymoma
- UCEC
Uterine corpus endometrial carcinoma
- UCS
Uterine carcinosarcoma
- UVM
Uveal melanoma
- TCGA
The Cancer Genome Atlas
- THF
Tetrahydrofolate
- TYMS
Thymidylate synthase
Supporting Information Available
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsptsci.0c00223.
Gene Set Enrichment Analysis data set (XLSX)
The authors declare no competing financial interest.
Originally published ASAP on March 1, 2021; Table 4 updated on March 3, 2021.
Supplementary Material
References
- Rosenzweig A.; Blenis J.; Gomes A. P. (2018) Beyond the Warburg effect: how do cancer cells regulate one-carbon metabolism?. Front. Cell Dev. Biol. 6, 90. 10.3389/fcell.2018.00090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li A. M.; Ye J. (2020) Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim. Biophys. Acta, Mol. Basis Dis. 1866, 165841. 10.1016/j.bbadis.2020.165841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farber S.; Diamond L. K.; Mercer R. D.; Sylvester Jr R. F.; Wolff J. A. (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N. Engl. J. Med. 238, 787–793. 10.1056/NEJM194806032382301. [DOI] [PubMed] [Google Scholar]
- Locasale J. W. (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583. 10.1038/nrc3557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asai A.; Konno M.; Koseki J.; Taniguchi M.; Vecchione A.; Ishii H. (2020) One-carbon metabolism for cancer diagnostic and therapeutic approaches. Cancer Lett. 470, 141–148. 10.1016/j.canlet.2019.11.023. [DOI] [PubMed] [Google Scholar]
- Cronstein B. N.; Aune T. M. (2020) Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 16, 145–154. 10.1038/s41584-020-0373-9. [DOI] [PubMed] [Google Scholar]
- Zhu Z.; Leung G. K. K. (2020) More than a metabolic enzyme: MTHFD2 as a novel target for anticancer therapy?. Front. Oncol. 10, 658. 10.3389/fonc.2020.00658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jain M.; Nilsson R.; Sharma S.; Madhusudhan N.; Kitami T.; Souza A. L.; Kafri R.; Kirschner M. W.; Clish C. B.; Mootha V. K. (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044. 10.1126/science.1218595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson R.; Jain M.; Madhusudhan N.; Sheppard N. G.; Strittmatter L.; Kampf C.; Huang J.; Asplund A.; Mootha V. K. (2014) Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 5, 3128. 10.1038/ncomms4128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freidman N.; Chen I.; Wu Q.; Briot C.; Holst J.; Font J.; Vandenberg R.; Ryan R. (2020) Amino acid transporters and exchangers from the SLC1A family: structure, mechanism and roles in physiology and cancer. Neurochem. Res. 45, 1268–1286. 10.1007/s11064-019-02934-x. [DOI] [PubMed] [Google Scholar]
- Li A. M.; Ye J. (2020) The PHGDH enigma: Do cancer cells only need serine or also a redox modulator?. Cancer Lett. 476, 97–105. 10.1016/j.canlet.2020.01.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scaranti M.; Cojocaru E.; Banerjee S.; Banerji U. (2020) Exploiting the folate receptor alpha in oncology. Nat. Rev. Clin. Oncol. 17, 349–359. 10.1038/s41571-020-0339-5. [DOI] [PubMed] [Google Scholar]
- Zhao R.; Diop-Bove N.; Visentin M.; Goldman I. D. (2011) Mechanisms of membrane transport of folates into cells and across epithelia. Annu. Rev. Nutr. 31, 177–201. 10.1146/annurev-nutr-072610-145133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matherly L. H.; Wilson M. R.; Hou Z. (2014) The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab. Dispos. 42, 632–649. 10.1124/dmd.113.055723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim S. E. (2020) Enzymes involved in folate metabolism and its implication for cancer treatment. Nutr. Res. Pract. 14, 95–101. 10.4162/nrp.2020.14.2.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vornov J. J.; Peters D.; Nedelcovych M.; Hollinger K.; Rais R.; Slusher B. S. (2020) Looking for drugs in all the wrong places: use of GCPII inhibitors outside the brain. Neurochem. Res. 45, 1256–1267. 10.1007/s11064-019-02909-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shane B. (1989) Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam. Horm. 45, 263–335. 10.1016/S0083-6729(08)60397-0. [DOI] [PubMed] [Google Scholar]
- Wright A. J.; Dainty J. R.; Finglas P. M. (2007) Folic acid metabolism in human subjects revisited: potential implications for proposed mandatory folic acid fortification in the UK. Br. J. Nutr. 98, 667–675. 10.1017/S0007114507777140. [DOI] [PubMed] [Google Scholar]
- Hum D. W.; Bell A. W.; Rozen R.; MacKenzie R. E. (1988) Primary structure of a human trifunctional enzyme. Isolation of a cDNA encoding methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolaseformyltetrahydrofolate synthetase. J. Biol. Chem. 263, 15946–15950. 10.1016/S0021-9258(18)37540-9. [DOI] [PubMed] [Google Scholar]
- Pedley A. M.; Benkovic S. J. (2017) A new view into the regulation of purine metabolism: the purinosome. Trends Biochem. Sci. 42, 141–154. 10.1016/j.tibs.2016.09.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krupenko S. A.; Krupenko N. I. (2018) ALDH1L1 and ALDH1L2 folate regulatory enzymes in cancer. Adv. Exp. Med. Biol. 1032, 127–143. 10.1007/978-3-319-98788-0_10. [DOI] [PubMed] [Google Scholar]
- Field M. S.; Anderson D. D.; Stover P. J. (2011) Mthfs is an essential gene in mice and a component of the purinosome. Front Genet 2, 36. 10.3389/fgene.2011.00036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhatia M.; Thakur J.; Suyal S.; Oniel R.; Chakraborty R.; Pradhan S.; Sharma M.; Sengupta S.; Laxman S.; Masakapalli S. K.; Bachhawat A. K. (2020) Allosteric inhibition of MTHFR prevents futile SAM cycling and maintains nucleotide pools in one carbon metabolism. J. Biol. Chem. 295, 16037. 10.1074/jbc.RA120.015129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence S. A.; Hackett J. C.; Moran R. G. (2011) Tetrahydrofolate recognition by the mitochondrial folate transporter. J. Biol. Chem. 286, 31480–31489. 10.1074/jbc.M111.272187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kory N.; Wyant G. A.; Prakash G.; Uit de Bos J.; Bottanelli F.; Pacold M. E.; Chan S. H.; Lewis C. A.; Wang T.; Keys H. R.; Guo Y. E.; Sabatini D. M. (2018) SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science 362, eaat9528. 10.1126/science.aat9528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kikuchi G.; Motokawa Y.; Yoshida T.; Hiraga K. (2008) Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc. Jpn. Acad., Ser. B 84, 246–263. 10.2183/pjab.84.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolusani S.; Young B. A.; Cole N. A.; Tibbetts A. S.; Momb J.; Bryant J. D.; Solmonson A.; Appling D. R. (2011) Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase isozyme expressed in adult tissues. J. Biol. Chem. 286, 5166–5174. 10.1074/jbc.M110.196840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shin M.; Momb J.; Appling D. R. (2017) Human mitochondrial MTHFD2 is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase. Cancer Metab 5, 11. 10.1186/s40170-017-0173-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christensen K. E.; Mackenzie R. E. (2008) Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases. Vitam. Horm. 79, 393–410. 10.1016/S0083-6729(08)00414-7. [DOI] [PubMed] [Google Scholar]
- Minton D. R.; Nam M.; McLaughlin D. J.; Shin J.; Bayraktar E. C.; Alvarez S. W.; Sviderskiy V. O.; Papagiannakopoulos T.; Sabatini D. M.; Birsoy K.; Possemato R. (2018) Serine catabolism by SHMT2 is required for proper mitochondrial translation initiation and maintenance of formylmethionyl-tRNAs. Mol. Cell 69, 610–621. 10.1016/j.molcel.2018.01.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson A. D.; Eich M. L.; Varambally S. (2020) Dysregulation of de novo nucleotide biosynthetic pathway enzymes in cancer and targeting opportunities. Cancer Lett. 470, 134–140. 10.1016/j.canlet.2019.11.013. [DOI] [PubMed] [Google Scholar]
- Haufroid M.; Wouters J. (2019) Targeting the serine sathway: a promising approach against tuberculosis?. Pharmaceuticals 12, 66. 10.3390/ph12020066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravez S.; Spillier Q.; Marteau R.; Feron O.; Frederick R. (2017) Challenges and opportunities in the development of serine synthetic pathway inhibitors for cancer therapy. J. Med. Chem. 60, 1227–1237. 10.1021/acs.jmedchem.6b01167. [DOI] [PubMed] [Google Scholar]
- Weinstabl H.; Treu M.; Rinnenthal J.; Zahn S. K.; Ettmayer P.; Bader G.; Dahmann G.; Kessler D.; Rumpel K.; Mischerikow N.; Savarese F.; Gerstberger T.; Mayer M.; Zoephel A.; Schnitzer R.; Sommergruber W.; Martinelli P.; Arnhof H.; Peric-Simov B.; Hofbauer K. S.; Garavel G.; Scherbantin Y.; Mitzner S.; Fett T. N.; Scholz G.; Bruchhaus J.; Burkard M.; Kousek R.; Ciftci T.; Sharps B.; Schrenk A.; Harrer C.; Haering D.; Wolkerstorfer B.; Zhang X.; Lv X.; Du A.; Li D.; Li Y.; Quant J.; Pearson M.; McConnell D. B. (2019) Intracellular trapping of the selective phosphoglycerate dehydrogenase (PHGDH) inhibitor BI-4924 disrupts serine biosynthesis. J. Med. Chem. 62, 7976–7997. 10.1021/acs.jmedchem.9b00718. [DOI] [PubMed] [Google Scholar]
- Mullarky E.; Lucki N. C.; Beheshti Zavareh R.; Anglin J. L.; Gomes A. P.; Nicolay B. N.; Wong J. C. Y.; Christen S.; Takahashi H.; Singh P. K.; et al. (2016) Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc. Natl. Acad. Sci. U. S. A. 113, 1778–1783. 10.1073/pnas.1521548113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamanaka R. B.; Nigdelioglu R.; Meliton A. Y.; Tian Y.; Witt L. J.; O’Leary E.; Sun K. A.; Woods P. S.; Wu D.; Ansbro B.; Ard S.; Rohde J. M.; Dulin N. O.; Guzy R. D.; Mutlu G. M. (2018) Inhibition of phosphoglycerate dehydrogenase attenuates bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 58, 585–593. 10.1165/rcmb.2017-0186OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Q.; Liberti M. V.; Liu P.; Deng X.; Liu Y.; Locasale J. W.; Lai L. (2017) Rational design of selective allosteric inhibitors of PHGDH and serine synthesis with anti-tumor activity. Cell Chem. Biol. 24, 55–65. 10.1016/j.chembiol.2016.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo J.; Gu X.; Zheng M.; Zhang Y.; Chen L.; Li H. (2019) Azacoccone E inhibits cancer cell growth by targeting 3-phosphoglycerate dehydrogenase. Bioorg. Chem. 87, 16–22. 10.1016/j.bioorg.2019.02.037. [DOI] [PubMed] [Google Scholar]
- Zheng M.; Guo J.; Xu J.; Yang K.; Tang R.; Gu X.; Li H.; Chen L. (2019) Ixocarpalactone A from dietary tomatillo inhibits pancreatic cancer growth by targeting PHGDH. Food Funct. 10, 3386–3395. 10.1039/C9FO00394K. [DOI] [PubMed] [Google Scholar]
- Mullarky E.; Xu J.; Robin A. D.; Huggins D. J.; Jennings A.; Noguchi N.; Olland A.; Lakshminarasimhan D.; Miller M.; Tomita D.; Michino M.; Su T.; Zhang G.; Stamford A. W.; Meinke P. T.; Kargman S.; Cantley L. C. (2019) Inhibition of 3-phosphoglycerate dehydrogenase (PHGDH) by indole amides abrogates de novo serine synthesis in cancer cells. Bioorg. Med. Chem. Lett. 29, 2503–2510. 10.1016/j.bmcl.2019.07.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spillier Q.; Ravez S.; Unterlass J.; Corbet C.; Degavre C.; Feron O.; Frederick R. (2020) Structure-activity relationships (SARs) of alpha-ketothioamides as inhibitors of phosphoglycerate dehydrogenase (PHGDH). Pharmaceuticals 13, 20. 10.3390/ph13020020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riccardi N.; Giacomelli A.; Canetti D.; Comelli A.; Intini E.; Gaiera G.; Diaw M. M.; Udwadia Z.; Besozzi G.; Codecasa L.; Di Biagio A. (2020) Clofazimine: an old drug for never-ending diseases. Future Microbiol. 15, 557–566. 10.2217/fmb-2019-0231. [DOI] [PubMed] [Google Scholar]
- Hawkinson J. E.; Acosta-Burruel M.; Ta N. D.; Wood P. L. (1997) Novel phosphoserine phosphatase inhibitors. Eur. J. Pharmacol. 337, 315–324. 10.1016/S0014-2999(97)01304-6. [DOI] [PubMed] [Google Scholar]
- Marcus L.; Soileau J.; Judge L. W.; Bellar D. (2017) Evaluation of the effects of two doses of alpha glycerylphosphorylcholine on physical and psychomotor performance. J. Int. Soc. Sports Nutr. 14, 39. 10.1186/s12970-017-0196-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parnetti L.; Mignini F.; Tomassoni D.; Traini E.; Amenta F. (2007) Cholinergic precursors in the treatment of cognitive impairment of vascular origin: ineffective approaches or need for re-evaluation?. J. Neurol. Sci. 257, 264–269. 10.1016/j.jns.2007.01.043. [DOI] [PubMed] [Google Scholar]
- Hawkinson J. E.; Acosta-Burruel M.; Wood P. L. (1996) The metabotropic glutamate receptor antagonist l-2-amino-3-phosphonopropionic acid inhibits phosphoserine phosphatase. Eur. J. Pharmacol. 307, 219–225. 10.1016/0014-2999(96)00253-1. [DOI] [PubMed] [Google Scholar]
- Yadav G. P.; Shree S.; Maurya R.; Rai N.; Singh D. K.; Srivastava K. K.; Ramachandran R. (2014) Characterization of M. tuberculosis SerB2, an essential HAD-family phosphatase, reveals novel properties. PLoS One 9, e115409 10.1371/journal.pone.0115409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGuire J. J.; Tsukamoto T.; Hart B. P.; Coward J. K.; Kalman T. I.; Galivan J. (1996) Exploitation of folate and antifolate polyglutamylation to achieve selective anticancer chemotherapy. Invest. New Drugs 14, 317–323. 10.1007/BF00194535. [DOI] [PubMed] [Google Scholar]
- McGuire J. J.; Haile W. H. (1996) Potent inhibition of human folylpolyglutamate synthetase by suramin. Arch. Biochem. Biophys. 335, 139–144. 10.1006/abbi.1996.0491. [DOI] [PubMed] [Google Scholar]
- Matherly L. H.; Hou Z.; Gangjee A. (2018) The promise and challenges of exploiting the proton-coupled folate transporter for selective therapeutic targeting of cancer. Cancer Chemother. Pharmacol. 81, 1–15. 10.1007/s00280-017-3473-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulin-Curtis S. L.; Davies J. A.; Nestic D.; Bates E. A.; Baker A. T.; Cunliffe T. G.; Majhen D.; Chester J. D.; Parker A. L. (2020) Identification of folate receptor alpha (FRalpha) binding oligopeptides and their evaluation for targeted virotherapy applications. Cancer Gene Ther. 27, 785. 10.1038/s41417-019-0156-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konner J. A.; Bell-McGuinn K. M.; Sabbatini P.; Hensley M. L.; Tew W. P.; Pandit-Taskar N.; Vander Els N.; Phillips M. D.; Schweizer C.; Weil S. C.; Larson S. M.; Old L. J. (2010) Farletuzumab, a humanized monoclonal antibody against folate receptor alpha, in epithelial ovarian cancer: a phase I study. Clin. Cancer Res. 16, 5288–5295. 10.1158/1078-0432.CCR-10-0700. [DOI] [PubMed] [Google Scholar]
- Armstrong D. K.; White A. J.; Weil S. C.; Phillips M.; Coleman R. L. (2013) Farletuzumab (a monoclonal antibody against folate receptor alpha) in relapsed platinum-sensitive ovarian cancer. Gynecol. Oncol. 129, 452–458. 10.1016/j.ygyno.2013.03.002. [DOI] [PubMed] [Google Scholar]
- Vergote I.; Armstrong D.; Scambia G.; Teneriello M.; Sehouli J.; Schweizer C.; Weil S. C.; Bamias A.; Fujiwara K.; Ochiai K.; Poole C.; Gorbunova V.; Wang W.; O’Shannessy D.; Herzog T. J. (2016) A randomized, double-blind, placebo-controlled, Phase III study to assess efficacy and safety of weekly farletuzumab in combination with carboplatin and taxane in patients with ovarian cancer in first platinum-sensitive relapse. J. Clin. Oncol. 34, 2271–2278. 10.1200/JCO.2015.63.2596. [DOI] [PubMed] [Google Scholar]
- Assaraf Y. G.; Sierra E. E.; Babani S.; Goldman I. D. (1999) Inhibitory effects of prostaglandin A1 on membrane transport of folates mediated by both the reduced folate carrier and ATP-driven exporters. Biochem. Pharmacol. 58, 1321–1327. 10.1016/S0006-2952(99)00227-0. [DOI] [PubMed] [Google Scholar]
- Carmona-Martinez V.; Ruiz-Alcaraz A. J.; Vera M.; Guirado A.; Martinez-Esparza M.; Garcia-Penarrubia P. (2019) Therapeutic potential of pteridine derivatives: A comprehensive review. Med. Res. Rev. 39, 461–516. 10.1002/med.21529. [DOI] [PubMed] [Google Scholar]
- Vodenkova S.; Buchler T.; Cervena K.; Veskrnova V.; Vodicka P.; Vymetalkova V. (2020) 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther. 206, 107447. 10.1016/j.pharmthera.2019.107447. [DOI] [PubMed] [Google Scholar]
- Gibbs D. D.; Theti D. S.; Wood N.; Green M.; Raynaud F.; Valenti M.; Forster M. D.; Mitchell F.; Bavetsias V.; Henderson E.; Jackman A. L. (2005) BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res. 65, 11721–11728. 10.1158/0008-5472.CAN-05-2034. [DOI] [PubMed] [Google Scholar]
- Froese D. S.; Kopec J.; Rembeza E.; Bezerra G. A.; Oberholzer A. E.; Suormala T.; Lutz S.; Chalk R.; Borkowska O.; Baumgartner M. R.; Yue W. W. (2018) Structural basis for the regulation of human 5,10-methylenetetrahydrofolate reductase by phosphorylation and S-adenosylmethionine inhibition. Nat. Commun. 9, 2261. 10.1038/s41467-018-04735-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Field M. S.; Szebenyi D. M. E.; Perry C. A.; Stover P. J. (2007) Inhibition of 5,10-methenyltetrahydrofolate synthetase. Arch. Biochem. Biophys. 458, 194–201. 10.1016/j.abb.2006.12.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowry M.; Hall M. S.; Brosnan J. T. (1986) Specificity and mechanism of the inhibition by cysteamine of the renal glycine-cleavage complex. Biochem. Soc. Trans. 14, 131–132. 10.1042/bst0140131. [DOI] [Google Scholar]
- Piper J. R.; McCaleb G. S.; Montgomery J. A.; Kisliuk R. L.; Gaumont Y.; Sirotnak F. M. (1986) Syntheses and antifolate activity of 5-Methyl-5-deaza analogues of aminopterin, methotrexate, folic acid, and N10-methylfolic acid. J. Med. Chem. 29, 1080–1087. 10.1021/jm00156a029. [DOI] [PubMed] [Google Scholar]
- Alqarni A. M.; Zeidler M. P. (2020) How does methotrexate work?. Biochem. Soc. Trans. 48, 559–567. 10.1042/BST20190803. [DOI] [PubMed] [Google Scholar]
- Senkovich O.; Bhatia V.; Garg N.; Chattopadhyay D. (2005) Lipophilic antifolate trimetrexate is a potent inhibitor of Trypanosoma cruzi: prospect for chemotherapy of Chagas’ disease. Antimicrob. Agents Chemother. 49, 3234–3238. 10.1128/AAC.49.8.3234-3238.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirotnak F. M.; DeGraw J. I.; Colwell W. T.; Piper J. R. (1998) A new analogue of 10-deazaaminopterin with markedly enhanced curative effects against human tumor xenografts in mice. Cancer Chemother. Pharmacol. 42, 313–318. 10.1007/s002800050823. [DOI] [PubMed] [Google Scholar]
- Shih C.; Chen V. J.; Gossett L. S.; Gates S. B.; MacKellar W. C.; Habeck L. L.; Shackelford K. A.; Mendelsohn L. G.; Soose D. J.; Patel V. F.; Andis S. L.; Bewley J. R.; Rayl E. A.; Moroson B. A.; Beardsley G. P.; Kohier W.; Ratnam M.; Schultz R. M. (1997) LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res. 57, 1116–1123. [PubMed] [Google Scholar]
- Jackman A. L.; Taylor G. A.; Gibson W.; Kimbell R.; Brown M.; Calvert A. H.; Judson I. R.; Hughes L. R. (1991) ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: a new agent for clinical study. Cancer Res. 51, 5579–5586. [PubMed] [Google Scholar]
- Cammarata M.; Thyer R.; Lombardo M.; Anderson A.; Wright D.; Ellington A.; Brodbelt J. S. (2017) Characterization of trimethoprim resistant E. coli dihydrofolate reductase mutants by mass spectrometry and inhibition by propargyl-linked antifolates. Chem. Sci. 8, 4062–4072. 10.1039/C6SC05235E. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wrobel A.; Arciszewska K.; Maliszewski D.; Drozdowska D. (2020) Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J. Antibiot. 73, 5–27. 10.1038/s41429-019-0240-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu H.; Qin Y.; Zhai D.; Zhang Q.; Gu J.; Tang Y.; Yang J.; Li K.; Yang L.; Chen S.; Zhong W.; Meng J.; Liu Y.; Sun T.; Yang C. (2019) Antimalarial drug pyrimethamine plays a dual role in antitumor proliferation and metastasis through targeting DHFR and TP. Mol. Cancer Ther. 18, 541–555. 10.1158/1535-7163.MCT-18-0936. [DOI] [PubMed] [Google Scholar]
- Yuthavong Y.; Tarnchompoo B.; Vilaivan T.; Chitnumsub P.; Kamchonwongpaisan S.; Charman S. A.; McLennan D. N.; White K. L.; Vivas L.; Bongard E.; Thongphanchang C.; Taweechai S.; Vanichtanankul J.; Rattanajak R.; Arwon U.; Fantauzzi P.; Yuvaniyama J.; Charman W. N.; Matthews D. (2012) Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc. Natl. Acad. Sci. U. S. A. 109, 16823–16828. 10.1073/pnas.1204556109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fry D. W.; Jackson R. C. (1987) Biological and biochemical properties if new anticancer antagonists. Cancer Metastasis Rev. 5, 251–270. 10.1007/BF00047000. [DOI] [PubMed] [Google Scholar]
- Hassan G. S.; El-Messery S. M.; Al-Omary F. A.; Al-Rashood S. T.; Shabayek M. I.; Abulfadl Y. S.; Habib E. E.; El-Hallouty S. M.; Fayad W.; Mohamed K. M.; et al. (2013) Nonclassical antifolates, part 4. 5-(2-aminothiazol-4-yl)-4-phenyl-4H-1,2,4-triazole-3-thiols as a new class of DHFR inhibitors: synthesis, biological evaluation and molecular modeling study. Eur. J. Med. Chem. 66, 135–145. 10.1016/j.ejmech.2013.05.039. [DOI] [PubMed] [Google Scholar]
- Ewida M. A.; Abou El Ella D. A.; Lasheen D. S.; Ewida H. A.; El-Gazzar Y. I.; El-Subbagh H. I. (2017) Thiazolo[4,5-d]pyridazine analogues as a new class of dihydrofolate reductase (DHFR) inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg. Chem. 74, 228–237. 10.1016/j.bioorg.2017.08.010. [DOI] [PubMed] [Google Scholar]
- El-Subbagh H. I.; Hassan G. S.; El-Messery S. M.; Al-Rashood S. T.; Al-Omary F. A.; Abulfadl Y. S.; Shabayek M. I. (2014) Nonclassical antifolates, part 5. Benzodiazepine analogs as a new class of DHFR inhibitors: synthesis, antitumor testing and molecular modeling study. Eur. J. Med. Chem. 74, 234–245. 10.1016/j.ejmech.2014.01.004. [DOI] [PubMed] [Google Scholar]
- El-Messery S. M.; Hassan G. S.; Nagi M. N.; Habib E. E.; Al-Rashood S. T.; El-Subbagh H. I. (2016) Synthesis, biological evaluation and molecular modeling study of some new methoxylated 2-benzylthio-quinazoline-4(3H)-ones as nonclassical antifolates. Bioorg. Med. Chem. Lett. 26, 4815–4823. 10.1016/j.bmcl.2016.08.022. [DOI] [PubMed] [Google Scholar]
- Li H.; Fang F.; Liu Y.; Xue L.; Wang M.; Guo Y.; Wang X.; Tian C.; Liu J.; Zhang Z. (2018) Inhibitors of dihydrofolate reductase as antitumor agents: design, synthesis and biological evaluation of a series of novel nonclassical 6-substituted pyrido[3,2-d]pyrimidines with a three- to five-carbon bridge. Bioorg. Med. Chem. 26, 2674–2685. 10.1016/j.bmc.2018.04.035. [DOI] [PubMed] [Google Scholar]
- Zhou X.; Lin K.; Ma X.; Chui W. K.; Zhou W. (2017) Design, synthesis, docking studies and biological evaluation of novel dihydro-1,3,5-triazines as human DHFR inhibitors. Eur. J. Med. Chem. 125, 1279–1288. 10.1016/j.ejmech.2016.11.010. [DOI] [PubMed] [Google Scholar]
- Nakao Y.; Fusetani N. (2007) Enzyme inhibitors from marine invertebrates. J. Nat. Prod. 70, 689–710. 10.1021/np060600x. [DOI] [PubMed] [Google Scholar]
- Kalogris C.; Garulli C.; Pietrella L.; Gambini V.; Pucciarelli S.; Lucci C.; Tilio M.; Zabaleta M. E.; Bartolacci C.; Andreani C.; Giangrossi M.; Iezzi M.; Belletti B.; Marchini C.; Amici A. (2014) Sanguinarine suppresses basal-like breast cancer growth through dihydrofolate reductase inhibition. Biochem. Pharmacol. 90, 226–234. 10.1016/j.bcp.2014.05.014. [DOI] [PubMed] [Google Scholar]
- Singla P.; Luxami V.; Paul K. (2016) Synthesis, in vitro antitumor activity, dihydrofolate reductase inhibition, DNA intercalation and structure-activity relationship studies of 1,3,5-triazine analogues. Bioorg. Med. Chem. Lett. 26, 518–523. 10.1016/j.bmcl.2015.11.083. [DOI] [PubMed] [Google Scholar]
- Ng H. L.; Chen S.; Chew E. H.; Chui W. K. (2016) Applying the designed multiple ligands approach to inhibit dihydrofolate reductase and thioredoxin reductase for anti-proliferative activity. Eur. J. Med. Chem. 115, 63–74. 10.1016/j.ejmech.2016.03.002. [DOI] [PubMed] [Google Scholar]
- Tsukamoto T.; Kitazume T.; McGuire J. J.; Coward J. K. (1996) Synthesis and biological evaluation of DL-4,4-difluoroglutamic acid and DL-γ,γ-difluoromethotrexate. J. Med. Chem. 39, 66–72. 10.1021/jm950514m. [DOI] [PubMed] [Google Scholar]
- Al-Rashood S. T.; Aboldahab I. A.; Nagi M. N.; Abouzeid L. A.; Abdel-Aziz A. A.; Abdel-Hamide S. G.; Youssef K. M.; Al-Obaid A. M.; El-Subbagh H. I. (2006) Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4(3H)-quinazolinone analogs. Bioorg. Med. Chem. 14, 8608–8621. 10.1016/j.bmc.2006.08.030. [DOI] [PubMed] [Google Scholar]
- Santi D. V.; McHenry C. S.; Sommer H. (1974) Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry 13, 471–481. 10.1021/bi00700a012. [DOI] [PubMed] [Google Scholar]
- Jackman A. L.; Calvert A. H. (1995) Folate-based thymidylate synthase inhibitors as anticancer drugs. Ann. Oncol 6, 871–881. 10.1093/oxfordjournals.annonc.a059353. [DOI] [PubMed] [Google Scholar]
- Beutel G.; Glen H.; Schoffski P.; Chick J.; Gill S.; Cassidy J.; Twelves C. (2005) Phase I study of OSI-7904L, a novel liposomal thymidylate synthase inhibitor in patients with refractory solid tumors. Clin. Cancer Res. 11, 5487–5495. 10.1158/1078-0432.CCR-05-0104. [DOI] [PubMed] [Google Scholar]
- Banerji U.; Garces A. H. I.; Michalarea V.; Ruddle R.; Raynaud F. I.; Riisnaes R.; Rodrigues D. N.; Tunariu N.; Porter J. C.; Ward S. E.; et al. (2017) An investigator-initiated phase I study of ONX-0801, a first-in-class alpha folate receptor targeted, small molecule thymidylate synthase inhibitor in solid tumors. J. Clin. Oncol. 35, 2503. 10.1200/JCO.2017.35.15_suppl.2503. [DOI] [Google Scholar]
- Henderson E. A.; Bavetsias V.; Theti D. S.; Wilson S. C.; Clauss R.; Jackman A. L. (2006) Targeting the alpha-folate receptor with cyclopenta[g]quinazoline-based inhibitors of thymidylate synthase. Bioorg. Med. Chem. 14, 5020–5042. 10.1016/j.bmc.2006.03.001. [DOI] [PubMed] [Google Scholar]
- Bavetsias V.; Marriott J. H.; Melin C.; Kimbell R.; Matusiak Z. S.; Boyle F. T.; Jackman A. L. (2000) Design and synthesis of cyclopenta[g]quinazoline-based antifolates as inhibitors of thymidylate synthase and potential antitumor agent. J. Med. Chem. 43, 1910–1926. 10.1021/jm991119p. [DOI] [PubMed] [Google Scholar]
- Shen W.; Gao C.; Cueto R.; Liu L.; Fu H.; Shao Y.; Yang W. Y.; Fang P.; Choi E. T.; Wu Q.; Yang X.; Wang H. (2020) Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biol. 28, 101322. 10.1016/j.redox.2019.101322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deng X.; Guo Y.; Tian C.; Liu J.; Wang X.; Zhang Z. (2015) Design, synthesis and activities of aziridine derivatives of N5-methyltetrahydrofolate against methionine synthase. Chem. Res. Chin. Univ. 31, 742–745. 10.1007/s40242-015-5194-z. [DOI] [Google Scholar]
- Wang M.; Tian C.; Xue L.; Li H.; Cong J.; Fang F.; Yang J.; Yuan M.; Chen Y.; Guo Y.; Wang X.; Liu J.; Zhang Z. (2020) Design, synthesis and biological activity of N(5)-substituted tetrahydropteroate analogs as non-classical antifolates against cobalamin-dependent methionine synthase and potential anticancer agents. Eur. J. Med. Chem. 190, 112113. 10.1016/j.ejmech.2020.112113. [DOI] [PubMed] [Google Scholar]
- Luka Z. (2008) Methyltetrahydrofolate in folate-binding protein glycine N-methyltransferase, In Vitam. Horm., pp 79325–345. 10.1016/S0083-6729(08)00411-1 [DOI] [PubMed] [Google Scholar]
- Quinlan C. L.; Kaiser S. E.; Bolanos B.; Nowlin D.; Grantner R.; Karlicek-Bryant S.; Feng J. L.; Jenkinson S.; Freeman-Cook K.; Dann S. G.; Wang X.; Wells P. A.; Fantin V. R.; Stewart A. E.; Grant S. K. (2017) Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A. Nat. Chem. Biol. 13, 785–792. 10.1038/nchembio.2384. [DOI] [PubMed] [Google Scholar]
- Bai J.; Gao Y.; Chen L.; Yin Q.; Lou F.; Wang Z.; Xu Z.; Zhou H.; Li Q.; Cai W.; Sun Y.; Niu L.; Wang H.; Wei Z.; Lu S.; Zhou A.; Zhang J.; Wang H. (2019) Identification of a natural inhibitor of methionine adenosyltransferase 2A regulating one-carbon metabolism in keratinocytes. EBio Medicine 39, 575–590. 10.1016/j.ebiom.2018.12.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madhavan B. G. V.; McGee D. P. C.; Rydzewski R. M.; Boehme R.; Martin J. C.; Prisbe E. J. (1988) Synthesis and antiviral evaluation of 6′-substituted aristeromycin: potential mechanism-based inhibitors of S-adenosylhomocysteine hydrolase 1. J. Med. Chem. 31, 1798–1804. 10.1021/jm00117a021. [DOI] [PubMed] [Google Scholar]
- Votruba I.; Holy A. (1982) Studies on S-adenosyl-L-homocysteine hydrolase. III. Eritadenines - a novel type of potent inhibitors of S-adenosyl-L-homocysteine hydrolase. Collect. Czech. Chem. Commun. 47, 167–172. 10.1135/cccc19820167. [DOI] [Google Scholar]
- Wu Q. L.; Fu Y. F.; Zhou W. L.; Wang J. X.; Feng Y. H.; Liu J.; Xu J. Y.; He P. L.; Zhou R.; Tang W.; Wang G. F.; Zhou Y.; Yang Y. F.; Ding J.; Li X. Y.; Chen X. R.; Yuan C.; Lawson B. R.; Zuo J. P. (2005) Inhibition of S-adenosyl-L-homocysteine hydrolase induces immunosuppression. J. Pharmacol. Exp. Ther. 313, 705–711. 10.1124/jpet.104.080416. [DOI] [PubMed] [Google Scholar]
- Uchiyama N.; Dougan D. R.; Lawson J. D.; Kimura H.; Matsumoto S. I.; Tanaka Y.; Kawamoto T. (2017) Identification of AHCY inhibitors using novel high-throughput mass spectrometry. Biochem. Biophys. Res. Commun. 491, 1–7. 10.1016/j.bbrc.2017.05.107. [DOI] [PubMed] [Google Scholar]
- Jiracek J.; Collinsova M.; Rosenberg I.; Budesinsky M.; Protivinska E.; Netusilova H.; Garrow T. A. (2006) S-alkylated homocysteine derivatives: new inhibitors of human betaine-homocysteine S-methyltransferase. J. Med. Chem. 49, 3982–3989. 10.1021/jm050885v. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mladkova J.; Vanek V.; Budesinsky M.; Elbert T.; Demianova Z.; Garrow T. A.; Jiracek J. (2012) Double-headed sulfur-linked amino acids as first inhibitors for betaine-homocysteine S-methyltransferase 2. J. Med. Chem. 55, 6822–6831. 10.1021/jm300571h. [DOI] [PubMed] [Google Scholar]
- Zhang Z.; Tian C.; Zhou S.; Wang W.; Guo Y.; Xia J.; Liu Z.; Wang B.; Wang X.; Golding B. T.; Griff R. J.; Du Y.; Liu J. (2012) Mechanism-based design, synthesis and biological studies of N(5)-substituted tetrahydrofolate analogs as inhibitors of cobalamin-dependent methionine synthase and potential anticancer agents. Eur. J. Med. Chem. 58, 228–236. 10.1016/j.ejmech.2012.09.027. [DOI] [PubMed] [Google Scholar]
- Elshihawy H.; Helal M. A.; Said M.; Hammad M. A. (2014) Design, synthesis, and enzyme kinetics of novel benzimidazole and quinoxaline derivatives as methionine synthase inhibitors. Bioorg. Med. Chem. 22, 550–558. 10.1016/j.bmc.2013.10.052. [DOI] [PubMed] [Google Scholar]
- Allen R. H.; Stabler S. P.; Lindenbaum J. (1993) Serum betaine, N,N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism. Metab., Clin. Exp. 42, 1448–1460. 10.1016/0026-0495(93)90198-W. [DOI] [PubMed] [Google Scholar]
- Lee K. H.; Cava M.; Amiri P.; Ottoboni T.; Lindquist R. N. (1992) Betaine-homocysteine methyltransferase from rat liver- Purification and inhibition by a boronic acid substrate analog. Arch. Biochem. Biophys. 292, 77–86. 10.1016/0003-9861(92)90053-Y. [DOI] [PubMed] [Google Scholar]
- Spurr I. B.; Birts C. N.; Cuda F.; Benkovic S. J.; Blaydes J. P.; Tavassoli A. (2012) Small molecule inhibitor of AICAR transformylase homodimerization. ChemBioChem 13, 1628–1634. 10.1002/cbic.201200279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothbart S. B.; Racanelli A. C.; Moran R. G. (2010) Pemetrexed indirectly activates the metabolic kinase AMPK in human carcinomas. Cancer Res. 70, 10299–10309. 10.1158/0008-5472.CAN-10-1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Racanelli A. C.; Rothbart S. B.; Heyer C. L.; Moran R. G. (2009) Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition. Cancer Res. 69, 5467–5474. 10.1158/0008-5472.CAN-08-4979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Y.; Desharnais J.; Marsilje T. H.; Li C.; Hedrick M. P.; Gooljarsingh L. T.; Tavassoli A.; Benkovic S. J.; Olson A. J.; Boger D. L.; Wilson I. A. (2003) Rational design, synthesis, evaluation, and crystal structure of a potent inhibitor of human GAR Tfase: 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid. Biochemistry 42, 6043–6056. 10.1021/bi034219c. [DOI] [PubMed] [Google Scholar]
- Bissett D.; McLeod H. L.; Sheedy B.; Collier M.; Pithavala Y.; Paradiso L.; Pitsiladis M.; Cassidy J. (2001) Phase I dose-escalation and pharmacokinetic study of a novel folate analogue AG2034. Br. J. Cancer 84, 308–312. 10.1054/bjoc.2000.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts J. D.; Shibata S.; Spicer D. V.; McLeod H. L.; Tombes M. B.; Kyle B.; Carroll M.; Sheedy B.; Collier M. A.; Pithavala Y. K.; Paradiso L. J.; Clendeninn N. J. (2000) Phase I study of AG2034, a targeted GARFT inhibitor, administered once every 3 weeks. Cancer Chemother. Pharmacol. 45, 423–427. 10.1007/s002800051012. [DOI] [PubMed] [Google Scholar]
- Xiang W.; Dekhne A.; Doshi A.; O’Connor C.; Hou Z.; Matherly L. H.; Gangjee A. (2019) Discovery of amide-bridged pyrrolo[2,3-d]pyrimidines as tumor targeted classical antifolates with selective uptake by folate receptor alpha and inhibition of de novo purine nucleotide biosynthesis. Bioorg. Med. Chem. 27, 115125. 10.1016/j.bmc.2019.115125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell-Ryan S.; Wang Y.; Raghavan S.; Ravindra M. P.; Hales E.; Orr S.; Cherian C.; Hou Z.; Matherly L. H.; Gangjee A. (2013) Discovery of 5-substituted pyrrolo[2,3-d]pyrimidine antifolates as dual-acting inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis: implications of inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase to ampk activation and antitumor activity. J. Med. Chem. 56, 10016–10032. 10.1021/jm401328u. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravindra M.; Wallace-Povirk A.; Karim M. A.; Wilson M. R.; O’Connor C.; White K.; Kushner J.; Polin L.; George C.; Hou Z.; Matherly L. H.; Gangjee A. (2018) Tumor targeting with novel pyridyl 6-substituted pyrrolo[2,3- d]pyrimidine antifolates via cellular uptake by folate receptor alpha and the proton-coupled folate transporter and inhibition of de novo purine nucleotide biosynthesis. J. Med. Chem. 61, 2027–2040. 10.1021/acs.jmedchem.7b01708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brooks H. B.; Meier T. I.; Geeganage S.; Fales K. R.; Thrasher K. J.; Konicek S. A.; Spencer C. D.; Thibodeaux S.; Foreman R. T.; Hui Y. H.; et al. (2018) Characterization of a novel AICARFT inhibitor which potently elevates ZMP and has anti-tumor activity in murine models. Sci. Rep. 8, 15458. 10.1038/s41598-018-33453-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sessa C.; Jong J. D.; D’Incalci M.; Hatty S.; Pagani O.; Cavalli F. (1996) Phase I study of the antipurine antifolate lometrexol (DDATHF) with folinic acid rescue. Clin. Cancer Res. 2, 1123–1127. [PubMed] [Google Scholar]
- Boritzki T. J.; Barlett C. A.; Zhang C.; Howland E. F.; Margosiak S. A.; Palmer C. L.; Romines W. H.; Jackson R. C. (1996) AG2034: a novel inhibitor of glycinamide ribonucleotide formyltransferase. Invest. New Drugs 14, 295–303. 10.1007/BF00194533. [DOI] [PubMed] [Google Scholar]
- DeMartino J. K.; Hwang I.; Xu L.; Wilson I. A.; Boger D. L. (2006) Discovery of a potent, nonpolyglutamatable inhibitor of glycinamide ribonucleotide transformylase. J. Med. Chem. 49, 2998–3002. 10.1021/jm0601147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheong C. G.; Wolan D. W.; Greasley S. E.; Horton P. A.; Beardsley G. P.; Wilson I. A. (2004) Crystal structures of human bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase/IMP cyclohydrolase in complex with potent sulfonyl-containing antifolates. J. Biol. Chem. 279, 18034–18045. 10.1074/jbc.M313691200. [DOI] [PubMed] [Google Scholar]
- Min D. J.; Vural S.; Krushkal J. (2019) Association of transcriptional levels of folate-mediated one-carbon metabolism-related genes in cancer cell lines with drug treatment response. Cancer Genet. 237, 19–38. 10.1016/j.cancergen.2019.05.005. [DOI] [PubMed] [Google Scholar]
- Li X.; Zhang K.; Hu Y.; Luo N. (2020) ERRalpha activates SHMT2 transcription to enhance the resistance of breast cancer to lapatinib via modulating the mitochondrial metabolic adaption. Biosci. Rep. 40, BSR20192465. 10.1042/BSR20192465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morscher R. J.; Ducker G. S.; Li S. H.; Mayer J. A.; Gitai Z.; Sperl W.; Rabinowitz J. D. (2018) Mitochondrial translation requires folate-dependent tRNA methylation. Nature 554, 128–132. 10.1038/nature25460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tong J.; Krieger J. R.; Taylor P.; Bagshaw R.; Kang J.; Jeedigunta S.; Wybenga-Groot L. E.; Zhang W.; Badr H.; Mirhadi S.; Pham N. A.; Coyaud E.; Yu M.; Li M.; Cabanero M.; Raught B.; Maynes J. T.; Hawkins C.; Tsao M. S.; Moran M. F. (2020) Cancer proteome and metabolite changes linked to SHMT2. PLoS One 15, e0237981 10.1371/journal.pone.0237981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engel A. L.; Lorenz N. I.; Klann K.; Munch C.; Depner C.; Steinbach J. P.; Ronellenfitsch M. W.; Luger A. L. (2020) Serine-dependent redox homeostasis regulates glioblastoma cell survival. Br. J. Cancer 122, 1391–1398. 10.1038/s41416-020-0794-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye J.; Fan J.; Venneti S.; Wan Y. W.; Pawel B. R.; Zhang J.; Finley L. W.; Lu C.; Lindsten T.; Cross J. R.; Qing G.; Liu Z.; Simon M. C.; Rabinowitz J. D.; Thompson C. B. (2014) Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discovery 4, 1406–1417. 10.1158/2159-8290.CD-14-0250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim D.; Fiske B. P.; Birsoy K.; Freinkman E.; Kami K.; Possemato R. L.; Chudnovsky Y.; Pacold M. E.; Chen W. W.; Cantor J. R.; Shelton L. M.; Gui D. Y.; Kwon M.; Ramkissoon S. H.; Ligon K. L.; Kang S. W.; Snuderl M.; Vander Heiden M. G.; Sabatini D. M. (2015) SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367. 10.1038/nature14363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabl J.; Bunker R. D.; Schenk A. D.; Cavadini S.; Gill M. E.; Abdulrahman W.; Andres-Pons A.; Luijsterburg M. S.; Ibrahim A. F. M.; Branigan E.; Aguirre J. D.; Marceau A. H.; Guerillon C.; Bouwmeester T.; Hassiepen U.; Peters A.; Renatus M.; Gelman L.; Rubin S. M.; Mailand N.; van Attikum H.; Hay R. T.; Thoma N. H. (2019) Structural basis of BRCC36 function in DNA repair and immune regulation. Mol. Cell 75, 483–497. 10.1016/j.molcel.2019.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walden M.; Tian L.; Ross R. L.; Sykora U. M.; Byrne D. P.; Hesketh E. L.; Masandi S. K.; Cassel J.; George R.; Ault J. R.; El Oualid F.; Pawlowski K.; Salvino J. M.; Eyers P. A.; Ranson N. A.; Del Galdo F.; Greenberg R. A.; Zeqiraj E. (2019) Metabolic control of BRISC-SHMT2 assembly regulates immune signalling. Nature 570, 194–199. 10.1038/s41586-019-1232-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabl J. (2020) BRCA1-A and BRISC: multifunctional molecular machines for ubiquitin signaling, Biomolecules 10.1503. 10.3390/biom10111503 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao J.; Sun L.; Aramsangtienchai P.; Spiegelman N. A.; Zhang X.; Huang W.; Seto E.; Lin H. (2019) HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc. Natl. Acad. Sci. U. S. A. 116, 5487–5492. 10.1073/pnas.1815365116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang X.; Wang Z.; Li X.; Liu B.; Liu M.; Liu L.; Chen S.; Ren M.; Wang Y.; Yu M.; Wang B.; Zou J.; Zhu W. G.; Yin Y.; Gu W.; Luo J. (2018) SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation. Cancer Res. 78, 372–386. 10.1158/0008-5472.CAN-17-1912. [DOI] [PubMed] [Google Scholar]
- Wei Z.; Song J.; Wang G.; Cui X.; Zheng J.; Tang Y.; Chen X.; Li J.; Cui L.; Liu C. Y.; Yu W. (2018) Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat. Commun. 9, 4468. 10.1038/s41467-018-06812-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding J.; Li T.; Wang X.; Zhao E.; Choi J. H.; Yang L.; Zha Y.; Dong Z.; Huang S.; Asara J. M.; Cui H.; Ding H. F. (2013) The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metab. 18, 896–907. 10.1016/j.cmet.2013.11.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selvarajah B.; Azuelos I.; Platé M.; Guillotin D.; Forty E. J.; Contento G.; Woodcock H. V.; Redding M.; Taylor A.; Brunori G.; Durrenberger P. F.; Ronzoni R.; Blanchard A. D.; Mercer P. F.; Anastasiou D.; Chambers R. C. (2019) mTORC1 amplifies the ATF-dependent de novo serine-glycine pathway to supply glycine during TGF-β-induced collagen biosynthesis. Sci. Signaling 12, eaav3048 10.1126/scisignal.aav3048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marrocco I.; Altieri F.; Rubini E.; Paglia G.; Chichiarelli S.; Giamogante F.; Macone A.; Perugia G.; Magliocca F. M.; Gurtner A.; Maras B.; Ragno R.; Patsilinakos A.; Manganaro R.; Eufemi M. (2019) Shmt2: a Stat3 signaling new player in prostate cancer energy metabolism. Cells 8, 1048. 10.3390/cells8091048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sen N.; Cross A. M.; Lorenzi P. L.; Khan J.; Gryder B. E.; Kim S.; Caplen N. J. (2018) EWS-FLI1 reprograms the metabolism of Ewing sarcoma cells via positive regulation of glutamine import and serine-glycine biosynthesis. Mol. Carcinog. 57, 1342–1357. 10.1002/mc.22849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guiducci G.; Paone A.; Tramonti A.; Giardina G.; Rinaldo S.; Bouzidi A.; Magnifico M. C.; Marani M.; Menendez J. A.; Fatica A.; Macone A.; Armaos A.; Tartaglia G. G.; Contestabile R.; Paiardini A.; Cutruzzola F. (2019) The moonlighting RNA-binding activity of cytosolic serine hydroxymethyltransferase contributes to control compartmentalization of serine metabolism. Nucleic Acids Res. 47, 4240–4254. 10.1093/nar/gkz129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin C.; Zhang Y.; Chen Y.; Bai Y.; Zhang Y. (2019) Long noncoding RNA LINC01234 promotes serine hydroxymethyltransferase 2 expression and proliferation by competitively binding miR-642a-5p in colon cancer. Cell Death Dis. 10, 137. 10.1038/s41419-019-1352-4. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Wu X.; Deng L.; Tang D.; Ying G.; Yao X.; Liu F.; Liang G. (2016) miR-615–5p prevents proliferation and migration through negatively regulating serine hydromethyltransferase 2 (SHMT2) in hepatocellular carcinoma. Tumor Biol. 37, 6813–6821. 10.1007/s13277-015-4506-8. [DOI] [PubMed] [Google Scholar]
- Pinweha P.; Rattanapornsompong K.; Charoensawan V.; Jitrapakdee S. (2016) MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers. Comput. Struct. Biotechnol. J. 14, 223–233. 10.1016/j.csbj.2016.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leivonen S. K.; Rokka A.; Ostling P.; Kohonen P.; Corthals G. L.; Kallioniemi O.; Perala M. (2011) Identification of miR-193b targets in breast cancer cells and systems biological analysis of their functional impact. Mol. Cell Proteomics 10, M110.005322. 10.1074/mcp.M110.005322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ducker G. S.; Ghergurovich J. M.; Mainolfi N.; Suri V.; Jeong S. K.; Hsin-Jung Li S.; Friedman A.; Manfredi M. G.; Gitai Z.; Kim H.; Rabinowitz J. D. (2017) Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc. Natl. Acad. Sci. U. S. A. 114, 11404–11409. 10.1073/pnas.1706617114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dekhne A. S.; Shah K.; Ducker G. S.; Katinas J. M.; Wong-Roushar J.; Nayeen M. J.; Doshi A.; Ning C.; Bao X.; Fruhauf J.; Liu J.; Wallace-Povirk A.; O’Connor C.; Dzinic S. H.; White K.; Kushner J.; Kim S.; Huttemann M.; Polin L.; Rabinowitz J. D.; Li J.; Hou Z.; Dann C. E. 3rd; Gangjee A.; Matherly L. H. (2019) Novel pyrrolo[3,2-d]pyrimidine compounds target mitochondrial and cytosolic one-carbon metabolism with broad-spectrum antitumor efficacy. Mol. Cancer Ther. 18, 1787–1799. 10.1158/1535-7163.MCT-19-0037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Canaveras J. C.; Lancho O.; Ducker G. S.; Ghergurovich J. M.; Xu X.; da Silva-Diz V.; Minuzzo S.; Indraccolo S.; Kim H.; Herranz D.; Rabinowitz J. D. (2021) SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 35, 377–388. 10.1038/s41375-020-0845-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han Y.; He L.; Qi Y.; Zhao Y.; Pan Y.; Fang B.; Li S.; Zhang J. Z. H.; Zhang L. (2021) Identification of three new compounds that directly target human serine hydroxymethyltransferase SHMT2. Chem. Biol. Drug Des. 97, 221–230. 10.1111/cbdd.13774. [DOI] [PubMed] [Google Scholar]
- Witschel M. C.; Rottmann M.; Schwab A.; Leartsakulpanich U.; Chitnumsub P.; Seet M.; Tonazzi S.; Schwertz G.; Stelzer F.; Mietzner T.; McNamara C.; Thater F.; Freymond C.; Jaruwat A.; Pinthong C.; Riangrungroj P.; Oufir M.; Hamburger M.; Maser P.; Sanz-Alonso L. M.; Charman S.; Wittlin S.; Yuthavong Y.; Chaiyen P.; Diederich F. (2015) Inhibitors of plasmodial serine hydroxymethyltransferase (SHMT): cocrystal structures of pyrazolopyrans with potent blood- and liver-stage activities. J. Med. Chem. 58, 3117–3130. 10.1021/jm501987h. [DOI] [PubMed] [Google Scholar]
- Marani M.; Paone A.; Fiascarelli A.; Macone A.; Gargano M.; Rinaldo S.; Giardina G.; Pontecorvi V.; Koes D.; McDermott L.; Yang T.; Paiardini A.; Contestabile R.; Cutruzzola F. (2016) A pyrazolopyran derivative preferentially inhibits the activity of human cytosolic serine hydroxymethyltransferase and induces cell death in lung cancer cells. Oncotarget 7, 4570–4583. 10.18632/oncotarget.6726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dekhne A. S.; Ning C.; Nayeen M. J.; Shah K.; Kalpage H.; Fruhauf J.; Wallace-Povirk A.; O’Connor C.; Hou Z.; Kim S.; Huttemann M.; Gangjee A.; Matherly L. H. (2020) Cellular pharmacodynamics of a novel pyrrolo[3,2-d]pyrimidine inhibitor targeting mitochondrial and cytosolic one-carbon metabolism. Mol. Pharmacol. 97, 9–22. 10.1124/mol.119.117937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Besson V.; Rebeille F.; Neuburger M.; Douce R.; Cossins E. A. (1993) Effects of tetrahydrofolate polyglutamates on the kinetic parameters of serine hydroxymethyltransferase and glycine decarboxylase from pea leaf mitochondria. Biochem. J. 292, 425–430. 10.1042/bj2920425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stover P.; Schirch V. (1991) 5-Formyltetrahydrofolate polyglutamates are slow tight binding inhibitors of serine hydroxymethyltransferase. J. Biol. Chem. 266, 1543–1550. 10.1016/S0021-9258(18)52328-0. [DOI] [PubMed] [Google Scholar]
- Scaletti E.; Jemth A. S.; Helleday T.; Stenmark P. (2019) Structural basis of inhibition of the human serine hydroxymethyltransferase SHMT2 by antifolate drugs. FEBS Lett. 593, 1863–1873. 10.1002/1873-3468.13455. [DOI] [PubMed] [Google Scholar]
- Paiardini A.; Fiascarelli A.; Rinaldo S.; Daidone F.; Giardina G.; Koes D. R.; Parroni A.; Montini G.; Marani M.; Paone A.; McDermott L. A.; Contestabile R.; Cutruzzola F. (2015) Screening and in vitro testing of antifolate inhibitors of human cytosolic serine hydroxymethyltransferase. ChemMedChem 10, 490–497. 10.1002/cmdc.201500028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daidone F.; Florio R.; Rinaldo S.; Contestabile R.; di Salvo M. L.; Cutruzzola F.; Bossa F.; Paiardini A. (2011) In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed. Eur. J. Med. Chem. 46, 1616–1621. 10.1016/j.ejmech.2011.02.009. [DOI] [PubMed] [Google Scholar]
- Tramonti A.; Paiardini A.; Paone A.; Bouzidi A.; Giardina G.; Guiducci G.; Magnifico M. C.; Rinaldo S.; McDermott L.; Menendez J. A.; Contestabile R.; Cutruzzola F. (2018) Differential inhibitory effect of a pyrazolopyran compound on human serine hydroxymethyltransferase-amino acid complexes. Arch. Biochem. Biophys. 653, 71–79. 10.1016/j.abb.2018.07.001. [DOI] [PubMed] [Google Scholar]
- Nonaka H.; Nakanishi Y.; Kuno S.; Ota T.; Mochidome K.; Saito Y.; Sugihara F.; Takakusagi Y.; Aoki I.; Nagatoishi S.; et al. (2019) Design strategy for serine hydroxymethyltransferase probes based on retro-aldol-type reaction. Nat. Commun. 10, 876. 10.1038/s41467-019-08833-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paiardini A.; Tramonti A.; Schirch D.; Guiducci G.; di Salvo M. L.; Fiascarelli A.; Giorgi A.; Maras B.; Cutruzzola F.; Contestabile R. (2016) Differential 3-bromopyruvate inhibition of cytosolic and mitochondrial human serine hydroxymethyltransferase isoforms, key enzymes in cancer metabolic reprogramming. Biochim. Biophys. Acta, Proteins Proteomics 1864, 1506–1517. 10.1016/j.bbapap.2016.08.010. [DOI] [PubMed] [Google Scholar]
- Ducker G. S.; Chen L.; Morscher R. J.; Ghergurovich J. M.; Esposito M.; Teng X.; Kang Y.; Rabinowitz J. D. (2016) Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 23, 1140–1153. 10.1016/j.cmet.2016.04.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renwick S. B.; Snell K.; Baumann U. (1998) The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy. Structure 6, 1105–1116. 10.1016/S0969-2126(98)00112-9. [DOI] [PubMed] [Google Scholar]
- Giardina G.; Paone A.; Tramonti A.; Lucchi R.; Marani M.; Magnifico M. C.; Bouzidi A.; Pontecorvi V.; Guiducci G.; Zamparelli C.; Rinaldo S.; Paiardini A.; Contestabile R.; Cutruzzola F. (2018) The catalytic activity of serine hydroxymethyltransferase is essential for de novo nuclear dTMP synthesis in lung cancer cells. FEBS J. 285, 3238–3253. 10.1111/febs.14610. [DOI] [PubMed] [Google Scholar]
- Giardina G.; Brunotti P.; Fiascarelli A.; Cicalini A.; Costa M. G.; Buckle A. M.; di Salvo M. L.; Giorgi A.; Marani M.; Paone A.; Rinaldo S.; Paiardini A.; Contestabile R.; Cutruzzola F. (2015) How pyridoxal 5′-phosphate differentially regulates human cytosolic and mitochondrial serine hydroxymethyltransferase oligomeric state. FEBS J. 282, 1225–1241. 10.1111/febs.13211. [DOI] [PubMed] [Google Scholar]
- Shi H.; Fang X.; Li Y.; Zhang Y. (2019) High expression of serine hydroxymethyltransferase 2 indicates poor prognosis of gastric cancer patients. Med. Sci. Monit. 25, 7430–7438. 10.12659/MSM.917435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y.; Yin C.; Deng M.-M.; Wang Q.; He X.-Q.; Li M.-T.; Li C.-P.; Wu H. (2019) High expression of SHMT2 is correlated with tumor progression and predicts poor prognosis in gastrointestinal tumors. Eur. Rev. Med. Pharmacol Sci. 23, 9379–9392. 10.26355/eurrev_201911_19431. [DOI] [PubMed] [Google Scholar]
- Ji L.; Tang Y.; Pang X.; Zhang Y. (2019) Increased expression of serine hydroxymethyltransferase 2 (SHMT2) is a negative prognostic marker in patients with hepatocellular carcinoma and is associated with proliferation of HepG2 cells. Med. Sci. Monit. 25, 5823–5832. 10.12659/MSM.915754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernhardt S.; Bayerlova M.; Vetter M.; Wachter A.; Mitra D.; Hanf V.; Lantzsch T.; Uleer C.; Peschel S.; John J.; et al. (2017) Proteomic profiling of breast cancer metabolism identifies SHMT2 and ASCT2 as prognostic factors. Breast Cancer Res. 19, 112. 10.1186/s13058-017-0905-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang L.; Chen Z.; Xue D.; Zhang Q.; Liu X.; Luh F.; Hong L.; Zhang H.; Pan F.; Liu Y.; et al. (2016) Prognostic and therapeutic value of mitochondrial serine hydroxyl-methyltransferase 2 as a breast cancer biomarker. Oncol. Rep. 36, 2489–2500. 10.3892/or.2016.5112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee G. Y.; Haverty P. M.; Li L.; Kljavin N. M.; Bourgon R.; Lee J.; Stern H.; Modrusan Z.; Seshagiri S.; Zhang Z.; Davis D.; Stokoe D.; Settleman J.; de Sauvage F. J.; Neve R. M. (2014) Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res. 74, 3114–3126. 10.1158/0008-5472.CAN-13-2683. [DOI] [PubMed] [Google Scholar]
- Ning S.; Ma S.; Saleh A. Q.; Guo L.; Zhao Z.; Chen Y. (2018) SHMT2 overexpression predicts poor prognosis in intrahepatic cholangiocarcinoma. Gastroenterol Res. Pract 2018, 4369253. 10.1155/2018/4369253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu M.; Wanggou S.; Li X.; Liu Q.; Xie Y. (2017) Overexpression of mitochondrial serine hydroxyl-methyltransferase 2 is associated with poor prognosis and promotes cell proliferation and invasion in gliomas. OncoTargets Ther. 10, 3781–3788. 10.2147/OTT.S130409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang B.; Wang W.; Zhu Z.; Zhang X.; Tang F.; Wang D.; Liu X.; Yan X.; Zhuang H. (2017) Mitochondrial serine hydroxymethyltransferase 2 is a potential diagnostic and prognostic biomarker for human glioma. Clin Neurol Neurosurg 154, 28–33. 10.1016/j.clineuro.2017.01.005. [DOI] [PubMed] [Google Scholar]
- Wang H.; Chong T.; Li B. Y.; Chen X. S.; Zhen W. B. (2020) Evaluating the clinical significance of SHMT2 and its co-expressed gene in human kidney cancer. Biol. Res. 53, 46. 10.1186/s40659-020-00314-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu Z. Z.; Wang S.; Yang Q. C.; Wang X. L.; Yang L. L.; Liu B.; Sun Z. J. (2020) Increased expression of SHMT2 is associated with poor prognosis and advanced pathological grade in oral squamous cell carcinoma. Front. Oncol. 10, 588530. 10.3389/fonc.2020.588530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- (2016) Broad Institute TCGA Genome Data Analysis Center. Firehose stddata__2016_01_28 run., Broad Institute of MIT Harvard. [Google Scholar]
- Team R. C. (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Google Scholar]
- Altieri B.; Ronchi C. L.; Kroiss M.; Fassnacht M. (2020) Next-generation therapies for adrenocortical carcinoma. Best Pract Res. Clin Endocrinol Metab 34, 101434. 10.1016/j.beem.2020.101434. [DOI] [PubMed] [Google Scholar]
- Subramanian A.; Tamayo P.; Mootha V. K.; Mukherjee S.; Ebert B. L.; Gillette M. A.; Paulovich A.; Pomeroy S. L.; Golub T. R.; Lander E. S.; Mesirov J. P. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550. 10.1073/pnas.0506580102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zheng H.; Gupta V.; Patterson-Fortin J.; Bhattacharya S.; Katlinski K.; Wu J.; Varghese B.; Carbone C. J.; Aressy B.; Fuchs S. Y.; Greenberg R. A. (2013) A Novel BRISC-SHMT complex deubiquitinates IFNAR1 and regulates interferon responses. Cell Rep. 5, 180–193. 10.1016/j.celrep.2013.08.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma E. H.; Bantug G.; Griss T.; Condotta S.; Johnson R. M.; Samborska B.; Mainolfi N.; Suri V.; Guak H.; Balmer M. L.; Verway M. J.; Raissi T. C.; Tsui H.; Boukhaled G.; Henriques da Costa S.; Frezza C.; Krawczyk C. M.; Friedman A.; Manfredi M.; Richer M. J.; Hess C.; Jones R. G. (2017) Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357. 10.1016/j.cmet.2016.12.011. [DOI] [PubMed] [Google Scholar]
- Mahdavi Sharif P.; Jabbari P.; Razi S.; Keshavarz-Fathi M.; Rezaei N. (2020) Importance of TNF-alpha and its alterations in the development of cancers. Cytokine+ 130, 155066. 10.1016/j.cyto.2020.155066. [DOI] [PubMed] [Google Scholar]
- Vaughan R. A.; Garcia-Smith R.; Dorsey J.; Griffith J. K.; Bisoffi M.; Trujillo K. A. (2013) Tumor necrosis factor alpha induces Warburg-like metabolism and is reversed by anti-inflammatory curcumin in breast epithelial cells. Int. J. Cancer 133, 2504–2510. 10.1002/ijc.28264. [DOI] [PubMed] [Google Scholar]
- Straus D. S. (2013) TNFα and IL-17 cooperatively stimulate glucose metabolism and growth factor production in human colorectal cancer cells. Mol. Cancer 12, 78. 10.1186/1476-4598-12-78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarasenko T. N.; Jestin M.; Matsumoto S.; Saito K.; Hwang S.; Gavrilova O.; Trivedi N.; Zerfas P. M.; Barca E.; DiMauro S.; Senac J.; Venditti C. P.; Cherukuri M.; McGuire P. J. (2019) Macrophage derived TNFalpha promotes hepatic reprogramming to Warburg-like metabolism. J. Mol. Med. (Heidelberg, Ger.) 97, 1231–1243. 10.1007/s00109-019-01786-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn W. S.; Kuzmicic J.; Burrill J. S.; Donoghue M. A.; Foncea R.; Jensen M. D.; Lavandero S.; Arriaga E. A.; Bernlohr D. A. (2014) Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. Am. J. Physiol Endocrinol Metab 306, E1033–1045. 10.1152/ajpendo.00422.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duan W.; Li H. (2018) Combination of NF-kB targeted siRNA and methotrexate in a hybrid nanocarrier towards the effective treatment in rheumatoid arthritis. J. Nanobiotechnol. 16, 58. 10.1186/s12951-018-0382-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu C.; Sikandar A.; Donner J.; Zaburannyi N.; Herrmann J.; Reck M.; Wagner-Dobler I.; Koehnke J.; Muller R. (2017) The natural product carolacton inhibits folate-dependent C1 metabolism by targeting FolD/MTHFD. Nat. Commun. 8, 1529. 10.1038/s41467-017-01671-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawai J.; Toki T.; Ota M.; Inoue H.; Takata Y.; Asahi T.; Suzuki M.; Shimada T.; Ono K.; Suzuki K.; Takaishi S.; Ohki H.; Matsui S.; Tsutsumi S.; Hirota Y.; Nakayama K. (2019) Discovery of a potent, selective, and orally available MTHFD2 inhibitor (DS18561882) with in vivo antitumor activity. J. Med. Chem. 62, 10204–10220. 10.1021/acs.jmedchem.9b01113. [DOI] [PubMed] [Google Scholar]
- Yu C.; Yang L.; Cai M.; Zhou F.; Xiao S.; Li Y.; Wan T.; Cheng D.; Wang L.; Zhao C.; Huang X. (2020) Down-regulation of MTHFD2 inhibits NSCLC progression by suppressing cycle-related genes. J. Cell. Mol. Med. 24, 1568–1577. 10.1111/jcmm.14844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan C.-H.; Wu C.-Y.; Dubey N. K.; Wei H.-J.; Lu J.-H.; Mao S.; Liang J.; Liang Y.-H.; Cheng H.-C.; Deng W.-P. (2020) Modulating redox homeostasis and cellular reprogramming through inhibited methylenetatrahydrofolate dehydrogenase 2 enzymatic activities in lung cancer. Aging 12, 17930–17947. 10.18632/aging.103471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ju H. Q.; Lu Y. X.; Chen D. L.; Zuo Z. X.; Liu Z. X.; Wu Q. N.; Mo H. Y.; Wang Z. X.; Wang D. S.; Pu H. Y.; Zeng Z. L.; Li B.; Xie D.; Huang P.; Hung M. C.; Chiao P. J.; Xu R. H. (2019) Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic implications. J. Natl. Cancer Inst 111, 584–596. 10.1093/jnci/djy160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green N. H.; Galvan D. L.; Badal S. S.; Chang B. H.; LeBleu V. S.; Long J.; Jonasch E.; Danesh F. R. (2019) MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma. Oncogene 38, 6211–6225. 10.1038/s41388-019-0869-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang L.; Garcia Canaveras J. C.; Chen Z.; Wang L.; Liang L.; Jang C.; Mayr J. A.; Zhang Z.; Ghergurovich J. M.; Zhan L.; Joshi S.; Hu Z.; McReynolds M. R.; Su X.; White E.; Morscher R. J.; Rabinowitz J. D. (2020) Serine catabolism feeds NADH when respiration is impaired. Cell Metab. 31, 809–821. 10.1016/j.cmet.2020.02.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fan J.; Ye J.; Kamphorst J. J.; Shlomi T.; Thompson C. B.; Rabinowitz J. D. (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302. 10.1038/nature13236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gustafsson Sheppard N.; Jarl L.; Mahadessian D.; Strittmatter L.; Schmidt A.; Madhusudan N.; Tegner J.; Lundberg E. K.; Asplund A.; Jain M.; Nilsson R. (2015) The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation. Sci. Rep. 5, 15029. 10.1038/srep15029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koufaris C.; Nilsson R. (2018) Protein interaction and functional data indicate MTHFD2 involvement in RNA processing and translation. Cancer Metab 6, 12. 10.1186/s40170-018-0185-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selcuklu S. D.; Donoghue M. T.; Rehmet K.; de Souza Gomes M.; Fort A.; Kovvuru P.; Muniyappa M. K.; Kerin M. J.; Enright A. J.; Spillane C. (2012) MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells. J. Biol. Chem. 287, 29516–29528. 10.1074/jbc.M111.335943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu Y.; Si J.; Xiao X.; Tian Y.; Yang S. (2017) miR-92a inhibits proliferation and induces apoptosis by regulating methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) expression in acute myeloid leukemia. Oncol. Res. 25, 1069–1079. 10.3727/096504016X14829256525028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu T.; Zhang K.; Shi J.; Huang B.; Wang X.; Qian K.; Ma T.; Qian T.; Song Z.; Li L. (2019) MicroRNA-940 inhibits glioma progression by blocking mitochondrial folate metabolism through targeting of MTHFD2. Am. J. Cancer Res. 9, 250–269. [PMC free article] [PubMed] [Google Scholar]
- Yan Y.; Zhang D.; Lei T.; Zhao C.; Han J.; Cui J.; Wang Y. (2019) MicroRNA-33a-5p suppresses colorectal cancer cell growth by inhibiting MTHFD2. Clin. Exp. Pharmacol. Physiol. 46, 928–936. 10.1111/1440-1681.13125. [DOI] [PubMed] [Google Scholar]
- Zhou J.; Bi C.; Ching Y. Q.; Chooi J. Y.; Lu X.; Quah J. Y.; Toh S. H.; Chan Z. L.; Tan T. Z.; Chong P. S.; Chng W. J. (2017) Inhibition of LIN28B impairs leukemia cell growth and metabolism in acute myeloid leukemia. J. Hematol. Oncol. 10, 138. 10.1186/s13045-017-0507-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao X. B.; Ren G. S. (2016) LncRNA taurine-upregulated gene 1 promotes cell proliferation by inhibiting microRNA-9 in MCF-7 cells. J. Breast Cancer 19, 349–357. 10.4048/jbc.2016.19.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tong D.; Zhang J.; Wang X.; Li Q.; Liu L.; Lu A.; Guo B.; Yang J.; Ni L.; Qin H.; Zhao L.; Huang C. (2020) MiR-22, regulated by MeCP2, suppresses gastric cancer cell proliferation by inducing a deficiency in endogenous S-adenosylmethionine. Oncogenesis 9, 99. 10.1038/s41389-020-00281-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei G. G.; Guo W. P.; Tang Z. Y.; Li S. H.; Wu H. Y.; Zhang L. C. (2019) Expression level and prospective mechanism of miRNA-99a-3p in head and neck squamous cell carcinoma based on miRNA-chip and miRNA-sequencing data in 1, 167 cases. Pathol., Res. Pract. 215, 963–976. 10.1016/j.prp.2019.02.002. [DOI] [PubMed] [Google Scholar]
- Jones D. Z.; Schmidt M. L.; Suman S.; Hobbing K. R.; Barve S. S.; Gobejishvili L.; Brock G.; Klinge C. M.; Rai S. N.; Park J.; et al. (2018) Micro-RNA-186–5p inhibition attenuates proliferation, anchorage independent growth and invasion in metastatic prostate cancer cells. BMC Cancer 18, 421. 10.1186/s12885-018-4258-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamazon E. R.; Trendowski M. R.; Wen Y.; Wing C.; Delaney S. M.; Huh W.; Wong S.; Cox N. J.; Dolan M. E. (2018) Gene and microRNA perturbations of cellular response to pemetrexed implicate biological networks and enable imputation of response in lung adenocarcinoma. Sci. Rep. 8, 733. 10.1038/s41598-017-19004-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wan X.; Wang C.; Huang Z.; Zhou D.; Xiang S.; Qi Q.; Chen X.; Arbely E.; Liu C. Y.; Du P.; Yu W. (2020) Cisplatin inhibits SIRT3-deacetylation MTHFD2 to disturb cellular redox balance in colorectal cancer cell. Cell Death Dis. 11, 649. 10.1038/s41419-020-02825-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hornbeck P. V.; Kornhauser J. M.; Tkachev S.; Zhang B.; Skrzypek E.; Murray B.; Latham V.; Sullivan M. (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40, D261–270. 10.1093/nar/gkr1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snaebjornsson M. T.; Schulze A. (2018) Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp. Mol. Med. 50, 34. 10.1038/s12276-018-0065-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banks C. J.; Andersen J. L. (2019) Mechanisms of SOD1 regulation by post-translational modifications. Redox Biol. 26, 101270. 10.1016/j.redox.2019.101270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gustafsson R.; Jemth A. S.; Gustafsson N. M. S.; Farnegardh K.; Loseva O.; Wiita E.; Bonagas N.; Dahllund L.; Llona-Minguez S.; Haggblad M.; Henriksson M.; Andersson Y.; Homan E.; Helleday T.; Stenmark P. (2017) Crystal structure of the emerging cancer target MTHFD2 in complex with a substrate-based inhibitor. Cancer Res. 77, 937–948. 10.1158/0008-5472.CAN-16-1476. [DOI] [PubMed] [Google Scholar]
- Kawai J.; Ota M.; Ohki H.; Toki T.; Suzuki M.; Shimada T.; Matsui S.; Inoue H.; Sugihara C.; Matsuhashi N.; Matsui Y.; Takaishi S.; Nakayama K. (2019) Structure-based design and synthesis of an isozyme-selective MTHFD2 inhibitor with a tricyclic coumarin scaffold. ACS Med. Chem. Lett. 10, 893–898. 10.1021/acsmedchemlett.9b00069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allaire M.; Li Y.; MacKenzie R. E.; Cygler M. (1998) The 3-D structure of a folate-dependent dehydrogenase/cyclohydrolase bifunctional enzyme at 1.5 Å resolution. Structure 6, 173–182. 10.1016/S0969-2126(98)00019-7. [DOI] [PubMed] [Google Scholar]
- Schmidt A.; Wu H.; MacKenzie R. E.; Chen V. J.; Bewly J. R.; Ray J. E.; Toth J. E.; Cygler M. (2000) Structures of three inhibitor complexes provide insight into the reaction mechanism of the human methylenetetrahydrofolate dehydrogenase/cyclohydrolase. Biochemistry 39, 6325–6335. 10.1021/bi992734y. [DOI] [PubMed] [Google Scholar]
- Bueno R.; Dawson A.; Hunter W. N. (2019) An assessment of three human methylenetetrahydrofolate dehydrogenase/cyclohydrolase-ligand complexes following further refinement. Acta Crystallogr., Sect. F: Struct. Biol. Commun. 75, 148–152. 10.1107/S2053230X18018083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noguchi K.; Konno M.; Koseki J.; Nishida N.; Kawamoto K.; Yamada D.; Asaoka T.; Noda T.; Wada H.; Gotoh K.; et al. (2018) The mitochondrial one-carbon metabolic pathway is associated with patient survival in pancreatic cancer. Oncol. Lett. 16, 1827–1834. 10.3892/ol.2018.8795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin H.; Huang B.; Wang H.; Liu X.; Hong Y.; Qiu S.; Zheng J. (2018) MTHFD2 overexpression predicts poor prognosis in renal cell carcinoma and is associated with cell proliferation and vimentin-modulated migration and invasion. Cell. Physiol. Biochem. 51, 991–1000. 10.1159/000495402. [DOI] [PubMed] [Google Scholar]
- Pikman Y.; Puissant A.; Alexe G.; Furman A.; Chen L. M.; Frumm S. M.; Ross L.; Fenouille N.; Bassil C. F.; Lewis C. A.; Ramos A.; Gould J.; Stone R. M.; DeAngelo D. J.; Galinsky I.; Clish C. B.; Kung A. L.; Hemann M. T.; Vander Heiden M. G.; Banerji V.; Stegmaier K. (2016) Targeting MTHFD2 in acute myeloid leukemia. J. Exp. Med. 213, 1285–1306. 10.1084/jem.20151574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moran D. M.; Trusk P. B.; Pry K.; Paz K.; Sidransky D.; Bacus S. S. (2014) KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol. Cancer Ther. 13, 1611–1624. 10.1158/1535-7163.MCT-13-0649. [DOI] [PubMed] [Google Scholar]
- Reich S.; Nguyen C. D. L.; Has C.; Steltgens S.; Soni H.; Coman C.; Freyberg M.; Bichler A.; Seifert N.; Conrad D.; et al. (2020) A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites. Nat. Commun. 11, 2936. 10.1038/s41467-020-16747-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osorio F.; Tavernier S. J.; Hoffmann E.; Saeys Y.; Martens L.; Vetters J.; Delrue I.; De Rycke R.; Parthoens E.; Pouliot P.; Iwawaki T.; Janssens S.; Lambrecht B. N. (2014) The unfolded-protein-response sensor IRE-1alpha regulates the function of CD8alpha+ dendritic cells. Nat. Immunol. 15, 248–257. 10.1038/ni.2808. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.