Abstract
The metabolism of bile acid by the gut microbiota is associated with host health. Bile salt hydrolases (BSHs) play a crucial role in controlling microbial bile acid metabolism. Herein, we conducted a comparative study to investigate the alterations in the abundance of BSHs using data from three human studies involving dietary interventions, which included a ketogenetic diet (KD) versus baseline diet (BD), overfeeding diet (OFD) versus underfeeding diet, and low-carbohydrate diet (LCD) versus BD. The KD increased BSH abundance compared to the BD, while the OFD and LCD did not change the total abundance of BSHs in the human gut. BSHs can be classified into seven clusters; Clusters 1 to 4 are relatively abundant in the gut. In the KD cohort, the levels of BSHs from Clusters 1, 3, and 4 increased significantly, whereas there was no notable change in the levels of BSHs from the clusters in the OFD and LCD cohorts. Taxonomic studies showed that members of the phyla Bacteroidetes, Firmicutes, and Actinobacteria predominantly produced BSHs. The KD altered the community structure of BSH-active bacteria, causing an increase in the abundance of Bacteroidetes and decrease in Actinobacteria. In contrast, the abundance of BSH-active Bacteroidetes decreased in the OFD cohort, and no significant change was observed in the LCD cohort. These results highlight that dietary patterns are associated with the abundance of BSHs and community structure of BSH-active bacteria and demonstrate the possibility of manipulating the composition of BSHs in the gut through dietary interventions to impact human health.
Keywords: gut microbiome, secondary bile acids, dietary pattern, metagenomic cohorts, human health
1. Introduction
Bile acids (BAs), which mainly include cholic acid (CA) and chenodeoxycholic acid (CDCA) in humans, are derived from cholesterol and are further conjugated with amino acids in hepatocytes. Conjugated BAs with both hydrophobic (lipid soluble) and polar (hydrophilic) faces are actively secreted into the small intestine to emulsify, solubilize, and transport lipids, such as fatty acids, cholesterol monoglycerides, and fat-soluble vitamins. The metabolism of BAs is associated with obesity, diabetes, gallbladder diseases, gastrointestinal diseases, liver diseases, and cardiovascular diseases [1]. The concentration of BAs is typically evaluated in patients with obesity or type 2 diabetes (T2D) [2]. In patients with non-alcoholic fatty liver disease (NAFLD) total fecal BA concentrations are generally elevated [3]. As metabolic regulators, BAs can bind to the farnesoid X receptor or Takeda G protein-coupled receptor 5 (TGR5) to regulate glucose metabolism, insulin sensitivity, and hepatic metabolism [4]. Alteration of the BA pool may contribute to the dysregulation of metabolic homeostasis in obesity, T2D, and NAFLD [5]. In addition, the levels of BAs in the gut are affected by dietary patterns; the consumption of processed meat, fried potatoes, fish, margarine, and coffee is positively associated with the levels of all fecal BAs, whereas muesli consumption has a negative association with the levels of all fecal BAs [6]. Furthermore, a 6-month randomized controlled-feeding study showed that a high-fat diet (HFD) caused an increase in the levels of total and free BAs compared to a low-fat diet (LFD) [7].
In the ileum, most conjugated BAs are reabsorbed and transported via portal blood to the liver, while the remaining BAs (<10%) are further metabolized by the gut microbiota to produce secondary BAs, including deoxycholic acid (DCA) and lithocholic acid (LCA) [8]. Metabolism from primary to secondary BAs consists of the following two steps: the hydrolysis of conjugated BAs and 7α/β-dehydroxylation of CA and CDCA to produce DCA and LCA [4,9]. Gut bile salt hydrolases (BSHs, EC 3.5.1.24) hydrolyze conjugated BAs to free primary BAs, which is the first step and gatekeeper of BA transformation in the gut [10]. The BSHs are affiliated with Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Euryarchaeota [11,12]. Lactobacillus strains with BSH activity are a criterion for selecting probiotics with cholesterol-lowering and anti-obesity effects [13]. Blautia obeum can shape the chemical environment of the gut through its BSH activity, which can degrade taurocholate and reduce colonization of the major human diarrheal pathogen Vibrio cholerae [14]. Manipulation of the gut bacteria with BSH is considered a promising strategy to benefit human health [10,15].
Studies regarding BSHs related to host health are primarily performed using mouse models. The effect of BSHs on human health is currently unclear. Recently, we demonstrated that gut BSH abundance is significantly related to human diseases, including obesity and T2D as well as cardiovascular, liver, gastrointestinal, and neurological diseases [16]. Among these diseases, the risk of obesity, T2D, and cardiovascular diseases is closely linked to dietary patterns [17]. Increasing evidence has shown that plant-based diets are effective in preventing various chronic diseases [18]. However, dietary patterns of high calorie intake with high amounts of sugar and fat seem to increase the risk [19]. A ketogenetic diet (KD) is considered an effective treatment for obesity, diabetes, steatohepatitis, neurodegenerative disease, and cancer [20]. BA metabolism by gut microbes is also related to these conditions [21]. Considering the importance of BSHs in terms of health and the contribution of dietary patterns to human health, we performed a metagenome-wide association study to analyze diet-associated changes in BSH levels in the human gut microbiome. First, we collected publicly available datasets from three metagenomic studies with different dietary interventions and controls. Second, we evaluated the abundance of BSHs by mapping the BSH gene sequences to the gut metagenomic data. Finally, we investigated how the diversity and taxonomic changes in BSHs were affected by diet.
2. Results
2.1. Characteristics of the Metagenomic Datasets Used
The majority of studies regarding the effects of diet on the human gut microbiota have focused on the microbial community structure based on 16S rDNA analysis [22,23]. Compared to microbiota studies, metagenomics can produce data with both higher taxonomic resolution and gene functions with improved statistical precision [24]. However, as of May 2020, only three metagenomic sequencing studies have linked diet and human health (Table 1) [25,26,27]. The three studies performed controlled dietary interventions to compare the metagenomic difference between a baseline diet (BD) and a KD, an underfeeding diet (UFD) and an overfeeding diet (OFD), and a BD and a low-carbohydrate (CHO) diet (LCD). In the cohort treated with a KD, the inpatient crossover study was performed with 17 overweight or class I obese nondiabetic adult men who served as the BD (50% CHO, 15% protein, and 35% fat) for four weeks followed by a four-week KD (5% CHO, 15% protein, and 80% fat) [25]. Data for the UFD and OFD were collected from a randomized crossover inpatient dietary intervention in which all participants were treated with 3 days of over and underfeeding with a 3 day washout period in a random order [26]. Across both groups, the ratio of CHO:protein:fat in the diets was the same (50% CHO, 20% protein, and 30% fat), but the caloric intake of the OFD group was three times that of the UFD group. LCD analysis was conducted on a dataset of 10 subjects with obesity and high liver fat. The subjects were first fed a BD (40% CHO, 18% protein, and 42% fat) then served a LCD (4% CHO, 24% protein, and 72% fat) for 14 days [27]. The three datasets included information regarding both the different dietary intake amounts and the different components in each diet.
Table 1.
Dataset (Accession Number) |
Dietary Pattern | Diet Components (CHO:protein:fat) | Energy Intake (kcal/d) | Sample No. | Intake Days | Age | Gender Female (%)/Male (%) |
BMI | Country | Sequencing Method |
---|---|---|---|---|---|---|---|---|---|---|
Ang et al. (SRP189794) | Baseline diet (BD) | 50:15:35 | NS | 17 | 14 | 35.1 ± 7.3 | 0/100.0 | 25–35 | USA | Illumina HiSeq 2500 & NovaSeq 6000 |
Ketogenic diet (KD) | 5:15:80 | NS | 17 | 14 | ||||||
Basolo et al. (SRP229815) | Underfeeding diet (UFD) | 50:20:30 | 1494 ± 211 | 18 | 3 | 18–50 | 37.0/63.0 | 32.8 ± 8.0 | USA | Illumina NovaSeq S2 |
Overfeeding diet (OFD) | 50:20:30 | 4446 ± 547 | 18 | 3 | ||||||
Mardinoglu et al. (SRP126014) | Baseline diet (CD) | 40:18:42 | 2234 ± 221 | 10 | NS | 53.7 ± 3.6 | 20.0/80.0 | 34.1 ± 1.2 | Sweden | Illumina NextSeq 500 |
Low-carbohydrate diet (LCD) | 4:24:72 | 3115 ± 441 | 10 | 14 |
2.2. Abundance of BSHs in the Human Gut with Different Diets
We used 44 previously characterized BSHs (Supplementary Table S1) to search the UniProt protein database and selected the sequences from the human gut microbiota. Finally, 626 sequences were obtained from cultivated microorganisms and metagenome-assembled genomes from the human gut microbiota (Supplementary Dataset S1). We mapped the reads of the three datasets with different diets to the BSH sequences from gut microbes to analyze the differences in BSH abundance, which were indicated by both the p value and fold-change (FC) at p < 0.05 (Figure 1). BSH abundance under KD conditions increased significantly compared to that under BD conditions in the human gut (p = 1.5 × 10−5, FC = 1.7) (Figure 1a). The abundance of BSH in the human gut from subjects fed the OFD did not change significantly compared to that in subjects fed the UFD (p = 0.89) (Figure 1b), despite OFD treatment resulting in a significant decrease in total bacterial colonization levels [26]. We further compared BSH abundance in the BD and LCD cohorts (Figure 1c), and the results indicated that the abundance of BSHs also increased significantly during the 7 day study period (p = 0.02). In the 3 and 7 day study periods, the total abundance of BSHs did not show noticeable changes under LCD treatment (p = 0.11). Therefore, among the three dietary treatments tested in the study, only the KD significantly affected the abundance of BSHs.
2.3. Clustering of Gut BSHs and Abundance of Proteins from Each Cluster in Different Diets
The protein sequence similarity network (SSN) of the gut BSHs was further generated with a criterion of >40% sequence identity, which separated the gut BSHs into seven clusters (Figure 2a and Supplementary Figure S1). The classification was in accordance with that of our previous study, and we named the clusters similarly to facilitate understanding [16]. The proteins from Clusters 1 and 3 were predominantly from Bacteroidetes, consisting of 136 and 71 proteins, respectively. There were 344 proteins in Cluster 2, which were mainly from Firmicutes and Actinobacteria. Proteins in other clusters consisted of <40 proteins from Firmicutes (Supplementary Figure S1). Sequence analysis demonstrated that only the proteins from Clusters 1 and 3 harbored N-terminal signal peptides (Supplementary Figure S2). Phylogenetic analysis showed that the proteins from Clusters 1 and 3 were localized in one clade in the tree with the proteins from Clusters 5, 6, and 7, which did not have the signal peptide. Otherwise, the proteins in Cluster 2 without signal peptides formed another separate clade. Cluster 4 was located away from the two clades in the phylogenetic tree (Figure 2a). These results suggest that the BSHs from one phylum may originate from different hydrolase precursors despite having common features in N-terminal sorting sequences.
Our previous study suggested that the abundance of BSHs from different clusters showed distinct relationships with human diseases [16]. In this study, we mapped the gut BSH sequences in each cluster to the datasets of different diets to evaluate the relationship. The abundance of BSHs from Clusters 1 to 4 was relatively high, whereas proteins from other clusters could not be detected (Supplementary Figure S3). We compared the abundance of BSHs from Clusters 1 to 4 between different dietary interventions and controls (Figure 2). For the KD versus BD, the BSH levels from Clusters 1, 3, and 4 increased significantly (p = 0.02, 1.5 × 10−5, and 0.0017, respectively; FC = 1.7, 2.3, and 2.9, respectively). In the OFD cohort, the BSH levels from the four clusters did not show a substantial difference. Finally, only the protein levels in Cluster 3 increased significantly at 3 days with the LCD (p = 0.027). There was no obvious trend of alteration in the abundance of BSH in other clusters in the LCD cohort. Overall, these results indicated that the relationship between the abundance of microbial BSHs in the gut and diet varies depending on different dietary patterns.
2.4. Taxonomic Diversity of BSHs in the Human Gut with Different Diets
BSHs in the gut are from 12 phyla but mainly belong to the two dominant gut phyla Bacteroidetes and Firmicutes [11]. The BSHs from the bacteria of these two phyla are considerably different in sequence; the proteins from Bacteroidetes contain N-terminal signal peptides, while those from Firmicutes do not harbor these peptides [16]. This sequence difference motivated us to examine how the community structure of BSH microbes is affected by diet. The results showed that the BSHs were predominantly from bacteria belonging to Bacteroidetes and Firmicutes in the three cohorts examined (Figure 3a). In the phylum Bacteroidetes, BSHs were mainly found at the genus level of Alistipes, Bacteroides, and Barnesiella. In the phylum Firmicutes, BSHs showed a wide distribution at the genus level, including Ruminococcus, Eubacterium, Lachnospira, Oscillibacter, Clostridium, Mediterraneibacte, Holdemanella, Roseburia, and Lactobacillus (Supplementary Figure S4). The phylum with the third-highest abundance of BSHs in the gut was Actinobacteria. We compared the abundance of BSHs from Bacteroidetes, Firmicutes, and Actinobacteria in the gut between different dietary interventions and controls. The abundance of BSHs from Bacteroidetes increased significantly in the KD cohort (p = 4.6 × 10−5, FC = 2.0) (Figure 3b). The abundance of BSHs from Firmicutes under the KD treatment did not show a significantly varying trend (p = 0.11). The abundance of BSHs from Actinobacteria was significantly reduced under KD treatment (p = 0.046, FC = 0.35). These results suggest that consuming a KD altered the community structure of BSH-active microbes significantly. For the UFD versus OFD, Bacteroidetes BSH levels decreased significantly (p = 0.01, FC = 0.55). No significant difference in the abundance of BSHs from Firmicutes and Actinobacteria was observed (p > 0.05) (Figure 3c). Although the constituents of the KD and LCD were similar, the LCD did not change the community distribution of BSH-active bacteria in the human gut (Figure 3d). Only the abundance of BSHs from Bacteroidetes increased significantly at 7 days following the onset of an LCD (p = 0.037). After 14 days, no significant difference in the abundance of BSHs from Bacteroidetes, Firmicutes, and Actinobacteria was observed between LCD and BD subjects (p > 0.05). Taken together, these data suggest that the alteration of BSHs was limited to the KD cohort; the UFD and LCD did not change the community structure of BSH-active bacteria.
3. Discussion
Dietary patterns and interventions affect the overall composition of the gut microbiome and exert direct effects on mammalian health. The effects of diet, including LFDs, HFDs, high protein diets, LCDs, very-low-calorie diets, and KDs, on the health and gut microbiota composition of animal models have been widely studied [28]. Diet is the key determinant of community structure and function of the human gut microbiota among several host-endogenous and -exogenous factors [29]. In the guts of both obese human subjects and animal models with HFD-induced obesity, the level of Bacteroidetes is lower and the level of Firmicutes is higher than in the respective lean control subjects [30]. A KD decreases the Firmicutes and Actinobacteria bacteria levels with a corresponding increase in Bacteroidetes bacteria levels in the guts of adults through the action of ketone bodies produced by the host [25]. The same alteration occurs in children with refractory epilepsy following adherence to a KD [31]. Gut microbial shifts on KDs reduces levels of intestinal proinflammatory Th17 cells [25], which may contribute to the efficacy of KD in improving glycemic control and reductions in body fat [32]. In addition, 3-OxoLCA, a secondary BA and downstream product from BSH catalysis, could inhibit the differentiation of TH17 cells also [32]. The present study showed that BSHs in the KD cohort were significantly altered, including the total abundance, abundance in different clusters, and abundance at the phylum level. The total abundance of BSHs in the KD cohort increased significantly. As the KD diet contained a high ratio of fat and protein, the results are in accordance with those of a previous study showing that an animal-based diet increased the human gut BSH abundance compared with a plant-based diet based on metatranscriptomics analysis [33]. The increased BSHs may increase the concentration of CA, the substrate of BSHs, which could promote weight loss in mice fed a HFD through increased metabolic rate in brown fat tissue mediated by TGR5 signaling pathways [34]. Furthermore, the increased BSHs also contribute to a reduction of serum cholesterol by decreasing cholesterol absorption through coprecipitation unconjugated BAs with cholesterol in the intestinal lumen [35]. Since the KD has been considered a strategy for weight loss in recent years [36], we propose that the increase in microbial BSHs due to the KD may be a contributing factor that facilitates weight loss. Our study indicates that the abundance of BSHs in Clusters 1 and 3 increased in the KD cohort. As BSH-active Lactobacillus plantarum, marketed as a probiotic, has beneficial effects on host health [37], we propose that BSH-active bacteria from Cluster 1 and 3 (Supplementary Dataset S1) could be an alternative and suitable probiotic as the BSHs in the two clusters increased significantly with a KD.
The BSHs from Clusters 1 and 3 were predominantly from the phylum Bacteroidetes. The abundance study based on taxonomic aspects further displayed a significant increase in the BSHs from Bacteroidetes but not Firmicutes in the KD cohort. However, this study of BSHs mainly focused on the enzymes from Firmicutes, as 39 were from Firmicutes out of the 44 experimentally characterized BSHs (Supplementary Table S1). Furthermore, both the current study and previous studies have shown that the amount of BSHs from Bacteroidetes is relatively higher than the enzymes from Firmicutes in the human gut [11,16]. We suggest that BSH research should shift from BSHs in Firmicutes to those in Bacteroidetes. The characterized enzymes from Bacteroidetes Clusters 1 and 3 included Bacteroides thetaiotaomicron and Bacteroides ovatus [12,38]. During screening of the BSH activity of 20 Bacteroidetes strains, the majority preferred tauro- to glyco-conjugated BAs as substrates [38]. The in vitro enzyme activity assay also indicated that the enzymes in Cluster 1 (UniProt ID: A0A3A6KI09) and 3 (A0A3A6KGT7) prefer deconjugated tauro-BAs [11]. As only a few enzymes have been experimentally characterized in Clusters 1 and 3, it is not yet known whether other proteins have a similar preference for substrates. The well-studied enzymes in Cluster 2, including those from Lactobacillus and Bifidobacterium, have a wide range of substrate preferences, including glyco-glyco-/tauro-, and tauro-BAs [39]. Further studies regarding BSHs from Clusters 1 and 3 should be undertaken to understand the catalytic characteristics.
The present study indicated that only the KD altered the total abundance of BSHs, the abundance in different clusters, and community structure, while the OFD did not cause any changes. As the KD cohort had a low ratio of CHO and high ratio of fat—while the ratio of CHO, protein, and fat was the same for both the UFD and OFD—we propose that the dietary constituents, but not the food intake amounts, exerted a detrimental effect on the diversity of BSHs from Firmicutes and Bacteroidetes in the human gut. However, the abundance of BSHs in the LCD cohort did not show obvious changes despite the LCD and KD having a similar CHO, protein, and fat ratio. This may be because the LCD study recruited obese patients with NAFLD, where dysbiosis had occurred and confounded the quantification of BSHs [40].
We separated BSH homologs from the UniProt database into seven clusters in a previous study [16]. These sequences were not only from the human gut microbiome but also from the genome of bacteria from soil or other environmental sources. The proteins in Clusters 1 and 3 in the study were from both Proteobacteria and Bacteroidetes; however, the human gut microbiota is composed primarily of the phyla Bacteroidetes or Firmicutes [41]. Recent advances in sequencing and algorithms in the human gut microbiome have provided sufficient knowledge regarding genome sequences; for example, 204,938 reference genomes from the human gut microbiome were reported in 2020 [42]. Therefore, in this study, we only analyzed the BSH homologs available in human gut microorganisms. These sequences were from cultivated microorganisms or metagenome-assembled genomes in the human gut. Although the total protein sequences decreased compared with previous studies, the mapping outcome was much more convincing as the query (BSHs) and target sequences (datasets of the diets) were limited in the same resources.
The human diet can be influenced by many habitual, demographic, environmental, social, and individual factors [43]. Rigorous long-term studies comparing diet using methodologies that preclude bias and confounding factors are difficult to perform and are unlikely to be carried out for many reasons [44]. In the present study, we collected three cohorts from studies involving both human dietary intervention and gut microbial metagenomic analysis; however, the sample sizes in the datasets were relatively small. We acknowledge that this is a limitation of the current study. Fortunately, the included studies were carefully controlled through inpatient treatment [25,26] or through daily instruction by a dietician [27]. Another limitation is that validation using independent study populations should have been performed, similar to our previous study [16,24], but this was not performed because there were insufficient numbers of cohort datasets available related to diet. Considering the careful design and strict control of these studies, we suggest that the analysis based on these datasets is reliable and reproducible, and high-quality trials of dietary interventions are needed to further assess their effect on BA metabolism.
4. Materials and Methods
4.1. Collection and Analysis of BSHs from the Human Gut Microbiota
The experimentally characterized enzymes were obtained from our previous study (Supplementary Table S1). These sequences were designated as query sequences to perform a BLAST analysis against the UniProt database (Version: 2020_02) with a cut-off e-value of 10−5, and the proteins from human gut microbiota were retained (Supplementary Dataset S1). The SSN and phylogenetic trees of BSHs from the gut microbiota were generated based on a previously described method [16].
4.2. Abundance Analysis of BSH Genes in the Datasets Related to Diets
Whole-genome sequencing datasets of the human fecal metagenomes related to diet and generated on Illumina platforms were downloaded from the NCBI SRA database (Table 1). Only data from non-antibiotic/probiotic-treated hosts and using an Illumina sequencing platform were selected for analysis. Low-quality reads were trimmed and the nucleotide sequences of gut microbial BSHs were mapped to the remaining high-quality sequencing reads using the Burrows–Wheeler alignment tool (version 0.7.17-r1194-dirty) [45]. The aligned reads were filtered using the SAMtools algorithms (version 1.9) to only retain the reads that showed a mapping quality number above 60 [46]. BEDtools was used to count the number of reads (version 2.27.1-dirty, https://bedtools.readthedocs.io/, accessed on 20 October 2020). The Kaiju program (version 1.7.3) was used to identify the taxonomic information of each read in the phylum rank [47]. The read counts of BSHs were normalized to reads per million (RPM) and visualized by boxplots using the ggplot2 package (version 3.1.5) in R.
4.3. Statistical Analysis
All statistical analyses were performed using R. The Shapiro–Wilk test was used to assess the normality of the abundance of BSHs. The paired Wilcoxon signed-rank test was used to test the significance of differences in BSH abundance between test and control subjects, as the data were not normally distributed. The FC based on the RPM value was calculated by dividing the value from test diet-fed subjects by the value from the control subjects.
5. Conclusions
In conclusion, we collected three datasets from human gut metagenomic sequencing studies related to diet. The abundance and community structure of the BSHs in the three cohorts were analyzed. The results showed that the KD significantly influenced the abundance and community structure of BSH-active bacteria, while overfeeding had no effect on BSH abundance. To our knowledge, this study is the first to demonstrate the relationship between diet and BSHs in the human gut, which may allow the manipulation of BA metabolism via diet for the benefit of human health.
Supplementary Materials
The following are available online at https://www.mdpi.com/article/10.3390/ijms22073652/s1, Table S1. Experimentally characterized bile salt hydrolases from literature. Figure S1. Protein sequence similarity network (SSN) of bile salt hydrolases from the human gut. Figure S2. Protein sequence similarity network (SSN) of bile salt hydrolases (BSHs) annotated by signal peptides. Figure S3. The abundance of the BSH of Cluster 5–7 from the datasets. Dataset S1: Uniprot ID of protein se-quences used to generate sequence similarity network. References [11,12,38,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68] are cited in the supplementary materials.
Author Contributions
Conceptualization, B.J. and C.O.J.; methodology, B.J., B.H.C. and D.P.; writing—original draft preparation, B.J., D.P., B.H.C., Y.H. and C.O.J.; writing—review and editing, B.J., D.P., B.H.C., Y.H. and C.O.J. All authors have read and agreed to the published version of the manuscript.
Funding
This work was supported by the National Research Foundation (2018R1A5A1025077) of the Ministry of Science and ICT and Future Planning and the Strategic Initiative for Microbiomes in the Ministry of Agriculture, Food, and Rural Affairs (as part of the multi-ministerial) Genome Technology to Business Translation Program, Republic of Korea; the National Key Research and Development Program of China (No. 2019YFC1905902); the Natural Science Foundation of Shandong Province (ZR2019PC060); and the Shandong Province Higher Educational Science and Technology Program (A18KA116).
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Data sharing not applicable.
Conflicts of Interest
The authors declare no conflict of interest.
Footnotes
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Chiang J.Y.L., Ferrell J.M. Bile acid biology, pathophysiology, and therapeutics. Clin. Liver Dis. 2020;15:91–94. doi: 10.1002/cld.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Tomkin G.H., Owens D. Obesity diabetes and the role of bile acids in metabolism. J. Transl. Int. Med. 2016;4:73–80. doi: 10.1515/jtim-2016-0018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Mouzaki M., Wang A.Y., Bandsma R., Comelli E.M., Arendt B.M., Zhang L., Fung S., Fischer S.E., McGilvray I.G., Allard J.P. Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS ONE. 2016;11:e0151829. doi: 10.1371/journal.pone.0151829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Jia B., Jeon C.O. Promotion and induction of liver cancer by gut microbiome-mediated modulation of bile acids. PLoS Pathog. 2019;15:e1007954. doi: 10.1371/journal.ppat.1007954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Prawitt J., Caron S., Staels B. Bile Acid Metabolism and the Pathogenesis of Type 2 Diabetes. Curr. Diabetes Rep. 2011;11:160. doi: 10.1007/s11892-011-0187-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Trefflich I., Marschall H.U., Giuseppe R.D., Ståhlman M., Michalsen A., Lampen A., Abraham K., Weikert C. Associations between dietary patterns and bile acids-results from a cross-sectional study in vegans and omnivores. Nutrients. 2019;12:47. doi: 10.3390/nu12010047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Wan Y., Yuan J., Li J., Li H., Zhang J., Tang J., Ni Y., Huang T., Wang F., Zhao F., et al. Unconjugated and secondary bile acid profiles in response to higher-fat, lower-carbohydrate diet and associated with related gut microbiota: A 6-month randomized controlled-feeding trial. Clin. Nutr. 2020;39:395–404. doi: 10.1016/j.clnu.2019.02.037. [DOI] [PubMed] [Google Scholar]
- 8.Winston J.A., Theriot C.M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2019;11:158–171. doi: 10.1080/19490976.2019.1674124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Funabashi M., Grove T.L., Wang M., Varma Y., McFadden M.E., Brown L.C., Guo C., Higginbottom S., Almo S.C., Fischbach M.A. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature. 2020;582:566–570. doi: 10.1038/s41586-020-2396-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Foley M.H., O’Flaherty S., Barrangou R., Theriot C.M. Bile salt hydrolases: Gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathog. 2019;15:e1007581. doi: 10.1371/journal.ppat.1007581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Song Z., Cai Y., Lao X., Wang X., Lin X., Cui Y., Kalavagunta P.K., Liao J., Jin L., Shang J., et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome. 2019;7:9. doi: 10.1186/s40168-019-0628-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Jones B.V., Begley M., Hill C., Gahan C.G., Marchesi J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA. 2008;105:13580–13585. doi: 10.1073/pnas.0804437105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Wang G., Huang W., Xia Y., Xiong Z., Ai L. Cholesterol-lowering potentials of Lactobacillus strain overexpression of bile salt hydrolase on high cholesterol diet-induced hypercholesterolemic mice. Food Funct. 2019;10:1684–1695. doi: 10.1039/C8FO02181C. [DOI] [PubMed] [Google Scholar]
- 14.Alavi S., Mitchell J.D., Cho J.Y., Liu R., Macbeth J.C., Hsiao A. Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell. 2020;181:1533–1546.e13. doi: 10.1016/j.cell.2020.05.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Joyce S.A., Shanahan F., Hill C., Gahan C.G.M. Bacterial bile salt hydrolase in host metabolism: Potential for influencing gastrointestinal microbe-host crosstalk. Gut Microbes. 2014;5:669–674. doi: 10.4161/19490976.2014.969986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Jia B., Park D., Hahn Y., Jeon C.O. Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health. Gut Microbes. 2020;11:1300–1313. doi: 10.1080/19490976.2020.1748261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Medina-Remón A., Kirwan R., Lamuela-Raventós R.M., Estruch R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit. Rev. Food Sci. Nutr. 2018;58:262–296. doi: 10.1080/10408398.2016.1158690. [DOI] [PubMed] [Google Scholar]
- 18.Rajaram S., Jones J., Lee G.J. Plant-based dietary patterns, plant foods, and age-related cognitive decline. Adv. Nutr. 2019;10:S422–S436. doi: 10.1093/advances/nmz081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kopp W. How Western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obes. 2019;12:2221–2236. doi: 10.2147/DMSO.S216791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Ludwig D.S. The ketogenic diet: Evidence for optimism but high-quality research needed. J. Nutr. 2019;150:1354–1359. doi: 10.1093/jn/nxz308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Shapiro H., Kolodziejczyk A.A., Halstuch D., Elinav E. Bile acids in glucose metabolism in health and disease. J. Exp. Med. 2018;215:383–396. doi: 10.1084/jem.20171965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Singh R.K., Chang H.W., Yan D., Lee K.M., Ucmak D., Wong K., Abrouk M., Farahnik B., Nakamura M., Zhu T.H., et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017;15:73. doi: 10.1186/s12967-017-1175-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Gentile C.L., Weir T.L. The gut microbiota at the intersection of diet and human health. Science. 2018;362:776–780. doi: 10.1126/science.aau5812. [DOI] [PubMed] [Google Scholar]
- 24.Wirbel J., Pyl P.T., Kartal E., Zych K., Kashani A., Milanese A., Fleck J.S., Voigt A.Y., Palleja A., Ponnudurai R., et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 2019;25:679–689. doi: 10.1038/s41591-019-0406-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Ang Q.Y., Alexander M., Newman J.C., Tian Y., Cai J., Upadhyay V., Turnbaugh J.A., Verdin E., Hall K.D., Leibel R.L., et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell. 2020;181:1263–1275.e16. doi: 10.1016/j.cell.2020.04.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Basolo A., Hohenadel M., Ang Q.Y., Piaggi P., Heinitz S., Walter M., Walter P., Parrington S., Trinidad D.D., von Schwartzenberg R.J., et al. Effects of underfeeding and oral vancomycin on gut microbiome and nutrient absorption in humans. Nat. Med. 2020;26:589–598. doi: 10.1038/s41591-020-0801-z. [DOI] [PubMed] [Google Scholar]
- 27.Mardinoglu A., Wu H., Bjornson E., Zhang C., Hakkarainen A., Räsänen S.M., Lee S., Mancina R.M., Bergentall M., Pietiläinen K.H., et al. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab. 2018;27:559–571.e5. doi: 10.1016/j.cmet.2018.01.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Baker D.H. Animal models in nutrition research. J. Nutr. 2008;138:391–396. doi: 10.1093/jn/138.2.391. [DOI] [PubMed] [Google Scholar]
- 29.Zmora N., Suez J., Elinav E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019;16:35–56. doi: 10.1038/s41575-018-0061-2. [DOI] [PubMed] [Google Scholar]
- 30.Musso G., Gambino R., Cassader M. Obesity, diabetes, and gut microbiota: The hygiene hypothesis expanded? Diabetes Care. 2010;33:2277–2284. doi: 10.2337/dc10-0556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Zhang Y., Zhou S., Zhou Y., Yu L., Zhang L., Wang Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res. 2018;145:163–168. doi: 10.1016/j.eplepsyres.2018.06.015. [DOI] [PubMed] [Google Scholar]
- 32.Hang S., Paik D., Yao L., Kim E., Trinath J., Lu J., Ha S., Nelson B.N., Kelly S.P., Wu L., et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143–148. doi: 10.1038/s41586-019-1785-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Watanabe M., Houten S.M., Mataki C., Christoffolete M.A., Kim B.W., Sato H., Messaddeq N., Harney J.W., Ezaki O., Kodama T., et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–489. doi: 10.1038/nature04330. [DOI] [PubMed] [Google Scholar]
- 35.Jones M.L., Tomaro-Duchesneau C., Martoni C.J., Prakash S. Cholesterol lowering with bile salt hydrolase-active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications. Expert Opin. Biol. Ther. 2013;13:631–642. doi: 10.1517/14712598.2013.758706. [DOI] [PubMed] [Google Scholar]
- 36.Bruci A., Tuccinardi D., Tozzi R., Balena A., Santucci S., Frontani R., Mariani S., Basciani S., Spera G., Gnessi L. Very low-calorie ketogenic diet: A safe and effective tool for weight loss in patients with obesity and mild kidney failure. Nutrients. 2020;12:333. doi: 10.3390/nu12020333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Park E.J., Lee Y.S., Kim S.M., Park G.S., Lee Y.H., Jeong D.Y., Kang J., Lee H.J. Beneficial effects of Lactobacillus plantarum strains on non-alcoholic fatty liver disease in high fat/high fructose diet-fed rats. Nutrients. 2020;12:542. doi: 10.3390/nu12020542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Yao L., Seaton S.C., Ndousse-Fetter S., Adhikari A.A., DiBenedetto N., Mina A.I., Banks A.S., Bry L., Devlin A.S. A selective gut bacterial bile salt hydrolase alters host metabolism. eLife. 2018;7:e37182. doi: 10.7554/eLife.37182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Dong Z., Lee B.H. Bile salt hydrolases: Structure and function, substrate preference, and inhibitor development. Protein Sci. 2018;27:1742–1754. doi: 10.1002/pro.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Vujkovic-Cvijin I., Sklar J., Jiang L., Natarajan L., Knight R., Belkaid Y. Host variables confound gut microbiota studies of human disease. Nature. 2020;587:448–454. doi: 10.1038/s41586-020-2881-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Sweeney T.E., Morton J.M. The human gut microbiome: A review of the effect of obesity and surgically induced weight loss. JAMA Surg. 2013;148:563–569. doi: 10.1001/jamasurg.2013.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Almeida A., Nayfach S., Boland M., Strozzi F., Beracochea M., Shi Z.J., Pollard K.S., Sakharova E., Parks D.H., Hugenholtz P., et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotech. 2020;39:105–114. doi: 10.1038/s41587-020-0603-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Bowyer R.C.E., Jackson M.A., Pallister T., Skinner J., Spector T.D., Welch A.A., Steves C.J. Use of dietary indices to control for diet in human gut microbiota studies. Microbiome. 2018;6:77. doi: 10.1186/s40168-018-0455-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Katz D.L., Meller S. Can we say what diet is best for health? Annu. Rev. Public Health. 2014;35:83–103. doi: 10.1146/annurev-publhealth-032013-182351. [DOI] [PubMed] [Google Scholar]
- 45.Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., Subgroup G.P.D.P. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Menzel P., Ng K.L., Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 2016;7:11257. doi: 10.1038/ncomms11257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Fang F., Li Y., Bumann M., Raftis E.J., Casey P.G., Cooney J.C., Walsh M.A., O’Toole P.W. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels. J. Bacteriol. 2009;191:5743–5757. doi: 10.1128/JB.00506-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Bi J., Fang F., Lu S., Du G., Chen J. New insight into the catalytic properties of bile salt hydrolase. J. Mol. Catal. B Enzym. 2013;96:46–51. doi: 10.1016/j.molcatb.2013.06.010. [DOI] [Google Scholar]
- 50.Wang Z., Zeng X., Mo Y., Smith K., Guo Y., Lin J. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl. Environ. Microbiol. 2012;78:8795–8802. doi: 10.1128/AEM.02519-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Ren J., Sun K., Wu Z., Yao J., Guo B. All 4 bile salt hydrolase proteins are responsible for the hydrolysis activity in Lactobacillus plantarum ST-III. J. Food Sci. 2011;76:M622–M628. doi: 10.1111/j.1750-3841.2011.02431.x. [DOI] [PubMed] [Google Scholar]
- 52.Christiaens H., Leer R.J., Pouwels P.H., Verstraete W. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microbiol. 1992;58:3792–3798. doi: 10.1128/AEM.58.12.3792-3798.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Gu X.C., Luo X.G., Wang C.X., Ma D.Y., Wang Y., He Y.Y., Li W., Zhou H., Zhang T.C. Cloning and analysis of bile salt hydrolase genes from Lactobacillus plantarum CGMCC No. 8198. Biotechnol. Lett. 2014;36:975–983. doi: 10.1007/s10529-013-1434-9. [DOI] [PubMed] [Google Scholar]
- 54.Jiang J., Hang X., Zhang M., Liu X., Li D., Yang H. Diversity of bile salt hydrolase activities in different lactobacilli toward human bile salts. Ann. Microbiol. 2010;60:81–88. doi: 10.1007/s13213-009-0004-9. [DOI] [Google Scholar]
- 55.Rani R.P., Anandharaj M., Ravindran A.D. Characterization of bile salt hydrolase from Lactobacillus gasseri FR4 and demonstration of its substrate specificity and inhibitory mechanism using molecular docking analysis. Front. Microbiol. 2017;8:1004. doi: 10.3389/fmicb.2017.01004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.McAuliffe O., Cano R.J., Klaenhammer T.R. Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Ann. Microbiol. 2005;71:4925–4929. doi: 10.1128/AEM.71.8.4925-4929.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Bustos A.Y., Font G.M., Raya R.R., Taranto M.P. Genetic characterization and gene expression of bile salt hydrolase (bsh) from Lactobacillus reuteri CRL 1098, a probiotic strain. Int. J. Genom. Proteom. Metab. Bioinform. 2016;1:1–8. [Google Scholar]
- 58.Chae J.P., Valeriano V.D., Kim G.B., Kang D.K. Molecular cloning, characterization and comparison of bile salt hydrolases from Lactobacillus johnsonii PF01. J. Appl. Microbiol. 2013;114:121–133. doi: 10.1111/jam.12027. [DOI] [PubMed] [Google Scholar]
- 59.Elkins C.A., Moser S.A., Savage D.C. Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100–100 and other Lactobacillus species. Microbiology. 2001;147:3403–3412. doi: 10.1099/00221287-147-12-3403. [DOI] [PubMed] [Google Scholar]
- 60.Kumar R.S., Brannigan J.A., Prabhune A.A., Pundle A.V., Dodson G.G., Dodson E.J., Suresh C.G. Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. J. Biol. Chem. 2006;281:32516–32525. doi: 10.1074/jbc.M604172200. [DOI] [PubMed] [Google Scholar]
- 61.Jarocki P., Podleśny M., Glibowski P., Targoński Z. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium. PLoS ONE. 2014;9:e114379. doi: 10.1371/journal.pone.0114379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Kim G.-B., Miyamoto C.M., Meighen E.A., Lee B.H. Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. Appl. Environ. Microbiol. 2004;70:5603–5612. doi: 10.1128/AEM.70.9.5603-5612.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Jarocki P. Molecular characterization of bile salt hydrolase from Bifidobacterium animalis subsp. lactis Bi30. J. Microbiol. Biotechnol. 2011;21:838–845. doi: 10.4014/jmb.1103.03028. [DOI] [PubMed] [Google Scholar]
- 64.Kim G.B., Lee B.H. Genetic analysis of a bile salt hydrolase in Bifidobacterium animalis subsp. lactis KL612. J. Appl. Microbiol. 2008;105:778–790. doi: 10.1111/j.1365-2672.2008.03825.x. [DOI] [PubMed] [Google Scholar]
- 65.Rossocha M., Schultz-Heienbrok R., von Moeller H., Coleman J.P., Saenger W. Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauryl product. Biochemistry. 2005;44:5739–5748. doi: 10.1021/bi0473206. [DOI] [PubMed] [Google Scholar]
- 66.Chand D., Panigrahi P., Varshney N., Ramasamy S., Suresh C.G. Structure and function of a highly active bile salt hydrolase (BSH) from Enterococcus faecalis and post-translational processing of BSH enzymes. Biochim. Biophys. Acta Proteins Proteom. 2018;1866:507–518. doi: 10.1016/j.bbapap.2018.01.003. [DOI] [PubMed] [Google Scholar]
- 67.Kumar R., Rajkumar H., Kumar M., Varikuti S.R., Athimamula R., Shujauddin M., Ramagoni R., Kondapalli N. Molecular cloning, characterization and heterologous expression of bile salt hydrolase (Bsh) from Lactobacillus fermentum NCDO394. Mol. Biol. Rep. 2013;40:5057–5066. doi: 10.1007/s11033-013-2607-2. [DOI] [PubMed] [Google Scholar]
- 68.Kaya Y., Kök M.Ş., Öztürk M. Molecular cloning, expression and characterization of bile salt hydrolase from Lactobacillus rhamnosus E9 strain. Food Biotechnol. 2017;31:128–140. doi: 10.1080/08905436.2017.1303778. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
Data sharing not applicable.