Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Oct 27;19(10):1262–1270. doi: 10.1039/d0pp00221f

Spectrum of virucidal activity from ultraviolet to infrared radiation

Luke Horton 1, Angeli Eloise Torres 2, Shanthi Narla 2, Alexis B Lyons 2, Indermeet Kohli 2,3, Joel M Gelfand 4, David M Ozog 2, Iltefat H Hamzavi 2, Henry W Lim 2,
PMCID: PMC8047562  PMID: 32812619

Abstract

The COVID-19 pandemic has sparked a demand for safe and highly effective decontamination techniques for both personal protective equipment (PPE) and hospital and operating rooms. The gradual lifting of lockdown restrictions warrants the expansion of these measures into the outpatient arena. Ultraviolet C (UVC) radiation has well-known germicidal properties and is among the most frequently reported decontamination techniques used today. However, there is evidence that wavelengths beyond the traditional 254 nm UVC – namely far UVC (222 nm), ultraviolet B, ultraviolet A, visible light, and infrared radiation – have germicidal properties as well. This review will cover current literature regarding the germicidal effects of wavelengths ranging from UVC through the infrared waveband with an emphasis on their activity against viruses, and their potential applicability in the healthcare setting for general decontamination during an infectious outbreak.

References

  • 1.Gu J., Han B., Wang J. COVID-19: Gastrointestinal Manifestations and Potential Fecal–Oral Transmission. Gastroenterology. 2020;158:1518–1519. doi: 10.1053/j.gastro.2020.02.054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.L. Dietz, P. F. Horve, D. A. Coil, et al., 2019 Novel Coronavirus (COVID-19) Pandemic: Built Environment Considerations To Reduce Transmission, mSystems, 2020, 5, DOI: 10.1128/mSystems.00245-20. [DOI] [PMC free article] [PubMed]
  • 3.Moorhead S., Maclean M., Coia J. E., et al. Synergistic efficacy of 405 nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores. Anaerobe. 2016;37:72–77. doi: 10.1016/j.anaerobe.2015.12.006. [DOI] [PubMed] [Google Scholar]
  • 4.Tian Y., Rong L., Nian W., He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment. Pharmacol. Ther. 2020;51:843–851. doi: 10.1111/apt.15731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Goldmann D. A. Transmission of viral respiratory infections in the home. Pediatr. Infect. Dis. J. 2000;19:S97. doi: 10.1097/00006454-200010001-00002. [DOI] [PubMed] [Google Scholar]
  • 6.Bausch D. G., Towner J. S., Dowell S. F., et al. Assessment of the Risk of Ebola Virus Transmission from Bodily Fluids and Fomites. J. Infect. Dis. 2007;196:S142. doi: 10.1086/520545. [DOI] [PubMed] [Google Scholar]
  • 7.Mubareka S., Lowen A. C., Steel J., et al. Transmission of Influenza Virus via Aerosols and Fomites in the Guinea Pig Model. J. Infect. Dis. 2009;199:858–865. doi: 10.1086/597073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Abad F. X., Villena C., Guix S., et al. Potential Role of Fomites in the Vehicular Transmission of Human Astroviruses. Appl. Environ. Microbiol. 2001;67:3904–3907. doi: 10.1128/AEM.67.9.3904-3907.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Otake S., Dee S. A., Rossow K. D., et al. Transmission of porcine reproductive and respiratory syndrome virus by fomites (boots and coveralls) J. Swine Health Prod. 2002;10:59–65. [Google Scholar]
  • 10.Desai R., Pannaraj P. S., Agopian J., et al. Survival and transmission of community-associated methicillin-resistant Staphylococcus aureus from fomites. Am. J. Infect. Control. 2011;39:219–225. doi: 10.1016/j.ajic.2010.07.005. [DOI] [PubMed] [Google Scholar]
  • 11.Boone S. A., Gerba C. P. Significance of Fomites in the Spread of Respiratory and Enteric Viral Disease. Appl. Environ. Microbiol. 2007;73:1687–1696. doi: 10.1128/AEM.02051-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.van Doremalen N., Bushmaker T., Morris D. H., et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020;382:1564–1567. doi: 10.1056/NEJMc2004973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Ti L. K., Ang L. S., Foong T. W., Ng B. S. W. What we do when a COVID-19 patient needs an operation: operating room preparation and guidance. Can. J. Anesth. 2020;67:756–758. doi: 10.1007/s12630-020-01617-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Maclean M., McKenzie K., Moorhead S., et al. Decontamination of the Hospital Environment: New Technologies for Infection Control. Curr. Treat. Options Infect. Dis. 2015;7:39–51. doi: 10.1007/s40506-015-0037-5. [DOI] [Google Scholar]
  • 15.Torres A. E., Lyons A. B., Narla S., et al. Ultraviolet-C and Other Methods of Decontamination of Filtering Facepiece N-95 Respirators during the COVID-19 Pandemic. Photochem. Photobiol. Sci. 2020;19:746–751. doi: 10.1039/D0PP00131G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Lee J. E., Ko G. Norovirus and MS2 inactivation kinetics of UV-A and UV-B with and without TiO2. Water Res. 2013;47:5607–5613. doi: 10.1016/j.watres.2013.06.035. [DOI] [PubMed] [Google Scholar]
  • 17.Lytle C. D., Sagripanti J.-L. Predicted inactivation of viruses of relevance to biodefense by solar radiation. J. Virol. 2005;79:14244–14252. doi: 10.1128/JVI.79.22.14244-14252.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Bornstein E., Hermans W., Gridley S., Manni J. Nearinfrared photoinactivation of bacteria and fungi at physiologic temperatures. Photochem. Photobiol. 2009;85:1364–1374. doi: 10.1111/j.1751-1097.2009.00615.x. [DOI] [PubMed] [Google Scholar]
  • 19.Maclean M., McKenzie K., Anderson J. G., et al. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J. Hosp. Infect. 2014;88:1–11. doi: 10.1016/j.jhin.2014.06.004. [DOI] [PubMed] [Google Scholar]
  • 20.Recommendations|Disinfection & Sterilization Guidelines|Guidelines Library|Infection Control, CDC, 2019, https://www.cdc.gov/infectioncontrol/guidelines/disinfection/rec-ommendations.html [accessed on 12 May 2020].
  • 21.Love D. C., Silverman A., Nelson K. L. Human virus and bacteriophage inactivation in clear water by simulated sunlight compared to bacteriophage inactivation at a southern California beach. Environ. Sci. Technol. 2010;44:6965–6970. doi: 10.1021/es1001924. [DOI] [PubMed] [Google Scholar]
  • 22.Hamzavi I. H., Lyons A. B., Kohli I., et al. Ultraviolet germicidal irradiation: Possible method for respirator disinfection to facilitate reuse during the COVID-19 pandemic. J. Am. Acad. Dermatol. 2020;82:1511–1512. doi: 10.1016/j.jaad.2020.03.085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Rauth A. M. The Physical State of Viral Nucleic Acid and the Sensitivity of Viruses to Ultraviolet Light. Biophys. J. 1965;5:257–273. doi: 10.1016/S0006-3495(65)86715-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Hijnen W. A., Beerendonk E. F., Medema G. J. Inactivation Credit of UV Radiation for Viruses, Bacteria and Protozoan (Oo)cysts in Water: A Review. Water Res. 2006;40:3–22. doi: 10.1016/j.watres.2005.10.030. [DOI] [PubMed] [Google Scholar]
  • 25.Tseng C.-C., Li C.-S. Inactivation of viruses on surfaces by ultraviolet germicidal irradiation. J. Occup. Environ. Hyg. 2007;4:400–405. doi: 10.1080/15459620701329012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Narla S., Lyons A. B., Kohli I., et al. The Importance of the Minimum Dosage Necessary for UVC Decontamination of N95 Respirators during the COVID-19 Pandemic. Photodermatol., Photoimmunol. Photomed. 2020;36:324–325. doi: 10.1111/phpp.12562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Lindblad M., Tano E., Lindahl C., Huss F. Ultraviolet-C decontamination of a hospital room: Amount of UV light needed. Burns. 2019;46:842–849. doi: 10.1016/j.burns.2019.10.004. [DOI] [PubMed] [Google Scholar]
  • 28.Reed N. G. The History of Ultraviolet Germicidal Irradiation for Air Disinfection. Public Health Rep. 2010;125:15–27. doi: 10.1177/003335491012500105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Casini B., Tuvo B., Cristina M. L., et al. Evaluation of an Ultraviolet C (UVC) Light-Emitting Device for Disinfection of High Touch Surfaces in Hospital Critical Areas. Int. J. Environ. Res. Public Health. 2019;16:1–10. doi: 10.3390/ijerph16193572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Guridi A., Sevillano E., de la Fuente I., et al. Disinfectant Activity of A Portable Ultraviolet C Equipment. Int. J. Environ. Res. Public Health. 2019;16:1–11. doi: 10.3390/ijerph16234747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Rutala W. A., Gergen M. F., Weber D. J. Room Decontamination with UV Radiation. Infect. Control Hosp. Epidemiol. 2010;31:1025–1029. doi: 10.1086/656244. [DOI] [PubMed] [Google Scholar]
  • 32.Ghantoji S. S., Stibich M., Stachowiak J., et al. Non-inferiority of pulsed xenon UV light versus bleach for reducing environmental Clostridium difficile contamination on high-touch surfaces in Clostridium difficile infection isolation rooms. J. Med. Microbiol. 2015;64:191–194. doi: 10.1099/jmm.0.000004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Kanamori H., Rutala W. A., Gergen M. F., Weber D. J. Patient Room Decontamination against Carbapenem-Resistant Enterobacteriaceae and Methicillin-Resistant Staphylococcus aureus Using a Fixed Cycle-Time Ultraviolet-C Device and Two Different Radiation Designs. Infect. Control Hosp. Epidemiol. 2016;37:994–996. doi: 10.1017/ice.2016.80. [DOI] [PubMed] [Google Scholar]
  • 34.Sagripanti J.-L., Lytle C. D. Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces. Arch. Virol. 2011;156:489–494. doi: 10.1007/s00705-010-0847-1. [DOI] [PubMed] [Google Scholar]
  • 35.Mills D., Harnish D. A., Lawrence C., et al. Ultraviolet germicidal irradiation of influenza-contaminated N95 filtering facepiece respirators. Am. J. Infect. Control. 2018;46:e49. doi: 10.1016/j.ajic.2018.02.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Fisher E. M., Shaffer R. E. A method to determine the available UV-C dose for the decontamination of filtering facepiece respirators. J. Appl. Microbiol. 2011;110:287–295. doi: 10.1111/j.1365-2672.2010.04881.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Boyce J. M., Farrel P. A., Towle D., et al. Impact of Room Location on UV-C Irradiance and UV-C Dosage and Antimicrobial Effect Delivered by a Mobile UV-C Light Device. Infect. Control Hosp. Epidemiol. 2016;37:667–672. doi: 10.1017/ice.2016.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.W. Kowalski, Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection, Springer Science & Business Media, 2010.
  • 39.Nishisaka-Nonaka R., Mawatari K., Yamamoto T., et al. Irradiation by ultraviolet light-emitting diodes inactivates influenza a viruses by inhibiting replication and transcription of viral RNA in host cells. J. Photochem. Photobiol., B. 2018;189:193–200. doi: 10.1016/j.jphotobiol.2018.10.017. [DOI] [PubMed] [Google Scholar]
  • 40.Bedell K., Buchaklian A. H., Perlman S. Efficacy of an Automated Multiple Emitter Whole-Room Ultraviolet-C Disinfection System Against Coronaviruses MHV and MERS-CoV. Infect. Control Hosp. Epidemiol. 2016;37:598–599. doi: 10.1017/ice.2015.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Ozog D., Parks-Miller A., Kohli I., et al. The Importance of Fit-Testing in Decontamination of N95 Respirators: A Cautionary Note. J. Am. Acad. Dermatol. 2020;83:672–674. doi: 10.1016/j.jaad.2020.05.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Narita K., Asano K., Morimoto Y., et al. Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses. PLoS One. 2018;13:e0201259. doi: 10.1371/journal.pone.0201259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Widel M., Krzywon A., Gajda K., et al. Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species. Free Radicals Biol. Med. 2014;68:278–287. doi: 10.1016/j.freeradbiomed.2013.12.021. [DOI] [PubMed] [Google Scholar]
  • 44.Ikehata H., Mori T., Yamamoto M. In Vivo Spectrum of UVC-induced Mutation in Mouse Skin Epidermis May Reflect the Cytosine Deamination Propensity of Cyclobutane Pyrimidine Dimers. Photochem. Photobiol. 2015;91:1488–1496. doi: 10.1111/php.12525. [DOI] [PubMed] [Google Scholar]
  • 45.Pfeifer G. P., Besaratinia A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci. 2012;11:90–97. doi: 10.1039/C1PP05144J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Buonanno M., Stanislauskas M., Ponnaiya B., et al. 207-nm UV Light-A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: In vivo Safety Studies. PLoS One. 2016;11:e0138418. doi: 10.1371/journal.pone.0138418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Hu C.-C., Liao J.-H., Hsu K.-Y., et al. Role of pirenoxine in the effects of catalin on in vitro ultraviolet-induced lens protein turbidity and selenite-induced cataractogenesis in vivo. Mol. Vision. 2011;17:1862–1870. [PMC free article] [PubMed] [Google Scholar]
  • 48.Memarzadeh F., Olmsted R. N., Bartley J. M. Applications of ultraviolet germicidal irradiation disinfection in health care facilities: Effective adjunct, but not stand-alone technology. Am. J. Infect. Control. 2010;38:S13. doi: 10.1016/j.ajic.2010.04.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.K. Narita, K. Asano, K. Naito, et al., 222-nm UVC inactivates a wide spectrum of microbial pathogens, J. Hosp. Infect., 2020, DOI: 10.1016/j.jhin.2020.03.030. [DOI] [PubMed]
  • 50.Welch D., Buonanno M., Grilj V., et al. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci. Rep. 2018;8:2752. doi: 10.1038/s41598-018-21058-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Buonanno M., Ponnaiya B., Welch D., et al. Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light. Radiat. Res. 2017;187:483–491. doi: 10.1667/RR0010CC.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Yamano N., Kunisada M., Kaidzu S., et al. Long-term effects of 222 nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation. Photochem. Photobiol. 2020;96:853–862. doi: 10.1111/php.13269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ponnaiya B., Buonanno M., Welch D., et al. Far-UVC light prevents MRSA infection of superficial wounds in vivo. PLoS One. 2018;13:e0192053. doi: 10.1371/journal.pone.0192053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Beck S. E., Rodriguez R. A., Linden K. G., et al. Wavelength Dependent UV Inactivation and DNA Damage of Adenovirus as Measured by Cell Culture Infectivity and Long Range Quantitative PCR. Environ. Sci. Technol. 2014;48:591–598. doi: 10.1021/es403850b. [DOI] [PubMed] [Google Scholar]
  • 55.Gupta A., Avci P., Dai T., et al. Ultraviolet Radiation in Wound Care: Sterilization and Stimulation. Adv. Wound Care. 2013;2:422–437. doi: 10.1089/wound.2012.0366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Skin Disinfection – Excimer Wave Sterilray™, https://steril-ray.com/skin-disinfection/ [accessed on 29 April 2020].
  • 57.Woods J. A., Evans A., Forbes P. D., et al. The effect of 222-nm UVC phototesting on healthy volunteer skin: a pilot study. Photodermatol., Photoimmunol. Photomed. 2015;31:159–166. doi: 10.1111/phpp.12156. [DOI] [PubMed] [Google Scholar]
  • 58.Pacifico A., Ardigò M., Frascione P., et al. Phototherapeutic approach to dermatological patients during the 2019 Coronavirus pandemic: Real-life Data from the Italian Red Zone. Br. J. Dermatol. 2020;183:375–376. doi: 10.1111/bjd.19145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Lim H. W., Feldman S. R., Van Voorhees A. S., Gelfand J. M. Recommendations for phototherapy during the COVID-19 pandemic. J. Am. Acad. Dermatol. 2020;83:287–288. doi: 10.1016/j.jaad.2020.04.091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.J. Jagger, 1924-. Introduction to research in ultraviolet photobiology, 1967, http://agris.fao.org/agris-search/search.do?recordID=US201300594501 [accessed on 29 April 2020].
  • 61.Mbonimpa E. G., Blatchley E. R., Applegate B., Harper W. F. Ultraviolet A and B wavelength-dependent inactivation of viruses and bacteria in the water. J. Water Health. 2018;16:796–806. doi: 10.2166/wh.2018.071. [DOI] [PubMed] [Google Scholar]
  • 62.Mohr H., Gravemann U., Müller T. H. Inactivation of pathogens in single units of therapeutic fresh plasma by irradiation with ultraviolet light. Transfusion. 2009;49:2144–2151. doi: 10.1111/j.1537-2995.2009.02234.x. [DOI] [PubMed] [Google Scholar]
  • 63.Andrady A. L., Hamid H. S., Torikai A. Effects of climate change and UV-B on materials. Photochem. Photobiol. Sci. 2003;2:68–72. doi: 10.1039/b211085g. [DOI] [PubMed] [Google Scholar]
  • 64.Andrady A. L., Pandey K. K., Heikkilä A. M. Interactive effects of solar UV radiation and climate change on material damage. Photochem. Photobiol. Sci. 2019;18:804–825. doi: 10.1039/C8PP90065E. [DOI] [PubMed] [Google Scholar]
  • 65.Andrady A. L., Hamid S. H., Hu X., Torikai A. Effects of increased solar ultraviolet radiation on materials. J. Photochem. Photobiol., B. 1998;46:96–103. doi: 10.1016/S1011-1344(98)00188-2. [DOI] [PubMed] [Google Scholar]
  • 66.Mbonimpa E. G., Vadheim B., Blatchley E. R. Continuous-flow solar UVB disinfection reactor for drinking water. Water Res. 2012;46:2344–2354. doi: 10.1016/j.watres.2012.02.003. [DOI] [PubMed] [Google Scholar]
  • 67.McGuigan K. G., Conroy R. M., Mosler H.-J., et al. Solar water disinfection (SODIS): a review from bench-top to roof-top. J. Hazard. Mater. 2012;235–236:29–46. doi: 10.1016/j.jhazmat.2012.07.053. [DOI] [PubMed] [Google Scholar]
  • 68.Wegelin M., Canonica S., Mechsner K., et al. Solar water disinfection: scope of the process and analysis of radiation experiments. Aqua. 1994;43:154–169. [Google Scholar]
  • 69.Hashimoto A., Mawatari K., Kinouchi Y., et al. Inactivation of MS2 Phage and Cryptosporidium parvum Oocysts Using UV-A from High-Intensity Light-Emitting Diode for Water Disinfection. J. Water Environ. Technol. 2013;11:299–307. doi: 10.2965/jwet.2013.299. [DOI] [Google Scholar]
  • 70.Lin T.-H., Tang F.-C., Hung P.-C., et al. Relative survival of Bacillus subtilis spores loaded on filtering facepiece respirators after five decontamination methods. Indoor Air. 2018;28:754–762. doi: 10.1111/ina.12475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Aihara M., Lian X., Shimohata T., et al. Vegetable surface sterilization system using UVA light-emitting diodes. J. Med. Invest. 2014;61:285–290. doi: 10.2152/jmi.61.285. [DOI] [PubMed] [Google Scholar]
  • 72.Tomb R. M., Maclean M., Herron P. R., et al. Inactivation of Streptomyces phage ϕC31 by 405 nm light: Requirement for exogenous photosensitizers? Bacteriophage. 2014;4:e32129. doi: 10.4161/bact.32129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Tomb R. M., White T. A., Coia J. E., et al. Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380–480 nm Violet-Blue Light. Photochem. Photobiol. 2018;94:445–458. doi: 10.1111/php.12883. [DOI] [PubMed] [Google Scholar]
  • 74.Wang Y., Wang Y., Wang Y., et al. Antimicrobial blue light inactivation of pathogenic microbes: state of the art. Drug Resist. Updates. 2017;33–35:1–22. doi: 10.1016/j.drup.2017.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Cieplik F., Späth A., Leibl C., et al. Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers. Clin. Oral Invest. 2014;18:1763–1769. doi: 10.1007/s00784-013-1151-8. [DOI] [PubMed] [Google Scholar]
  • 76.Maclean M., MacGregor S. J., Anderson J. G., Woolsey G. Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl. Environ. Microbiol. 2009;75:1932–1937. doi: 10.1128/AEM.01892-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Hamblin M. R., Viveiros J., Yang C., et al. Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light. Antimicrob. Agents Chemother. 2005;49:2822–2827. doi: 10.1128/AAC.49.7.2822-2827.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Dai T., Gupta A., Murray C. K., et al. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist. 2012;15:223–236. doi: 10.1016/j.drup.2012.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Dai T., Hamblin M. R. Visible Blue Light is Capable of Inactivating Candida albicans and Other Fungal Species. Photomed. Laser Surg. 2017;35:345–346. doi: 10.1089/pho.2017.4318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Tomb R. M., Maclean M., Coia J. E., et al. New Proof-of-Concept in Viral Inactivation: Virucidal Efficacy of 405 nm Light Against Feline Calicivirus as a Model for Norovirus Decontamination. Food Environ. Virol. 2017;9:159–167. doi: 10.1007/s12560-016-9275-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Mahmoud B. H., Hexsel C. L., Hamzavi I. H., Lim H. W. Effects of visible light on the skin. Photochem. Photobiol. 2008;84:450–462. doi: 10.1111/j.1751-1097.2007.00286.x. [DOI] [PubMed] [Google Scholar]
  • 82.Narla S., Kohli I., Hamzavi I. H., Lim H. W. Visible light in photodermatology. Photochem. Photobiol. Sci. 2020;19:99–104. doi: 10.1039/C9PP00425D. [DOI] [PubMed] [Google Scholar]
  • 83.Schieke S. M., Schroeder P., Krutmann J. Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms. Photodermatol., Photoimmunol. Photomed. 2003;19:228–234. doi: 10.1034/j.1600-0781.2003.00054.x. [DOI] [PubMed] [Google Scholar]
  • 84.Mata-Portuguez V. H., Pérez L. S., Acosta-Gío E. Sterilization of Heat-Resistant Instruments With Infrared Radiation. Infect. Control Hosp. Epidemiol. 2002;23:393–396. doi: 10.1086/502072. [DOI] [PubMed] [Google Scholar]
  • 85.Aboud S. A., Altemimi A. B., Al-HiIphy A. R. S., et al. A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules. 2019;24:4125. doi: 10.3390/molecules24224125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Damit B., Lee C., Wu C.-Y. Flash infrared radiation disinfection of fibrous filters contaminated with bioaerosols. J. Appl. Microbiol. 2011;110:1074–1084. doi: 10.1111/j.1365-2672.2011.04965.x. [DOI] [PubMed] [Google Scholar]
  • 87.Holzer A. M., Athar M., Elmets C. A. The Other End of the Rainbow: Infrared and Skin. J. Invest. Dermatol. 2010;130:1496–1499. doi: 10.1038/jid.2010.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Diffey B. L. What is light? Photodermatol., Photoimmunol. Photomed. 2002;18:68–74. doi: 10.1034/j.1600-0781.2002.180203.x. [DOI] [PubMed] [Google Scholar]

Articles from Photochemical & Photobiological Sciences are provided here courtesy of Nature Publishing Group

RESOURCES