Abstract
口腔癌易于发生颌骨侵犯,影响患者预后,而这一现象的分子机制尚未完全阐明。目前研究发现,口腔癌细胞通过一系列信号分子的表达直接或者间接影响破骨细胞的形成和功能,有多条信号通路参与其调控,其中核因子κB受体活化因子配体/核因子κB受体活化因子/骨保护素信号通路的调节备受关注。本文就口腔癌颌骨侵犯的分子机制研究进展进行综述。
Keywords: 口腔癌, 骨侵犯, 分子机制, 破骨细胞
Abstract
Bone invasion by oral cancer is a common clinical problem, which affects the choice of treatment and predicts a poor prognosis. Unfortunately, the molecular mechanism of this phenomenon has not been fully elucidated. Current studies have revealed that oral cancer cells modulate the formation and function of osteoclasts through the expression of a series of signal molecules. Many signal pathways are involved in this process, of which receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factor-κB/osteoprotegerin signaling pathway attracted much attention. In this review, we introduce recent progress in molecular mechanisms of bone invasion by oral cancer.
Keywords: oral cancer, bone invasion, molecular mechanism, osteoclast
口腔癌是头颈部最为常见的恶性肿瘤之一,全球每年新发病例超过30万例[1],其中超过90%为口腔鳞状细胞癌。口腔癌的发生是多因素作用的结果,其中吸烟、酗酒、咀嚼槟榔等不良生活习惯是重要的危险因素。当口腔癌发生于牙龈、口底、舌等与颌骨毗邻的解剖位置时,易于发生颌骨侵犯。颌骨侵犯者通常需要通过外科手术一并切除相应的部分受侵颌骨,以求达到肿瘤外科的“安全边界”,但由此产生的咀嚼、吞咽、语言功能及面部外形破坏将极大地影响患者的生存质量。因此颌骨侵犯也预示着患者更差的预后[2]–[3]。虽然近年来治疗水平不断提高,但是口腔鳞状细胞癌的5年生存率依旧较低。为了更加准确的诊断和更有效的治疗,就必须要更加深入地了解口腔癌颌骨侵犯的分子机制,本文对口腔癌颌骨侵犯的分子机制的研究进展作一综述。
1. 破骨细胞在口腔癌颌骨侵犯中的核心地位
Carter[4]在1985年就提出,口腔癌对下颌骨的侵犯不是由口腔癌细胞自身进行,而是由破骨细胞所参与的。因此,要了解口腔癌下颌骨的侵犯机制,首先应该了解破骨细胞形成及其功能调控的机制。
破骨细胞是一种多核细胞,来源于单核巨噬细胞系统,由多个单核细胞融合而成,在生理性的骨重塑和病理性的骨吸收过程中扮演着不可替代的角色。因此,在人体中,破骨细胞的形成及功能的活化受到了严密的调节。从破骨细胞形成到骨溶解的过程包括了几个重要的步骤:骨髓造血干细胞增殖分化形成单个核的破骨细胞前体,单个核的破骨细胞前体融合为多核破骨细胞,多核破骨细胞功能活化,紧贴于骨面,褶皱缘及亮区形成,进行破骨。破骨细胞形成和活化被一套复杂的信号系统所控制,其中包括了4种重要的信号分子:核因子κB受体活化因子配体(receptor activator for nuclear factor-κ B ligand,RANKL)、核因子κB受体活化因子(receptor activator for nuclear factor-κB,RANK)、骨保护素(osteoprotegerin,OPG)和巨噬细胞集落刺激因子(macrophage colony stimulating factor,M-CSF)。M-CSF能刺激造血干细胞增殖分化为破骨细胞前体,RANK是肿瘤坏死因子(tumor necrosis factor,TNF)受体家族的一种Ⅰ型跨膜蛋白,在M-CSF存在的情况下,表达在破骨细胞前体及成熟破骨细胞上的RANK与其配体RANKL结合后能促进破骨细胞的形成与功能活化,实现对骨质的吸收。而OPG作为RANKL的“诱骗受体”可与RANKL结合,从而抑制RANKL与RANK结合所产生的生物学效应,RANKL及OPG表达的平衡对于破骨细胞分化及功能的行使极为重要,RANKL/OPG比例失调在多种与骨代谢失常有关的疾病中可以查见[5]–[7]。口腔癌分泌多种细胞因子并直接或间接参与RANKL/RANK信号通路的调节,从而调控破骨细胞生成和功能来实现对颌骨的侵犯。
2. 口腔癌对破骨细胞形成及其功能的影响
2.1. 口腔癌参与调节RANKL/RANK/OPG的表达从而影响破骨细胞形成和活化
RANKL/RANK信号通路在调控肿瘤的骨侵犯及骨转移中具有重要作用,这种现象在乳腺癌[8]、前列腺癌[9]、恶性黑色素瘤[10]中均有研究。作为破骨细胞形成和激活过程中最为关键的一环,口腔癌也可以通过直接参与该信号通路来实现骨侵犯。研究显示,表达RANKL的癌细胞有时并不需要其他细胞的参与便能够导致破骨细胞生成,然而不同口腔癌细胞RANKL的表达呈现不同水平。Zhang等[11]检测了OSCC3、UMSCC-74B、UMSCC-11B等细胞系RANKL的表达情况,发现RANKL既有膜结合型又有分泌型,且表达的量呈现不同水平;将上述口腔癌细胞或者相应的条件培养基和鼠源性巨噬细胞RAW264.7直接共培养可以诱导破骨细胞形成,用OPG或者抗RANKL抗体可以消除这一效应,在人外周血单核细胞中也可观察到类似现象,研究者进一步建立含人RANKL启动子荧光素酶报告基因的UMSCC-11B的细胞系,用其构建小鼠骨侵犯模型,证明了在骨侵犯过程中RANKL表达被激活,这说明口腔癌细胞产生的RANKL可以直接导致溶骨性骨吸收。
口腔癌细胞除了可以直接产生RANKL外,还能通过影响基质细胞、成骨细胞等的RANKL、OPG的表达间接地促进骨侵犯。研究[12]表明,BHY细胞作为一种对下颌骨及口底肌群有高度侵袭性的口腔癌细胞,虽然其表面表达RANKL,但其与小鼠骨髓细胞共培养时,仅极少量破骨细胞形成,再加入小鼠成骨细胞则显著促进破骨细胞形成,而HSC-2细胞系不能够表达RANKL,但是却能够促进小鼠成骨细胞和骨髓细胞共培养体系中破骨细胞形成。进一步研究[13]表明,BHY细胞和HSC-2细胞能够明显抑制小鼠成骨细胞合成OPG,这提示口腔癌细胞可以通过下调成骨细胞OPG的表达来促进破骨细胞的形成。研究[14]–[15]显示,口腔癌颌骨侵犯过程中,口腔癌细胞和骨表面之间有纤维结缔组织的存在,该处成纤维细胞高表达RANKL,并且其数量与界面中破骨细胞数量呈正相关。Sato等[16]在小鼠骨髓细胞、小鼠来源的成骨细胞系UAMS-32细胞、人口腔癌细胞系HSC3或HO-1-N-1的条件培养基共培养体系中分别用抗人或抗小鼠的抗RANKL抗体,均可使破骨细胞生成减少,证明口腔癌细胞和基质细胞产生的RANKL均可参与破骨细胞生成的调节。Quan等[17]研究发现,口腔癌细胞的条件培养基不仅能使成骨细胞RANKL/OPG的比例上升,也能增加MMP9在成骨细胞中的表达。Elmusrati等[18]首次证实了癌症相关成纤维细胞(cancer-associated fibroblasts,CAF)在口腔癌颌骨侵犯中的作用,发现α-SMA阳性的CAF可以先于肿瘤细胞出现在骨质中,其自身高表达RANKL,同时可以使成骨细胞RANKL表达增加,OPG表达减少。
2.2. 其他细胞因子在口腔癌颌骨侵犯中的作用
Shibahara等[19]通过免疫组织化学染色发现,有下颌骨侵犯的下颌牙龈癌标本中高表达甲状旁腺激素相关肽(parathyroid hormone-related peptide,PTHrP)、TNF-α、白细胞介素-6(interleukin-6,IL-6)和IL-11。Nomura等[20]通过小鼠来源的口腔鳞状细胞癌细胞系SCCVⅡ建立口腔癌颌骨侵犯动物模型,检测到模型标本中IL-6、PTHrP和TNF-α表达增加,这为进一步探究这些细胞因子与口腔癌颌骨侵犯之间的关系提供了基础。Deyama等[21]研究表明,BHY细胞表达转化生长因子β(transforming growth factor-β,TGF-β)、IL-1β、IL-8、PTH-rP、血管内皮生长因子(vascular endothelial growth factor,VEGF)mRNA,用BHY细胞的条件培养基可以促进成骨细胞IL-6、RANKL的mRNA表达。进一步研究[22]发现,BHY细胞或BHY细胞的条件培养基能够通过激活细胞外信号调节激酶(extracellular signal-regulated kinase,ERK),抑制促凋亡蛋白Bim,使破骨细胞存活时间延长。Takayama等[23]发现,稳定敲低THrP的SCCVⅡ细胞系诱导破骨细胞形成的能力降低,相应小鼠模型中骨侵犯程度降低。Kayamori等[24]揭示了口腔癌细胞过表达PTHrP并能诱导基质细胞产生IL-6从而刺激基质细胞产生RANKL。另外,Shimo等[25]发现,结缔组织生长因子CCN2在对乳腺癌骨转移过程中具有重要作用,又进一步研究[26]证明了CCN2与口腔癌颌骨侵犯的相关性,并且发现重组人CCN2能促进小鼠骨髓细胞形成抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase,RTAP)阳性破骨细胞。
鉴于此,一些学者试图通过检测术前活检标本中一些细胞因子和破骨细胞相关酶类的表达情况来推测颌骨侵犯的情况。Cui等[27]通过对30例口腔癌术前活检标本进行TRAP和细胞因子的免疫组织化学双重染色,将染色结果与手术后病理结果对比发现:双阳性和RANKL、PTHrP、IL-1α阳性对于口腔癌颌骨侵犯有诊断意义,双阴性对于未发生颌骨侵犯有预测意义。然而van Cann等[28]通过对35例标本的研究发现,TNF-α、IL-6、IL-11的表达情况和口腔癌是否发生骨髓侵犯并没有直接联系。
近年来,趋化因子在口腔癌颌骨侵犯中的作用也受到学者们的关注。趋化因子是一类小分子类肝素结合肽,是细胞因子中的一个超家族,对白细胞有趋化作用。Yuvaraj等[29]研究表明,趋化因子配体-13(chemokine cc-motif ligand 13,CXCL13)/趋化因子受体-5(chemokine receptor,CXCR5)/活化T细胞核因子c3(nuclear factor of activated T-cells cytoplasmic 3,NFATc3)信号轴在诱导口腔癌细胞表达RANKL中具有作用。该团队[30]进一步研究发现,口腔癌细胞表达CXCL13并可与基质细胞/前成骨细胞上的CXCR5结合激活转录因子c-Myc从而诱导后者表达RANKL。Oue等[31]研究发现,2种来源于人舌癌的细胞系HSC3-C13、HSC3-C17在诱导破骨细胞生成能力方面具有区别,然后通过基因芯片技术比较了2种细胞基因表达的差异,发现诱导破骨细胞生成能力更强的HSC3-C13细胞更多的表达CXCL2基因,抑制CXCL2的表达可以减少共培养体系中破骨细胞生成,而使用重组人CXCL2则可增加基质细胞RANKL表达。单核细胞趋化蛋白-1(monocyte chemotactic protein-1,MCP-1)是趋化因子超家族的一员。学者[32]–[33]发现,MCP-1在口腔癌手术标本及口腔癌细胞系SCC25、HN5、Tca8113中高表达,用含MCP-1的显性负性突变体7ND结构的载体转染SCC-25,其条件培养基可以抑制CD14阳性单核细胞形成破骨细胞,用人工合成的7ND可以让CD14阳性单核细胞的迁移受到影响,破骨细胞生成受到抑制,7ND对口腔癌骨侵犯的抑制作用在小鼠模型中也得到验证。
2.3. 钙黏附蛋白(E-cadherin,E-cad)在口腔癌诱导的破骨细胞形成中的作用
E-cad是可介导细胞之间黏附作用的钙依赖型跨膜蛋白。学者[34]观察到,在诱导小鼠巨噬细胞RAW 264.7向破骨细胞转化过程中,其细胞表面的E-cad的表达量会出现明显的变化,即当单核细胞融合为多核破骨细胞的过程中其表面的E-cad会逐渐减少。人为过表达E-cad的鼠巨噬细胞中与破骨细胞形成密切相关的转录因子NFATC1能更早地出现核转位,更快地融合成多核破骨细胞。在此基础上,有学者[35]通过间接共培养SCC25和RAW 264.7,并用TGF-β1人工诱导SCC25发生上皮-间充质转化(epithelial-mesenchymal transition,EMT),发现共培养体系中的两种细胞表面的E-cad的量存在某种程度上的转换,即SCC25的E-cad减少而RAW 264.7表面的E-cad增多,从而提出口腔癌细胞在EMT 过程中丢失的E-cad可以被单核细胞利用,促进破骨细胞形成。然而该研究并不能排除该条件下TGF-β1本身对单核细胞表达E-cad是否有影响,故E-cad这种转换有待进一步研究证实。
2.4. 口腔癌颌骨侵犯相关信号通路的研究
鉴于RANKL-RANK-TRAF途径激活的核因子κB(nuclear factor kappa,NF-κB)信号通路在口腔癌诱导的破骨细胞生成中的重要作用[5],[36],学者们研究了NF-κB通路抑制剂对于口腔癌骨侵犯的影响。当使用NF-κB通路选择性抑制剂NBD肽或IKK-β抑制剂IMD-0560处理口腔癌颌骨侵犯模型小鼠,发现其可以通过抑制成骨细胞和SCCVⅡ细胞RANKL的表达减少破骨细胞生成,同时还可以抑制SCCVⅡ增殖,增加SCCVⅡ凋亡。其中IMD-0560还能抑制肿瘤细胞MMP-9的产生,说明其侵袭能力也受到抑制[37]–[38]。近年来,其他一些信号通路在口腔癌调控破骨细胞生成和功能活化中的作用也被广泛关注。TGF-β信号通路在介导肿瘤EMT过程中已有较多研究,其在诱导破骨细胞形成方面的作用也被证实,Nakamura等[39]检测到TGF-β1可以使RANKL诱导的破骨细胞形成增加,说明了口腔癌细胞和基质细胞产生的TGF-β参与口腔癌颌骨侵犯。此外,Hedgehog信号通路也参与其中,Honami等[40]发现音猬蛋白(sonic hedgehog,SHH)可以刺激破骨细胞形成,用siRNA抑制口腔癌SHH的分泌可以减少动物模型中口腔癌的生长和破骨细胞形成。Shimo等[41]进一步揭示了口腔癌细胞产生的SHH与破骨细胞及其前体细胞上SHH受体Patched结合通过下游信号分子Gli-2发挥作用。有趣的是,同期的另外一份研究表明Hedgehog 信号通路与TGF-β信号通路在信号分子Gli-2处交汇共同调控口腔癌细胞PTHrP的表达[42]。其他如胰岛素样生长因子Ⅱ mRNA结合蛋白-3(insulin-like growth factor-Ⅱ mRNA binding protein-3,IMP3)和平足蛋白(podoplanin,PDPN)[43]、雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)[44]、RUNT相关转录因子3(Runt-related transcription factor 3,RUNX3)[45]等分子在促进口腔癌的侵袭能力、破骨细胞形成方面的作用也有报道。这些关键分子在口腔癌颌骨侵犯中的作用被相继发现,既说明了口腔癌颌骨侵犯分子机制的复杂性,又为寻求潜在治疗靶点提供了新的方向。
3. 颌骨侵犯过程对口腔癌发展的作用
当口腔癌侵犯颌骨后,其能够在颌骨的微环境中增殖和侵犯,同时与微环境中的成骨细胞、成纤维细胞等相互作用、相互促进[24]。骨溶解过程中储存在骨基质中的大量生长因子被释放,比如TGF、胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)、成纤维细胞生长因子(fibroblast growth factor,FGF)等[46],这些生长因子进入肿瘤微环境,由于口腔癌细胞具有这些生长因子的受体,因而,能够促进增殖并抑制其凋亡[47]–[48]。口腔癌细胞自身也表达RANK,肿瘤微环境中各种来源的RANKL可以与其RANK结合促进口腔癌细胞的增殖。此外,在TGF-β的诱导下,口腔癌细胞不仅展现出更高的侵袭性,其表达骨溶解相关因子如RANKL、TNF-α、CCN2、PTHrP的水平也更高,导致骨溶解进一步加剧,形成一种“恶性循环”。
口腔癌细胞通过产生MCP-1、RANKL等使破骨细胞形成增加或通过各种细胞因子作用于肿瘤基质细胞、成骨细胞使RANKL/OPG比例增加,从而间接导致破骨细胞形成、骨溶解增加。储存在骨基质中的各种生长因子如TGF-β、IGF-1、FGF等被释放后可作用于口腔癌细胞使其增殖、侵袭迁移能力增强,形成“恶性循环”。
4. 总结及展望
口腔癌颌骨侵犯的发生、诊断和治疗是口腔颌面外科医师十分关注的一个临床问题,与患者的预后密切相关。近年来学者们对于口腔癌颌骨侵犯的分子机制的研究做了大量的工作,虽尚未完全阐明,但目前可以明确:口腔癌在肿瘤-骨界面通过与基质细胞、成骨细胞、破骨细胞的一系列互动,提供了利于破骨细胞生成和活化的微环境从而导致了骨的破坏,肿瘤-骨界面的细胞产生的和骨质破坏过程中释放的各种生长因子又促进了口腔癌的生长、增加了其侵袭能力,这“一退一进”导致口腔癌颌骨侵犯的发生发展,形成“恶性循环”。因此,在进一步完善口腔癌颌骨侵犯分子机制的基础之上,寻求更加有效的方法打破其中一个或多个环节是该领域未来研究的方向。
Funding Statement
[基金项目] 四川省卫生和计划生育委员会科研课题(18PJ094);四川大学泸州市人民政府战略合作项目(2018CDLZ-12)
Supported by: Scientific Research Project of Sichuan Health and Family Planning Commission (18PJ094); Sichuan University Luzhou People's Government Strategic Cooperation Project (2018CDLZ-12).
Footnotes
利益冲突声明:作者声明本文无利益冲突。
References
- 1.Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J] CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492. [DOI] [PubMed] [Google Scholar]
- 2.Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer[J] Oral Oncol. 2009;45(4/5):309–316. doi: 10.1016/j.oraloncology.2008.06.002. [DOI] [PubMed] [Google Scholar]
- 3.Laraway DC, Lakshmiah R, Lowe D, et al. Quality of life in older people with oral cancer[J] Br J Oral Maxillofac Surg. 2012;50(8):715–720. doi: 10.1016/j.bjoms.2012.01.010. [DOI] [PubMed] [Google Scholar]
- 4.Carter RL. Patterns and mechanisms of localized bone invasion by tumors: studies with squamous carcinomas of the head and neck[J] Crit Rev Clin Lab Sci. 1985;22(3):275–315. doi: 10.3109/10408368509165845. [DOI] [PubMed] [Google Scholar]
- 5.Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation[J] Nature. 2003;423(6937):337–342. doi: 10.1038/nature01658. [DOI] [PubMed] [Google Scholar]
- 6.Bucay N, Sarosi I, Dunstan CR, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification[J] Genes Dev. 1998;12(9):1260–1268. doi: 10.1101/gad.12.9.1260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology[J] Ann N Y Acad Sci. 2008;1143:123–150. doi: 10.1196/annals.1443.016. [DOI] [PubMed] [Google Scholar]
- 8.Bendre M, Gaddy D, Nicholas RW, et al. Breast cancer metastasis to bone: it is not all about PTHrP[J] Clin Orthop Relat Res. 2003;415(Suppl):S39–S45. doi: 10.1097/01.blo.0000093844.72468.f4. [DOI] [PubMed] [Google Scholar]
- 9.Brown JM, Corey E, Lee ZD, et al. Osteoprotegerin and rank ligand expression in prostate cancer[J] Urology. 2001;57(4):611–616. doi: 10.1016/s0090-4295(00)01122-5. [DOI] [PubMed] [Google Scholar]
- 10.Sezer O, Heider U, Zavrski I, et al. RANK ligand and osteoprotegerin in myeloma bone disease[J] Blood. 2003;101(6):2094–2098. doi: 10.1182/blood-2002-09-2684. [DOI] [PubMed] [Google Scholar]
- 11.Zhang XY, Junior CR, Liu M, et al. Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss[J] Oral Oncol. 2013;49(2):119–128. doi: 10.1016/j.oraloncology.2012.08.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Kawamata H, Nakashiro K, Uchida D, et al. Possible contribution of active MMP2 to lymph-node metastasis and secreted cathepsin L to bone invasion of newly established human oral-squamous-cancer cell lines[J] Int J Cancer. 1997;70(1):120–127. doi: 10.1002/(sici)1097-0215(19970106)70:1<120::aid-ijc18>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
- 13.Tada T, Jimi E, Okamoto M, et al. Oral squamous cell carcinoma cells induce osteoclast differentiation by suppression of osteoprotegerin expression in osteoblasts[J] Int J Cancer. 2005;116(2):253–262. doi: 10.1002/ijc.21008. [DOI] [PubMed] [Google Scholar]
- 14.Ishikuro M, Sakamoto K, Kayamori K, et al. Significance of the fibrous stroma in bone invasion by human gingival squamous cell carcinomas[J] Bone. 2008;43(3):621–627. doi: 10.1016/j.bone.2008.05.014. [DOI] [PubMed] [Google Scholar]
- 15.Tohyama R, Kayamori K, Sato K, et al. Establishment of a xenograft model to explore the mechanism of bone destruction by human oral cancers and its application to analysis of role of RANKL[J] J Oral Pathol Med. 2016;45(5):356–364. doi: 10.1111/jop.12376. [DOI] [PubMed] [Google Scholar]
- 16.Sato K, Lee JW, Sakamoto K, et al. RANKL synthesized by both stromal cells and cancer cells plays a crucial role in osteoclastic bone resorption induced by oral cancer[J] Am J Pathol. 2013;182(5):1890–1899. doi: 10.1016/j.ajpath.2013.01.038. [DOI] [PubMed] [Google Scholar]
- 17.Quan JJ, Zhou CX, Johnson NW, et al. Molecular pathways involved in crosstalk between cancer cells, osteoblasts and osteoclasts in the invasion of bone by oral squamous cell carcinoma[J] Pathology. 2012;44(3):221–227. doi: 10.1097/PAT.0b013e3283513f3b. [DOI] [PubMed] [Google Scholar]
- 18.Elmusrati AA, Pilborough AE, Khurram SA, et al. Cancer-associated fibroblasts promote bone invasion in oral squamous cell carcinoma[J] Br J Cancer. 2017;117(6):867–875. doi: 10.1038/bjc.2017.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Shibahara T, Nomura T, Cui NH, et al. A study of osteoclast-related cytokines in mandibular invasion by squamous cell carcinoma[J] Int J Oral Maxillofac Surg. 2005;34(7):789–793. doi: 10.1016/j.ijom.2005.03.008. [DOI] [PubMed] [Google Scholar]
- 20.Nomura T, Shibahara T, Katakura A, et al. Establishment of a murine model of bone invasion by oral squamous cell carcinoma[J] Oral Oncol. 2007;43(3):257–262. doi: 10.1016/j.oraloncology.2006.03.015. [DOI] [PubMed] [Google Scholar]
- 21.Deyama Y, Tei K, Yoshimura Y, et al. Oral squamous cell carcinomas stimulate osteoclast differentiation[J] Oncol Rep. 2008;20(3):663–668. [PubMed] [Google Scholar]
- 22.Tada T, Shin M, Fukushima H, et al. Oral squamous cell carcinoma cells modulate osteoclast function by RANKL-dependent and -independent mechanisms[J] Cancer Lett. 2009;274(1):126–131. doi: 10.1016/j.canlet.2008.09.015. [DOI] [PubMed] [Google Scholar]
- 23.Takayama Y, Mori T, Nomura T, et al. Parathyroid-related protein plays a critical role in bone invasion by oral squamous cell carcinoma[J] Int J Oncol. 2010;36(6):1387–1394. doi: 10.3892/ijo_00000623. [DOI] [PubMed] [Google Scholar]
- 24.Kayamori K, Sakamoto K, Nakashima T, et al. Roles of interleukin-6 and parathyroid hormone-related peptide in osteoclast formation associated with oral cancers: significance of interleukin-6 synthesized by stromal cells in response to cancer cells[J] Am J Pathol. 2010;176(2):968–980. doi: 10.2353/ajpath.2010.090299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Shimo T, Kubota S, Yoshioka N, et al. Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer[J] J Bone Miner Res. 2006;21(7):1045–1059. doi: 10.1359/jbmr.060416. [DOI] [PubMed] [Google Scholar]
- 26.Shimo T, Kubota S, Goda T, et al. Clinical significance and pathogenic function of connective tissue growth factor (CTGF/CCN2) in osteolytic mandibular squamous cell carcinoma[J] Anticancer Res. 2008;28(4C):2343–2348. [PubMed] [Google Scholar]
- 27.Cui NH, Nomura T, Takano N, et al. Osteoclast-related cytokines from biopsy specimens predict mandibular invasion by oral squamous cell carcinoma[J] Exp Ther Med. 2010;1(5):755–760. doi: 10.3892/etm.2010.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.van Cann EM, Slootweg PJ, de Wilde PC, et al. The prediction of mandibular invasion by squamous cell carcinomas with the expression of osteoclast-related cytokines in biopsy specimens[J] Int J Oral Maxillofac Surg. 2009;38(3):279–284. doi: 10.1016/j.ijom.2009.01.005. [DOI] [PubMed] [Google Scholar]
- 29.Yuvaraj S, Griffin AC, Sundaram K, et al. A novel function of CXCL13 to stimulate RANK ligand expression in oral squamous cell carcinoma cells[J] Mol Cancer Res. 2009;7(8):1399–1407. doi: 10.1158/1541-7786.MCR-08-0589. [DOI] [PubMed] [Google Scholar]
- 30.Sambandam Y, Sundaram K, Liu A, et al. CXCL13 activation of c-Myc induces RANK ligand expression in stromal/preosteoblast cells in the oral squamous cell carcinoma tumor-bone microenvironment[J] Oncogene. 2013;32(1):97–105. doi: 10.1038/onc.2012.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Oue E, Lee JW, Sakamoto K, et al. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction[J] Biochem Biophys Res Commun. 2012;424(3):456–461. doi: 10.1016/j.bbrc.2012.06.132. [DOI] [PubMed] [Google Scholar]
- 32.Quan JJ, Morrison NA, Johnson NW, et al. MCP-1 as a potential target to inhibit the bone invasion by oral squamous cell carcinoma[J] J Cell Biochem. 2014;115(10):1787–1798. doi: 10.1002/jcb.24849. [DOI] [PubMed] [Google Scholar]
- 33.Luo SY, Zhou CX, Zhang JM, et al. Mutant monocyte chemoattractant protein-1 protein (7ND) inhibits osteoclast differentiation and reduces oral squamous carcinoma cell bone invasion[J] Oncol Lett. 2018;15(5):7760–7768. doi: 10.3892/ol.2018.8308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Fiorino C, Harrison RE. E-cadherin is important for cell differentiation during osteoclastogenesis[J] Bone. 2016;86:106–118. doi: 10.1016/j.bone.2016.03.004. [DOI] [PubMed] [Google Scholar]
- 35.Quan JJ, Du Q, Hou YL, et al. Utilization of E-cadherin by monocytes from tumour cells plays key roles in the progression of bone invasion by oral squamous cell carcinoma[J] Oncol Rep. 2017;38(2):850–858. doi: 10.3892/or.2017.5749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Jimi E, Kokabu S, Matsubara T, et al. NF-κB acts as a multifunctional modulator in bone invasion by oral squamous cell carcinoma[J] Oral Sci Int. 2016;13(1):1–6. [Google Scholar]
- 37.Furuta H, Osawa K, Shin M, et al. Selective inhibition of NF-κB suppresses bone invasion by oral squamous cell carcinoma in vivo[J] Int J Cancer. 2012;131(5):E625–E635. doi: 10.1002/ijc.27435. [DOI] [PubMed] [Google Scholar]
- 38.Tada Y, Kokabu S, Sugiyama G, et al. The novel IκB kinase β inhibitor IMD-0560 prevents bone invasion by oral squamous cell carcinoma[J] Oncotarget. 2014;5(23):12317–12330. doi: 10.18632/oncotarget.2640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Nakamura R, Kayamori K, Oue E, et al. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma[J] Biochem Biophys Res Commun. 2015;458(4):777–782. doi: 10.1016/j.bbrc.2015.02.013. [DOI] [PubMed] [Google Scholar]
- 40.Honami T, Shimo T, Okui T, et al. Sonic hedgehog signaling promotes growth of oral squamous cell carcinoma cells associated with bone destruction[J] Oral Oncol. 2012;48(1):49–55. doi: 10.1016/j.oraloncology.2011.08.026. [DOI] [PubMed] [Google Scholar]
- 41.Shimo T, Matsumoto K, Takabatake K, et al. The role of sonic hedgehog signaling in osteoclastogenesis and jaw bone destruction[J] PLoS One. 2016;11(3):e0151731. doi: 10.1371/journal.pone.0151731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Cannonier SA, Gonzales CB, Ely K, et al. Hedgehog and TGFβ signaling converge on Gli2 to control bony invasion and bone destruction in oral squamous cell carcinoma[J] Oncotarget. 2016;7(46):76062–76075. doi: 10.18632/oncotarget.12584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Hwang YS, Ahn SY, Moon S, et al. Insulin-like growth factor-Ⅱ mRNA binding protein-3 and podoplanin expression are associated with bone invasion and prognosis in oral squamous cell carcinoma[J] Arch Oral Biol. 2016;69:25–32. doi: 10.1016/j.archoralbio.2016.05.008. [DOI] [PubMed] [Google Scholar]
- 44.Okui T, Shimo T, Fukazawa T, et al. Antitumor effect of temsirolimus against oral squamous cell carcinoma associated with bone destruction[J] Mol Cancer Ther. 2010;9(11):2960–2969. doi: 10.1158/1535-7163.MCT-10-0489. [DOI] [PubMed] [Google Scholar]
- 45.Park J, Kim HJ, Kim KR, et al. Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma[J] Oncotarget. 2017;8(6):9079–9092. doi: 10.18632/oncotarget.14071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities[J] Nat Rev Cancer. 2002;2(8):584–593. doi: 10.1038/nrc867. [DOI] [PubMed] [Google Scholar]
- 47.Papadimitrakopoulou VA, Brown EN, Liu DD, et al. The prognostic role of loss of insulin-like growth factor-binding protein-3 expression in head and neck carcinogenesis[J] Cancer Lett. 2006;239(1):136–143. doi: 10.1016/j.canlet.2005.08.009. [DOI] [PubMed] [Google Scholar]
- 48.Goda T, Shimo T, Yoshihama Y, et al. Bone destruction by invading oral squamous carcinoma cells mediated by the transforming growth factor-beta signalling pathway[J] Anticancer Res. 2010;30(7):2615–2623. [PubMed] [Google Scholar]
