Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Feb 2;77(Pt 3):217–221. doi: 10.1107/S2056989021000955

Synthesis, crystal structure and Hirshfeld surface analysis of [bis­(di­phenyl­phosphan­yl)methane-κP]chloridobis­[2-(pyridin-2-yl)phenyl-κ2 N,C 1]iridium(III)

Ekkapong Klaimanee a, Peerapong Sangwisut a, Saowanit Saithong a, Nararak Leesakul a,*
PMCID: PMC8061097  PMID: 33953939

The title IrIII complex was synthesized from the substitution reaction between the (ppy)2Ir(μ-Cl)2Ir(ppy)2 (ppy = deprotonated 2-phenyl­pyridine, C11H8N) dimer and 1,1-bis­(di­phenyl­phosphan­yl)methane (dppm, C25H22P2) under an argon gas atmosphere. The IrIII atom is coordinated by two C,N-bidentate ppy anions, a unidentate dppm ligand and a chloride anion in a distorted octa­hedral IrC2N2PCl arrangement.

Keywords: crystal structure, iridium, 2-phenyl­pyridine, di­phenyl­phosphanyl­methane

Abstract

The title IrIII complex, [Ir(C11H8N)2Cl(C25H22P2)], was synthesized from the substitution reaction between the (ppy)2Ir(μ-Cl)2Ir(ppy)2 (ppy = deprotonated 2-phenyl­pyridine, C11H8N) dimer and 1,1-bis­(di­phenyl­phosphan­yl)methane (dppm, C25H22P2) under an argon gas atmosphere for 20 h. The IrIII atom is coordinated by two C,N-bidentate ppy anions, a unidentate dppm ligand and a chloride anion in a distorted octa­hedral IrC2N2PCl arrangement. The N donor atoms of the ppy ligands are mutually trans while the C atoms are cis. Intra­molecular aromatic π–π stacking between the phenyl rings of ppy and dppm, and C—H⋯Cl inter­actions are observed. In the crystal, C—H⋯Cl and C—H⋯π contacts link the mol­ecules into a three-dimensional network. A Hirshfeld surface analysis was carried out to further qu­antify the inter­molecular inter­actions, and indicated that H⋯H contacts (63.9%) dominate the packing.

Chemical context  

Iridium(III) complexes have been investigated for decades because of their stability (Jian et al., 2011; Lee et al., 2009; Tsuboyama et al., 2003), promising luminescent properties (Lin et al., 2011; Lowry et al., 2004; Tamayo et al., 2003) and medicinal applications, especially as anti­cancer agents (Hearn et al., 2018; Rubio et al., 2020; Xiao et al., 2018). The syntheses of cyclo­metallated iridium(III) complexes have mainly focused on the 2-phenyl­pyridine (ppy) ligand and its derivatives. The octa­hedral geometry of bis-complexes is commonly selected as the main backbone accompanied by various types of ancillary ligands. Most of them are N-donor ligands (Chi & Chou, 2010; Goldsmith et al., 2005; Lin et al., 2011) owing to the strong binding of the borderline acid metal and basic ligand. However, there are fewer reports of P-donor ancillary ligands. In this present work, we report the synthesis and characterization of the title photoactive complex, (I), obtained by the reaction between (ppy)2Ir(μ-Cl)2Ir(ppy)2) dimer (ppy = deprotonated 2-phenyl­pyridine, C11H8N) with 1,1-bis­(di­phenyl­phosphan­yl)methane under an inert gas atmosphere.graphic file with name e-77-00217-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) shows a distorted octa­hedral mol­ecular structure to overcome steric hindrance between the ligands (Fig. 1) in space group P21/n. The IrIII atom is linked to two C,N-bidentate 2-phenyl­pyridine (ppy) anions through five-membered chelate rings where the N1 and N2 atoms of the ppy pyridine rings exist in a trans orientation to each other [N1—Ir1—N2 = 170.97 (9)°] and C11 and C22 are in cis orientation [C11—Ir1—C22 = 91.12 (11)°]. The bond lengths of Ir1—N1, Ir1—N2, Ir1—C11 and Ir1—C22 are 2.051 (2), 2.062 (2), 2.004 (3) and 2.032 (3) Å, respectively. As expected, the averaged Ir–C and Ir—N bond lengths are much shorter than the Ir—Cl and Ir—P bonds, based on the sizes of the different species.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, including atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The averaged Ir—N and Ir—C distances in (I) are both slightly shorter than those in [Ir(ppy)2(dppm)]PF6 (Hao et al., 2019). However, the averaged Ir—N distance is a little longer, but the Ir—C bond lengths are relatively shorter than those of related IrIII complexes bonded with ppy ligands (Chen et al., 2015; Shen et al., 2011; Wang et al., 2005)

Although bis­(di­phenyl­phosphan­yl)methane (dppm) often occurs as a bidentate ligand (e.g., Hao et al., 2019), in (I) it is unidentate [Ir1—P1 = 2.4241 (7) Å]. This Ir—P distance is somewhat longer than that in the [Ir(ppy)2(dppm)](PF6) (Hao et al., 2019) complex. The Ir—Cl bond distances in chloro­bis­[2-(2-pyrid­yl)phenyl-κ2 N,C](tri­phenyl­phosphine-κP)iridium(III) are reported to be 2.503 (19) (Wang et al., 2005) and 2.505 (16) (Shen et al., 2011) Å, which are slightly longer than that in (I) [Ir1—Cl1 = 2.4866 (8) Å]. The cis bond angles in (I) all deviate from the ideal value of 90° [80.07 (10)–95.27 (7)°] and likewise, the trans bond angles deviate from the ideal 180° [170.97 (9)–175.37 (8)°], similar to related compounds (Shen et al., 2011; Wang et al., 2005). The dihedral angle between the mean planes of the ppy rings is 77.98 (4)°, indicating the cis-form of the chelate rings. Key geometrical data are given in Table 1.

Table 1. Selected geometric parameters (Å, °).

Ir1—C11 2.004 (3) Ir1—N2 2.062 (2)
Ir1—C22 2.032 (3) Ir1—P1 2.4241 (7)
Ir1—N1 2.051 (2) Ir1—Cl1 2.4866 (8)
       
C11—Ir1—C22 91.12 (11) N1—Ir1—P1 85.83 (6)
C11—Ir1—N1 80.35 (10) N2—Ir1—P1 101.93 (6)
C22—Ir1—N1 92.62 (10) C11—Ir1—Cl1 175.37 (8)
C11—Ir1—N2 94.40 (10) C22—Ir1—Cl1 87.54 (8)
C22—Ir1—N2 80.07 (10) N1—Ir1—Cl1 95.27 (7)
N1—Ir1—N2 170.97 (9) N2—Ir1—Cl1 89.74 (7)
C11—Ir1—P1 93.75 (8) P1—Ir1—Cl1 87.41 (3)
C22—Ir1—P1 174.57 (8)    

Intra­molecular π–π stacking inter­actions are observed for (I). The π–π stackings are found between two phenyl rings (C6–C11 and C23–C28) of the ppy and dppm ligands, Cg5⋯Cg7 = 3.621 (1) Å and between the phenyl rings of the dppm mol­ecule (C29–C34 and C36–C41), Cg8⋯Cg9 = 3.997 (1) Å (Fig. 2). Three weak intra­molecular hydrogen-bonding inter­actions, viz. C1—H1⋯Cl1 [C⋯Cl = 3.357 (3) Å], C30—H30⋯Cl1 [C⋯Cl = 3.664 (4) Å] and C35—H35A⋯Cl1 [C35⋯Cl = 3.460 (3) Å] (Fig. 3 and Table 2) are observed.

Figure 2.

Figure 2

Intra­molecular π–π inter­actions occurred between the phenyl rings of the complex (H atoms are omitted).

Figure 3.

Figure 3

The intra­molecular C—H⋯Cl inter­actions in the title compound

Table 2. Hydrogen-bond geometry (Å, °).

Cg6, Cg8 and Cg10 are the centroids of the C17–C22, C29–C34 and C42–C47 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.93 2.73 3.357 (3) 126
C14—H14⋯Cl1i 0.93 2.77 3.548 (4) 142
C30—H30⋯Cl1 0.93 2.84 3.664 (4) 148
C35—H35A⋯Cl1 0.97 2.83 3.460 (3) 124
C3—H3⋯Cg6ii 0.93 2.83 3.572 (4) 137
C26—H26⋯Cg10iii 0.93 2.79 3.575 (5) 143
C38—H38⋯C10iii 0.93 2.81 3.659 (5) 153
C40—H40⋯Cg8iv 0.93 2.95 3.711 (5) 140

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}; (iii) -x+2, -y+1, -z+2; (iv) -x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 2}}.

Supra­molecular features  

Several weak C—Hπ (ring) inter­actions are found in the crystal packing (Fig. 4). The inter­actions are observed between any two adjacent mol­ecules of ppy via the C3—H3 grouping of the pyridine ring and the centroid (Cg6) of the C17–C22 phenyl ring (H3⋯Cg6 = 2.83 Å). In addition, C—H⋯π(ring) inter­actions are also found between the dppm phenyl rings of neighbouring mol­ecules: C26—H26 ⋯Cg10 (H26⋯Cg10 = 2.79 Å; Cg10 is the centroid of the C42–C47 ring), C38—H38⋯Cg10 (H38⋯Cg10 = 2.81 Å) and C40—H40⋯Cg8 (H40⋯Cg8 = 2.95 Å). In addition, pairwise inter­molecular hydrogen bonds are observed between C14—H14 of the pyridine ring of the ppy ring and Cl1 (Table 2).

Figure 4.

Figure 4

The inter­molecular C—H⋯·π inter­actions in the title compound.

Hirshfeld surface analysis  

Additional insights into the weak inter­molecular contacts in the crystal packing of (I) were gained from Hirshfeld surface analysis and the two-dimensional fingerprint plots (McKinnon et al., 2004; 2007; Spackman & Jayatilaka, 2009) generated using Crystal Explorer 17.5 program (Turner et al., 2017). The Hirshfeld surfaces were mapped over the normalized contact distance (d norm) with the functions d e and d i, which are the distances from an indicated area on the Hirshfeld surface to the nearest atoms outside and inside the surface, respectively. The white, red, and blue areas on the d norm-mapped Hirshfeld surfaces show inter­molecular contacts that are equal to, shorter than, and longer than the sum of their van der Waals (vdW) radii, respectively. A pair of inter­molecular contacts are shown as red spots on the Hirshfeld surface close to the Cl1 atom of the adjoining mol­ecule and the H14 atom of the associated pyridine ring. The spots indicate hydrogen-bond donor-to-acceptor inter­actions of C14—H14⋯Cl1 and vice versa (Fig. 5). The relative contributions of the various types of contacts to the total of inter­molecular inter­actions across the Hirshfeld surface are represented in two-dimensional fingerprint plots. Total inter­molecular inter­actions (100%) are shown in Fig. 6(a) while Fig. 6(b)–(d) depict the contacts of the H⋯H (63.9%), C⋯H/H⋯C (29.5%) and H⋯Cl/Cl⋯H (4.4%) inter­actions, respectively.

Figure 5.

Figure 5

Hirshfeld surface plot showing the C—H⋯·Cl inter­actions.

Figure 6.

Figure 6

Fingerprint plots corresponding to inter­molecular contacts in the crystal: (a) all inter­actions, (b) H⋯H contacts, (c) H⋯C/C⋯H and (d) H⋯Cl/Cl⋯H.

Database survey  

A search of the SciFinder (SciFinder, 2020) database for phospho­rescent complexes of ppy with iridium(III) diphos­phine (dpp) reveals eight structures closely related to the title compound. Hao et al. (2019) report the crystal structure of an ionic complex of the [Ir(ppy)2(dppm)]+; dppm = bis­(di­phenyl­phosphan­yl)methane bidentate ligand. However, none of the remaining publications describe a monomeric IrIII complex similar to the title compound. The seven hits include the octa­hedral crystal structures of IrIII complexes with a bis­(2-phenyl­pyridine)­iridium(III) backbone and ancillary ligands of both N-donor, P-donor and O-donor ligands. There are a tris-complex of Ir(ppy)3 (Huynh et al., 2005), [Ir(ppy)2(dppel)]; dppel = 1,2-bis­(di­phenyl­phosphan­yl)ethyl­ene, [Ir(ppy)2(dppp)]; dppp = 1,3-bis­(di­phenyl­phosphan­yl)propane and [Ir(ppy)2(dppe)]; dppe = 1,2-bis­(diphenylphosphan­yl) ethane] (Alam et al., 2013), [Ir(ppy)2 L 2]+ (L 2 = substituted 2,2′-bi­pyridine, dppe and 1,10-phenanthroline; Lowry & Bernhard, 2006), [Ir(ppy)2(P^N)]PF6, [Ir(dfppy)2(P^N)]PF6 and [Ir(dfmppy)2(P^N)]PF6 where P^N = 2-[(di­phenyl­phos­phan­yl) meth­yl]pyridine, dfppy = 2-(2,4-difuorophen­yl)pyri­dine and dfmppy = 2-(2,4-di­fluoro­phen­yl)-4-methyl­pyridine (Ma et al., 2009), [Ir(ppy)2(biq)]PF6 (biq = 2,2-bi­quinoline; Nishikitani et al., 2018) and Ir(dppy)2(acac) (dppy = 2,5-di­phenyl­pyridyl and acac = acetyl­acetonate; Xu et al., 2005). There are four other related complexes, Ir(ppy)2(L) [L = 1,2-bis­(di­phenyl­phosphan­yl)ethane, 1,2-bis (di­phenyl­phosphan­yl)propane, 1,2-bis­(di­phenyl­phos phino)benzene and 1,8-bis­(di­phenyl­phos phino)naphthalene; Liu et al., 2019; Luo et al., 2013] and Ir(ppy)2(PPh3)Cl (Wang et al., 2005).

Synthesis and crystallization  

The title complex was synthesized from the reaction between (ppy)2Ir(μ-Cl)2Ir(ppy)2 (0.5 mmol) and bis­(di­phenyl­phosphan­yl)methane (1.25 mmol) in CH2Cl2 solution. The reaction was carried out by refluxing the mixture under Ar gas for 20 h. The solution mixture was then cooled to room temperature and the solvent was evaporated. The crude yellow product thus obtained was washed with diethyl ether to remove excess ligands and impurities, and the complex was crystallized and recrystallized in mixed solvents of di­chloro­methane:diethyl ether (9:1) at room temperature three times, yielding yellowish crystals (yield = 30%), m.p. = 488–489 K IR (KBr, cm−1): ν(C—H), 3054; ν(C=C), 1436, 2367; ν(C—N), 1030; ν(C=N), 1613; ν(P—Ph), 1098; ν(Ir—P), 760; ν(Ir—N), 733; ν(Ir—Cl), 510. Analysis (%): found C 61.01, H 4.38, N 2.77; calculated C 61.33, H 4.16, N 3.04.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were included in calculated positions [C—H = 0.93 (aromatic) or 0.97 Å (Csp2)] and refined as riding with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula [Ir(C11H8N)2Cl(C25H22P2)]
M r 920.38
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 14.4506 (5), 15.4490 (5), 17.8532 (6)
β (°) 103.044 (1)
V3) 3882.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.63
Crystal size (mm) 0.19 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2003)
T min, T max 0.800, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 35153, 9248, 7758
R int 0.033
(sin θ/λ)max−1) 0.658
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.062, 1.05
No. of reflections 9248
No. of parameters 478
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.90, −0.33

Computer programs: SMART and SAINT (Bruker, 2003), SHELXT2014 (Sheldrick, 2015a ), ShelXle (Hübschle et al., 2011), SHELXL2014/7 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020), WinGX publication routines (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021000955/hb7961sup1.cif

e-77-00217-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021000955/hb7961Isup2.hkl

e-77-00217-Isup2.hkl (734.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021000955/hb7961Isup3.mol

CCDC reference: 2058995

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Division of Physical Science, Faculty of Science, Prince of Songkla University, for research facilities.

supplementary crystallographic information

Crystal data

[Ir(C11H8N)2Cl(C25H22P2)] F(000) = 1832
Mr = 920.38 Dx = 1.574 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 14.4506 (5) Å Cell parameters from 9441 reflections
b = 15.4490 (5) Å θ = 2.3–25.6°
c = 17.8532 (6) Å µ = 3.63 mm1
β = 103.044 (1)° T = 293 K
V = 3882.8 (2) Å3 Block, light yellow
Z = 4 0.19 × 0.09 × 0.06 mm

Data collection

Bruker APEX CCD area-detector diffractometer 9248 independent reflections
Radiation source: fine-focus sealed tube 7758 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
Frames, each covering 0.3 ° in ω scans θmax = 27.9°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −19→18
Tmin = 0.800, Tmax = 1.000 k = −20→20
35153 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.328P] where P = (Fo2 + 2Fc2)/3
9248 reflections (Δ/σ)max = 0.004
478 parameters Δρmax = 0.90 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ir1 0.68717 (2) 0.18203 (2) 0.91417 (2) 0.02951 (4)
Cl1 0.53215 (5) 0.24293 (5) 0.92683 (4) 0.04323 (17)
P1 0.76225 (5) 0.28142 (5) 1.01468 (4) 0.03235 (16)
P2 0.76117 (6) 0.48320 (5) 1.05116 (4) 0.03587 (17)
N1 0.71230 (16) 0.27466 (14) 0.83889 (12) 0.0322 (5)
N2 0.66418 (17) 0.07508 (14) 0.97668 (13) 0.0345 (5)
C1 0.6505 (2) 0.33752 (19) 0.80720 (17) 0.0414 (7)
H1 0.5898 0.3378 0.8167 0.050*
C2 0.6752 (3) 0.4012 (2) 0.76128 (18) 0.0492 (8)
H2 0.6313 0.4433 0.7395 0.059*
C3 0.7646 (3) 0.4020 (2) 0.74807 (19) 0.0528 (9)
H3 0.7830 0.4458 0.7187 0.063*
C4 0.8269 (3) 0.3377 (2) 0.77858 (18) 0.0466 (8)
H4 0.8880 0.3380 0.7700 0.056*
C5 0.7996 (2) 0.27145 (18) 0.82245 (15) 0.0353 (6)
C6 0.8552 (2) 0.19571 (18) 0.85264 (17) 0.0374 (7)
C7 0.9445 (2) 0.1771 (2) 0.8388 (2) 0.0494 (8)
H7 0.9729 0.2159 0.8111 0.059*
C8 0.9905 (3) 0.1019 (2) 0.8659 (2) 0.0575 (9)
H8 1.0506 0.0901 0.8577 0.069*
C9 0.9467 (3) 0.0438 (2) 0.9055 (2) 0.0556 (9)
H9 0.9766 −0.0082 0.9224 0.067*
C10 0.8589 (2) 0.0618 (2) 0.92042 (18) 0.0449 (7)
H10 0.8312 0.0217 0.9474 0.054*
C11 0.8109 (2) 0.13846 (18) 0.89610 (15) 0.0338 (6)
C12 0.7031 (2) 0.06046 (19) 1.05128 (17) 0.0469 (8)
H12 0.7442 0.1017 1.0785 0.056*
C13 0.6849 (3) −0.0130 (2) 1.0891 (2) 0.0598 (10)
H13 0.7127 −0.0209 1.1409 0.072*
C14 0.6251 (3) −0.0741 (2) 1.0492 (2) 0.0656 (11)
H14 0.6112 −0.1240 1.0736 0.079*
C15 0.5859 (3) −0.0609 (2) 0.9727 (2) 0.0543 (9)
H15 0.5446 −0.1019 0.9453 0.065*
C16 0.6071 (2) 0.01343 (18) 0.93549 (17) 0.0373 (6)
C17 0.5754 (2) 0.03060 (18) 0.85349 (16) 0.0366 (6)
C18 0.5151 (2) −0.0240 (2) 0.80214 (19) 0.0457 (7)
H18 0.4890 −0.0725 0.8203 0.055*
C19 0.4945 (2) −0.0059 (2) 0.72503 (19) 0.0520 (8)
H19 0.4546 −0.0424 0.6907 0.062*
C20 0.5328 (2) 0.0662 (2) 0.69845 (18) 0.0488 (8)
H20 0.5194 0.0778 0.6460 0.059*
C21 0.5910 (2) 0.1216 (2) 0.74885 (16) 0.0409 (7)
H21 0.6159 0.1701 0.7296 0.049*
C22 0.61342 (19) 0.10635 (17) 0.82804 (15) 0.0324 (6)
C23 0.8897 (2) 0.2899 (2) 1.02168 (16) 0.0381 (7)
C24 0.9480 (2) 0.2230 (2) 1.0551 (2) 0.0531 (8)
H24 0.9226 0.1784 1.0793 0.064*
C25 1.0427 (3) 0.2207 (3) 1.0535 (2) 0.0675 (11)
H25 1.0807 0.1751 1.0767 0.081*
C26 1.0814 (3) 0.2856 (3) 1.0178 (3) 0.0708 (12)
H26 1.1452 0.2839 1.0160 0.085*
C27 1.0251 (3) 0.3526 (3) 0.9848 (2) 0.0621 (10)
H27 1.0513 0.3969 0.9610 0.074*
C28 0.9301 (2) 0.3557 (2) 0.98620 (18) 0.0460 (7)
H28 0.8929 0.4019 0.9634 0.055*
C29 0.7500 (2) 0.27335 (18) 1.11445 (16) 0.0388 (7)
C30 0.6630 (3) 0.2510 (2) 1.12801 (19) 0.0529 (8)
H30 0.6141 0.2342 1.0872 0.063*
C31 0.6477 (3) 0.2534 (3) 1.2018 (2) 0.0694 (11)
H31 0.5884 0.2392 1.2104 0.083*
C32 0.7209 (4) 0.2769 (3) 1.2625 (2) 0.0792 (13)
H32 0.7108 0.2784 1.3121 0.095*
C33 0.8081 (4) 0.2980 (3) 1.2500 (2) 0.0743 (13)
H33 0.8572 0.3133 1.2912 0.089*
C34 0.8234 (3) 0.2965 (2) 1.17625 (19) 0.0551 (9)
H34 0.8827 0.3110 1.1679 0.066*
C35 0.7142 (2) 0.38963 (17) 0.98911 (16) 0.0381 (7)
H35A 0.6463 0.3870 0.9857 0.046*
H35B 0.7227 0.4023 0.9379 0.046*
C36 0.6829 (2) 0.49398 (19) 1.11822 (17) 0.0395 (7)
C37 0.5910 (3) 0.4657 (2) 1.1068 (2) 0.0625 (10)
H37 0.5653 0.4332 1.0632 0.075*
C38 0.5354 (3) 0.4842 (3) 1.1587 (3) 0.0831 (14)
H38 0.4734 0.4636 1.1504 0.100*
C39 0.5727 (3) 0.5334 (3) 1.2227 (2) 0.0721 (12)
H39 0.5361 0.5458 1.2580 0.086*
C40 0.6627 (3) 0.5638 (3) 1.2342 (2) 0.0699 (12)
H40 0.6869 0.5988 1.2764 0.084*
C41 0.7188 (3) 0.5429 (2) 1.18332 (19) 0.0565 (9)
H41 0.7815 0.5619 1.1930 0.068*
C42 0.7121 (2) 0.56941 (18) 0.98220 (17) 0.0383 (7)
C43 0.6538 (3) 0.6345 (2) 0.9985 (2) 0.0520 (8)
H43 0.6357 0.6344 1.0453 0.062*
C44 0.6223 (3) 0.6995 (2) 0.9458 (2) 0.0659 (11)
H44 0.5827 0.7424 0.9574 0.079*
C45 0.6479 (3) 0.7019 (3) 0.8779 (2) 0.0673 (11)
H45 0.6269 0.7467 0.8434 0.081*
C46 0.7056 (3) 0.6376 (3) 0.8596 (2) 0.0594 (10)
H46 0.7224 0.6381 0.8123 0.071*
C47 0.7380 (2) 0.5729 (2) 0.91164 (18) 0.0468 (8)
H47 0.7780 0.5306 0.8996 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.03490 (7) 0.02715 (6) 0.02633 (6) −0.00467 (4) 0.00662 (4) −0.00016 (4)
Cl1 0.0386 (4) 0.0438 (4) 0.0497 (4) −0.0044 (3) 0.0150 (3) −0.0041 (3)
P1 0.0393 (4) 0.0284 (3) 0.0293 (4) −0.0065 (3) 0.0075 (3) −0.0017 (3)
P2 0.0401 (4) 0.0312 (4) 0.0358 (4) −0.0056 (3) 0.0074 (3) −0.0042 (3)
N1 0.0393 (13) 0.0303 (12) 0.0270 (11) −0.0046 (10) 0.0074 (10) 0.0011 (9)
N2 0.0420 (14) 0.0295 (12) 0.0320 (12) −0.0061 (10) 0.0085 (11) 0.0011 (10)
C1 0.0457 (18) 0.0408 (17) 0.0376 (16) 0.0004 (13) 0.0090 (14) 0.0047 (13)
C2 0.063 (2) 0.0413 (18) 0.0418 (17) 0.0032 (16) 0.0096 (16) 0.0115 (14)
C3 0.072 (2) 0.0458 (18) 0.0463 (19) −0.0085 (17) 0.0247 (18) 0.0100 (15)
C4 0.053 (2) 0.0519 (19) 0.0410 (17) −0.0136 (15) 0.0233 (16) −0.0014 (14)
C5 0.0417 (17) 0.0379 (16) 0.0279 (13) −0.0059 (12) 0.0110 (12) −0.0045 (12)
C6 0.0394 (16) 0.0397 (16) 0.0334 (15) −0.0049 (12) 0.0092 (13) −0.0067 (12)
C7 0.0446 (19) 0.059 (2) 0.0473 (19) −0.0043 (16) 0.0167 (16) −0.0086 (16)
C8 0.047 (2) 0.069 (2) 0.057 (2) 0.0124 (18) 0.0130 (17) −0.0148 (19)
C9 0.057 (2) 0.050 (2) 0.055 (2) 0.0152 (17) 0.0033 (18) −0.0123 (17)
C10 0.0518 (19) 0.0372 (17) 0.0446 (17) 0.0032 (14) 0.0089 (15) −0.0021 (13)
C11 0.0378 (16) 0.0347 (15) 0.0274 (13) −0.0005 (12) 0.0039 (12) −0.0074 (11)
C12 0.067 (2) 0.0370 (17) 0.0339 (15) −0.0143 (15) 0.0066 (15) 0.0024 (13)
C13 0.088 (3) 0.048 (2) 0.0401 (18) −0.0137 (19) 0.0080 (18) 0.0123 (15)
C14 0.090 (3) 0.0412 (19) 0.064 (2) −0.0216 (19) 0.014 (2) 0.0167 (17)
C15 0.068 (2) 0.0337 (17) 0.057 (2) −0.0173 (16) 0.0066 (18) 0.0020 (15)
C16 0.0403 (16) 0.0297 (14) 0.0410 (16) −0.0047 (12) 0.0072 (13) −0.0019 (12)
C17 0.0378 (16) 0.0342 (15) 0.0379 (15) −0.0024 (12) 0.0084 (13) −0.0078 (12)
C18 0.0412 (17) 0.0392 (17) 0.055 (2) −0.0065 (13) 0.0065 (15) −0.0099 (14)
C19 0.0437 (19) 0.054 (2) 0.051 (2) −0.0006 (16) −0.0045 (16) −0.0211 (16)
C20 0.0482 (19) 0.059 (2) 0.0335 (16) 0.0087 (16) −0.0022 (14) −0.0101 (15)
C21 0.0437 (17) 0.0437 (17) 0.0348 (15) 0.0045 (13) 0.0075 (14) 0.0008 (13)
C22 0.0303 (14) 0.0344 (14) 0.0319 (14) 0.0002 (11) 0.0057 (12) −0.0064 (11)
C23 0.0407 (17) 0.0386 (15) 0.0343 (15) −0.0089 (13) 0.0071 (13) −0.0098 (12)
C24 0.049 (2) 0.0446 (19) 0.062 (2) −0.0051 (16) 0.0060 (17) −0.0013 (16)
C25 0.046 (2) 0.065 (3) 0.083 (3) 0.0051 (19) −0.001 (2) −0.011 (2)
C26 0.042 (2) 0.079 (3) 0.093 (3) −0.014 (2) 0.018 (2) −0.027 (3)
C27 0.057 (2) 0.071 (3) 0.065 (2) −0.027 (2) 0.026 (2) −0.018 (2)
C28 0.0501 (19) 0.0464 (18) 0.0431 (17) −0.0130 (15) 0.0137 (15) −0.0107 (14)
C29 0.0549 (19) 0.0316 (15) 0.0297 (14) −0.0039 (13) 0.0093 (14) −0.0023 (12)
C30 0.058 (2) 0.060 (2) 0.0440 (18) −0.0061 (17) 0.0199 (17) −0.0005 (16)
C31 0.082 (3) 0.076 (3) 0.062 (2) −0.003 (2) 0.039 (2) 0.001 (2)
C32 0.116 (4) 0.089 (3) 0.041 (2) 0.001 (3) 0.034 (3) −0.004 (2)
C33 0.101 (4) 0.086 (3) 0.0325 (19) −0.008 (3) 0.006 (2) −0.0113 (19)
C34 0.064 (2) 0.059 (2) 0.0387 (18) −0.0119 (18) 0.0044 (17) −0.0041 (15)
C35 0.0490 (18) 0.0304 (14) 0.0326 (14) −0.0048 (13) 0.0044 (13) −0.0031 (12)
C36 0.0453 (18) 0.0354 (15) 0.0380 (16) 0.0017 (13) 0.0100 (14) 0.0043 (13)
C37 0.059 (2) 0.058 (2) 0.075 (3) −0.0176 (18) 0.023 (2) −0.0163 (19)
C38 0.063 (3) 0.078 (3) 0.126 (4) −0.016 (2) 0.057 (3) −0.009 (3)
C39 0.080 (3) 0.081 (3) 0.068 (3) 0.014 (2) 0.042 (2) 0.018 (2)
C40 0.075 (3) 0.094 (3) 0.0402 (19) 0.023 (2) 0.0102 (19) −0.005 (2)
C41 0.048 (2) 0.077 (2) 0.0423 (18) 0.0061 (18) 0.0049 (16) −0.0139 (17)
C42 0.0420 (17) 0.0328 (15) 0.0411 (16) −0.0066 (12) 0.0113 (14) −0.0014 (12)
C43 0.069 (2) 0.0363 (17) 0.057 (2) 0.0033 (16) 0.0286 (18) 0.0051 (15)
C44 0.076 (3) 0.049 (2) 0.079 (3) 0.0178 (19) 0.032 (2) 0.0156 (19)
C45 0.072 (3) 0.064 (2) 0.071 (3) 0.013 (2) 0.026 (2) 0.034 (2)
C46 0.063 (2) 0.067 (2) 0.051 (2) −0.007 (2) 0.0206 (18) 0.0163 (18)
C47 0.050 (2) 0.0455 (18) 0.0477 (19) −0.0042 (15) 0.0173 (16) 0.0002 (14)

Geometric parameters (Å, º)

Ir1—C11 2.004 (3) C20—C21 1.381 (4)
Ir1—C22 2.032 (3) C20—H20 0.9300
Ir1—N1 2.051 (2) C21—C22 1.397 (4)
Ir1—N2 2.062 (2) C21—H21 0.9300
Ir1—P1 2.4241 (7) C23—C24 1.381 (5)
Ir1—Cl1 2.4866 (8) C23—C28 1.394 (4)
P1—C23 1.822 (3) C24—C25 1.377 (5)
P1—C35 1.828 (3) C24—H24 0.9300
P1—C29 1.834 (3) C25—C26 1.373 (6)
P2—C36 1.830 (3) C25—H25 0.9300
P2—C42 1.844 (3) C26—C27 1.365 (6)
P2—C35 1.854 (3) C26—H26 0.9300
N1—C1 1.354 (4) C27—C28 1.380 (5)
N1—C5 1.360 (4) C27—H27 0.9300
N2—C12 1.343 (4) C28—H28 0.9300
N2—C16 1.362 (3) C29—C30 1.376 (4)
C1—C2 1.378 (4) C29—C34 1.394 (4)
C1—H1 0.9300 C30—C31 1.384 (5)
C2—C3 1.365 (5) C30—H30 0.9300
C2—H2 0.9300 C31—C32 1.381 (6)
C3—C4 1.369 (5) C31—H31 0.9300
C3—H3 0.9300 C32—C33 1.367 (6)
C4—C5 1.398 (4) C32—H32 0.9300
C4—H4 0.9300 C33—C34 1.384 (5)
C5—C6 1.453 (4) C33—H33 0.9300
C6—C7 1.397 (4) C34—H34 0.9300
C6—C11 1.421 (4) C35—H35A 0.9700
C7—C8 1.372 (5) C35—H35B 0.9700
C7—H7 0.9300 C36—C37 1.369 (4)
C8—C9 1.382 (5) C36—C41 1.385 (4)
C8—H8 0.9300 C37—C38 1.387 (5)
C9—C10 1.382 (5) C37—H37 0.9300
C9—H9 0.9300 C38—C39 1.376 (6)
C10—C11 1.391 (4) C38—H38 0.9300
C10—H10 0.9300 C39—C40 1.353 (6)
C12—C13 1.376 (4) C39—H39 0.9300
C12—H12 0.9300 C40—C41 1.386 (5)
C13—C14 1.367 (5) C40—H40 0.9300
C13—H13 0.9300 C41—H41 0.9300
C14—C15 1.370 (5) C42—C43 1.384 (4)
C14—H14 0.9300 C42—C47 1.394 (4)
C15—C16 1.395 (4) C43—C44 1.382 (5)
C15—H15 0.9300 C43—H43 0.9300
C16—C17 1.456 (4) C44—C45 1.344 (5)
C17—C18 1.397 (4) C44—H44 0.9300
C17—C22 1.411 (4) C45—C46 1.384 (5)
C18—C19 1.370 (4) C45—H45 0.9300
C18—H18 0.9300 C46—C47 1.372 (5)
C19—C20 1.376 (5) C46—H46 0.9300
C19—H19 0.9300 C47—H47 0.9300
C11—Ir1—C22 91.12 (11) C19—C20—C21 120.7 (3)
C11—Ir1—N1 80.35 (10) C19—C20—H20 119.7
C22—Ir1—N1 92.62 (10) C21—C20—H20 119.7
C11—Ir1—N2 94.40 (10) C20—C21—C22 121.5 (3)
C22—Ir1—N2 80.07 (10) C20—C21—H21 119.2
N1—Ir1—N2 170.97 (9) C22—C21—H21 119.2
C11—Ir1—P1 93.75 (8) C21—C22—C17 116.6 (3)
C22—Ir1—P1 174.57 (8) C21—C22—Ir1 129.1 (2)
N1—Ir1—P1 85.83 (6) C17—C22—Ir1 114.18 (19)
N2—Ir1—P1 101.93 (6) C24—C23—C28 117.8 (3)
C11—Ir1—Cl1 175.37 (8) C24—C23—P1 118.9 (2)
C22—Ir1—Cl1 87.54 (8) C28—C23—P1 122.8 (3)
N1—Ir1—Cl1 95.27 (7) C25—C24—C23 121.5 (3)
N2—Ir1—Cl1 89.74 (7) C25—C24—H24 119.3
P1—Ir1—Cl1 87.41 (3) C23—C24—H24 119.3
C23—P1—C35 105.78 (14) C26—C25—C24 120.1 (4)
C23—P1—C29 104.84 (14) C26—C25—H25 119.9
C35—P1—C29 100.97 (13) C24—C25—H25 119.9
C23—P1—Ir1 111.90 (9) C27—C26—C25 119.3 (4)
C35—P1—Ir1 108.25 (9) C27—C26—H26 120.3
C29—P1—Ir1 123.42 (10) C25—C26—H26 120.3
C36—P2—C42 99.77 (13) C26—C27—C28 121.1 (4)
C36—P2—C35 105.37 (14) C26—C27—H27 119.4
C42—P2—C35 97.50 (13) C28—C27—H27 119.4
C1—N1—C5 119.5 (2) C27—C28—C23 120.2 (3)
C1—N1—Ir1 125.2 (2) C27—C28—H28 119.9
C5—N1—Ir1 115.23 (18) C23—C28—H28 119.9
C12—N2—C16 119.0 (2) C30—C29—C34 119.2 (3)
C12—N2—Ir1 126.07 (19) C30—C29—P1 118.7 (2)
C16—N2—Ir1 114.83 (18) C34—C29—P1 121.9 (3)
N1—C1—C2 121.7 (3) C29—C30—C31 120.6 (4)
N1—C1—H1 119.1 C29—C30—H30 119.7
C2—C1—H1 119.1 C31—C30—H30 119.7
C3—C2—C1 119.5 (3) C32—C31—C30 119.7 (4)
C3—C2—H2 120.3 C32—C31—H31 120.2
C1—C2—H2 120.3 C30—C31—H31 120.2
C2—C3—C4 119.2 (3) C33—C32—C31 120.3 (4)
C2—C3—H3 120.4 C33—C32—H32 119.8
C4—C3—H3 120.4 C31—C32—H32 119.8
C3—C4—C5 120.7 (3) C32—C33—C34 120.1 (4)
C3—C4—H4 119.6 C32—C33—H33 119.9
C5—C4—H4 119.6 C34—C33—H33 119.9
N1—C5—C4 119.1 (3) C33—C34—C29 120.1 (4)
N1—C5—C6 114.3 (2) C33—C34—H34 120.0
C4—C5—C6 126.5 (3) C29—C34—H34 120.0
C7—C6—C11 121.1 (3) P1—C35—P2 119.78 (16)
C7—C6—C5 123.8 (3) P1—C35—H35A 107.4
C11—C6—C5 115.1 (3) P2—C35—H35A 107.4
C8—C7—C6 120.4 (3) P1—C35—H35B 107.4
C8—C7—H7 119.8 P2—C35—H35B 107.4
C6—C7—H7 119.8 H35A—C35—H35B 106.9
C7—C8—C9 119.2 (3) C37—C36—C41 117.8 (3)
C7—C8—H8 120.4 C37—C36—P2 126.5 (3)
C9—C8—H8 120.4 C41—C36—P2 115.4 (2)
C8—C9—C10 121.0 (3) C36—C37—C38 121.6 (4)
C8—C9—H9 119.5 C36—C37—H37 119.2
C10—C9—H9 119.5 C38—C37—H37 119.2
C9—C10—C11 121.7 (3) C39—C38—C37 119.4 (4)
C9—C10—H10 119.1 C39—C38—H38 120.3
C11—C10—H10 119.1 C37—C38—H38 120.3
C10—C11—C6 116.5 (3) C40—C39—C38 120.0 (4)
C10—C11—Ir1 129.5 (2) C40—C39—H39 120.0
C6—C11—Ir1 114.0 (2) C38—C39—H39 120.0
N2—C12—C13 122.8 (3) C39—C40—C41 120.3 (4)
N2—C12—H12 118.6 C39—C40—H40 119.9
C13—C12—H12 118.6 C41—C40—H40 119.9
C14—C13—C12 118.8 (3) C36—C41—C40 120.9 (4)
C14—C13—H13 120.6 C36—C41—H41 119.6
C12—C13—H13 120.6 C40—C41—H41 119.6
C13—C14—C15 119.2 (3) C43—C42—C47 117.5 (3)
C13—C14—H14 120.4 C43—C42—P2 123.0 (2)
C15—C14—H14 120.4 C47—C42—P2 119.4 (2)
C14—C15—C16 120.8 (3) C44—C43—C42 120.4 (3)
C14—C15—H15 119.6 C44—C43—H43 119.8
C16—C15—H15 119.6 C42—C43—H43 119.8
N2—C16—C15 119.3 (3) C45—C44—C43 121.3 (4)
N2—C16—C17 115.5 (2) C45—C44—H44 119.3
C15—C16—C17 125.2 (3) C43—C44—H44 119.3
C18—C17—C22 121.3 (3) C44—C45—C46 119.7 (3)
C18—C17—C16 123.9 (3) C44—C45—H45 120.2
C22—C17—C16 114.7 (2) C46—C45—H45 120.2
C19—C18—C17 119.9 (3) C47—C46—C45 119.7 (3)
C19—C18—H18 120.0 C47—C46—H46 120.2
C17—C18—H18 120.0 C45—C46—H46 120.2
C18—C19—C20 119.9 (3) C46—C47—C42 121.3 (3)
C18—C19—H19 120.1 C46—C47—H47 119.3
C20—C19—H19 120.1 C42—C47—H47 119.3
C5—N1—C1—C2 −3.1 (4) C35—P1—C23—C28 −21.3 (3)
Ir1—N1—C1—C2 175.3 (2) C29—P1—C23—C28 −127.5 (2)
N1—C1—C2—C3 −1.0 (5) Ir1—P1—C23—C28 96.4 (2)
C1—C2—C3—C4 2.3 (5) C28—C23—C24—C25 −0.2 (5)
C2—C3—C4—C5 0.3 (5) P1—C23—C24—C25 171.8 (3)
C1—N1—C5—C4 5.6 (4) C23—C24—C25—C26 −0.4 (6)
Ir1—N1—C5—C4 −172.9 (2) C24—C25—C26—C27 0.8 (6)
C1—N1—C5—C6 −173.3 (3) C25—C26—C27—C28 −0.6 (6)
Ir1—N1—C5—C6 8.1 (3) C26—C27—C28—C23 0.0 (5)
C3—C4—C5—N1 −4.3 (4) C24—C23—C28—C27 0.4 (5)
C3—C4—C5—C6 174.5 (3) P1—C23—C28—C27 −171.3 (2)
N1—C5—C6—C7 176.2 (3) C23—P1—C29—C30 −168.8 (3)
C4—C5—C6—C7 −2.6 (5) C35—P1—C29—C30 81.4 (3)
N1—C5—C6—C11 −1.6 (4) Ir1—P1—C29—C30 −39.2 (3)
C4—C5—C6—C11 179.6 (3) C23—P1—C29—C34 17.0 (3)
C11—C6—C7—C8 1.2 (5) C35—P1—C29—C34 −92.8 (3)
C5—C6—C7—C8 −176.5 (3) Ir1—P1—C29—C34 146.5 (2)
C6—C7—C8—C9 1.5 (5) C34—C29—C30—C31 1.5 (5)
C7—C8—C9—C10 −2.3 (5) P1—C29—C30—C31 −172.9 (3)
C8—C9—C10—C11 0.3 (5) C29—C30—C31—C32 −1.2 (6)
C9—C10—C11—C6 2.3 (4) C30—C31—C32—C33 0.2 (7)
C9—C10—C11—Ir1 −177.0 (2) C31—C32—C33—C34 0.5 (7)
C7—C6—C11—C10 −3.1 (4) C32—C33—C34—C29 −0.2 (6)
C5—C6—C11—C10 174.9 (3) C30—C29—C34—C33 −0.8 (5)
C7—C6—C11—Ir1 176.3 (2) P1—C29—C34—C33 173.4 (3)
C5—C6—C11—Ir1 −5.8 (3) C23—P1—C35—P2 −56.6 (2)
C16—N2—C12—C13 −2.7 (5) C29—P1—C35—P2 52.4 (2)
Ir1—N2—C12—C13 −179.5 (3) Ir1—P1—C35—P2 −176.66 (14)
N2—C12—C13—C14 0.4 (6) C36—P2—C35—P1 −93.0 (2)
C12—C13—C14—C15 0.6 (6) C42—P2—C35—P1 164.65 (18)
C13—C14—C15—C16 0.6 (6) C42—P2—C36—C37 76.6 (3)
C12—N2—C16—C15 3.9 (4) C35—P2—C36—C37 −24.0 (3)
Ir1—N2—C16—C15 −179.0 (2) C42—P2—C36—C41 −97.0 (3)
C12—N2—C16—C17 −174.2 (3) C35—P2—C36—C41 162.4 (2)
Ir1—N2—C16—C17 3.0 (3) C41—C36—C37—C38 −0.6 (5)
C14—C15—C16—N2 −2.9 (5) P2—C36—C37—C38 −174.1 (3)
C14—C15—C16—C17 174.9 (3) C36—C37—C38—C39 1.0 (7)
N2—C16—C17—C18 −178.7 (3) C37—C38—C39—C40 0.5 (7)
C15—C16—C17—C18 3.4 (5) C38—C39—C40—C41 −2.4 (6)
N2—C16—C17—C22 3.7 (4) C37—C36—C41—C40 −1.3 (5)
C15—C16—C17—C22 −174.2 (3) P2—C36—C41—C40 172.9 (3)
C22—C17—C18—C19 2.3 (5) C39—C40—C41—C36 2.8 (6)
C16—C17—C18—C19 −175.2 (3) C36—P2—C42—C43 16.7 (3)
C17—C18—C19—C20 −0.4 (5) C35—P2—C42—C43 123.8 (3)
C18—C19—C20—C21 −0.9 (5) C36—P2—C42—C47 −166.7 (2)
C19—C20—C21—C22 0.4 (5) C35—P2—C42—C47 −59.6 (3)
C20—C21—C22—C17 1.4 (4) C47—C42—C43—C44 0.6 (5)
C20—C21—C22—Ir1 −174.3 (2) P2—C42—C43—C44 177.3 (3)
C18—C17—C22—C21 −2.7 (4) C42—C43—C44—C45 −0.6 (6)
C16—C17—C22—C21 175.0 (3) C43—C44—C45—C46 1.0 (7)
C18—C17—C22—Ir1 173.6 (2) C44—C45—C46—C47 −1.5 (6)
C16—C17—C22—Ir1 −8.7 (3) C45—C46—C47—C42 1.5 (5)
C35—P1—C23—C24 167.1 (2) C43—C42—C47—C46 −1.1 (5)
C29—P1—C23—C24 60.9 (3) P2—C42—C47—C46 −177.9 (3)
Ir1—P1—C23—C24 −75.2 (3)

Hydrogen-bond geometry (Å, º)

Cg6, Cg8 and Cg10 are the centroids of the C17–C22, C29–C34 and C42–C47 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C1—H1···Cl1 0.93 2.73 3.357 (3) 126
C14—H14···Cl1i 0.93 2.77 3.548 (4) 142
C30—H30···Cl1 0.93 2.84 3.664 (4) 148
C35—H35A···Cl1 0.97 2.83 3.460 (3) 124
C3—H3···Cg6ii 0.93 2.83 3.572 (4) 137
C26—H26···Cg10iii 0.93 2.79 3.575 (5) 143
C38—H38···C10iii 0.93 2.81 3.659 (5) 153
C40—H40···Cg8iv 0.93 2.95 3.711 (5) 140

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+2, −y+1, −z+2; (iv) −x+3/2, y+1/2, −z+5/2.

Funding Statement

This work was funded by Thailand Research Fund grant MRG 5580109. Office of the Higher Education Commission grant MRG 5580109. Prince of Songkla University grant MRG 5580109. Center of Excellence for Innovation in Chemistry grant .

References

  1. Alam, P., Laskar, I. R., Climent, C., Casanova, D., Alemany, P., Karanam, M., Choudhury, A. R. & Raymond Butcher, J. (2013). Polyhedron, 53, 286–294.
  2. Bruker (2003). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, Z.-Q., Shen, X., Xu, J.-X., Zou, H., Wang, X., Xu, Y. & Zhu, D.-R. (2015). Inorg. Chem. Commun. 61, 152–156.
  4. Chi, Y. & Chou, P. T. (2010). Chem. Soc. Rev. 39, 638–655. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Goldsmith, J. I., Hudson, W. R., Lowry, M. S., Anderson, T. H. & Bernhard, S. (2005). J. Am. Chem. Soc. 127, 7502–7510. [DOI] [PubMed]
  7. Hao, L., Li, Z. W., Zhang, D. Y., He, L., Liu, W., Yang, J., Tan, C. P., Ji, L. N. & Mao, Z. W. (2019). Chem. Sci. 10, 1285–1293. [DOI] [PMC free article] [PubMed]
  8. Hearn, J. M., Hughes, G. M., Romero-Canelón, I., Munro, A. F., Rubio-Ruiz, B., Liu, Z., Carragher, N. O. & Sadler, P. J. (2018). Metallomics, 10, 93–107. [DOI] [PubMed]
  9. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  10. Huynh, L., Wang, Z., Yang, J., Stoeva, V., Lough, A., Manners, I. & Winnik, M. A. (2005). Chem. Mater. 17, 4765–4773.
  11. Jian, Y., Peng, S., Li, X., Wen, X., He, J., Jiang, L. & Dang, Y. (2011). Inorg. Chim. Acta, 368, 37–43.
  12. Lee, S., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030–1037. [DOI] [PubMed]
  13. Lin, C. H., Chi, Y., Chung, M. W., Chen, Y. J., Wang, K. W., Lee, G. H., Chou, P. T., Hung, W. Y. & Chiu, H. C. (2011). Dalton Trans. 40, 1132–1143. [DOI] [PubMed]
  14. Liu, Z., Li, J., Ge, X., Zhang, S., Xu, Z. & Gao, W. (2019). J. Inorg. Biochem. 197, 110703. [DOI] [PubMed]
  15. Lowry, M. S. & Bernhard, S. (2006). Chem. Eur. J. 12, 7970–7977. [DOI] [PubMed]
  16. Lowry, M. S., Hudson, W. R., Pascal, R. A. & Bernhard, S. (2004). J. Am. Chem. Soc. 126, 14129–14135. [DOI] [PubMed]
  17. Luo, S.-X., Wei, L., Zhang, X.-H., Lim, M. H., Lin, K. X. V., Yeo, M. H. V., Zhang, W.-H., Liu, Z.-P., Young, D. J. & Hor, T. S. A. (2013). Organometallics, 32, 2908–2917.
  18. Ma, A.-F., Seo, H.-J., Jin, S.-H., Ung, C., Yoon, M., Ho, H., Kang, S. & Kim, Y.-I. (2009). Bull. Korean Chem. Soc. 30, 2754–2758.
  19. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  20. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  21. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  22. Nishikitani, Y., Cho, T., Uchida, S., Nishimura, S., Oyaizu, K. & Nishide, H. (2018). ChemPlusChem, 83, 463-469. [DOI] [PubMed]
  23. Rubio, A. R., Fidalgo, J., Martin-Vargas, J., Pérez-Arnaiz, C., Alonso-Torre, S. R., Biver, T., Espino, G., Busto, N. & García, B. (2020). J. Inorg. Biochem. 203, 110885. [DOI] [PubMed]
  24. SciFinder (2020). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed November 26, 2020).
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Shen, X., Wang, F.-L., Sun, F., Zhao, R., Wang, X., Jing, S., Xu, Y. & Zhu, D.-R. (2011). Inorg. Chem. Commun. 14, 1511–1515.
  28. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  29. Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). Inorg. Chem. Commun. 125, 7377–7387. [DOI] [PubMed]
  30. Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979. [DOI] [PubMed]
  31. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.
  32. Wang, Y., Teng, F., Tang, A., Wang, Y. & Xu, X. (2005). Acta Cryst. E61, m778–m780.
  33. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  34. Xiao, Q., Zhao, Z., Lin, K. & Wang, J. (2018). Inorg. Chem. Commun. 94, 75–79.
  35. Xu, M., Li, W., An, Z., Zhou, Q. & Wang, G. (2005). Appl. Organomet. Chem. 19, 1225–1231.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021000955/hb7961sup1.cif

e-77-00217-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021000955/hb7961Isup2.hkl

e-77-00217-Isup2.hkl (734.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021000955/hb7961Isup3.mol

CCDC reference: 2058995

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES