Skip to main content
Journal of Economic Entomology logoLink to Journal of Economic Entomology
. 2021 Jan 13;114(2):710–722. doi: 10.1093/jee/toaa284

Edible Fruit Plant Species in the Amazon Forest Rely Mostly on Bees and Beetles as Pollinators

Fabricia Sousa Paz 1,2, Carlos Eduardo Pinto 1, Rafael Melo de Brito 1, Vera Lucia Imperatriz-Fonseca 3, Tereza Cristina Giannini 1,4,
Editor: James Strange
PMCID: PMC8042744  PMID: 33440000

Abstract

Edible fruit plants of tropical forests are important for the subsistence of traditional communities. Understanding the most important pollinators related to fruit and seed production of these plants is a necessary step to protect their pollination service and assure the food security of these communities. However, there are many important knowledge gaps related to floral biology and pollination in megadiverse tropical rainforests, such as the Amazon Forest, due mainly to the high number of plant species. Our study aims to indicate the main pollinators of edible plants (mainly fruits) of the Amazon forest. For this, we adopted a threefold strategy: we built a list of edible plant species, determined the pollination syndrome of each species, and performed a review on the scientific literature searching for their pollinator/visitors. The list of plant species was determined from two specialized publications on Amazon fruit plants, totaling 188 species. The pollination syndrome was determined for 161 species. The syndromes most frequently found among the analyzed species were melittophily (bee pollination), which was found in 101 of the analyzed plant species (54%) and cantharophily (beetle pollination; 26 species; 14%). We also found 238 pollinator/visitor taxa quoted for 52 (28%) plant species in previous publications, with 124 taxa belonging to Apidae family (bees; 52%), mainly from Meliponini tribe (58 taxa; 47%). Knowledge about pollinators is an important step to help on preserving their ecosystem services and maintaining the productivity of fruit trees in the Amazon.

Keywords: food production, ecosystem service, bee, traditional community, sustainability

Graphical Abstract

Graphical Abstract.

Graphical Abstract


Brazil holds the largest area covered by tropical forests in the world, and these forests are predominantly in the Amazon biome, which is home to 7,000 to 16,000 species of trees (Gomes et al. 2019). It was proposed that near 220 edible fruit-bearing plants are found only in the Amazon, corresponding to almost 50% of all fruits listed to Brazil (roughly 500 species) (Giacometti 1993). These plant species are important to the subsistence of traditional populations, which is largely based on nature-based systems characterized by small production and manual collection of food (Pinton and Emperaire 2004). However, many of the plants used by indigenous peoples and local communities in the Amazon are still poorly understood regarding their basic biology and their contribution to human well-being (Clement et al. 1982).

Most plant species require animal pollination for fruit and seed production (Ollerton et al. 2011), especially in tropical habitats, where a large number of angiosperms and a wide diversity of pollinators with specific pollination mechanisms are found (Machado and Lopes 2008). Pollination has been extensively studied because of its importance as nature’s contribution to people (NCP) (Díaz et al. 2018) and its utility for sustainable agriculture (Garibaldi et al. 2016) and to the maintenance of biocultural values (Hill et al. 2019). According to the Food and Agricultural Organization (FAO) data, 33% of human food depends to some degree on cultivated species, which are most frequently pollinated by bees (Klein et al. 2007). Costanza et al. (1997) carried out the first global assessment of the value of pollination (US$117 billion). This value was later updated (Costanza et al. 2014) and a recent review estimated the total annual value of crop pollination as corresponding to $235–$577 billion (in 2015, U.S. dollars) (IPBES 2016). For Brazil, Giannini et al. (2015a) showed that agricultural pollination had an annual value of US$12 billion (in 2013). For Pará, the second largest state of Brazil and entirely within the Amazon forest biome, the annual value of agricultural pollination (in 2016) corresponds to US$983 million (Borges et al. 2020). In addition, for some crops, flower visitors promote enhancement of fruit quality, which is an indirect benefit of extreme importance for agricultural production, increasing its market value (Giannini et al. 2015a).

Globally, bees are the main pollinators of agricultural crops (Potts 2016). From those, the importance of highly social species such as Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae) (Potts et al. 2016) and stingless bees (Meliponini tribe) (Slaa et al. 2006; Giannini et al. 2015b, 2020a) is well recognized. Recent data on 23 Brazilian crops showed that 144 bee species were quoted as crop pollinators; from those, social bees comprised 63 species (44%), being Trigona Jurine, 1807 (Hymenoptera: Apidae) and Melipona Illiger, 1806 (Hymenoptera: Apidae) two important genera with the highest number of species quoted (Giannini et al. 2020a).

Pollinator declines have been reported since the mid-20th century (Carson 1962, Buchmann and Nabhan 1997), and nowadays, it is clear that multiple factors can affect pollinators, mainly habitat loss, pathogens, pesticides, and climate change (Potts et al. 2010, 2016). This decline poses an important challenge for global food production (Potts et al. 2016). For Brazil, a previous study showed that the projected climate change will potentially reduce the probability of pollinator occurrence by almost 0.13 by 2050 (Giannini et al. 2017). Considering bees occurring in the Eastern Amazon, recent projections suggested a potential reduction in pollination services, especially regarding crop pollination (Giannini et al. 2020b). However, a supplementary and equally important concern is the lack of knowledge related to insects (Montgomery et al. 2020), especially in tropical areas.

Pollination data from megadiverse tropical forest habitats, such as the Amazon forest, are still scarce (Giannini et al. 2015b, Borges et al. 2020), which represents a challenge to understand crop production and anticipate the potential threat of crop pollinator deficits due to global change. This knowledge gap is critical, especially considering the rapid ongoing degradation in the Amazon forest (Nobre et al. 2016, Paiva et al. 2020), and the high number of species, and the difficulties to conduct field surveys. When analyzing large numbers of tropical plant species, studies on pollination syndromes can be useful, aiming to address the group of pollinators that is the most important for each plant species. Floral characteristics can select floral visitors that have a suitable morphology and behavior, maximizing their chance of acting as pollinators (Stang et al. 2006); those characteristics define the pollination syndrome (Fenster et al. 2004). In the last decade, studies have shown that floral morphology is an important factor in structuring pollination interactions (e.g., Stang et al. 2006, Dalsgaard et al. 2008), since floral structures are adapted to enhance efficiency of pollen vectors (Proctor et al. 1996). In spite of the generalized nature of plant-pollinator interaction (Waser et al. 1996), the pollination syndrome concept was successfully applied to assess the main pollinators in a large number of South African plant species (Johnson and Wester 2017), and in Brazilian tropical forests (Machado and Lopes 2004, Girão et al. 2007), as well seasonal forests (Kinoshita et al. 2006). It was also applied to monitoring restoration (Martins and Antonini 2016), and defining the influence of abiotic factors on flowering phenology (Cortés-Flores et al. 2017). However, determining one specific pollinator taxon, or a set of taxa, is an additional challenge, which can be addressed through a review on scientific literature considering each focused plant species.

Our objective was to indicate the main pollinators of edible plants (mainly fruit trees) of the Brazilian Amazon Tropical Forest. For this, we first built a list of Amazon fruit trees and then determined the pollination syndrome for each species. We also conducted a literature survey to determine whether any specific pollinator/visitor species was previously quoted for each plant species listed.

Materials and Methods

The list of plant species used in our study was produced from specialized literature on Amazon fruit tree species, and includes the seminal publications of Cavalcante (1996) and Silva (2011), which listed the plants consumed by traditional communities in this biome.

We determined the pollination syndrome of each plant species based on characteristics suggested by Faegri and van der Pijl (1979) and Rosas-Guerrero et al. (2014) (Table 1). The information used to identify the pollination syndromes was based on images available for each plant species, virtual herbaria sources, articles on reproductive and flowering biology, and books that address the region’s flora. Additional details were also obtained, such as the flowering period of each plant species (phenology), plant habit, potential ethnobotanical uses for local Amazon communities, and if species are exotic or native on Brazil.

Table 1.

Pollination syndromes and their characteristics (modified from Faegri and van der Pijl 1979 and Rosas-Guerrero et al. 2014).

Pollination syndrome Aperture Color Odor strength / type Shape Orientation Size / symmetry Nectar guide / sexual organ Reward
Anemophily / wind Diurnal; nocturnal Green whitish Imperceptible Brush Upright Amorpho Absent Absent
Cantharophily /beetles Diurnal; nocturnal Brown; green; white Strong /fruity; musky Dish Horizontal; upright Large /radial Absent/exposed Food tissue; heat; nectar; pollen
Entomophily / insecta Diurnal; nocturnal Bright colors Nectar; pollen
Phalaenophily / moths Nocturnal White Moderate; strong / sweet Bell; brush; tubo Horizontal; pendent / upright Medium; large; huge / radial Absent/ closed Nectar
Melittophily /bees Diurnal Blue; pink; purple; white; yellow Imperceptible; weak /fresh; sweet Bell; dish; tubo; flag; gullet Horizontal; pendent; upright Small; medium; large / bilateral; radial Absent; present/ closed; exposed Fragrance; nectar; oil; pollen; resin
Myophily / flies Diurnal Brown; green; white; yellow Imperceptible; weak /fruity; sour Bell; dish Horizontal; upright Small / radial Absent; present / exposed Nectar; pollen
Ornithophily / hummingbirds Diurnal Orange; pink; red; yellow Imperceptible Brush; tubo; flag; gullet Horizontal; pendent; upright Medium; large / bilateral; radial Absent/exposed Nectar
Psychophily / buterflies and diurnal moths Diurnal Blue; orange; pink; red; yellow Weak / fresh Bell; brush; tube Horizontal; upright Small; medium; large / radial Absent; present / closed Nectar
Chiropterophily / bats Nocturnal Dark red; green; white Moderate; strong / fruity; musky; sour Bell; brush; dish; gullet Horizontal; pendent; upright; (far ground) Large; huge / bilateral; radial Absent/exposed Food tissue; nectar; pollen

aThe entomophily syndrome is formed by a set of characteristics that characterize flowers attractive to several insects, and it is not possible to determine a particular insect group.

A survey of previous publications that reported visitors or effective pollinators of plant species quoted here was also conducted. We searched in the Scopus database the scientific name of each plant species listed combined with ‘pollination’ OR ‘pollinator’ OR ‘visitor’. As our aim was to identify potential pollinators occurring on Amazon associated to each of the listed plant, we considered only studies conducted in the Amazon biome. If any pollinator/visitor species was quoted in the reference, we inserted this information on our database.

Taxonomy classification for plants and bees followed two Brazilian biodiversity repositories. For plant species, we used Flora do Brasil (http://floradobrasil.jbrj.gov.br/) and for bee species we used Catálogo de Abelhas Moure (http://moure.cria.org.br/; classification according to Moure et al. 2007).

Results

We compiled a list of 188 species (Table 2). These species belong to 44 botanical families, and the families Arecaceae and Sapotaceae were the most frequent, with 22 and 16 species, respectively. Most species are trees (148 species; 79%). Among the 188 species, 147 species are native to Brazil and 41 species are exotic. Of the total number of species of fruit plants listed, we determined the pollination syndrome for 161 species; we could not find information for the remaining species (27 species; 14%).

Table 2.

Pollination syndrome of edible plants from Brazilian Amazon

Family Scientific name Brazilian vernacular name Syndrome
Arecaceae  1. Acrocomia sclerocarpa Mart. Mucajá Undefined
Opilinaceae  2. Agonandra brasiliensis Miers ex Benth & Hook. F. Agonandra Undefined
Arecaceae  3. Aiphanes aculeata Willd. Cariota-de-espinho Cantharophily
Rubiaceae  4. Alibertia edulis (Rich.) Rich. Ex DC. Puruí Phalenophily
Lecitidaceae  5. Allantoma lineata (Mart. & Berg) Miers Ceru Mellitophily
Apocynaceae  6. Ambelania acida Aubl. Papino-do-Mato Phalenophily
Anacardiaceae  7. Anacardium giganteum Hanc. Ex Engl. Cajuí Mellitophily
Anacardiaceae  8. Anacardium humile A. St.-Hil Cajuzinho-do-campo Mellitophily
Anacardiaceae  9. Anacardium microcarpum Ducke Caju-do-Campo Mellitophily
Anacardiaceae 10. Anacardium negrense Pires & Froés ex Black & Pires Cajutim Mellitophily
Anacardiaceae 11. Anacardium occidentale L. Caju Mellitophily
Bromeliaceae 12. Ananas comosus (L.) Merril Abacaxi Ornithophily
Annonaceae 13. Annona crassiflora Mart. Araticum-do-cerrado Cantharophily
Annonaceae 14. Annona densicoma Mart. Araticum-do-Mato Cantharophily
Annonaceae 15. Annona montana Macf. Araticum Cantharophily
Annonaceae 16. Annona muricata L. Graviola Cantharophily
Annonaceae 17. Annona squamosa L. Ata Cantharophily
Leguminosae 18. Arachis hypogaea L. Amendoim Mellitophily
Myrsinaceae 19. Ardisia panurensis Mez Cururureçá Mellitophily
Moraceae 20. Artocarpus altilis (S. Parkinson) Fosb. Fruta-Pão Mellitophily
Moraceae 21. Artocarpus heterophyllus Lam. Jaca Cantharophily
Arecaceae 22. Astrocaryum aculeatum G. Mey. Tucumã-do-Amazonas Undefined
Arecaceae 23. Astrocaryum jauari Mart. Jauari Undefined
Arecaceae 24. Astrocaryum murumuru Mart. Murumuru Undefined
Arecaceae 25. Astrocaryum vulgare Mart. Tucumã-do-Pará Cantharophily
Oxalidaceae 26. Averrhoa bilimbi L. Limão-de-Caiena Mellitophily
Oxalidaceae 27. Averrhoa carambola L. Carambola Mellitophily
Arecaceae 28. Bactris gasipaes Kunth Pupunha Cantharophily
Arecaceae 29. Bactris maraja Mart. Marajá Cantharophily
Moraceae 30. Bagassa guianensis Aubl. Tatajuba Mellitophily
Melastomataceae 31. Bellucia grossularioides (L.) Triana Araçá-de-Anta Mellitophily
Lecitidaceae 32. Bertholletia excelsa Bonpland Castanha-do-Pará Mellitophily
Bixaceae 33. Bixa orellana L. Urucum Mellitophily
Malvaceae 34. Bombacopis glaba (Pasquale) Robyns Castanha-do-maranhão Mellitophily
Apocynaceae 35. Bonafousia longituba Markgr. Paiuetu Phalenophily
Rubiaceae 36. Borojoa sorbilis (Ducke) Cuatr. Puruí-Grande Phalenophily
Malpighiaceae 37. Bunchosia armeniaca (Cav.) DC Caferana Mellitophily
Malpighiaceae 38. Byrsonima amazonica Griseb. Muruci-Vermelho Mellitophily
Malpighiaceae 39. Byrsonima crassifolia (L.) Rich. Muruci Mellitophily
Malpighiaceae 40. Byrsonima crispa Jussieu Muruci-da-Mata Mellitophily
Malpighiaceae 41. Byrsonima lancifolia Jussieu Muruci-da-Capoeira Mellitophily
Malpighiaceae 42. Byrsonima verbascifolia (L.) Rich. Ex Jussieu Muruci-Rasteiro Mellitophily
Myrtaceae 43. Campomanesia lineatifolia Ruiz & Pavon Guabiraba Mellitophily
Caryocaceae 44. Carica papaya L. Mamão Phalenophily
Caryocaraceae 45. Caryocar brasiliense Camb. Pequi Chiropterophily
Caryocaceae 46. Caryocar villosum (Aubl.) Pers. Piquiá Chiropterophily
Euforbiaceae 47. Caryodendron amazonicum Ducke Castanha-de-Porco Undefined
Leguminosae 48. Cassia leiandra Benth. Marimari Mellitophily
Hippocrateaceae 49. Cheiloclinium cognatum (Miers) A.C. Smith Uarutama Mellitophily
Crisobalanaceae 50. Chrysobalanus icaco L. Ajuru Mellitophily
Sapotaceae 51. Chrysophyllum cainito L. Camitié Myophily
Curcubitaceae 52. Citrullus lanatus (Thunb.) Matsum. & Nakai Melancia Mellitophily
Rutaceae 53. Citrus spp. Citrus Mellitophily
Crisobalanaceae 54. Couepia bracteosa Benth. Pajurá Mellitophily
Crisobalanaceae 55. Couepia edulis (Prance) Prance Castanha-de-Cutia Mellitophily
Crisobalanaceae 56. Couepia longipendula Pilger Castanha-de-Galinha Mellitophily
Crisobalanaceae 57. Couepia paraensis (Mart. & Zucc.) Benth. Pirauxi Mellitophily
Crisobalanaceae 58. Couepia subcordata Benth. Ex Hook.f. Umarirana Mellitophily
Apocynaceae 59. Couma guianensis Aubl. Sorva Mellitophily
Apocynaceae 60. Couma macrocarpa Barb. Rodr. Sorva-Grande Mellitophily
Apocynaceae 61. Couma utilis (Mart.) Muell. Arg. Sorvinha Phalenophily
Curcubitaceae 62. Cucumis melo L. Melão Mellitophily
Fabaceae 63. Dipteryx alata Vogel Baru Mellitophily
Humiriaceae 64. Duckesia verrucosa (Ducke) Cuatr. Uxicuruá Undefined
Annonaceae 65. Duguetia marcgraviana Mart. Pindaeua Cantharophily
Annonaceae 66. Duguetia stenantha R. E. Fries Jaboti Cantharophily
Rubiaceae 67. Duroia macrophylla Huber Cabeça-de-Urubu Phalenophily
Rubiaceae 68. Duroia saccifera Hook. F. ex Schum. Puruí-do-Mata Phalenophily
Sapotaceae 69. Ecclinusa guianensis Eyma Guajaraí Undefined
Arecaceae 70. Elaeis oleifera (Kunth) Cortés Caiaué Undefined
Humiriaceae 71. Endopleura uchi (Huber) Cuatrecasas Uxi Undefined
Vochysiaceae 72. Erisma japura Spruce ex. Warm. Japurá Mellitophily
Myrtaceae 73. Eugenia brasiliensis Lam. Grumixama Mellitophily
Myrtaceae 74. Eugenia patrisii Vahl Ubaia Mellitophily
Myrtaceae 75. Eugenia stipitata McVaugh Araçá-Boi Mellitophily
Myrtaceae 76. Eugenia uniflora L. Ginja Mellitophily
Arecaceae 77. Euterpe oleraceae Mart. Açai Cantharophily
Arecaceae 78. Euterpe precatoria Mart. Açai-do-Amazonas Cantharophily
Crisobalanaceae 79. Exellodendron coriaceum (Berth.) Prance Catanharana Undefined
Salicaceae 80. Flacourtia jangomas (Lour.) Raeusch. Ameixa-de-Madagascar Mellitophily
Annonaceae 81. Fusaea longifolia (Aubl.) Safford Fusaia Cantharophily
Rubiaceae 82. Genipa americana L. Jenipapo Mellitophily
Gnetaceae 83. Gnetum spp. Ituá Undefined
Malvaceae 84. Guazuma ulmifolia Lam. Mutamba Mellitophily
Apocynaceae 85. Hancornia speciosa Gomes Mangaba Phalenophily
Moraceae 86. Helicostylis tomentosa (Poepp. & Endl.) Rusby Inharé Undefined
Humiriaceae 87. Humiria balsamifera Aubl. Umiri Mellitophily
Fabaceae 88. Hymenaea stigonocarpa Mart. Ex Haine Jatobá-do-cerrado Chiropterophily
Leguminosae 89. Hymenea courbaril L. Jutaí Chiropterophily
Leguminosae 90. Inga alba (Sw.) Willd. Inga-Turi Chiropterophily
Leguminosae 91. Inga capitata Desv. Ingá-Costela Chiropterophily
Leguminosae 92. Inga cinnamomea Spruce ex Benth. Ingá-Açu Chiropterophily
Leguminosae 93. Inga edulis Mart. Ingá-Cipó Chiropterophily
Leguminosae 94. Inga fagifolia (L.) Willd. Ex Benth. Ingá-Cururu Chiropterophily
Leguminosae 95. Inga heterophylla Willd. Ingá-Xixica Chiropterophily
Leguminosae 96. Inga macrophylla Humb. & Bonpl. Ex Willd Ingapéua Chiropterophily
Leguminosae 97. Inga velutina Willd. Ingá-de-Fogo Chiropterophily
Caryocacee 98. Jacaratia spinosa (Aubl.) A. DC. Jaracatiá Phalenophily
Sapotaceae 99. Labatia macrocarpa Mart. Cabeça-de-Macaco Undefined
Apocynaceae 100. Lacmellea arborescens (Muell. Arg.) Monach. Tucujá Phalenophily
Quiinaceae 101. Lacunaria jenmani (Oliv.) Ducke. Moela-de-Mutum Mellitophily
Lecitidaceae 102. Lecythis pisonis Cambess.subesp usitata (Miers) Mori & Prance Sapucaia Mellitophily
Arecaceae 103. Leopoldina major Wallace Jará-Açu Undefined
Crisobalanaceae 104. Licania tomentosa (Benth.) Frit. Oiti Mellitophily
Moraceae 105. Maclura tinctoria (L.) D.Don ex Steud Taiuva Undefined
Malpiguiaceae 106. Malpighia punicifolia L., M. retusa Benth. Acerola Mellitophily
Clusiaceae 107. Mammea americana L. Abricó Mellitophily
Anacardiaceae 108. Mangifera indica L. Manga Myophily
Sapotaceae 109. Manilkara huberi (Ducke) Chevalier Maçaranduba Myophily
Sapotaceae 110. Manilkara zapota (L.) P. Royen Sapotilha Mellitophily
Arecaceae 111. Mauritia flexuosa L.f. Miriti Cantharophily
Arecaceae 112. Mauritiella armata (Mart.) Burr. Caraná (buriti) Cantharophily
Arecaceae 113. Maximiliana maripa (Aubl.) Drude Inajá Cantharophily
Sapindaceae 114. Melicoccus bijugatus Jacq. Pitomba-das-Guianas Mellitophily
Sapotaceae 115. Micropholis acutangula (Ducke) Eyma Abiu-carambola Mellitophily
Melastomataceae 116. Mouriri apiranga Spruce ex Triana Apiranga Mellitophily
Melastomataceae 117. Mouriri eugeniifolia Spruce ex Triana Dauicu Mellitophily
Malastomataceae 118. Mouriri ficoides Morley Muriri Mellitophily
Melastomataceae 119. Mouriri grandiflora DC. Camutim Mellitophily
Melastomataceae 120. Mouriri guianensis Aubl. Gurguri Phalenophily
Melastomataceae 121. Mouriri pusa Gardner Puçá Mellitophily
Melastomataceae 122. Mouriri trunciflora Ducke Mirauba Mellitophily
Polygalaceae 123. Moutabea chodatiana Huber Gogó-de-Guariba Undefined
Musaceae 124. Musa X paradisiaca L. Banana Chiropterophily
Myrtaceae 125. Myrcia fallax (Rich.) DC. Frutinheira Mellitophily
Myrtaceae 126. Myrciaria dubia (KUNTH) McVaugh Caçari, camu-camuzeiro Mellitophily
Sapotaceae 127. Neoxythece elegans (A. DC) Aubr Caramuri Undefined
Arecaceae 128. Oenocarpus bacaba Mart. Bacaba Cantharophily
Arecaceae 129. Oenocarpus bataua Mart. Patauá Cantharophily
Arecaceae 130. Oenocarpus mapora Karsten Bacabinha Cantharophily
Arecaceae 131. Oenocarpus minor Mart. Bacabi Cantharophily
Arecaceae 132. Oenorcapus distichus Mart. Bacaba-de-Leque Cantharophily
Arecaceae 133. Orbignya phalerata Mart. Babaçu Undefined
Bombacaceae 134. Pachira aquatica Aubl. Mamorana Chiropterophily
Apocynaceae 135. Parahancornia amapa (Hub.) Ducke Amapá Phalenophily
Crisobalanaceae 136. Parinari montana Aubl. Pajurá-da-Mata Mellitophily
Crisobalanaceae 137. Parinari sprucei Hook.f. Uará Mellitophily
Passifloraceae 138. Passiflora edulis Sims f. flavicarpas Deg. Maracujá Mellitophily
Passifloraceae 139. Passiflora nitida Kunth Maracujá-Suspiro Mellitophily
Passifloraceae 140. Passiflora quadrangularis L. Maracujá-Açu Mellitophily
Sapindaceae 141. Paullinia cupana H.B.K. var. sorbilis (Mart.) Ducke Guaraná Mellitophily
Hippocrateaceae 142. Peritassa laevigata (Hoffm. Ex Link.) A. C. Smith Gulosa Mellitophily
Lauraceae 143. Persea americana Mill. Var. americana Mill Abacate Mellitophily
Solanaceae 144. Physalis angulata L. Camapu Myophily
Clusiaceae 145. Platonia insignis Mart. Bacuri Ornithophily
Icacinaceae 146. Poraqueiba paraensis Ducke Umari ou Mari Mellitophily
Anacardiaceae 147. Poupartia amazonica Ducke Jacaiacá Undefined
Moraceae 148. Pourouma cecropiifolia Mart. Mapati Mellitophily
Sapotaceae 149. Pouteria caimito (Ruiz & Pavon) Radlk. Abiu Mellitophily
Sapotaceae 150. Pouteria macrocarpa (Huber) Baenhi Cutite-Grande Mellitophily
Sapotaceae 151. Pouteria macrophylla (Lam.) Eyma Cutite Mellitophily
Sapotaceae 152. Pouteria pariry (Ducke) Baehni Pariri Undefined
Sapotaceae 153. Pouteria ramiflora (Mart.) Radlk Abiu-do-cerrado Undefined
Sapotaceae 154. Pouteria speciosa (Ducke) Baehni Pajurá-de-Óbidos Undefined
Sapotaceae 155. Pouteria spp. Abiurana Mellitophily
Sapotaceae 156. Pouteria torta (Mart.) Ralk Abiu-Piloso Mellitophily
Sapotaceae 157. Pouteria ucuqui Pires & Schultes Ucuqui Mellitophily
Myrtaceae 158. Psidium acutangulum DC. Araçá-Pera Mellitophily
Myrtaceae 159. Psidium guajava L. Goiaba Mellitophily
Myrtaceae 160. Psidium guineense Swartz Araçá Mellitophily
Bombacaceae 161. Quararibea cordata (Bonpl.) Visch. Sapota-do-Solimões Mellitophily
Quiinaceae 162. Quiina florida Tul. Pama Undefined
Clusiaceae 163. Rheedia acuminata (Rui & Pav.) Planch. & Triana Bacurizinho Mellitophily
Clusiaceae 164. Rheedia brasiliensis (Mart. Planch. & Triana Bacuripari-Liso Mellitophily
Clusiaceae 165. Rheedia gardneriana Miers ex. Planch. & Triana Bacuri mirim Mellitophily
Clusiaceae 166. Rheedia macrophylla (Mart.) Planch. & Triana Bacuripari Mellitophily
Annonaceae 167. Rollinia mucosa (Jacq.) Baill. Biribá Cantharophily
Humiriaceae 168. Sacoglottis guianensis Benth. Achuá Mellitophily
Hippocrateaceae 169. Salacia impressifolia (Miers) A.C. Smith Uaimiratipi Undefined
Arecaceae 170. Scheelea phalerata (Mart.) Burret Acuri Undefined
Solanaceae 171. Solanum sessiliflorum Dunal. Cubiu Undefined
Anacardiaceae 172. Spondias dulcis Park. Cajarana Mellitophily
Anacardiaceae 173. Spondias mombin L. Taperebá Mellitophily
Myrtaceae 174. Syzygium cumini (L.) Skeels Ameixa Mellitophily
Myrtaceae 175. Syzygium malaccense (L.) Merr. & L. M. Perry Jambo Mellitophily
Myrtaceae 176. Syzygium samarangense (Blume) Merr. & L.M. Perry Jambo-Rosa Mellitophily
Sapindaceae 177. Talisia esculenta (A. St. Hil.) Radlk Pitomba Mellitophily
Leguminosae 178. Tamarindus indica L. Tamarindo Mellitophily
Malvaceae 179. Theobroma bicolor Humb. & Bonpl. Cacacu-do-Peru Mellitophily
Malvaceae 180. Theobroma cacao L. Cacau Mellitophily
Malvaceae 181. Theobroma canumanense Pires &Fróes ex Cuatrecasas Cupuaçu-do-Mato Mellitophily
Sterculiaceae 182. Theobroma grandiflorum (Willd. Ex Spreng.) Schum Cupuaçu Cantharophily
Malvaceae 183. Theobroma mariae (Mart.) Schum. Cacau-Jacaré Mellitophily
Malvaceae 184. Theobroma obovatum Klotsch ex Bernoulli Cabeça-de-Urubu Mellitophily
Malvaceae 185. Theobroma speciosum Willd. Cacauí Myophily
Malvaceae 186. Theobroma subincanum Mart. Cupuí Mellitophily
Annonaceae 187. Xylopia romatica (Lam.) Mart. Pimenta-de-Macaco Cantharophily
Rhamnaceae 188. Zizyphus mauritiana Lam. Dão Mellitophily

Plant species analyzed (161 species) were classified as having animal pollination syndromes, meaning that they do not exhibit characteristics of wind or water pollination (anemophily and hydrophily, respectively). Most of the studied plants (101 species; 54%) were classified as having a melittophily syndrome (characteristics related to the attraction of bees) (Fig. 1). The other most frequent syndromes were cantharophily (beetles), which was identified for 26 species (14%); chiropterophily (bats), which was identified for 14 species (7%); and phalenophily (moths), which was identified for 13 plant species (7%). These four syndromes represented 82% of all plants analyzed. Considering all insects quoted (bees, beetles, moths, and flies), the total percentage is equal to 78%. Additional information on the flowering period could not be obtained for 56 plant species. A short flowering period was found for 26 species (maximum 2 mo). The other species (106 species) had a flowering period of 3 mo or more (Supp Information 1 [online only]).

Fig. 1.

Fig. 1.

Percentage of pollination syndromes of 188 edible fruit plant species in the Amazon Tropical Forest.

Studies conducted by other authors provided data on animal visitors or pollinators for 52 analyzed plant species, accounting for 28% of the total. These studies quoted 238 animal taxa (Supp Information 1 [online only]), of which 124 were bees of the Apidae family (58 Meliponini tribe; 20 species of Centris Fabricius, 1804 (Hymenoptera: Apidae)) (Table 3), 62 Coleoptera, 42 Diptera, four Lepidoptera, one Hemiptera, one Neuroptera and four Chiroptera (Fig. 2; Supp Information 1 [online only]). Honey bee (Apis mellifera Linnaeus, 1758) was highlighted as being associated to the largest number of plant species. Stingless bees belonging to the genera Trigona Jurine 1807 (Hymenoptera: Apidae), Partamona Schwarz 1939 (Hymenoptera: Apidae), Melipona Illiger 1806 (Hymenoptera: Apidae), and Trigonisca Moure 1950 (Hymenoptera: Apidae) were also emphasized as exhibiting the highest number of species quoted as pollinators. Trigona pallens (Fabricius, 1798) (Hymenoptera: Apidae) and T. fulviventris Guérin, 1844 (Hymenoptera: Apidae) are also noteworthy, exhibiting the highest number of interacting plant species (Fig. 3).

Table 3.

Bee species previously quoted in the literature as pollinator/visitor of analyzed edible plant species in the Brazilian Amazon Forest (classification according to Moure et al. 2007) (complete information can be found in the Supp Information 1 [online only])

Family Tribe Bee species Brazilian vernacular name of plant species
Apidae Meliponini  1. Aparatrigona impunctata (Ducke, 1916) cupuaçu; açaí
Apidae Apini  2. Apis mellifera Linnaeus, 1758 cauí; tucumã-do-pará; melão; araçá-boi; manga; caçari; abacate; araçá-pera; goiaba; taperebá; muruci; açai
Apidae Augochlorini  3. Augochlora Smith, 1853 açaí
Apidae Augochlorini  4. Augochlorodes Moure, 1958 açaí
Apidae Augochlorini  5. Augochloropsis crassigena Moure, 1943 muruci
Apidae Augochlorini  6. Augochloropsis Cockerell, 1897 açaí
Apidae Bombini  7. Bombus brevivilus Franklin 1913 castanha-do-pará
Apidae Bombini  8. Bombus transversalis (Olivier, 1789) castanha-do-pará; urucum
Apidae Meliponini  9. Celetrigona longicornis (Friese, 1903) açaí
Apidae Centridini 10. Centris sp Fabricius, 1804 caju
Apidae Centridini 11. Centris aenea Lepeletier, 1841 goiaba
Apidae Centridini 12. Centris americana Klug, 1810 castanha-do-pará; acerola
Apidae Centridini 13. Centris bicolor Lepeletier, 1841 muruci
Apidae Centridini 14. Centris byrsonimae Mahlmann & Oliveira sp. n muruci
Apidae Centridini 15. Centris carrikeri Cockerell, 1919 castanha-do-pará
Apidae Centridini 16. Centris caxienses (Ducke 1907) muruci
Apidae Centridini 17. Centris decolorata Lepeletier, 1841 muruci
Apidae Centridini 18. Centris denudans Lepeletier, 1841 castanha-do-pará
Apidae Centridini 19. Centris ferruginea Lepeletier, 1841 castanha-do-pará
Apidae Centridini 20. Centris flavifrons Fabricius, 1775 acerola; muruci
Apidae Centridini 21. Centris fuscata Lepeletier, 1841 muruci
Apidae Centridini 22. Centris longimana Fabricius, 1804 acerola; muruci
Apidae Centridini 23. Centris rhodoprocta Moure & Seabra, 1960 acerola; muruci
Apidae Centridini 24. Centris similis Fabricius, 1804 castanha-do-pará
Apidae Centridini 25. Centris spilopoda Moure, 1969 muruci
Apidae Centridini 26. Centris sponsa Smith, 1854 muruci
Apidae Centridini 27. Centris tarsata Smith, 1874 muruci
Apidae Centridini 28. Centris terminata Smith, 1874 acerola
Apidae Centridini 29. Centris trigonoides Lepeletier, 1841 muruci
Apidae Meliponini 30. Cephalotrigona capitata (Smith, 1854) açai
Apidae Xylocopini 31. Ceratina Latreille, 1802 açai
Apidae Halictini 32. Dialictus Robertson, 1902 açai
Apidae Anthidiini 33. Dicranthidium arenarium (Ducke, 1907) muruci
Apidae Meliponini 34. Dolichotrigona longitarsis (Ducke, 1916) açai
Apidae Centridini 35. Epicharis affinis Smith, 1874 castanha-do-pará; urucum
Apidae Centridini 36. Epicharis analis Lepeletier, 1841 muruci
Apidae Centridini 37. Epicharis bicolor Smith, 1854 muruci
Apidae Centridini 38. Epicharis conica Smith, 1874 castanha-do-pará
Apidae Centridini 39. Epicharis flava Friese, 1900 castanha-do-pará; urucum; muruci
Apidae Centridini 40. Epicharis rustica Friese, 1900 castanha-do-pará; urucum
Apidae Centridini 41. Epicharis umbraculata Friese, 1900 castanha-do-pará; muruci
Apidae Centridini 42. Epicharis zonata Smith 1854 castanha-do-pará
Apidae Euglossini 43. Euglossini Latreille, 1802 mangaba
Apidae Euglossini 44. Eulaema bombiformis (Packard, 1869) araçá-pera
Apidae Euglossini 45. Eufriesea flaviventris (Friese, 1899) castanha-do-pará
Apidae Euglossini 46. Eufriesea purpurata (Mocsáry, 1896) castanha-do-pará
Apidae Euglossini 47. Eulaema cingulata Moure, 1950 castanha-do-pará; urucum
Apidae Euglossini 48. Eulaema meriana (Olivier, 1789) castanha-do-pará; urucum
Apidae Euglossini 49. Eulaema mocsaryi (Friese, 1899) castanha-do-pará; araçá-boi
Apidae Euglossini 50. Eulaema nigrita Lepeletier, 1841 castanha-do-pará; cubiu
Apidae Exomalopsini 51. Exomalopsis Spinola, 1853 açai
Apidae Exomalopsini 52. Exomalopsis auropilosa Spinola, 1853 caçari
Apidae Meliponini 53. Frieseomelitta longipes (Smith, 1854) açai
Apidae Meliponini 54. Frieseomelitta portoi (Friese, 1900) açai
Apidae Meliponini 55. Geotrigona aequinoctialis (Ducke, 1925) açai
Apidae Halictini 56. Habralictus Moure, 1941 açai
Apidae Hylaeini 57. Hylaeus Fabricius, 1793 açai
Apidae Meliponini 58. Leurotrigona pusilla Moure & Camargo, in Moure et al. 1988 cupuaçu
Apidae Tapinotaspidini 59. Lophopedia pygmaea (Schrottky, 1902) muruci
Apidae Megachilini 60. Megachile Latreille, 1802 caju
Apidae Augochlorini 61. Megalopta aeneicollis Friese, 1926 guaraná
Apidae Augochlorini 62. Megalopta amoena (Spinola, 1853) guaraná
Apidae Augochlorini 63. Megalopta sodalis (Vachal, 1904) guaraná
Apidae Meliponini 64. Melipona brachychaeta Moure, 1950 jambo
Apidae Meliponini 65. Melipona compressipes Smith, 1854 caçari
Apidae Meliponini 66. Melipona fasciculata Smith, 1854 urucum; caçari; taperebá
Apidae Meliponini 67. Melipona flavolineata Friese, 1900 caçari; taperebá; açaí
Apidae Meliponini 68. Melipona melanoventer Schwarz, 1932 urucum
Apidae Meliponini 69. Melipona paraenses Ducke, 1916 acerola
Apidae Meliponini 70. Melipona seminigra Friese, 1903 caçari; taperebá; jambo
Apidae Meliponini 71. Nannotrigona dutrae (Friese, 1901) açai
Apidae Meliponini 72. Nannotrigona punctata (Smith, 1854) caçari; muruci; açaí
Apidae Meliponini 73. Nannotrigona schultzei (Friese, 1901) açai
Apidae Augochlorini 74. Neocorynura Schrottky, 1910 açai
Apidae Meliponini 75. Oxytrigona ignis Camargo, 1984 açai
Apidae Meliponini 76. Oxytrigona Cockerell, 1917 açai
Apidae Tapinotaspidini 77. Paratetrapedia Moure, 1941 açai
Apidae Tapinotaspidini 78. Paratetrapedia leucostoma (Cockerell, 1923) muruci
Apidae Tapinotaspidini 79. Paratetrapedia testacea (Smith, 1854) muruci
Apidae Meliponini 80. Paratrigona peltata (Spinola, 1853) açai
Apidae Meliponini 81. Partamona ailyae Camargo, 1980 açai
Apidae Meliponini 82. Partamona cupira (Smith, 1863) caçari
Apidae Meliponini 83. Partamona mourei Camargo, 1980 jambo
Apidae Meliponini 84. Partamona pearsoni (Schwarz, 1938) jambo; açai
Apidae Meliponini 85. Partamona Schwarz, 1939 caçari
Apidae Meliponini 86. Partamona testacea (Klug, 1807) jambo; açai
Apidae Meliponini 87. Partamona vicina Camargo, 1980 açai
Apidae Meliponini 88. Pereirapis Moure 1943 açai
Apidae Meliponini 89. Plebeia alvarengai Moure 1994 açai
Apidae Meliponini 90. Plebeia fallax Hibbs muruci
Apidae Meliponini 91. Plebeia minima (Gribodo, 1893) Cupuaçu; açai
Apidae Meliponini 92. Plebeia Schwarz, 1938 açai
Apidae Diphaglossini 93. Ptiloglossa lucernarum Cockerell, 1923 guaraná
Apidae Meliponini 94. Ptilotrigona lurida (Smith, 1854) araçá-boi; açai
Apidae Meliponini 95. Scaptotrigona postica (Latreille, 1807) taperebá; muruci; açai
Apidae Meliponini 96. Scaura latitarsis (Friese, 1900) açai
Apidae Meliponini 97. Scaura tenuis (Ducke, 1916) açai
Apidae Augochlorini 98. Temnosoma Smith 1853 açai
Apidae Meliponini 99. Tetragona beebei (Schwarz, 1938) muruci
Apidae Meliponini 100. Tetragona clavipes (Fabricius, 1804) acerola
Apidae Meliponini 101. Tetragonisca angustula (Latreille, 1811) cupuaçu
Apidae Meliponini 102. Tetrapedia diversipes Klug, 1810 muruci
Apidae Meliponini 103. Trigona amazonenses (Ducke, 1916) jambo
Apidae Meliponini 104. Trigona branneri Cockerell, 1912 caçari; jambo; açai
Apidae Meliponini 105. Trigona dallatorreana Friese, 1900 jambo
Apidae Meliponini 106. Trigona fulviventris Guérin, 1844 cubiu; taperebá; cupuaçu; muruci
Apidae Meliponini 107. Trigona fuscipennis Friese, 1900 taperebá; muruci; açai
Apidae Meliponini 108. Trigona guianae Cockerell, 1910 açai
Apidae Meliponini 109. Trigona pallens (Fabricius, 1798) cupuaçu; caçari; taperebá; muruci; açai
Apidae Meliponini 110. Trigona recursa Smith, 1863 caçari; açai
Apidae Meliponini 111. Trigona Jurine, 1807 carambola
Apidae Meliponini 112. Trigona williana Friese, 1900 jambo
Apidae Meliponini 113. Trigonisca dobzhanskyi (Moure, 1950) açai
Apidae Meliponini 114. Trigonisca extrema Albuquerque & Camargo, 2007 muruci
Apidae Meliponini 115. Trigonisca hirticornis Albuquerque & Camargo, 2007 açai
Apidae Meliponini 116. Trigonisca nataliae (Moure, 1950) açai
Apidae Meliponini 117. Trigonisca pediculana (Fabricius, 1804) muruci
Apidae Meliponini 118. Trigonisca unidentata Albuquerque & Camargo, 2007 açai
Apidae Meliponini 119. Trigonisca vitrifrons Albuquerque & Camargo, 2007 açai
Apidae Tapinotaspidini 120. Tropidopedia punctifrons (Smith, 1879) muruci
Apidae Tapinotaspidini 121. Xanthopedia globulosa (Friese, 1899) muruci
Apidae Xylocopini 122. Xylocopa aurulenta (Fabricius, 1804) urucum
Apidae Xylocopini 123. Xylocopa frontalis Olivier, 1789 castanha-do-pará; urucum
Apidae Xylocopini 124. Xylocopa Latreille, 1802 goiaba

Fig. 2.

Fig. 2.

Number of taxa cited in previous works about pollinator/visitor in 52 of the analyzed edible fruit plant species in the Amazon Tropical Forest. Taxa of Apidae family are quoted on Table 3. All taxa can be found in the Supp Information 1 (online only).

Fig. 3.

Fig. 3.

(A and B) Aspects of the Amazon Forest with the striking view of Brazil nut tree (Bertholletia excelsa) with its high stature and straight trunk (Photos: João Rosa and Rafael M. Brito, respectively); (C) Carpenter bee (Xylocopa frontalis Olivier, 1789 (Hymenoptera: Apidae)) on Brazil nut blossom (Photo: Marcia M. Maués); (D) Trigona fulviventris (male) on muruci (Byrsonima crassifolia) flower (Photo: Cristiano Menezes); (E) Trigona palllens (Hymenoptera: Apidae) on açaí (Euterpe oleracea) inflorescence (Photo: Cristiano Menezes); and (F) Oxytrigona sp. (Hymenoptera: Apidae) on açaí (Euterpe oleracea) inflorescence (Photo: Alistair J. Campbell).

Discussion

Results obtained through pollination syndrome showed that half of all edible fruit plant species analyzed exhibit melittophily syndrome, indicating the importance of bees. Our data also showed that all the different insect groups determined by pollination syndrome are responsible for pollinating more than two-third of all plant species analyzed. Through the literature review, bee and beetle species were also particularly emphasized.

As already stated, bees are widely considered as important crop pollinators, especially highly social bees (Slaa et al. 2006, Giannini et al. 2020a). Traditional communities and indigenous people also acknowledge the importance of bees (Potts et al. 2016). In the Amazon, the importance of bees for indigenous people was documented among Kayapó tribe (Posey 1985, Posey and Camargo 1985), and other indigenous people (Athayde et al. 2016), mainly for honey and wax hunting and beekeeping practices. Bee diversity is also recognized by them as representing a key aspect (Athayde et al. 2016).

Native bees are especially important to pollination and they are considered as being more efficient for crop pollination than exotic species, such as the honey bee (Garibaldi et al. 2013). Competition between native bees and honey bees was demonstrated in forests of Mexico (Roubik and Villanueva-Gutierrez 2009). However, there is no study about competition conducted within Amazon forests, and we still have scarce data about the role of honey bees in this biome. Previous studies showed that honey bees are more prevalent on deforested areas than inside the closed forests of south-western Amazon (Brown et al. 2016). Nevertheless, they were reported as an important alternative pollinator on deforested lands (Dick et al. 2003, Ricketts 2004). The Amazon harbor a rich diversity of native stingless bees (ca. 190 species, Pedro 2014). These bees present a wide diet breadth (Ramalho 2004, Lichtenberg et al. 2017) and are considered as key pollinators of forests (Bawa 1990). For Brazil, other bee species are also recognized as important effective pollinators, as the solitary bee species Centris Fabricius, 1804 (Hymenoptera: Apidae) and Xylocopa Latreille, 1802 (Hymenoptera: Apidae) and the primitively eusocial Bombus Latreille, 1802 (Hymenoptera: Apidae) (Giannini et al. 2020a). Important non-bee insects reported as crop pollinators in Brazil were beetles (Curculionidae and Chrysomelidae) and flies (Syrphidae) (Giannini et al. 2015a), playing a significant role as crop pollinators globally and providing potential insurance against bee decline (Rader et al. 2016).

Among the Amazon plant species that depend on bees, Bertholletia excelsa HBK (Cavalcante et al. 2018), which is popularly known as the Brazil nut tree, is noteworthy, because its nuts present high nutritional and economic value (Kainer et al. 2018). Bee pollinators include two species of primitively social Bombus Latreille, 1802 (Hymenoptera: Apidae) and 18 species of solitary bees. Another native species with high economic value is passion fruit (Passiflora edulis Sims f. flavicarpa Deg), mainly pollinated by larger solitary bees such as Xylocopa Latreille, 1802 (Hymenoptera: Apidae) (Yamamoto et al. 2012); however, no study was found about passion fruit pollination in the Amazon forest. This species is cultivated in all states of Brazil, with a total production of more than 550,000 tons (2017 data from the Brazilian Institute of Geography and Statistics - IBGE), and it is highly dependent on pollination to produce its fruits; thus, in the absence of pollinators, production does not occur (Yamamoto et al. 2012).

The second most important pollinator group were beetles, with plants displaying specific adaptations for beetle pollination classified as cantharophilous. This pollination syndrome was primarily associated with Amazon palm species, such as the inajá (Maximiliana maripa (Aubl.) Drude) and bacaba (Oenocarpus bacaba Mart.). Beetles reported here included Cyclocephala distincta Burmeister, 1847 (Coleoptera: Scarabaeidae); Belopeus carmelitus (Germar, 1824) (Coleoptera: Curculionidae); and species of Epitragini tribe. The beetles that pollinate these species of palm trees are attracted by the floral scents produced by thermogenesis of the inflorescences (Oliveira et al. 2003), and such an interaction has been previously documented in other species, as those belonging to the Araceae family (Gottsberger 1990; Maia et al. 2010, 2013). Beetles of both sexes are attracted by the fragrance of flowers, which they use as a mating site, thus enabling pollination (Gottsberger 1986, Bernhardt 2000).

Despite providing an important indication of the main pollinators for each plant species, especially for megadiverse habitats, the pollination syndrome concept has received criticism, mainly because many plants can be pollinated by different pollinators, and it has been suggested that results should be better understood as working hypotheses (Quintero et al. 2017). Two cases here are noteworthy since the analyzed plants exhibit a complex pollination syndrome. One of them is açaí palm (Euterpe oleracea Mart.) that was classified here as predominately pollinated by beetles. However, a recent study determined over 100 species acting as pollinators, including, besides beetles, bees, flies, wasps, and ants (Campbell et al. 2018). Another example is cocoa (Theobroma cacao L.) that was considered here as being mainly pollinated by bees, but also presents a complex pollination system recently reviewed (Toledo-Hernández et al. 2017). For this last species, no study was conducted in the Amazon forest for determining its main pollinators. Both crops (açaí and cocoa) presented the highest value of crop pollination service in Pará (Borges et al. 2020), being also dependent on pollinators (Toledo-Hernández et al. 2017, Campbell et al. 2018). Thus, complex pollination systems require caution when being analyzed through pollination syndromes. Future work could emphasize priority edible plant species to be analyzed through detailed fieldwork, cocoa being one of the main priorities.

Protecting local animal diversity is of extreme importance for fruit production, especially in forested habitats. Increasing the knowledge about insects is also a key factor, especially considering their high diversity in tropical habitats and the historical disregarding of their ecological importance. Habitat heterogeneity is key since more heterogeneous environments can support more species through niche partitioning (Tilman 1982, Chesson 2000, Tscharntke et al. 2012, Moreira et al. 2015), and a higher pollinator diversity can directly affect the reproduction of cultivated and wild plants by increasing pollen transfer and fruit and seed production (Kremen et al. 2002, Klein et al. 2003, Hoehn et al. 2008, Garibaldi et al. 2013). Restoration of degraded land programs, especially on the region of Amazon Arc of Deforestation (south and eastern Amazon), can also benefit from a rich diversity of native plant species, and the list provided here is particularly useful for agroforestry projects aiming to associate restoration with sustainable development (Garrity 2004).

We conclude that the Amazon plant species that produce edible fruits are pollinated mainly by bees, especially stingless bees, but other insects are also important, such as beetles and moths. Animal pollinators underpin food security in traditional communities in the Amazon forest and should be protected. There are still few studies on the reproductive biology of edible plant species, and this knowledge is essential for understanding the level of dependence of plants on their pollinators and for helping on decision-making processes for pollinator protection and sustainability.

Supplementary Material

toaa284_suppl_Supplementary_Materials

Acknowledgments

We acknowledge the support of the Pará Research Foundation (FAPESPA/ICAAF 019/2016 and 014/2017) and the Brazilian National Council for Scientific and Technological Development (CNPq 300464/2016-9). We thank Marcia M. Maués, Alistair John Campbell, and Rafael Cabral Borges for providing suggestions on the manuscript. We also thank Alistair John Campbell, Cristiano Menezes, João Rosa, Marcia M. Maués and Maria de Lourdes Giannini for the photos provided.

References Cited

  1. Athayde, S., Stepp J. R., and Ballester W. C.. 2016. Engaging indigenous and academic knowledge on bees in the Amazon: implications for environmental management and transdisciplinary research. J. Ethnobiol. Ethnomed. 12: 26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bawa, K. S. 1990. Plant-pollinator interactions in tropical rain forests. Annu. Rev. Ecol. Syst. 21: 399–422. [Google Scholar]
  3. Bernhardt, P. 2000. Convergent evolution and adaptive radiation of beetle pollinated angiosperms. Plant Sys. Evol. 222: 293–320. [Google Scholar]
  4. Borges, R. C., Brito R. M., Imperatriz-Fonseca V. L., and Giannini T. C.. 2020. The Value of crop production and pollination services in the eastern Amazon. Neotrop. Entomol. 49: 545–556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown, J. C., Mayes D., and Bhatta C.. 2016. Observations of Africanized honey bee Apis mellifera scutellata absence and presence within and outside forests across Rondonia, Brazil. Insectes Soc. 63: 603–607. [Google Scholar]
  6. Buchmann, S. L., and Nabhan G. P.. 1997. The Forgotten Pollinators. Island Press, Washington, DC, USA. [Google Scholar]
  7. Campbell, A. J., Carvalheiro L. G., Maués M. M., Jaffé R., Giannini T. C., Freitas M. A. B., Coelho B. W. T., and Menezes C.. 2018. Anthropogenic disturbance of tropical forests threatens pollination services to açaí palm in the Amazon river delta. J. Appl. Ecol. 55: 1725–1736. [Google Scholar]
  8. Carson, R. 1962. Silent Spring. Houghton Mifflin, Cambridge, MA, USA. [Google Scholar]
  9. Cavalcante, P. B. 1996. Frutas comestíveis da Amazônia. MPEG, Belém, Brazil. [Google Scholar]
  10. Cavalcante, M. C., Galetto L., Maués M. M., Pacheco A. J. S., and Bomfim I. G. A.. 2018. Nectar production dynamics and daily pattern of pollinator visits in Brazil nut (Bertholletia excelsa Bonpl.) plantations in Central Amazon: implications for fruit production. Apidologie 49: 505–516. [Google Scholar]
  11. Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31: 343–366. [Google Scholar]
  12. Clement, C. R., Müller C. H., and Flores W. B. C.. 1982. Recursos genéticos de espécies frutíferas nativas da Amazônia Brasileira. Acta Amazonica 12: 677–695. [Google Scholar]
  13. Cortés-Flores, J., Hernández-Esquivel K. B., González-Rodríguez A., and Ibarra-Manríquez G.. 2017. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: influence of phylogeny and abiotic factors. Am. J. Bot. 104: 39–49. [DOI] [PubMed] [Google Scholar]
  14. Costanza R., d’Arge R., de Groot R., Farber S., Grasso M., Hannon B., Limburg K., Naeem S., O’Neill R. V., Paruelo J., . et al. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260. [Google Scholar]
  15. Costanza R., Groot R., Sutton P., van der Ploeg S., Anderson S. J., Kubiszewiski I., Farber S., and Turner R. K.. 2014. Changes in the global value of ecosystem services. Global Environ. Change 26: 152–158. [Google Scholar]
  16. Dalsgaard B., Gonzalez A. M. M., Olesen J. M., Timmermann A., Andersen L. H., and Ollerton J.. 2008. Pollination networks and functional specialization: a test using Lesser Antillean plant-hummingbird assemblages. Oikos 117: 789–793. [Google Scholar]
  17. Díaz, S., Pascual U., Stenseke M., Martín-López B., Watson R. T., Molnár Z., Hill R., Chan K. M. A., Baste I. A., Brauman K. A., . et al. 2018. Assessing nature’s contributions to people. Science. 359: 270–272. [DOI] [PubMed] [Google Scholar]
  18. Dick, C. W., Etchelecu G., and Austerlitz F.. 2003. Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol. Ecol. 12: 753–764. [DOI] [PubMed] [Google Scholar]
  19. Faegri, K., and van der Pijl L.. 1979. The principles of pollination ecology. Pergamon Oxford, Oxford, UK. [Google Scholar]
  20. Fenster, C. B., Armbruster W. S., Wilson P., Dudash M. R., and Thomsom J. D.. 2004. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35: 375–403. [Google Scholar]
  21. Garibaldi, L. A., Steffan-Dewenter I., Winfree R., Aizen M. A., Bommarco R., Cunningham S. A., Kremen C., Carvalheiro L. G., Harder L. D., Afik O., . et al. 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science. 339: 1608–1611. [DOI] [PubMed] [Google Scholar]
  22. Garibaldi, L. A., Carvalheiro L. G., Vaissière B. E., Gemmill-Herren B., Hipólito J., Freitas B. M., Ngo H. T., Azzu N., Sáez A., Åström J., . et al. 2016. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science. 351: 388–391. [DOI] [PubMed] [Google Scholar]
  23. Garrity, D. P. 2004. Agroforestry and the achievement of the Millennium Development Goals. Agroforest Syst. 61: 5–17. [Google Scholar]
  24. Giacometti, D. C. 1993. Recursos genéticos de fruteiras nativas do Brasil, pp. 13-27. InSIMPOSIO NACIONAL DE RECURSOS GENETICOS DE FRUTEIRAS NATIVAS, Cruz das Almas, BA. Anais. Cruz das Almas, BA: EMBRAPA-CNPMF, 1993. [Google Scholar]
  25. Giannini, T. C., Boff S., Cordeiro G. D., Cartolano E. A. Jr., Veiga A. K., Imperatriz-Fonseca V. L., and Saraiva A. M.. 2015a. Crop pollinators in Brazil: a review of reported interactions. Apidologie 46: 209–223. [Google Scholar]
  26. Giannini, T. C., Cordeiro G. D., Freitas B. M., Saraiva A. M., and Imperatriz-Fonseca V. L.. 2015b. The dependence of crops for pollinators and the economic value of pollination in Brazil. J. Econ. Entomol. 108: 849–857. [DOI] [PubMed] [Google Scholar]
  27. Giannini, T. C., Costa W. F., Cordeiro G. D., Imperatriz-Fonseca V. L., Saraiva A. M., Biesmeijer J., and Garibaldi L. A.. 2017. Projected climate change threatens pollinators and crop production in Brazil. PLoS One 12: e0182274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Giannini, T. C., Alves D. A., Alves R., Cordeiro G. D., Campbell A. J., Awade M., Bento J. M. S., Saraiva A. M., and Imperatriz-Fonseca V. L.. 2020a. Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management. Apidologie 51: 406–421. doi: 10.1007/s13592-019-00727-3 [DOI] [Google Scholar]
  29. Giannini, T. C., Costa W. F., Borges R. C., Miranda L., Costa C. P. W., Saraiva A. M., and Imperatriz-Fonseca V. L.. 2020b. Climate change in the Eastern Amazon: crop-pollinator and occurrence-restricted bees are potentially more affected. Reg. Environ. Change 20: 9. doi: 10.1007/s10113-020-01611-y [DOI] [Google Scholar]
  30. Girão, L. C., Lopes A. V., Tabarelli M., and Bruna E. M.. 2007. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape. PLoS One 2: e908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gomes, V. H. F., Vieira I. C. G., Salomão R. P., Steege H.. 2019. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9: 547–553. [Google Scholar]
  32. Gottsberger, G. 1986. Some pollination strategies in neotropical savannas and forests. Plant Sys. Evol. 152: 29–45. [Google Scholar]
  33. Gottsberger, G. 1990. Flowers and beetles in the South American tropics. Botanica Acta 103: 360–365. [Google Scholar]
  34. Hill R, Nates-Parra G., Quezada-Euán J. J. G., Buchori D., LeBuhn G., Maués M. M., Pert P. L., Kwapong P. K., Saeed S., Breslow S. J., . et al. 2019. Biocultural approaches to pollinator conservation. Nat. Sustainability 2: 214–222. [Google Scholar]
  35. Hoehn, P., Tscharntke T., Tylianakis J. M., and Steffan-Dewenter I.. 2008. Functional group diversity of bee pollinators increases crop yield. Proc. Biol. Sci. 275: 2283–2291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. IPBES . 2016. Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators pollination and food production. IPBES, Bonn, Germany. [Google Scholar]
  37. Johnson, S. D., and Wester P.. 2017. Stefan Vogel’s analysis of floral syndromes in the South African flora: an appraisal based on 60 years of pollination studies. Flora 232: 200–206. [Google Scholar]
  38. Kainer, K. A., Wadt L. H. O., and Staudhammer C. L.. 2018. The evolving role of Bertholletia excelsa in Amazonia: contributing to local livelihoods and forest conservation. Desenvolvimento e Meio Ambiente 48: 477–497. [Google Scholar]
  39. Kinoshita, L. S., Torres R. B., Forni-Martins E. R., Spinelli T., Ahn Y. J., and Constância S. S.. 2006. Composição florística e síndromes de polinização e de dispersão da mata do Sítio São Francisco Campinas SP Brasil. Acta Botanica Brasilica 20: 313–327. [Google Scholar]
  40. Klein, A. M., Steffan-Dewenter I., and Tscharntke T.. 2003. Fruit set of highland coffee increases with the diversity of pollinating bees. Proc. Biol. Sci. 270: 955–961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Klein, A. M., Vaissière B. E., Cane J. H., Steffan-Dewenter I., Cunningham S. A., Kremen C., and Tscharntke T.. 2007. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274: 303–313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Kremen, C., Williams N. M., and Thorp R. W.. 2002. Crop pollination from native bees at risk from agricultural intensification. PNAS 26: 16813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Lichtenberg, E. M., Mendenhall C. D., and Brosi B.. 2017. Foraging traits modulate stingless bee community disassembly under forest loss. J. Anim. Ecol. 86: 1404–1416. [DOI] [PubMed] [Google Scholar]
  44. Machado, I. C., and Lopes A. V.. 2004. Floral traits and pollination systems in the Caatinga, a Brazilian tropical dry forest. Ann. Bot. 94: 365–376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Machado, I. C., and Lopes A. V.. 2008. Recursos Florais e sistemas de polinização e sexuais em caatinga. InLeal I. R., Tabarelli M., and Silva J. M. C. (eds.), Ecologia e Conservação da Caatinga. UFPE. Recife, Brazil. [Google Scholar]
  46. Maia, A. C. D., Schlindwein C., Navarro D. M. A. F., and Gibernau M.. 2010. Pollination of Philodendron acutatum (Araceae) in the Atlantic Forest of northeastern Brazil: a single scarab beetle species guarantees high fruit set. Int. J. Plant Sci. 171: 740–748. [Google Scholar]
  47. Maia, A. C. D., Gibernau M., Carvalho A. T., Gonçalves E. G., and Schlindwein C.. 2013. The cowl does not make the monk: scarab beetle pollination of the Neotropical aroid Taccarum ulei (Araceae Spathicarpeae). Biol. J. Linn. Soc. 108: 22–34. [Google Scholar]
  48. Martins, R., and Antonini Y.. 2016. Can pollination syndromes indicate ecological restoration success in tropical forests? Restor. Ecol. 24: 373–380. [Google Scholar]
  49. Montgomery, A., Dunn R. R., Fox R., Jongejans E., Leather S. R., Saunders M. E., Shortall C. R., Tingley M. W., and Wagner D. L.. 2020. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241: 108327. [Google Scholar]
  50. Moreira, E. F., Boscolo D., and Viana B. F.. 2015. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales. PLoS One 10: e0123628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Moure, J. S., Urban D., and Melo G. A. R.. 2007. Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region. Curitiba, Sociedade Brasileira de Entomologia. 1058p. [Google Scholar]
  52. Nobre, C. A., Sampaio G., Borma L. S., Castilla-Rubio J. C., Silva J. S., and Cardoso M.. 2016. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. USA 113: 10759–10768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Oliveira, M. S. P. D., Couturier G., and Beserra P.. 2003. Biologia da polinização da palmeira tucumã (Astrocaryum vulgare Mart.) em Belém. Acta Botanica Brasilica 17:343–353. [Google Scholar]
  54. Ollerton, J., Winfree R., and Tarrant S.. 2011. How many flowering plants are pollinated by animals? Oikos 120: 321–326. [Google Scholar]
  55. Paiva, P. F. P. R., Ruivo M. L. P., Silva O. M. Jr, Maciel M. N. M., Braga T. G. M., Andrade M. M. N., Santos P. C. Jr, Rocha E. S., Freitas T. P. M., Leite T. V. S., . et al. (2020) Deforestation in protect areas in the Amazon: a threat to biodiversity. Biodivers. Conserv. 29: 19–38. [Google Scholar]
  56. Pedro, S. R. M. 2014. The stingless bee fauna in Brazil (Hymenoptera: Apidae). Sociobiology 61: 348–354. [Google Scholar]
  57. Pinton, F., and Emperaire L.. 2004. Agrobiodiversidade e agricultura tradicional na Amazônia: que perspectiva?, pp. 73–100. InSayago D., Tourand J. F. and Bursztin M. (orgs.). Amazônia: cenas e cenários. UnB. Brasília. [Google Scholar]
  58. Posey, D. A. 1985. Indigenous management of tropical forest ecosystems: the case of the Kayapó indians of the Brazilian Amazon. Agroforest Syst. 3: 139–158. [Google Scholar]
  59. Posey, D. A., and Camargo J. M. F.. 1985. Additional notes in the classification and knowledge of stingless bees (Meliponinae, Apidae, Hymenoptera) by the Kayapo Indians of Gorotire (Pará, Brazil). Annals of the Carnegie Museum 54: 247–274. [Google Scholar]
  60. Potts, S. G., Biesmeijer J. C., Kremen C., Neumann P., Schweiger O., and Kunin W. E.. 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25: 345–353. [DOI] [PubMed] [Google Scholar]
  61. Potts, S. G., Imperatriz-Fonseca V., Ngo H. T., Aizen M. A., Biesmeijer J. C., Breeze T. D., Dicks L. V., Garibaldi L. A., Hill R., Settele J., . et al. 2016. Safeguarding pollinators and their values to human well-being. Nature. 540: 220–229. [DOI] [PubMed] [Google Scholar]
  62. Proctor, M., Yeo P., and Lack A.. 1996. The natural history of pollination. Harper Collins, London, UK. [Google Scholar]
  63. Quintero, E., Genzoni E., Mann N., Nuttman C., and Anderson B.. 2017. Sunbird surprise: a test of the predictive power of the syndrome concept. Flora 232: 22–29. [Google Scholar]
  64. Rader, R., Bartomeus I., Garibaldi L. A., Garratt M. P., Howlett B. G., Winfree R., Cunningham S. A., Mayfield M. M., Arthur A. D., Andersson G. K., . et al. 2016. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. USA 113: 146–151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Ramalho, M. 2004. Stingless bees and mass flowering trees in the canopy of Atlantic Forest: a tight relationship. Acta Botanica Brasilica 18: 37–47. [Google Scholar]
  66. Ricketts, T. H. 2004. Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv. Biol. 18: 1262–1271. [Google Scholar]
  67. Rosas-Guerrero, V., Aguilar R., Martén-Rodríguez S., Ashworth L., Lopezaraiza-Mikel M., Bastida J. M., and Quesada M.. 2014. A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol. Lett. 17: 388–400. [DOI] [PubMed] [Google Scholar]
  68. Roubik, D. W., and Villanueva-Gutierrez R.. 2009. Invasive Africanized honey bee impact on native solitary bees: a pollen resource and trap nest analysis. Biol. J. Linn. Soc. 98: 152–160. [Google Scholar]
  69. Silva, S. 2011. Frutas da Amazônia Brasileira. Metalivros, São Paulo, Brazil. [Google Scholar]
  70. Slaa, E. J., Chaves L. A. S., and Malagodi-Braga K. S.. 2006. Stingless bees in applied pollination: practice and perspectives. Apidologie 37: 293–315. [Google Scholar]
  71. Stang, M., Klinkhamer P. G. L., and Van Der Meijden E.. 2006. Size constraints and flower abundance determine the number of interactions in a plant-flower visitor web. Oikos 112: 111–121. [Google Scholar]
  72. Tilman, D. 1982. Resource competition and community structure. Princeton University Press, NJ, USA. [PubMed] [Google Scholar]
  73. Toledo-Hernández, M., Wanger T. C., and Tscharntke T.. 2017. Neglected pollinators: can enhanced pollination services improve cocoa yields? A review. Agriculture Ecosystem and Environonment 247: 137–148. [Google Scholar]
  74. Tscharntke, T., Tylianakis J. M., Rand T. A., Didham R. K., Fahrig L., Batary P., Fründ J., Holt R. D., Holzschuh A., Klein A. M., . et al. 2012. Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol. Rev. 87: 661–685. [DOI] [PubMed] [Google Scholar]
  75. Waser, N. W., Chittka L., Price M. V., Williams N. M., and Ollerton J.. 1996. Generalization in pollination systems, and why it matters. Ecology 77: 1043–1060. [Google Scholar]
  76. Yamamoto, M., Silva C. I., Augusto S. C., Barbosa A. A. A., and Oliveira P. E.. 2012. The role of bee diversity in pollination and fruit set of yellow passion fruit (Passiflora edulis forma flavicarpa Passifloraceae) crop in Central Brazil. Apidologie 43: 515–526. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

toaa284_suppl_Supplementary_Materials

Articles from Journal of Economic Entomology are provided here courtesy of Oxford University Press

RESOURCES