Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2021 Apr 6:2021.04.06.438634. [Version 1] doi: 10.1101/2021.04.06.438634

Plasma microbiome in COVID-19 subjects: an indicator of gut barrier defects and dysbiosis

Ram Prasad, Michael John Patton, Jason L Floyd, Cristiano Pedrozo Vieira, Seth Fortmann, Mariana DuPont, Angie Harbour, Chen See Jeremy, Justin Wright, Regina Lamendella, Bruce R Stevens, Maria B Grant
PMCID: PMC8043449  PMID: 33851159

Abstract

The gut is a well-established route of infection and target for viral damage by SARS-CoV-2. This is supported by the clinical observation that about half of COVID-19 patients exhibit gastrointestinal ( GI ) symptoms. We asked whether the analysis of plasma could provide insight into gut barrier dysfunction in patients with COVID-19 infection. Plasma samples of COVID-19 patients (n=30) and healthy control (n=16) were collected during hospitalization. Plasma microbiome was analyzed using 16S rRNA sequencing, metatranscriptomic analysis, and gut permeability markers including FABP-2, PGN and LPS in both patient cohorts. Almost 65% (9 out 14) COVID-19 patients showed abnormal presence of gut microbes in their bloodstream. Plasma samples contained predominately Proteobacteria, Firmicutes, and Actinobacteria . The abundance of gram-negative bacteria ( Acinetobacter, Nitrospirillum, Cupriavidus, Pseudomonas, Aquabacterium, Burkholderia, Caballeronia, Parabhurkholderia, Bravibacterium, and Sphingomonas ) was higher than the gram-positive bacteria ( Staphylococcus and Lactobacillus ) in COVID-19 subjects. The levels of plasma gut permeability markers FABP2 (1282±199.6 vs 838.1±91.33; p=0.0757), PGN (34.64±3.178 vs 17.53±2.12; p<0.0001), and LPS (405.5±48.37 vs 249.6±17.06; p=0.0049) were higher in COVID-19 patients compared to healthy subjects. These findings support that the intestine may represent a source for bacteremia and may contribute to worsening COVID-19 outcomes. Therapies targeting the gut and prevention of gut barrier defects may represent a strategy to improve outcomes in COVID-19 patients.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES