Abstract
Recently, Multi-Robot Systems (MRS) have attained considerable recognition because of their efficiency and applicability in different types of real-life applications. This paper provides a comprehensive research study on MRS coordination, starting with the basic terminology, categorization, application domains, and finally, give a summary and insights on the proposed coordination approaches for each application domain. We have done an extensive study on recent contributions in this research area in order to identify the strengths, limitations, and open research issues, and also highlighted the scope for future research. Further, we have examined a series of MRS state-of-the-art parameters that affect MRS coordination and, thus, the efficiency of MRS, like communication mechanism, planning strategy, control architecture, scalability, and decision-making. We have proposed a new taxonomy to classify various coordination approaches of MRS based on the six broad dimensions. We have also analyzed that how coordination can be achieved and improved in two fundamental problems, i.e., multi-robot motion planning, and task planning, and in various application domains of MRS such as exploration, object transport, target tracking, etc.
Keywords: Multi-robot system, Coordination, Cooperation, Multi-robot task planning, Multi-robot motion planning, Exploration and mapping, Object transport and manipulation, Target observation
Acknowledgments
Availability of Data and Material
No such data.
Code Availability
No software application and custom code is used.
Biographies
Janardan Kumar Verma
received M.Tech degree in Computer Engineering in 2014 from National Institute of Technology, Kurukshetra, India. Currently he is pursuing Ph.D. at the Department of Computer Engineering, National Institute of Technology, Kurukshetra, India. His current research interests include Mobile Sensor Networks, Multi-robot System, Autonomous vehicles, and Artificial Intelligence.
Virender Ranga
has received his Ph.D. degree in 2016 from Computer Engineering Department of National Institute of Technology, Kurukshetra, Haryana, India. Presently, he is Assistant Professor (Grade-I) in the Computer Engineering Department since 2008. He has been conferred by Young Faculty Award in 2016 for his excellent contributions in the field of Computer Communications. He is an active reviewer of many reputed journals of IEEE, Springer, Elsevier, Talyor & Francis, Wiley and InderScience. His research area includes Wireless Sensor and Adhoc Networks, IoT, Network Partition Recovery.
Authors’ Contributions
Janardan Kumar Verma performed the literature search, analysis, and wrote the manuscript under the supervision of Virender Ranga, who had the idea for the article and revised the work.
Funding
This work is supported by University Grant Commission, Government of India [grant number 3525/(OBC)(NET-NOV 2017)].
Declarations
Competing Interests
The authors have no financial or proprietary interests in any material discussed in this article.
Ethics Approval
Not applicable.
Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Footnotes
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Janardan Kumar Verma, Email: janardan18@gmail.com.
Virender Ranga, Email: virender.ranga@nitkkr.ac.in.
References
- 1.Veloso MM, Nardi D. Special issue on multirobot systems. Proc. IEEE. 2006;94(7):1253–1253. doi: 10.1109/JPROC.2006.877080. [DOI] [Google Scholar]
- 2.Parker, L.E.: Distributed intelligence: overview of the field and its application in multi-robot systems. J. Phys. Agents. 2(1), (2008)
- 3.A. Desai, I. Saha, J. Yang, S. Qadeer, and S. A. Seshia: DRONA: A framework for safe distributed mobile robotics, in Proceedings - 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems, ICCPS 2017 (part of CPS Week), (2017), pp. 239–248
- 4.Gavran, I., Majumdar, R., Saha, I.: Antlab: A multi-robot task server. ACM Transactions on Embedded Computing Systems. 16(5s), (2017)
- 5.Schillinger P, Bürger M, Dimarogonas DV. Simultaneous task allocation and planning for temporal logic goals in heterogeneous multi-robot systems. Int. J. Rob. Res. 2018;37(7):818–838. doi: 10.1177/0278364918774135. [DOI] [Google Scholar]
- 6.Mataric, M.J.: Interaction and intelligent behavior. Massachusetts Institute of Technology (1994)
- 7.Matarić MJ. Designing and understanding adaptive group behavior. Adapt. Behav. 1996;4(1):51–80. doi: 10.1177/105971239500400104. [DOI] [Google Scholar]
- 8.L. E. Parker: Multiple mobile robot systems, in Springer Handbook of Robotics, Berlin, Heidelberg: Springer Berlin Heidelberg, (2008), pp. 921–941
- 9.Howard A, Parker LE, Sukhatme GS. Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection. Int. J. Rob. Res. 2006;25(5–6):431–447. doi: 10.1177/0278364906065378. [DOI] [Google Scholar]
- 10.S. Gustafson and D. A. Gustafson, “Issues in the scaling of multi-robot systems for general problem solving,” in Autonomous Robots, 2006, vol. 20, no. 2, pp. 125–136
- 11.Arai T, Pagello E, Parker LE. Guest editorial advances in multirobot systems. IEEE Trans. Robot. Autom. 2002;18(5):655–661. doi: 10.1109/TRA.2002.806024. [DOI] [Google Scholar]
- 12.Chaudhury A, Deng PS, Rathnam S. A computational model of coordination. IEEE Trans. Syst. Man, Cybern. Part A Systems Humans. 1996;26(1):132–141. doi: 10.1109/3468.477868. [DOI] [Google Scholar]
- 13.López J, Pérez D, Zalama E. A framework for building mobile single and multi-robot applications. Rob. Auton. Syst. 2011;59(3–4):151–162. doi: 10.1016/j.robot.2011.01.004. [DOI] [Google Scholar]
- 14.Lee D. Passive decomposition and control of nonholonomic mechanical systems. IEEE Trans. Robot. 2010;26(6):978–992. doi: 10.1109/TRO.2010.2082430. [DOI] [Google Scholar]
- 15.Dudek G, Jenkin MRM, Milios E, Wilkes D. A taxonomy for multi-agent robotics. Auton. Robots. 1996;3(4):375–397. doi: 10.1007/BF00240651. [DOI] [Google Scholar]
- 16.Cao YU, Fukunaga AS, Kahng AB. Cooperative mobile robotics: antecedents and directions. Auton. Robots. 1997;4(1):7–27. doi: 10.1023/A:1008855018923. [DOI] [Google Scholar]
- 17.Stone P, Veloso M. Multiagent systems: a survey from a machine learning perspective. Auton. Robots. 2000;8(3):345–383. doi: 10.1023/A:1008942012299. [DOI] [Google Scholar]
- 18.Zhang XM, et al. Networked control systems: A survey of trends and techniques. IEEE/CAA J. Autom. Sin. 2020;7(1):1–17. [Google Scholar]
- 19.Matarić MJ. Issues and approaches in the design of collective autonomous agents. Rob. Auton. Syst. 1995;16(2–4):321–331. doi: 10.1016/0921-8890(95)00053-4. [DOI] [Google Scholar]
- 20.Wang Z, Tianfield H, Jiang P. A framework for coordination in multi-robot systems. IEEE Int. Conf. Ind. Informatics. 2003;2003:483–489. doi: 10.1109/INDIN.2003.1300383. [DOI] [Google Scholar]
- 21.Rizk Y, Awad M, Tunstel EW. Cooperative heterogeneous multi-robot systems. ACM Comput. Surv. 2019;52(2):1–31. doi: 10.1145/3303848. [DOI] [Google Scholar]
- 22.R. Doriya, S. Mishra, and S. Gupta: A brief survey and analysis of multi-robot communication and coordination, in International Conference on Computing, Communication and Automation, ICCCA 2015, (2015), pp. 1014–1021
- 23.Iocchi L, Nardi D, Salerno M. Reactivity and deliberation: a survey on multi-robot systems. Berlin, Heidelberg: Springer; 2001. pp. 9–32. [Google Scholar]
- 24.Gerkey BP, Matarić MJ. A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Rob. Res. 2004;23(9):939–954. doi: 10.1177/0278364904045564. [DOI] [Google Scholar]
- 25.Ota J. Multi-agent robot systems as distributed autonomous systems. Adv. Eng. Informatics. 2006;20(1):59–70. doi: 10.1016/j.aei.2005.06.002. [DOI] [Google Scholar]
- 26.Cortes J, Egerstedt M. Coordinated control of multi-robot systems: a survey. SICE J. Control. Meas. Syst. Integr. 2017;10(6):495–503. doi: 10.9746/jcmsi.10.495. [DOI] [Google Scholar]
- 27.Z. Hilmi Ismail and N. Sariff: A survey and analysis of cooperative multi-agent robot systems: challenges and directions, in Applications of Mobile Robots, IntechOpen, (2019)
- 28.Yan Z, Jouandeau N, Cherif AA. A survey and analysis of multi-robot coordination. Int. J. Adv. Robot. Syst. 2013;10(12):399. doi: 10.5772/57313. [DOI] [Google Scholar]
- 29.Cai Y, Yang SX. A survey on multi-robot systems. World Automation Congress. 2012;2012:1–6. [Google Scholar]
- 30.Arai, T., Pagello, E., Parker, L.E.: Advances in multi-robot systems. 18(5), 655–661 (2002)
- 31.A. Farinelli, L. Iocchi, and D. Nardi: An analysis of coordination in multi-robot systems, SMC ‘03 Proc. 2003 IEEE Int. Conf. Syst. Man Cybern., pp. 1487–1492, (2003)
- 32.W. Kowalczyk: Multi-robot coordination, in Proceedings of the Second International Workshop on Robot Motion and Control. RoMoCo’01 (IEEE Cat. No.01EX535), pp. 219–223 (2001)
- 33.Farinelli A, Iocchi L, Nardi D, Multirobot A. Multirobot systems: a classification focused on coordination. IEEE Trans. Syst. Man Cybern. Part B. 2004;34(5):2015–2028. doi: 10.1109/TSMCB.2004.832155. [DOI] [PubMed] [Google Scholar]
- 34.Yan D, Wang J, Liu L, Gao J. Target tracking based on cluster and game theory in wireless sensor network. IET Conf. Publ. 2008;545 CP:45–48. [Google Scholar]
- 35.Todt E, Raush G, Suárez R. Analysis and classification of multiple robot coordination methods. Proceedings-IEEE Int. Conf. Robot. Autom. 2000;4(April):3158–3163. [Google Scholar]
- 36.Industrial Automation Opportunity Seen In Coronavirus Crisis | Investor’s Business Daily. [Online]. Available: https://www.investors.com/news/technology/industrial-automation-opportunity-seen-coronavirus-crisis/. [Accessed: 12-Aug-2020]
- 37.Amazon now has 200,000 robots working in its warehouses. [Online]. Available: https://roboticsandautomationnews.com/2020/01/21/amazon-now-has-200000-robots-working-in-its-warehouses/28840/. [Accessed: 12-Aug-2020]
- 38.Logistics companies turning to robotics and automation as way out of coronavirus crisis. [Online]. Available: https://roboticsandautomationnews.com/2020/08/12/logistics-companies-turning-to-robotics-and-automation-as-way-out-of-coronavirus-crisis/35041/. [Accessed: 12-Aug-2020]
- 39.Kube CR, Bonabeau E. Cooperative transport by ants and robots. Rob. Auton. Syst. 2000;30(1–2):85–101. doi: 10.1016/S0921-8890(99)00066-4. [DOI] [Google Scholar]
- 40.Yang X, Watanabe K, Kiguchi K, Izumi K. Distributed Autonomous Robotic Systems 5. Tokyo: Springer Japan; 2002. Coordinated transportation of a single object by a group of nonholonomic mobile robots; pp. 175–184. [Google Scholar]
- 41.Takeda H, Hirata Y, Wang Z-D, Kosuge K. Distributed Autonomous Robotic Systems 5. Tokyo: Springer Japan; 2002. Collision avoidance algorithm for two tracked mobile robots transporting a single object in coordination based on function allocation concept; pp. 155–164. [Google Scholar]
- 42.Kube CR, Zhang H, Wang X. Controlling collective tasks with an ALN. Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ‘93) 1993;1:289–293. [Google Scholar]
- 43.Chantemargue, F., Hirsbrunner, B.: A collective robotics application based on emergence and self-organization. Proc. Fifth Int. Conf. Young Comput. Sci. 1–8 (1999)
- 44.Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. 22(3), 52–67 (2002)
- 45.Brueckner S, Parunak HVD. Proc. 2nd {DARPA-JFACC} Symposium on Advances in Enterprise Control. 2000. Multiple pheromones for improved guidance. [Google Scholar]
- 46.D. Goldberg and M. J. Mataric: Design and evaluation of robust behavior-based controllers for distributed multi-robot collection tasks, in Robot Teams: From Diversity to Polymorphism, A K Peters Ltd, pp. 315-344 (2001)
- 47.Balch T, Boone G, Collins T, Forbes H, MacKenzie D, Santamar JC. A multiagent robot trash-collecting team. AI Mag. 1995;16(2):39–39. [Google Scholar]
- 48.Alami, R., Robert, F., Ingrand, F., Suzuki, S.: Multi-robot cooperation through incremental plan-merging. Proceedings of 1995 IEEE International Conference on Robotics and Automation, 1995. 3, 2573–2579
- 49.Cap M, Novak P, Kleiner A, Selecky M. Prioritized planning algorithms for trajectory coordination of multiple mobile robots. IEEE Trans. Autom. Sci. Eng. 2015;12(3):835–849. doi: 10.1109/TASE.2015.2445780. [DOI] [Google Scholar]
- 50.M. T. Khan and C. W. de Silva: Autonomous fault tolerant multi-robot cooperation using artificial immune system, in 2008 IEEE International Conference on Automation and Logistics, no. September, pp. 623–628 (2008)
- 51.Liu Y, Yang J, Zheng Y, Wu Z, Yao M. Multi-robot coordination in complex environment with task and communication constraints. Int. J. Adv. Robot. Syst. 2013;10(5):229. doi: 10.5772/54379. [DOI] [Google Scholar]
- 52.H. Sugiyama, T. Tsujioka, and M. Murata: Coordination of rescue robots for real-time exploration over disaster areas, in 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pp. 170–177 (2008)
- 53.Russell, S.J., Norvig, P.: Artificial intelligence : a modern approach. Malaysia; Pearson Education Limited. (2016)
- 54.D. Popenoe, Sociology. Prentice Hall, (2000)
- 55.Chai R, Su J. Motion planning for multi-robot coordination. IFAC Proc. Vol. 2013;46(13):129–134. doi: 10.3182/20130708-3-CN-2036.00063. [DOI] [Google Scholar]
- 56.Tuci E, Ampatzis C, Vicentini F, Dorigo M. Evolving homogeneous neurocontrollers for a group of heterogeneous robots: Coordinated motion, cooperation, and acoustic communication. Artif. Life. 2008;14(2):157–178. doi: 10.1162/artl.2008.14.2.157. [DOI] [PubMed] [Google Scholar]
- 57.Al-Jarrah R, Shahzad A, Roth H. Path planning and motion coordination for multi-robots system using probabilistic neuro-fuzzy. IFAC-PapersOnLine. 2015;28(10):46–51. doi: 10.1016/j.ifacol.2015.08.106. [DOI] [Google Scholar]
- 58.S. Nurmaini and B. Tutuko: Motion coordination for swarm robots, Proc. - 2014 Int. Conf. ICT Smart Soc. Smart Syst. Platf. Dev. City Soc. GoeSmart, ICISS, pp. 312–315, (2014)
- 59.Su J, Xie W. Motion planning and coordination for robot systems based on representation space. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 2011;41(1):248–259. doi: 10.1109/TSMCB.2010.2051025. [DOI] [PubMed] [Google Scholar]
- 60.Guo Y, Parker LE. A distributed and optimal motion planning approach for multiple mobile robots. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292) 2003;3:2612–2619. doi: 10.1109/ROBOT.2002.1013625. [DOI] [Google Scholar]
- 61.Zlot R, Stentz A, Dias MB, Thayer S. Multi-robot exploration controlled by a market economy. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292) 2003;3:3016–3023. doi: 10.1109/ROBOT.2002.1013690. [DOI] [Google Scholar]
- 62.Sheng W, Yang Q, Ci S, Xi N. Multi-robot area exploration with limited-range communications. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566) 2005;2:1414–1419. doi: 10.1109/IROS.2004.1389594. [DOI] [Google Scholar]
- 63.Wu L, Garcia MA, Puig D, Sole A. Voronoi-based space partitioning for coordinated multi-robot exploration. J. Phys. Agents. 2007;1(1):37–44. [Google Scholar]
- 64.Haumann AD, Listmann KD, Willert V. Proceedings - IEEE International Conference on Robotics and Automation. 2010. DisCoverage: A new paradigm for multi-robot exploration. [Google Scholar]
- 65.Cowley A, Taylor CJ, Southall B. Proceedings - IEEE International Conference on Robotics and Automation. 2011. Rapid multi-robot exploration with topometric maps. [Google Scholar]
- 66.Z. Yan, N. Jouandeau, and A. A. Cherif: Multi-robot decentralized exploration using a trade-based approach, in 8th International Conference on Informatics in Control, Automation and Robotics, pp. 99–105 (2011)
- 67.Beard RW, McLain TW, Goodrich MA, Anderson EP. Coordinated target assignment and intercept for unmanned air vehicles. IEEE Trans. Robot. Autom. 2002;18(6):911–922. doi: 10.1109/TRA.2002.805653. [DOI] [Google Scholar]
- 68.Brooks RR, Ramanathan P, Sayeed AM. Distributed target classification and tracking in sensor networks. Proc. IEEE. 2003;91(8):1163–1171. doi: 10.1109/JPROC.2003.814923. [DOI] [Google Scholar]
- 69.B. B. Werger and M. J. Matarić: Broadcast of local eligibility for multi-target observation, in Distributed autonomous robotic systems 4, Tokyo: Springer Japan, pp. 347–356 (2000)
- 70.Liu A, Zhao S. High-performance target tracking scheme with low prediction precision requirement in WSNs. Int. J. Ad Hoc Ubiquitous Comput. 2018;29(4):270–289. doi: 10.1504/IJAHUC.2018.096081. [DOI] [Google Scholar]
- 71.P. Pirjanian and M. Mataric: Multi-robot target acquisition using multiple objective behavior coordination, in IEEE International Conference on Robotics and Automation. Proceedings. ICRA ‘00., no. April, pp. 2696–2702 (2000)
- 72.Wawerla J, Vaughan RT. Proceedings - IEEE International Conference on Robotics and Automation. 2010. A fast and frugal method for team-task allocation in a multi-robot transportation system. [Google Scholar]
- 73.Z. Yan, N. Jouandeau, and A. Ali-Cherif: Multi-robot heuristic goods transportation,” in 2012 6th IEEE International Conference Intelligent Systems, pp. 409–414 (2012)
- 74.M. T. Khan and C. W. de Silva: Autonomous fault tolerant multi-robot coordination for object transportation based on artificial immune system, in Proceedings of the 2nd International Conference on Robotic Communication and Coordination, pp. 1–6 (2009)
- 75.Kube CR, Bonabeau E. Cooperative transport by ants and robots. Rob. Auton. Syst. 2000;30(1–2):85–101. doi: 10.1016/S0921-8890(99)00066-4. [DOI] [Google Scholar]
- 76.Ferri G, Ferreira F, Djapic V. Multi-domain robotics competitions: The CMRE experience from SAUC-E to the European Robotics League Emergency Robots. OCEANS 2017 - Aberdeen. 2017;2017:1–7. [Google Scholar]
- 77.Vail D, Veloso M. Dynamic multi-robot coordination. In Multi-Robot Systems: From Swarms To Intelligent Automata. 2003;II:87–100. [Google Scholar]
- 78.Mota L, Reis LP, Lau N. Multi-robot coordination using Setplays in the middle-size and simulation leagues. Mechatronics. 2011;21(2):434–444. doi: 10.1016/j.mechatronics.2010.05.005. [DOI] [Google Scholar]
- 79.Panagou D, Stipanovic DM, Voulgaris PG. Distributed coordination control for multi-robot networks using lyapunov-like barrier functions. IEEE Trans. Automat. Contr. 2016;61(3):617–632. doi: 10.1109/TAC.2015.2444131. [DOI] [Google Scholar]
- 80.H. Sugiyama, T. Tsujioka, and M. Murata: Coordination of rescue robots for real-time exploration over disaster areas, in 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), 2, pp. 170–177 (2008)
- 81.Iocchi L, Nardi D, Salerno M. Reactivity and deliberation: a survey on multi-robot systems. Berlin, Heidelberg: Springer; 2001. pp. 9–32. [Google Scholar]
- 82.J. A. Decastro, J. Alonso-Mora, V. Raman, D. Rus, and H. Kress-Gazit: Collision-free reactive mission and motion planning for multi-robot systems, in Robotics Research, Springer, Ed., pp. 459–476 (2018)
- 83.E. S. Yourdshahi, P. Angelov, L. S. Marcolino, and G. Tsianakas: Towards evolving cooperative mapping for large-scale UAV Teams, in 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2262–2269 (2018)
- 84.N. Majcherczyk, A. Jayabalan, G. Beltrame, and C. Pinciroli: Decentralized connectivity-preserving deployment of large-scale robot swarms, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4295–4302 (2018)
- 85.Konolige K, et al. Centibots: Very large scale distributed robotic teams. Springer Tracts Adv. Robot. 2006;21:131–140. doi: 10.1007/11552246_13. [DOI] [Google Scholar]
- 86.L. E. Parker: The effect of heterogeneity in teams of 100+ mobile robots, in MultiRobot Systems Volume II: From Swarms to Intelligent Automata, vol. II, Kluwer Academic Publishers, pp. 205–215 (2003)
- 87.Ferber, J.: Multi-agent systems : an introduction to distributed artificial intelligence. Addison-Wesley (1999)
- 88.S. Kato, S. Nishiyama, and J. Takeno: Coordinating mobile robots by applying traffic rules,” in Proceedings of IROS’92, pp. 1535–1541 (1992)
- 89.T. Arai and E. Yoshida: Design of local communication for cooperation in distributed mobile robot systems, in Proceedings of the International Symposium on Autonomous Decentralized Systems, pp. 238–246 (1997)
- 90.Dadgar M, Jafari S, Hamzeh A. A PSO-based multi-robot cooperation method for target searching in unknown environments. Neurocomputing. 2016;177:62–74. doi: 10.1016/j.neucom.2015.11.007. [DOI] [Google Scholar]
- 91.Tan J, Xi N, Sheng W, Xiao J. Modeling multiple robot systems for area coverage and cooperation. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ‘04. 2004;3(1):2568–2573. [Google Scholar]
- 92.Glorennec PY. Coordination between autonomous robots. Int. J. Approx. Reason. 1997;17(4):433–446. doi: 10.1016/S0888-613X(97)00004-2. [DOI] [Google Scholar]
- 93.Colby, M., Chung, J.J., Tumer, K.: Implicit adaptive multi-robot coordination in dynamic environments. IEEE Int. Conf. Intell. Robot. Syst. 5168–5173 (2015, 2015)
- 94.Evans KS, Ünsal C, Bay JS. A reactive coordination scheme for a many-robot system. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 1997;27(4):598–610. doi: 10.1109/3477.604102. [DOI] [PubMed] [Google Scholar]
- 95.C. Jones and M. J. Mataric: Towards a multi-robot coordination formalism, in 2nd International Workshop on the Mathematics and Algorithms of Social Insects, pp. 60–67 (2003)
- 96.Y. Lan: Multiple mobile robot cooperative target intercept with local coordination, in Proceedings of the 2012 24th Chinese Control and Decision Conference, CCDC 2012, 2012, pp. 145–151 (2012)
- 97.K. Xu and P. Song, “A coordination framework for weakly centralized mobile robot teams,” in The 2010 IEEE International Conference on Information and Automation, 2010, pp. 77–82
- 98.Kuyucu T, Tanev I, Shimohara K. Superadditive effect of multi-robot coordination in the exploration of unknown environments via stigmergy. Neurocomputing. 2015;148:83–90. doi: 10.1016/j.neucom.2012.07.062. [DOI] [Google Scholar]
- 99.Y. Hirata, K. Kosuge, H. Asama, H. Kaetsu, and K. Kawabata: Decentralized control of mobile robots in coordination, in Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328), vol. 2, pp. 1129–1134 (1999)
- 100.B. P. Gerkey and M. J. Matarić: Are (explicit) multi-robot coordination and multi-agent coordination really so different?,” in Proceedings of the AAAI Spring Symposium on Bridging the Multi-Agent and Multi-Robotic Research Gap, pp. 1–3 (2004)
- 101.S. C. Botelho and R. Alami: M+: a scheme for multi-robot cooperation through negotiated task allocation and achievement, in Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C). , vol. 2, pp. 1234–1239 (2003)
- 102.Trigui S, et al. A distributed market-based algorithm for the multi-robot assignment problem. Procedia Comput. Sci. 2014;32:1108–1114. doi: 10.1016/j.procs.2014.05.540. [DOI] [Google Scholar]
- 103.Farinelli A, Boscolo N, Zanotto E, Pagello E. Advanced approaches for multi-robot coordination in logistic scenarios. Rob. Auton. Syst. 2017;90:34–44. doi: 10.1016/j.robot.2016.08.010. [DOI] [Google Scholar]
- 104.V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi: Towards decentralized coordination of multi robot systems in industrial environments: A hierarchical traffic control strategy, in 2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 209–215 (2013)
- 105.N. Lau, L. S. Lopes, G. Corrente, and N. Filipe: Multi-robot team coordination through roles, positionings and coordinated procedures, 2009 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS 2009, pp. 5841–5848, (2009)
- 106.Alur R, Esposito J, Kim M, Kumar V, Lee I. Formal modeling and analysis of hybrid systems: A case study in multi-robot coordination. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 1999;1708:212–232. [Google Scholar]
- 107.Seib V, Gossow D, Vetter S, Paulus D. Hierarchical multi-robot coordination. Lecture Notes in Computer Science. 2011;6556:314–323. doi: 10.1007/978-3-642-20217-9_27. [DOI] [Google Scholar]
- 108.Wagner IA, Altshuler Y, Yanovski V, Bruckstein AM. Cooperative cleaners: a study in ant robotics. Int. J. Rob. Res. 2008;27(1):127–151. doi: 10.1177/0278364907085789. [DOI] [Google Scholar]
- 109.Schneider-Fontan M, Mataric MJ. Territorial multi-robot task division. IEEE Trans. Robot. Autom. 1998;14(5):815–822. doi: 10.1109/70.720357. [DOI] [Google Scholar]
- 110.Sugar T, Desai JP, Kumar V, Ostrowski JP. Coordination of multiple mobile manipulators. Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164) 2001;3:3022–3027. doi: 10.1109/ROBOT.2001.933081. [DOI] [Google Scholar]
- 111.Wang Z, Kumar V. Distributed Autonomous Robotic Systems 5. Tokyo: Springer Japan; 2002. A decentralized test algorithm for object closure by multiple cooperating mobile robots; pp. 165–174. [Google Scholar]
- 112.Sugawara K, Sano M. Distributed Autonomous Robotic Systems 5. Tokyo: Springer Japan; 2012. Cooperative behavior of interacting simple robots in a clockface arranged foraging field; pp. 331–339. [Google Scholar]
- 113.Wagner IA, Lindenbaum M, Bruckstein AM. MAC Versus PC: determinism and randomness as complementary approaches to robotic exploration of continuous unknown domains. Int. J. Rob. Res. 2000;19(1):12–31. doi: 10.1177/02783640022066716. [DOI] [Google Scholar]
- 114.M. M. Polycarpou, Yanli Yang, and K. M. Passino: A cooperative search framework for distributed agents, in Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC ‘01) (Cat. No.01CH37206), pp. 1–6 (2001)
- 115.Das AK, Fierro R, Kumar V, Ostrowski JP, Spletzer J, Taylor CJ. A vision-based formation control framework. IEEE Trans. Robot. Autom. 2002;18(5):813–825. doi: 10.1109/TRA.2002.803463. [DOI] [Google Scholar]
- 116.Monteiro S, Bicho E. A dynamical systems approach to behavior-based formation control. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292) 2002;3:2606–2611. doi: 10.1109/ROBOT.2002.1013624. [DOI] [Google Scholar]
- 117.M. Quinn, “A comparison of approaches to the evolution of homogeneous multi-robot teams,” in Proceedings of the 2001 Congress on evolutionary computation (IEEE Cat. No.01TH8546), vol. 1, pp. 128–135 2001
- 118.Y. Hirata, K. Kosuge, H. Asama, H. Kaetsu, and K. Kawabata: Coordinated transportation of a single object by multiple mobile robots without position information of each robot, in Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113), vol. 3, pp. 2024–2029 (2000)
- 119.T. Balch and R. C. Arkin: Behavior-based formation control for multi-robot teams,” IEEE Trans. Robot. Autom., no. Y, p. 1, (1999)
- 120.Ferraresso M, et al. Collaborative emergent actions between real soccer robots. Berlin, Heidelberg: Springer; 2007. pp. 297–302. [Google Scholar]
- 121.Sheng W, Yang Q, Tan J, Xi N. Distributed multi-robot coordination in area exploration. Rob. Auton. Syst. 2006;54(12):945–955. doi: 10.1016/j.robot.2006.06.003. [DOI] [Google Scholar]
- 122.A. Dutta and P. Dasgupta: Bipartite graph matching-based coordination mechanism for multi-robot path planning under communication constraints, in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 857–862 (2017)
- 123.Balch T, Arkin RC. Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 1998;14(6):926–939. doi: 10.1109/70.736776. [DOI] [Google Scholar]
- 124.Takeda H, Hirata Y, Wang Z-D, Kosuge K. Distributed Autonomous Robotic Systems 5. 2002. Collision avoidance algorithm for two tracked mobile robots transporting a single object in coordination based on function allocation concept. [Google Scholar]
- 125.Burgard W, Moors M, Stachniss C, Schneider F. Coordinated multi-robot exploration. IEEE Trans. Robot. 2005;21(3):376–386. doi: 10.1109/TRO.2004.839232. [DOI] [Google Scholar]
- 126.Kuhnert L, Thamke S, Ax M, Nguyen D, Kuhnert KD. Cooperation in heterogeneous groups of autonomous robots. IEEE Int. Conf. Mechatronics Autom. ICMA. 2012;0:1710–1715. [Google Scholar]
- 127.Haghighi R, Cheah CC. Multi-group coordination control for robot swarms. Automatica. 2012;48(10):2526–2534. doi: 10.1016/j.automatica.2012.03.028. [DOI] [Google Scholar]
- 128.Gao Y, Wei W. Multi-robot autonomous cooperation integrated with immune based dynamic task allocation. Sixth International Conference on Intelligent Systems Design and Applications. 2006;2:586–591. doi: 10.1109/ISDA.2006.253902. [DOI] [Google Scholar]
- 129.Jain RP, Aguiar AP, de Sousa JB. Cooperative path following of robotic vehicles using an event-based control and communication strategy. IEEE Robot. Autom. Lett. 2018;3(3):1941–1948. doi: 10.1109/LRA.2018.2808363. [DOI] [Google Scholar]
- 130.Nishi T, Ando M, Konishi M. Distributed route planning for multiple mobile robots using an augmented Lagrangian decomposition and coordination technique. IEEE Trans. Robot. 2005;21(6):1191–1200. doi: 10.1109/TRO.2005.853489. [DOI] [Google Scholar]
- 131.Smith AJ, Best G, Yu J, Hollinger GA. Real-time distributed non-myopic task selection for heterogeneous robotic teams. Auton. Robots. 2019;43(3):789–811. doi: 10.1007/s10514-018-9811-9. [DOI] [Google Scholar]
- 132.Jiang L, Zhang R, Wang C. A territorial coordination strategy for multi-robot system. PACIIA 2009–2009 2nd Asia-Pacific Conf. Comput. Intell. Ind. Appl. 2009;2:274–278. [Google Scholar]
- 133.Ren W, Sorensen N. Distributed coordination architecture for multi-robot formation control. Rob. Auton. Syst. 2008;56(4):324–333. doi: 10.1016/j.robot.2007.08.005. [DOI] [Google Scholar]
- 134.R. Alami et al.: A general framework for multi-robot cooperation and its implementation on a set of three hilare robots, in Experimental Robotics IV, no. January, London: Springer-Verlag, pp. 26–39 (2005)
- 135.Alami R, Fleury S, Herrb M, Ingrand F, Robert F. Multi-robot cooperation in the MARTHA project. IEEE Robot. Autom. Mag. 1998;5(1):36–47. doi: 10.1109/100.667325. [DOI] [Google Scholar]
- 136.Scheid JL, et al. A survey of multi-robot task allocation. Physiol. Behav. 2014;132:51–56. doi: 10.1016/j.physbeh.2014.04.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Korsah GA, Stentz A, Dias MB. A comprehensive taxonomy for multi-robot task allocation. Int. J. Rob. Res. 2013;32(12):1495–1512. doi: 10.1177/0278364913496484. [DOI] [Google Scholar]
- 138.Kloetzer M, Burlacu A, Panescu D. On a class of multi-robot task allocation problems. IFAC Proc. Vol. 2012;45(6):841–846. doi: 10.3182/20120523-3-RO-2023.00327. [DOI] [Google Scholar]
- 139.Jin L, Li S, La HM, Zhang X, Hu B. Dynamic task allocation in multi-robot coordination for moving target tracking: A distributed approach. Automatica. 2019;100:75–81. doi: 10.1016/j.automatica.2018.11.001. [DOI] [Google Scholar]
- 140.Hu X, Wang J. An improved dual neural network for solving a class of quadratic programming problems and its -winners-take-all application. IEEE Trans. Neural Networks. 2008;19(12):2022–2031. doi: 10.1109/TNN.2008.2003287. [DOI] [PubMed] [Google Scholar]
- 141.Parker LE. ALLIANCE: An architecture for fault tolerant multirobot cooperation. IEEE Trans. Robot. Autom. 1998;14(2):220–240. doi: 10.1109/70.681242. [DOI] [Google Scholar]
- 142.M. Berhault et al.: Robot exploration with combinatorial auctions, in Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), vol. 2, pp. 1957–1962 (2004)
- 143.Otte M, Kuhlman MJ, Sofge D. Auctions for multi-robot task allocation in communication limited environments. Auton. Robots. 2020;44(3–4):547–584. doi: 10.1007/s10514-019-09828-5. [DOI] [Google Scholar]
- 144.Smith RG. The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. 1980;C–29(12):1104–1113. doi: 10.1109/TC.1980.1675516. [DOI] [Google Scholar]
- 145.Dias MB. TraderBots: a new paradigm for robust and efficient multirobot coordination in dynamic environments. 2004. [Google Scholar]
- 146.Gerkey BP, Mataric MJ. Sold!: auction methods for multirobot coordination. IEEE Trans. Robot. Autom. 2002;18(5):758–768. doi: 10.1109/TRA.2002.803462. [DOI] [Google Scholar]
- 147.A. Viguria, I. Maza, and A. Ollero: S+T: An algorithm for distributed multirobot task allocation based on services for improving robot cooperation,” in 2008 IEEE International Conference on Robotics and Automation, pp. 3163–3168 (2008)
- 148.De Lope J, Maravall D, Quiñonez Y. Response threshold models and stochastic learning automata for self-coordination of heterogeneous multi-task distribution in multi-robot systems. Rob. Auton. Syst. 2013;61(7):714–720. doi: 10.1016/j.robot.2012.07.008. [DOI] [Google Scholar]
- 149.D. Kato, K. Sekiyama, and T. Fukuda: Autonomous cooperation planning for heterogeneous multi-robot,” IEEE SSCI 2011 Symp. Ser. Comput. Intell. - RIISS 2011 2011 IEEE Work. Robot. Intell. Informationally Struct. Sp., pp. 63–68, (2011)
- 150.R. Alami, F. Ingrand, and S. Qutub: Planning coordination and execution in multi-robots environment, in 8th International Conference on Advanced Robotics. Proceedings. ICAR’97, pp. 525–530 (1997)
- 151.Turpin M, Michael N, Kumar V. Capt : Concurrent assignment and planning of trajectories for multiple robots. Int. J. Rob. Res. 2014;33(1):98–112. doi: 10.1177/0278364913515307. [DOI] [Google Scholar]
- 152.Motes J, Sandstrom R, Lee H, Thomas S, Amato NM. Multi-robot task and motion planning with subtask dependencies. IEEE Robot. Autom. Lett. 2020;5(2):3338–3345. doi: 10.1109/LRA.2020.2976329. [DOI] [Google Scholar]
- 153.Nunes E, McIntire M, Gini M. Decentralized multi-robot allocation of tasks with temporal and precedence constraints. Adv. Robot. 2017;31(22):1193–1207. doi: 10.1080/01691864.2017.1396922. [DOI] [Google Scholar]
- 154.Dai W, Lu H, Xiao J, Zeng Z, Zheng Z. Multi-robot dynamic task allocation for exploration and destruction. J. Intell. Robot. Syst. 2020;98(2):455–479. doi: 10.1007/s10846-019-01081-3. [DOI] [Google Scholar]
- 155.T. B. B, T. C. B, and Y. Saadouni, “FA-SETPOWER-MRTA: a solution for solving the multi-robot task allocation problem,” in Computational Intelligence and Its Applications, vol. 522, A. Amine, M. Mouhoub, O. Ait Mohamed, and B. Djebbar, Eds. Cham: Springer International Publishing, pp. 220–231 (2018)
- 156.Dutta A, Ufimtsev V, Asaithambi A, Czarnecki E. Coalition formation for multi-robot task allocation via correlation clustering. Cybern. Syst. 2019;50(8):711–728. doi: 10.1080/01969722.2019.1677334. [DOI] [Google Scholar]
- 157.Tereshchuk V, Stewart J, Bykov N, Pedigo S, Devasia S, Banerjee AG. An efficient scheduling algorithm for multi-robot task allocation in assembling aircraft structures. IEEE Robot. Autom. Lett. 2019;4(4):3844–3851. doi: 10.1109/LRA.2019.2929983. [DOI] [Google Scholar]
- 158.Chen X, Zhang P, Du G, Li F. A distributed method for dynamic multi-robot task allocation problems with critical time constraints. Rob. Auton. Syst. 2019;118:31–46. doi: 10.1016/j.robot.2019.04.012. [DOI] [Google Scholar]
- 159.Omidshafiei S, Agha-Mohammadi AA, Amato C, Liu SY, How JP, Vian J. Decentralized control of multi-robot partially observable Markov decision processes using belief space macro-actions. Int. J. Rob. Res. 2017;36(2):231–258. doi: 10.1177/0278364917692864. [DOI] [Google Scholar]
- 160.D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein: The complexity of decentralized control of Markov decision processes. Math. Oper. Res., (2002)
- 161.M. Otte, M. Kuhlman, and D. Sofge: Multi-robot task allocation with auctions in harsh communication environments, in 2017 International Symposium on Multi-Robot and Multi-Agent Systems, MRS 2017, (2017)
- 162.Best G, Forrai M, Mettu RR, Fitch R. Proceedings - IEEE International Conference on Robotics and Automation. 2018. Planning-aware communication for decentralised multi-robot coordination. [Google Scholar]
- 163.Schillinger P, Burger M, Dimarogonas DV. 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018. Auctioning over probabilistic options for temporal logic-based multi-robot cooperation under uncertainty. [Google Scholar]
- 164.Schillinger P, Buerger M, Dimarogonas D. Robotics: Science and Systems XIV. 2018. Improving multi-robot behavior using learning-based receding horizon task allocation. [Google Scholar]
- 165.I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia: Implan: scalable incremental motion planning for multi-robot systems, in 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS), pp. 1–10 (2016)
- 166.C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook of Model Checking, Springer International Publishing, 2018, pp. 305–343
- 167.Koes M, Nourbakhsh I, Sycara K. Heterogeneous multirobot coordination with spatial and temporal constraints. Proc. 20th Natl. Conf. Artif. Intell. 2005;3:1292–1297. [Google Scholar]
- 168.Li J, Yang F. Task assignment strategy for multi-robot based on improved Grey Wolf Optimizer. J. Ambient Intell. Humaniz. Comput. 2020;1:3. [Google Scholar]
- 169.Elfakharany, A., Yusof, R., Ismail, Z.: Towards multi robot task allocation and navigation using deep reinforcement learning. J. Phys. Conf. Ser. 1447(1), (2020)
- 170.C. Pippin, H. Christensen, and L. Weiss: Performance based task assignment in multi-robot patrolling, in Proceedings of the 28th Annual ACM Symposium on Applied Computing - SAC ‘13, p. 70 (2013)
- 171.Barraquand J, Latombe J-C. Robot Motion Planning: A Distributed Representation Approach. Int. J. Rob. Res. 1991;10(6):628–649. doi: 10.1177/027836499101000604. [DOI] [Google Scholar]
- 172.R. Gayle, W. Moss, M. C. Lin, and D. Manocha: Multi-robot coordination using generalized social potential fields, in 2009 IEEE International Conference on Robotics and Automation, pp. 106–113 (2009)
- 173.T. Standley: Finding optimal solutions to cooperative pathfinding problems, in Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10), pp. 173–178 (2010)
- 174.T. Standley and R. Korf: Complete algorithms for cooperative pathfinding problems, in IJCAI International Joint Conference on Artificial Intelligence, pp. 668–673 (2011)
- 175.Wagner G, Choset H. Subdimensional expansion for multirobot path planning. Artif. Intell. 2015;219:1–24. doi: 10.1016/j.artint.2014.11.001. [DOI] [Google Scholar]
- 176.Jose K, Pratihar DK. Task allocation and collision-free path planning of centralized multi-robots system for industrial plant inspection using heuristic methods. Rob. Auton. Syst. 2016;80:34–42. doi: 10.1016/j.robot.2016.02.003. [DOI] [Google Scholar]
- 177.Patle BK, Pandey A, Jagadeesh A, Parhi DR. Path planning in uncertain environment by using firefly algorithm. Def. Technol. 2018;14(6):691–701. doi: 10.1016/j.dt.2018.06.004. [DOI] [Google Scholar]
- 178.Das PK, Behera HS, Jena PK, Panigrahi BK. An intelligent multi-robot path planning in a dynamic environment using improved gravitational search algorithm. Int. J. Autom. Comput. 2016;3(2):1–13. [Google Scholar]
- 179.Erdmann M, Lozano-Pérez T. On multiple moving objects. Algorithmica. 1987;2(1):477–521. doi: 10.1007/BF01840371. [DOI] [Google Scholar]
- 180.Su Y, Wang Q, Sun C. Self-triggered consensus control for linear multi-agent systems with input saturation. IEEE/CAA J. Autom. Sin. 2020;7(1):150–157. doi: 10.1109/JAS.2019.1911837. [DOI] [Google Scholar]
- 181.Kanjanawanishkul K. Coordinated path following for mobile robots using a virtual structure strategy with model predictive control. Automatika. 2014;55(3):287–298. doi: 10.7305/automatika.2014.12.460. [DOI] [Google Scholar]
- 182.Luis CE, Vukosavljev M, Schoellig AP. Online trajectory generation with distributed model predictive control for multi-robot motion planning. IEEE Robot. Autom. Lett. 2020;5(2):604–611. doi: 10.1109/LRA.2020.2964159. [DOI] [Google Scholar]
- 183.Leroy S, Laumond JP, Simeon T. Path coordination for multiple mobile robots: a resolution-complete algorithm. IJCAI Int. Jt. Conf. Artif. Intell. 1999;2(1):1118–1123. [Google Scholar]
- 184.Solovey K, Salzman O, Halperin D. Finding a needle in an exponential haystack: Discrete RRT for exploration of implicit roadmaps in multi-robot motion planning. Int. J. Rob. Res. 2016;35(5):501–513. doi: 10.1177/0278364915615688. [DOI] [Google Scholar]
- 185.Mac TT, Copot C, Tran DT, De Keyser R. A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization. Appl. Soft Comput. J. 2017;59:68–76. doi: 10.1016/j.asoc.2017.05.012. [DOI] [Google Scholar]
- 186.Nazarahari M, Khanmirza E, Doostie S. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Syst. Appl. 2019;115:106–120. doi: 10.1016/j.eswa.2018.08.008. [DOI] [Google Scholar]
- 187.Wang X, Kloetzer M, Mahulea C, Silva M. Proceedings of the IEEE Conference on Decision and Control. 2015. Collision avoidance of mobile robots by using initial time delays. [Google Scholar]
- 188.Soltero DE, Smith SL, Rus D. IEEE International Conference on Intelligent Robots and Systems. 2011. Collision avoidance for persistent monitoring in multi-robot systems with intersecting trajectories. [Google Scholar]
- 189.Zhou Y, Hu H, Liu Y, Ding Z. Collision and deadlock avoidance in multirobot systems: a distributed approach. IEEE Trans. Syst. Man, Cybern. Syst. 2017;47(7):1712–1726. doi: 10.1109/TSMC.2017.2670643. [DOI] [Google Scholar]
- 190.Yuan X, Yang SX. Virtual assembly with biologically inspired intelligence. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2003;33(2):159–167. doi: 10.1109/TSMCC.2003.813148. [DOI] [Google Scholar]
- 191.Best A, Narang S, Manocha D. Real-time reciprocal collision avoidance with elliptical agents. Proceedings - IEEE International Conference on Robotics and Automation. 2016;2016:298–305. [Google Scholar]
- 192.J. Van Den Berg, D. Wilkie, S. J. Guy, M. Niethammer, and D. Manocha: LQG-obstacles: Feedback control with collision avoidance for mobile robots with motion and sensing uncertainty, in Proceedings - IEEE International Conference on Robotics and Automatio, pp. 346–353 (2012)
- 193.Khan A, Kumar V, Ribeiro A. Graph policy gradients for large scale unlabeled motion planning with constraints. 2019. [Google Scholar]
- 194.A. Khan et al.: Learning safe unlabeled multi-robot planning with motion constraints, in IEEE International Conference on Intelligent Robots and Systems, pp. 7558–7565 (2019)
- 195.Riviere B, Honig W, Yue Y, Chung SJ. GLAS: global-to-local safe autonomy synthesis for multi-robot motion planning with end-to-end learning. IEEE Robot. Autom. Lett. 2020;5(3):4249–4256. doi: 10.1109/LRA.2020.2994035. [DOI] [Google Scholar]
- 196.Matoui F, Boussaid B, Abdelkrim MN. Distributed path planning of a multi-robot system based on the neighborhood artificial potential field approach. Simulation. 2019;95(7):637–657. doi: 10.1177/0037549718785440. [DOI] [Google Scholar]
- 197.Le D, Plaku E. Multi-robot motion planning with dynamics via coordinated sampling-based expansion guided by multi-agent search. IEEE Robot. Autom. Lett. 2019;4(2):1868–1875. doi: 10.1109/LRA.2019.2898087. [DOI] [Google Scholar]
- 198.Huang YY, Cao ZL, Oh SJ, Kattan EU, Hall EL. Automatic operation for a robot lawn mower. Mobile Robots I. 1987;0727:344. doi: 10.1117/12.937815. [DOI] [Google Scholar]
- 199.Apostolopoulos DS, Pedersen L, Shamah BN, Shillcutt K, Wagner MD, Whittaker WL. Robotic antarctic meteorite search: outcomes. Proceedings - IEEE International Conference on Robotics and Automation. 2001;4:4174–4179. [Google Scholar]
- 200.D. F. Hougen et al.: A miniature robotic system for reconnaissance and surveillance, in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 1, pp. 501–507 (2002)
- 201.Zhang L, Lin Z, Wang J, He B. Rapidly-exploring random Trees multi-robot map exploration under optimization framework. Rob. Auton. Syst. 2020;131:103565. doi: 10.1016/j.robot.2020.103565. [DOI] [Google Scholar]
- 202.G. Sartoretti, Y. Wu, W. Paivine, T. K. S. Kumar, S. Koenig, and H. Choset: Distributed reinforcement learning for multi-robot decentralized collective construction, in Springer Proceedings in Advanced Robotics, pp. 35–49 (2019)
- 203.Wongpiromsarn T, Topcu U, Murray RM. Receding horizon temporal logic planning. IEEE Trans. Automat. Contr. 2012;57(11):2817–2830. doi: 10.1109/TAC.2012.2195811. [DOI] [Google Scholar]
- 204.Schneider FE, Wildermuth D. A potential field based approach to multi robot formation navigation. RISSP. 2003;2003:680–685. [Google Scholar]
- 205.Corah M, Michael N. Distributed matroid-constrained submodular maximization for multi-robot exploration: theory and practice. Auton. Robots. 2019;43(2):485–501. doi: 10.1007/s10514-018-9778-6. [DOI] [Google Scholar]
- 206.Browne CB, et al. A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games. 2012;4(1):1–43. doi: 10.1109/TCIAIG.2012.2186810. [DOI] [Google Scholar]
- 207.Patten, T.: Active object classification from 3D range data with mobile robots. University of Sydney (2017)
- 208.Lauri M, Ritala R. Planning for robotic exploration based on forward simulation. Rob. Auton. Syst. 2016;83:15–31. doi: 10.1016/j.robot.2016.06.008. [DOI] [Google Scholar]
- 209.Wang H, Zhang C, Song Y, Pang B. Master-followed multiple robots cooperation SLAM adapted to search and rescue environment. Int. J. Control. Autom. Syst. 2018;16(6):2593–2608. doi: 10.1007/s12555-017-0227-7. [DOI] [Google Scholar]
- 210.Kashino Z, Nejat G, Benhabib B. Aerial wilderness search and rescue with ground support. J. Intell. Robot. Syst. Theory Appl. 2020;99(1):147–163. doi: 10.1007/s10846-019-01105-y. [DOI] [Google Scholar]
- 211.Queralta JP, et al. Collaborative multi-robot search and rescue: planning, coordination, perception, and active vision. IEEE Access. 2020;8:191617–191643. doi: 10.1109/ACCESS.2020.3030190. [DOI] [Google Scholar]
- 212.Luo C, Yang SX, Li X, Meng MQH. Neural-dynamics-driven complete area coverage navigation through cooperation of multiple mobile robots. IEEE Trans. Ind. Electron. 2017;64(1):750–760. doi: 10.1109/TIE.2016.2609838. [DOI] [Google Scholar]
- 213.Yang SX, Luo C. A neural network approach to complete coverage path planning. IEEE Trans. Syst. Man Cybern. Part B. 2004;34(1):718–724. doi: 10.1109/TSMCB.2003.811769. [DOI] [PubMed] [Google Scholar]
- 214.Bhattacharya S, Ghrist R, Kumar V. Multi-robot coverage and exploration on Riemannian manifolds with boundaries. Int. J. Rob. Res. 2014;33(1):113–137. doi: 10.1177/0278364913507324. [DOI] [Google Scholar]
- 215.M. Masar: A biologically inspired swarm robot coordination algorithm for exploration and surveillance, in INES 2013 - IEEE 17th International Conference on Intelligent Engineering Systems, Proceedings, pp. 271–275 (2013)
- 216.J. H. Lee, C. W. Ahn, and J. An: A honey bee swarm-inspired cooperation algorithm for foraging swarm robots: An empirical analysis, 2013 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics Mechatronics Hum. Wellbeing, AIM 2013, pp. 489–493, (2013)
- 217.Falconi R, Melchiorri C. A Graph-Based Algorithm for Robotic MANETs Coordination in Disaster Areas. IFAC Proc. Vol. 2012;45(22):325–330. doi: 10.3182/20120905-3-HR-2030.00037. [DOI] [Google Scholar]
- 218.Olfati-Saber R, Fax JA, Murray RM. Consensus and cooperation in networked multi-agent systems. Proc. IEEE. 2007;95(1):215–233. doi: 10.1109/JPROC.2006.887293. [DOI] [Google Scholar]
- 219.Weihua Sheng and Qingyan Yang: Peer-to-peer multi-robot coordination algorithms: petri net based analysis and design, Proceedings, 2005 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics., pp. 1407–1412, (2006)
- 220.H. Xu and S. M. Shatz: An agent-based petri net model with application to seller / buyer design in electronic commerce, in 5th International Symposium on Autonomous Decentralized Systems, pp. 11–18 (2001)
- 221.A. Gautam, S. P. A. Ram, V. S. Shekhawat, and S. Mohan: Balanced partitioning of workspace for efficient multi-robot coordination, 2017 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2017, vol. 2018-Janua, pp. 104–109, (2018)
- 222.A. Borkowski, M. Gnatowski, and J. Malec: Mobile robot cooperation in simple environments. Proc. 2nd Int. Work. Robot Motion Control. RoMoCo, pp. 109–114, (2001)
- 223.Tai L, Liu M. Mobile robots exploration through cnn-based reinforcement learning. Robot. Biomimetics. 2016;3(1):1–8. doi: 10.1186/s40638-016-0055-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 224.Caley JA, Lawrance NRJ, Hollinger GA. Deep learning of structured environments for robot search. Auton. Robots. 2019;43(7):1695–1714. doi: 10.1007/s10514-018-09821-4. [DOI] [Google Scholar]
- 225.Tai L, Li S, Liu M. Autonomous exploration of mobile robots through deep neural networks. Int. J. Adv. Robot. Syst. 2017;14(4):172988141770357. doi: 10.1177/1729881417703571. [DOI] [Google Scholar]
- 226.Benavides F, Chanel CPC, Monzón P, Grampín E. An auto-adaptive multi-objective strategy for multi-robot exploration of constrained-communication environments. Appl. Sci. 2019;9(3):573. doi: 10.3390/app9030573. [DOI] [Google Scholar]
- 227.Khoo A, Horswill ID. An efficient coordination architecture for autonomous robot teams. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292) 2003;1(May):287–292. [Google Scholar]
- 228.Li S, Kong R, Guo Y. Cooperative distributed source seeking by multiple robots: algorithms and experiments. IEEE/ASME Trans. Mechatronics. 2014;19(6):1810–1820. doi: 10.1109/TMECH.2013.2295036. [DOI] [Google Scholar]
- 229.Bravo L, Ruiz U, Murrieta-Cid R, Aguilar G, Chavez E. A distributed exploration algorithm for unknown environments with multiple obstacles by multiple robots. IEEE Int. Conf. Intell. Robot. Syst. 2017;2017-Septe:4460–4466. [Google Scholar]
- 230.E. H. C. Harik, F. Guinand, H. Pelvillain, F. Guerin, and J.-F. Brethe: A decentralized interactive architecture for aerial and ground mobile robots cooperation, in 2015 International Conference on Control, Automation and Robotics, pp. 37–43 (2015)
- 231.Mataric MJ, Nilsson M, Simsarian KT. Cooperative multi-robot box-pushing. IEEE International Conference on Intelligent Robots and Systems. 1995;3:556–561. [Google Scholar]
- 232.Yamada S, Saito J. Adaptive action selection without explicit communication for multirobot box-pushing. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2001;31(3):398–404. doi: 10.1109/5326.971668. [DOI] [Google Scholar]
- 233.Zhang L, Xiong H, Ma O, Wang Z. Multi-robot cooperative object transportation using decentralized deep reinforcement learning. 2020. [Google Scholar]
- 234.G. Ding et al.: Distributed reinforcement learning for cooperative multi-robot object manipulation. Proc. 19th Int. Conf. Auton. Agents Multiagent Syst., pp. 1–3, (2020)
- 235.K. Kawakami, K. Ohkura, and K. Ueda: Reinforcement learning approach to cooperation problem in a homogeneous robot group, in ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570), 2002, vol. 1, pp. 423–428 (2001)
- 236.J. Baca, C. Rossi, M. Ferre, and R. Aracil: Cooperative task execution between modular robots based on tight-loose cooperation strategies, in 2011 IEEE International Conference on Robotics and Automation, pp. 1000–1005 (2011)
- 237.Rubinstein A. Perfect equilibrium in a bargaining model. Econometrica. 1982;50(1):97. doi: 10.2307/1912531. [DOI] [Google Scholar]
- 238.H. Sugie, Y. Inagaki, S. Ono, H. Aisu, and T. Unemi: Cooperation among multiple mobile robots using intention inference, in Proceedings of 1995 IEEE International Conference on Fuzzy Systems. The International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium, vol. 3, pp. 1707–1712 (2002)
- 239.Stavrou D, Timotheou S, Panayiotou CG, Polycarpou MM. Assignment and coordination of autonomous robots in container loading terminals. IFAC-PapersOnLine. 2017;50(1):9712–9717. doi: 10.1016/j.ifacol.2017.08.2054. [DOI] [Google Scholar]
- 240.Feng Z, Hu G, Sun Y, Soon J. An overview of collaborative robotic manipulation in multi-robot systems. Annu. Rev. Control. 2020;49:113–127. doi: 10.1016/j.arcontrol.2020.02.002. [DOI] [Google Scholar]
- 241.Alkilabi MHM, Narayan A, Tuci E. Cooperative object transport with a swarm of e-puck robots: robustness and scalability of evolved collective strategies. Swarm Intell. 2017;11(3–4):185–209. doi: 10.1007/s11721-017-0135-8. [DOI] [Google Scholar]
- 242.Wilson S, et al. Pheeno, a versatile swarm robotic research and education platform. IEEE Robot. Autom. Lett. 2016;1(2):884–891. doi: 10.1109/LRA.2016.2524987. [DOI] [Google Scholar]
- 243.Wang Y, de Silva CW. A machine-learning approach to multi-robot coordination. Eng. Appl. Artif. Intell. 2008;21(3):470–484. doi: 10.1016/j.engappai.2007.05.006. [DOI] [Google Scholar]
- 244.K. Kawakami, K. Ohkura, and K. Ueda: Reinforcement learning approach to cooperation problem in a homogeneous robot group, in ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570), vol. 1, pp. 423–428 (2001)
- 245.N. R. Ramli, S. Razali, and M. Osman: A conceptual model for multi-robot cooperation inspired by immune network theory and somatic hypermutation, 2015 IEEE Student Conf. Res. Dev. SCOReD 2015, pp. 495–499, (2015)
- 246.A. Anand, M. Nithya, and T. S. B. Sudarshan: Coordination of mobile robots with master-slave architecture for a service application. Proc. 2014 Int. Conf. Contemp. Comput. Informatics, IC3I 2014, pp. 539–543, (2014)
- 247.Wan W, Shi B, Wang Z, Fukui R. Multirobot object transport via robust caging. IEEE Trans. Syst. Man, Cybern. Syst. 2020;50(1):270–280. doi: 10.1109/TSMC.2017.2733552. [DOI] [Google Scholar]
- 248.V. G. Gradetsky, I. L. Ermolov, M. M. Knyazkov, E. A. Semenov, S. A. Sobolnikov, and A. N. Sukhanov: Implementation of a Joint Transport Task by a Group of Robots, in Studies in Systems, Decision and Control, vol. 174, Springer International Publishing, pp. 203–214 (2019)
- 249.Dong X, Hu G. Time-varying formation tracking for linear multiagent systems with multiple leaders. IEEE Trans. Automat. Contr. 2017;62(7):3658–3664. doi: 10.1109/TAC.2017.2673411. [DOI] [Google Scholar]
- 250.Franchi A, Petitti A, Rizzo A. Distributed estimation of state and parameters in multiagent cooperative load manipulation. IEEE Trans. Control Netw. Syst. 2019;6(2):690–701. doi: 10.1109/TCNS.2018.2873153. [DOI] [Google Scholar]
- 251.Lee H, Kim HJ. Constraint-based cooperative control of multiple aerial manipulators for handling an unknown payload. IEEE Trans. Ind. Informatics. 2017;13(6):2780–2790. doi: 10.1109/TII.2017.2692270. [DOI] [Google Scholar]
- 252.Simetti E, Casalino G. Manipulation and transportation with cooperative underwater vehicle manipulator systems. IEEE J. Ocean. Eng. 2017;42(4):782–799. doi: 10.1109/JOE.2016.2618182. [DOI] [Google Scholar]
- 253.X. Shan and J. Tan: Multi-robot coordination for elusive target interception aided by sensor networks, in IEEE International Conference on Intelligent Robots and Systems, pp. 5540–5545 (2006)
- 254.Arora A, et al. A line in the sand: a wireless sensor network for target detection, classification, and tracking. Comput. Networks. 2004;46(5):605–634. doi: 10.1016/j.comnet.2004.06.007. [DOI] [Google Scholar]
- 255.D. Thakur et al.: Planning for opportunistic surveillance with multiple robots, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5750–5757 (2013)
- 256.Khan A, Rinner B, Cavallaro A. Cooperative robots to observe moving targets: review. IEEE Trans. Cybern. 2018;48(1):187–198. doi: 10.1109/TCYB.2016.2628161. [DOI] [PubMed] [Google Scholar]
- 257.Pirjanian, P.: Multiple objective action selection and behavior fusion using voting. Institute of Electronic Systems, Aalborg University, Fredrik Bajers Vej. 7, (1998)
- 258.Z. Xu, R. Fitch, and S. Sukkarieh: Decentralised coordination of mobile robots for target tracking with learnt utility models, in 2013 IEEE International Conference on Robotics and Automation, pp. 2014–2020 (2013)
- 259.T. Lee, K. Sreenath, and V. Kumar: Geometric control of cooperating multiple quadrotor uavs with a suspended payload, in Proceedings of the IEEE Conference on Decision and Control, pp. 5510–5515 (2013)
- 260.Atanasov N, Le Ny J, Daniilidis K, Pappas GJ. Proceedings - IEEE International Conference on Robotics and Automation. 2015. Decentralized active information acquisition: Theory and application to multi-robot SLAM. [Google Scholar]
- 261.J. K. Verma and V. Ranga: Target tracking with cooperative networked robots, in 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 981–985 (2020)
- 262.Zhou L, Tokekar P. Active target tracking with self-triggered communications in multi-robot teams. IEEE Trans. Autom. Sci. Eng. 2019;16(3):1085–1096. doi: 10.1109/TASE.2018.2867189. [DOI] [Google Scholar]
- 263.Kiener J, von Stryk O. Towards cooperation of heterogeneous, autonomous robots: A case study of humanoid and wheeled robots. Rob. Auton. Syst. 2010;58(7):921–929. doi: 10.1016/j.robot.2010.03.013. [DOI] [Google Scholar]
- 264.Sung Y, Budhiraja AK, Williams RK, Tokekar P. Distributed assignment with limited communication for multi-robot multi-target tracking. Auton. Robots. 2020;44(1):57–73. doi: 10.1007/s10514-019-09856-1. [DOI] [Google Scholar]
- 265.Zhou L, Tzoumas V, Pappas GJ, Tokekar P. Resilient active target tracking with multiple robots. IEEE Robot. Autom. Lett. 2019;4(1):129–136. doi: 10.1109/LRA.2018.2881296. [DOI] [Google Scholar]
- 266.Goldhoorn A, Garrell A, Alquézar R, Sanfeliu A. Searching and tracking people with cooperative mobile robots. Auton. Robots. 2018;42(4):739–759. doi: 10.1007/s10514-017-9681-6. [DOI] [Google Scholar]
- 267.Reynaud, S., Kieffer, M., Piet-Lahanier, H., Reboul, L.: A set-membership approach to find and track multiple targets using a fleet of UAVs. Proc. IEEE Conf. Decis. Control, 2018-Decem. (Cdc), 484–489 (2019)
- 268.Dames P, Tokekar P, Kumar V. Detecting, localizing, and tracking an unknown number of moving targets using a team of mobile robots. Int. J. Rob. Res. 2017;36(13–14):1540–1553. doi: 10.1177/0278364917709507. [DOI] [Google Scholar]
- 269.Hausman K, Müller J, Hariharan A, Ayanian N, Sukhatme GS. Cooperative control for target tracking with onboard sensing. Springer Tracts Adv. Robot. 2016;109(00):879–892. doi: 10.1007/978-3-319-23778-7_58. [DOI] [Google Scholar]
- 270.Pierson A, Wang Z, Schwager M. Intercepting rogue robots: an algorithm for capturing multiple evaders with multiple pursuers. IEEE Robot. Autom. Lett. 2017;2(2):530–537. doi: 10.1109/LRA.2016.2645516. [DOI] [Google Scholar]
- 271.J. Banfi, J. Guzzi, A. Giusti, L. Gambardella, and G. A. Di Caro: Fair multi-target tracking in cooperative multi-robot systems, in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 5411–5418 (2015)
- 272.Zheng Y, Wang L. Containment control of heterogeneous multi-agent systems. Int. J. Control. 2014;87(1):1–8. doi: 10.1080/00207179.2013.814074. [DOI] [Google Scholar]
- 273.Consolini L, Morbidi F, Prattichizzo D, Tosques M. Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica. 2008;44(5):1343–1349. doi: 10.1016/j.automatica.2007.09.019. [DOI] [Google Scholar]
- 274.Consolini L, Morbidi F, Prattichizzo D, Tosques M. Leader-follower formation control of nonholonomic mobile robots with input constraints. Automatica. 2008;44(5):1343–1349. doi: 10.1016/j.automatica.2007.09.019. [DOI] [Google Scholar]
- 275.Peng Z, Wen G, Rahmani A, Yu Y. Leader–follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach. Rob. Auton. Syst. 2013;61(9):988–996. doi: 10.1016/j.robot.2013.05.004. [DOI] [Google Scholar]
- 276.Peng Z, Wen G, Rahmani A, Yu Y. Distributed consensus-based formation control for multiple nonholonomic mobile robots with a specified reference trajectory. Int. J. Syst. Sci. 2015;46(8):1447–1457. [Google Scholar]
- 277.Egerstedt M, Hu X. Formation constrained multi-agent control. IEEE Trans. Robot. Autom. 2001;17(6):947–951. doi: 10.1109/70.976029. [DOI] [Google Scholar]
- 278.Lewis MA, Tan KH. High precision formation control of mobile robots using virtual structures. Auton. Robots. 1997;4(4):387–403. doi: 10.1023/A:1008814708459. [DOI] [Google Scholar]
- 279.Otte M. An emergent group mind across a swarm of robots: Collective cognition and distributed sensing via a shared wireless neural network. Int. J. Rob. Res. 2018;37(9):1017–1061. doi: 10.1177/0278364918779704. [DOI] [Google Scholar]
- 280.Peng Z, Wen G, Yang S, Rahmani A. Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network. Nonlinear Dyn. 2016;86(1):605–622. doi: 10.1007/s11071-016-2910-2. [DOI] [Google Scholar]
- 281.Wenlong X, Jianbo S, Zongli L. New coordination scheme for multi-robot systems based on state space models. J. Syst. Eng. Electron. 2008;19(4):722–734. doi: 10.1016/S1004-4132(08)60145-0. [DOI] [Google Scholar]
- 282.Liang, H., Zhang, L., Sun, Y., Huang, T.: Containment control of semi-markovian multiagent systems with switching topologies. IEEE Trans. Syst. Man, Cybern. Syst. 1–11 (2019)
- 283.Wang, W., Liang, H., Pan, Y., Li, T.: Prescribed performance adaptive fuzzy containment control for nonlinear multiagent systems using disturbance observer. IEEE Trans. Cybern. 1–13 (2020) [DOI] [PubMed]
- 284.S. Moarref and H. Kress-Gazit: Decentralized control of robotic swarms from high-level temporal logic specifications, in 2017 International Symposium on Multi-Robot and Multi-Agent Systems, MRS 2017, vol. 2018-Janua, pp. 17–23 (2018)
- 285.S. Zhang, Z. Lin, and G. Yan: Local multi-robot coordination and experiments, in 2012 12th International Conference on Control, Automation, Robotics and Vision, ICARCV 2012, vol. 2012, no. December, pp. 913–918 (2012)
- 286.Feng Z, Hu G. Connectivity-preserving flocking for networked Lagrange systems with time-varying actuator faults. Automatica. 2019;109:108509. doi: 10.1016/j.automatica.2019.108509. [DOI] [Google Scholar]
- 287.Alonso-Mora J, Baker S, Rus D. Multi-robot formation control and object transport in dynamic environments via constrained optimization. Int. J. Rob. Res. 2017;36(9):1000–1021. doi: 10.1177/0278364917719333. [DOI] [Google Scholar]
- 288.Lu M, Liu L. Leader-following consensus of multiple uncertain euler-lagrange systems subject to communication delays and switching networks. IEEE Trans. Automat. Contr. 2018;63(8):2604–2611. doi: 10.1109/TAC.2017.2771318. [DOI] [Google Scholar]
- 289.Alonso-Mora J, Montijano E, Nägeli T, Hilliges O, Schwager M, Rus D. Distributed multi-robot formation control in dynamic environments. Auton. Robots. 2019;43(5):1079–1100. doi: 10.1007/s10514-018-9783-9. [DOI] [Google Scholar]
- 290.Gao, L., Battistelli, G., Chisci, L.: Random-finite-set-based distributed multirobot SLAM. IEEE Trans. Robot. 1–20 (2020)
- 291.Dube, R., Gawel, A., Sommer, H., Nieto, J., Siegwart, R., Cadena, C.: An online multi-robot SLAM system for 3D LiDARs. IEEE Int. Conf. Intell. Robot. Syst. 1004–1011 (2017-Septe, 2017)
- 292.M. Smyrnakis and S. M. Veres: Coordination of control in robot teams using game-theoretic learning, vol. 19, no. 3. IFAC, (2014)
- 293.Fan Y, Feng G, Wang Y, Qiu J. A novel approach to coordination of multiple robots with communication failures via proximity graph. Automatica. 2011;47(8):1800–1805. doi: 10.1016/j.automatica.2011.04.017. [DOI] [Google Scholar]
- 294.Botelho SC, Alami R. Multi-robot cooperation through the common use of ‘mechanisms. IEEE Int. Conf. Intell. Robot. Syst. 2001;1:375–380. [Google Scholar]
- 295.F. Altche and A. de La Fortelle: Analysis of optimal solutions to robot coordination problems to improve autonomous intersection management policies, in 2016 IEEE Intelligent Vehicles Symposium (IV), vol. 2016-Augus, no. 610542, pp. 86–91 (2016)
- 296.Best G, Cliff OM, Patten T, Mettu RR, Fitch R. Dec-MCTS: Decentralized planning for multi-robot active perception. Int. J. Rob. Res. 2019;38(2–3):316–337. doi: 10.1177/0278364918755924. [DOI] [Google Scholar]
- 297.S. Kemna, J. G. Rogers, C. Nieto-Granda, S. Young, and G. S. Sukhatme: Multi-robot coordination through dynamic Voronoi partitioning for informative adaptive sampling in communication-constrained environments, in IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 2124–2130 (2017)
- 298.Allwright M, Zhu W, Dorigo M. An open-source multi-robot construction system. HardwareX. 2019;5:e00050. doi: 10.1016/j.ohx.2018.e00050. [DOI] [Google Scholar]
- 299.D. Albani, J. Ijsselmuiden, R. Haken, and V. Trianni: Monitoring and mapping with robot swarms for agricultural applications, 2017 14th IEEE Int. Conf. Adv. Video Signal Based Surveillance, AVSS 2017, no. August, pp. 1–6, (2017)
- 300.Talebpour Z, Martinoli A. Adaptive risk-based replanning for human-aware multi-robot task allocation with local perception. IEEE Robot. Autom. Lett. 2019;4(4):3790–3797. doi: 10.1109/LRA.2019.2926966. [DOI] [Google Scholar]
- 301.ABI Research: Internet of robotic things. https://www.abiresearch.com/market-research/product/1019712-the-internet-of-robotic-things. Accessed January 2, 2020
- 302.Ray PP. Internet of robotic things: concept, technologies, and challenges. IEEE Access. 2016;4:9489–9500. doi: 10.1109/ACCESS.2017.2647747. [DOI] [Google Scholar]
- 303.O. Vermesan and J. Bacquet: Internet of robotic things – converging sensing/actuating, hyperconnectivity, artificial intelligence and IoT platforms, pp. 1–310 (2017)
- 304.C. Razafimandimby, V. Loscri, and A. M. Vegni, “Towards Efficient Deployment in Internet of Robotic Things,” in Internet of Things, no. 9783319612997, Springer International Publishing, 2018, pp. 21–37
- 305.Simões, M.A.C., da Silva, R.M., Nogueira, T.: A dataset schema for cooperative learning from demonstration in multi-robot systems. J. Intell. Robot. Syst. 1–20 (Dec. 2019)
- 306.A. Galakatos, A. Crotty, and T. Kraska: Distributed machine learning, in Encyclopedia of Database Systems, Springer New York, pp. 1196–1201 (2018)
- 307.M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter, “Efficient and robust automated machine learning,” in Advances in Neural Information Processing Systems, 2015, pp. 2755–2763
- 308.I. Guyon et al.: A brief review of the ChaLearn AutoML challenge: Any-time any-dataset learning without human intervention, in Proceedings of the Workshop on Automatic Machine Learning, pp. 21–30 (2016)
- 309.C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine: Learning modular neural network policies for multi-task and multi-robot transfer, in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2169–2176 (2017)
- 310.F. M. Mirzaei, A. I. Mourikis, and S. I. Roumeliotis: On the performance of multi-robot target tracking, Proc. - IEEE Int. Conf. Robot. Autom., no. April, pp. 3482–3489, (2007)
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
No such data.