Abstract
The effect of low-level laser therapy (LLLT) on an experimental model of ventilator-induced lung injury (VILI) was evaluated in this study. 24 adult Wistar rats were randomized into four groups: protective mechanical ventilation (PMV), PMV + laser, VILI and VILI + laser. The animals of the PMV and VILI groups were ventilated with tidal volumes of 6 and 35 ml kg−1, respectively, for 90 minutes. After the first 60 minutes of ventilation, the animals in the laser groups were irradiated (808 nm, 100 mW power density, 20 J cm−2 energy density, continuous emission mode, and exposure time of 5 s) and after 30 minutes of irradiation, the animals were euthanized. Lung samples were removed for morphological analysis, bronchoalveolar lavage (BAL) and real time quantitative polynucleotide chain reaction (RT-qPCR). The VILI group showed a greater acute lung injury (ALI) score with an increase in neutrophil infiltration, higher neutrophil count in the BAL fluid and greater cytokine mRNA expression compared to the PMV groups (p < 0.05). The VILI ± laser group when compared to the VILI group showed a lower ALI score (0.35 ± 0.08 vs. 0.54 ± 0.13, p < 0.05), alveolar neutrophil infiltration (7.00 ± 5.73 vs. 21.50 ± 9.52, p < 0.05), total cell count (1.90 ± 0.71 vs. 4.09 ± 0.96 × 105, p < 0.05) and neutrophil count in the BAL fluid (0.60 ± 0.37 vs. 2.28 ± 0.48 × 105, p < 0.05). Moreover, LLLT induced a decrease in pro-inflammatory and an increase of anti-inflammatory mRNA levels compared to the VILI group (p < 0.05). In conclusion, LLLT was found to reduce the inflammatory response in an experimental model of VILI.
References
- 1.Slutsky A. S., Ranieri V. M. Ventilator-induced lung injury. N. Engl. J. Med. 2013;369(22):2126–2136. doi: 10.1056/NEJMra1208707. [DOI] [PubMed] [Google Scholar]
- 2.Curley G. F., Laffey J. G., Zhang H., Slutsky A. S. Biotrauma and ventilator-induced lung injury: Clinical Implications. Chest. 2016;150(5):1109–1117. doi: 10.1016/j.chest.2016.07.019. [DOI] [PubMed] [Google Scholar]
- 3.Vasques F., Duscio E., Cipulli F., Romitti F., Quintel M., Gattinoni L. Determinants and prevention of ventilatorinduced lung injury. Crit. Care Clin. 2018;34(3):343–356. doi: 10.1016/j.ccc.2018.03.004. [DOI] [PubMed] [Google Scholar]
- 4.Amato M. B., Barbas C. S., Medeiros D. M., Magaldi R. B., Schettino G. P., Lorenzi-Filho G., Kairalla R. A., Deheinzelin D., Munoz C., Oliveira R., Takagaki T. Y., Carvalho C. R. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N. Engl. J. Med. 1998;338(6):347–354. doi: 10.1056/NEJM199802053380602. [DOI] [PubMed] [Google Scholar]
- 5.Brower R. G., Matthay M. A., Morris A., Schoenfeld D., Thompson B. T., Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801. [DOI] [PubMed] [Google Scholar]
- 6.Amato M. B., Meade M. O., Slutsky A. S., Brochard L., Costa E. L., Schoenfeld D. A., Stewart T. E., Briel M., Talmor D., Mercat A., Richard J. C., Carvalho C. R., Brower R. G. Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 2015;372(8):747–755. doi: 10.1056/NEJMsa1410639. [DOI] [PubMed] [Google Scholar]
- 7.Hoegl S., Boost K. A., Czerwonka H., Dolfen A., Scheiermann P., Muhl H., Zwissler B., Hofstetter C. Inhaled IL-10 reduces biotrauma and mortality in a model of ventilator-induced lung injury. Respir. Med. 2009;103(3):463–470. doi: 10.1016/j.rmed.2008.09.020. [DOI] [PubMed] [Google Scholar]
- 8.Guery B. P., Welsh D. A., Viget N. B., Robriquet L., Fialdes P., Mason C. M., Beaucaire G., Bagby G. J., Neviere R. Ventilation-induced lung injury is associated with an increase in gut permeability. Shock. 2003;19(6):559–563. doi: 10.1097/01.shk.0000070738.34700.bf. [DOI] [PubMed] [Google Scholar]
- 9.Uhlig S., Uhlig U. Pharmacological interventions in ventilator-induced lung injury. Trends Pharmacol. Sci. 2004;25(11):592–600. doi: 10.1016/j.tips.2004.09.002. [DOI] [PubMed] [Google Scholar]
- 10.Reis F. F., Reboredo M. M., Lucinda L. M., Branchi A. M., Rabelo M. A., Fonseca L. M., Oliveira J. C., Pinheiro B. V. Pre-treatment with dexamethasone attenuates experimental ventilator-induced lung injury. J. Bras. Pneumol. 2016;42(3):166–173. doi: 10.1590/S1806-37562015000000350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Oliveira M. C., Jr., Greiffo F. R., Rigonato-Oliveira N. C., Custódio R. W., Silva V. R., Damaceno-Rodrigues N. R., Almeida F. M., Albertini R., Lopes-Martins R. Á., de Oliveira L. V., de Carvalho P. T., Ligeiro de Oliveira A. P., Leal E. C., Vieira R. P. Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS. J. Photochem. Photobiol., B. 2014;134:57–63. doi: 10.1016/j.jphotobiol.2014.03.021. [DOI] [PubMed] [Google Scholar]
- 12.Cury V., de Lima T. M., Prado C. M., Pinheiro N., Ariga S. K., Barbeiro D. F., Moretti A. I., Souza H. P. Low level laser therapy reduces acute lung inflammation without impairing lung function. J. Biophotonics. 2016;9(11–12):1199. doi: 10.1002/jbio.201500113. [DOI] [PubMed] [Google Scholar]
- 13.de Lima F. M., Albertini R., Dantas Y., Maia-Filho A. L., de Santana C. L., Castro-Faria-Neto H. C., França C., Villaverde A. B., Aimbire F. Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem. Photobiol. 2013;89(1):179–188. doi: 10.1111/j.1751-1097.2012.01214.x. [DOI] [PubMed] [Google Scholar]
- 14.de Lima F. M., Aimbire F., Miranda H., Vieira R. P., de Oliveira A. P., Albertini R. Low-level laser therapy attenuates the myeloperoxidase activity and inflammatory mediator generation in lung inflammation induced by gut ischemia and reperfusion: a dose-response study. J. Lasers Med. Sci. 2014;5(2):63–70. [PMC free article] [PubMed] [Google Scholar]
- 15.da Silva Sergio L. P., Thomé A. M. C., da Silva Neto Trajano L. A., Vicentini S. C., Teixeira A. F., Mencalha A. L., de Paoli F., de Souza da Fonseca A. Low-power laser alters mRNA levels from DNA repair genes in acute lung injury induced by sepsis in Wistar rats. Lasers Med. Sci. 2019;34(1):157–168. doi: 10.1007/s10103-018-2656-9. [DOI] [PubMed] [Google Scholar]
- 16.Sérgio L. P. D., Thomé A. M. C., Trajano L. A. S. N., Mencalha A. L., da Fonseca A. S., de Paoli F. Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury. Photochem. Photobiol. Sci. 2018;17(7):975–983. doi: 10.1039/C8PP00109J. [DOI] [PubMed] [Google Scholar]
- 17.de Lima F. M., Villaverde A. B., Albertini R., Corrêa J. C., Carvalho R. L., Munin E., Araújo T., Silva J. A., Aimbire F. Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: Action on anti- and pro-inflammatory cytokines. Lasers Surg. Med. 2011;43(5):410–420. doi: 10.1002/lsm.21053. [DOI] [PubMed] [Google Scholar]
- 18.da Silva M., Peres Leal M., Brochetti R. A., Braga T., Vitoretti L. B., Câmara N. O. S., Damazo A. S., Ligeirode-Oliveira A. P., Chavantes M. C., Lino-Dos-Santos-Franco A. Low level laser therapy reduces the development of lung inflammation induced by formaldehyde exposure. PLoS One. 2015;10(11):e0142816. doi: 10.1371/journal.pone.0142816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.de Lima F. M., Villaverde A. B., Salgado M. A., Castro-Faria-Neto H. C., Munin E., Albertini R., Aimbire F. Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. J. Photochem. Photobiol., B. 2010;101(3):271–278. doi: 10.1016/j.jphotobiol.2010.07.012. [DOI] [PubMed] [Google Scholar]
- 20.de Lima F. M., Vitoretti L., Coelho F., Albertini R., Breithaupt-Faloppa A. C., de Lima W. T., Aimbire F. Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med. Sci. 2013;28(2):551–564. doi: 10.1007/s10103-012-1088-1. [DOI] [PubMed] [Google Scholar]
- 21.Matute-Bello G., Downey G., Moore B. B., Groshong S. D., Matthay M. A., Slutsky A. S., Kuebler W. M. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell. Mol. Biol. 2011;44(5):725–738. doi: 10.1165/rcmb.2009-0210ST. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Dreyfuss D., Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am. J. Respir. Crit. Care Med. 1998;157(1):294–323. doi: 10.1164/ajrccm.157.1.9604014. [DOI] [PubMed] [Google Scholar]
- 23.Nin N., Lorente J. A., de Paula M., El Assar M., Vallejo S., Peñuelas O., Fernández-Segoviano P., Ferruelo A., Sánchez-Ferrer A., Esteban A. Rats surviving injurious mechanical ventilation show reversible pulmonary, vascular and inflammatory changes. Intensive Care Med. 2008;34(5):948–956. doi: 10.1007/s00134-007-0959-6. [DOI] [PubMed] [Google Scholar]
- 24.Ko Y. A., Yang M. C., Huang H. T., Hsu C. M., Chen L. W. NF-KB activation in myeloid cells mediates ventilator-induced lung injury. Respir. Res. 2013;14:69. doi: 10.1186/1465-9921-14-69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Lex D., Uhlig S. One-hit Models of Ventilator-induced lung injury: benign inflammation versus inflammation as a by-product. Anesthesiology. 2017;126(5):909–922. doi: 10.1097/ALN.0000000000001605. [DOI] [PubMed] [Google Scholar]
- 26.Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., Hauser C. J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–107. doi: 10.1038/nature08780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Rola P., Doroszko A., Derkacz A. The use of low-level energy laser radiation in basic and clinical research. Adv. Clin. Exp. Med. 2014;23(5):835–842. doi: 10.17219/acem/37263. [DOI] [PubMed] [Google Scholar]
- 28.de Freitas L. F., Hamblin M. R. Proposed mechanisms of Photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 2016;22(3):7000417. doi: 10.1109/JSTQE.2016.2561201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Hudson D. E., Hudson D. O., Wininger J. M., Richardson B. D. Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed. Laser Surg. 2013;31(4):163–168. doi: 10.1089/pho.2012.3284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Karu T. I. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem. Photobiol. 2008;84(5):1091–1099. doi: 10.1111/j.1751-1097.2008.00394.x. [DOI] [PubMed] [Google Scholar]
- 31.Karu T. Cellular and molecular mechanisms of photobiomodulation (Low-Power Laser Therapy) IEEE J. Sel. Top. Quantum Electron. 2014;20(2):143–148. doi: 10.1109/JSTQE.2013.2273411. [DOI] [Google Scholar]
- 32.Wu S., Xing D. Intracellular signaling cascades following light irradiation. Laser Photonics Rev. 2014;8:115–130. doi: 10.1002/lpor.201300015. [DOI] [Google Scholar]
- 33.Calles C., Schneider M., Macaluso F., Benesova T., Krutmann J., Schroeder P. Infrared a radiation influences the skin fibroblast transcriptome: mechanisms and consequences. J. Invest. Dermatol. 2010;130(6):1524–1536. doi: 10.1038/jid.2010.9. [DOI] [PubMed] [Google Scholar]
- 34.De Filippo K., Dudeck A., Hasenberg M., Nye E., van Rooijen N., Hartmann K., Gunzer M., Roers A., Hogg N. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood. 2013;121(24):4930–4937. doi: 10.1182/blood-2013-02-486217. [DOI] [PubMed] [Google Scholar]
- 35.Fukuda T. Y., Tanji M. M., Silva S. R., Sato M. N., Plapler H. Infrared low-level diode laser on inflammatory process modulation in mice: pro- and anti-inflammatory cytokines. Lasers Med. Sci. 2013;28(5):1305–1313. doi: 10.1007/s10103-012-1231-z. [DOI] [PubMed] [Google Scholar]
- 36.Gong M. N., Thompson B. T., Williams P. L., Zhou W., Wang M. Z., Pothier L., Christiani D. C. Interleukin-10 polymorphism in position -1082 and acute respiratory distress syndrome. Eur. Respir. J. 2006;27(4):674–681. doi: 10.1183/09031936.06.00046405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Oberholzer A., Oberholzer C., Moldawer L. L. Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Crit. Care Med. 2002;30(1):S58–S63. doi: 10.1097/00003246-200201001-00008. [DOI] [PubMed] [Google Scholar]
- 38.Schaffer M., Bonel H., Sroka R., Schaffer P. M., Busch M., Reiser M., Dühmke E. Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary findings on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI) J. Photochem. Photobiol., B. 2000;54(1):55–60. doi: 10.1016/S1011-1344(99)00155-4. [DOI] [PubMed] [Google Scholar]
- 39.Mirsky N., Krispel Y., Shoshany Y., Maltz L., Oron U. Promotion of angiogenesis by low energy laser irradiation. Antioxid. Redox Signal. 2002;4(5):785–790. doi: 10.1089/152308602760598936. [DOI] [PubMed] [Google Scholar]
- 40.de Lima F. M., Villaverde A. B., Albertini R., de Oliveira A. P. L., Neto H. C. C. F., Aimbire F. Low-level laser therapy associated to n-acetylcysteine lowers macrophage inflammatory protein-2 (MIP-2) mRNA expression and generation of intracellular reactive oxygen species in alveolar macrophages. Photomed. Laser Surg. 2010;28(6):763–771. doi: 10.1089/pho.2009.2638. [DOI] [PubMed] [Google Scholar]
- 41.Dang P. M., Elbim C., Marie J., Chiandotto M., Gougerot-Pocidalo M., El-Benna J. Anti-inflammatory Effect of interleukin-10 on human neutrophil respiratory burst involves inhibition of GM-CSF-induced p47PHOX phosphorylation through a decrease in ERK1/2 activity. FASEB J. 2006;20(9):1504–1506. doi: 10.1096/fj.05-5395fje. [DOI] [PubMed] [Google Scholar]
- 42.Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol., B. 1999;49(1):1–17. doi: 10.1016/S1011-1344(98)00219-X. [DOI] [PubMed] [Google Scholar]