Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

medRxiv logoLink to medRxiv
[Preprint]. 2021 Apr 17:2021.04.16.21255614. [Version 1] doi: 10.1101/2021.04.16.21255614

Evaluating Vaccine Efficacy Against SARS-CoV-2 Infection

Dan-Yu Lin, Yu Gu, Donglin Zeng, Holly E Janes, Peter B Gilbert
PMCID: PMC8057249  PMID: 33880481

Abstract

Although interim results from several large placebo-controlled phase 3 trials demonstrated high vaccine efficacy (VE) against symptomatic COVID-19, it is unknown how effective the vaccines are in preventing people from becoming asymptomatically infected and potentially spreading the virus unwittingly. It is more difficult to evaluate VE against SARS-CoV-2 infection than against symptomatic COVID-19 because infection is not observed directly but rather is known to occur between two antibody or RT-PCR tests. Additional challenges arise as community transmission changes over time and as participants are vaccinated on different dates because of staggered enrollment or crossover before the end of the study. Here, we provide valid and efficient statistical methods for estimating potentially waning VE against SARS-CoV-2 infection with blood or nasal samples under time-varying community transmission, staggered enrollment, and blinded or unblinded crossover. We demonstrate the usefulness of the proposed methods through numerical studies mimicking the BNT162b2 phase 3 trial and the Prevent COVID U study. In addition, we assess how crossover and the frequency of diagnostic tests affect the precision of VE estimates.

Summary

We show how to estimate potentially waning efficacy of COVID-19 vaccines against SARS-CoV-2 infection using blood or nasal samples collected periodically from clinical trials with staggered enrollment of participants and crossover of placebo recipients.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from medRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES